Fortes correlações entre o crescimento lei de potência da COVID-19 em quatro continentes e a ineficiência das estratégias de quarentenas leves

(Dados analisados até o dia 27 de Março de 2020)

Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies **G**

Export Citation CrossMark
Export Citation

AFFILIATIONS

¹Departamento de Física, Universidade do Estado de Santa Catarina, 89219-710 Joinville, SC, Brazill
 ²Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, PR, Brazil
 ³Escola Normal Superior, Universidade do Estado do Amazonas, 69050-010 Manaus, AM, Brazil

^{a)}Author to whom correspondence should be addressed: cesar.manchein@udesc.br

^{b)}elb@fisica.ufpr.br
^{c)}rmarques@fisica.ufpr.br
^{d)}cfabio.mendes@gmail.com
^{e)}mbeims@fisica.ufpr.br

Resultados deste trabalho têm dois enfoques

<u>Acadêmico:</u> modelos epidemiológicos para a propagação da COVID-19 <u>Prático:</u> correlações e estratégias de contenção do alastramento da COVID-19

¹³World Health Organization, see https://www.who.int/emergencies/diseases/ novel-coronavirus-2019/situation-reports/ for "Coronavirus disease (COVID-2019) situation reports" (2020).

FIG. 1. Cumulative number of confirmed infected cases by COVID-19 as a function of time for (a) USA, (b) Germany, (c) Spain, (d) France, (e) Italy, (f) China, (g) Brazil, (h) Japan, and (i) Republic of Korea, excluding days with <100 infected cases. The black-continuous curves represent the function $\alpha + \beta t^{\mu}$ that fit the time-series, and the parameters α , β , and μ for each country are described in Table I.

Enfoque acadêmico: Crescimento tipo Lei de Potência

⁶T. Ray, see https://www.zdnet.com/article/graph-theory-suggests-covid-19might-be-a-small-world-after-all/ for "Graph theory suggests COVID-19 might be a 'small world' after all" (2020).

⁷H. M. Singer, "Short-term predictions of country-specific COVID-19 infection rates based on power law scaling exponents," arXiv:2003.11997v1 (2020).

⁸B. F. Maier and D. Brockmann, "Effective containment explains sub-exponential growth in confirmed cases of recent COVID-19 outbreak in mainland China," arXiv:2002.07572v1 (2020).

⁹A. Ziff and R. Ziff, see https://doi.org/10.1101/2020.02.16.20023820 for "Fractal kinetics of COVID-19 pandemic" (2020).

Modelos epidemiológicos da COVID-19 podem ser descritos por redes de "mundo pequeno" ou "livres de escala"

From: Watts, D. J. e Strogatz S. H., Collective dynamics of small-world networks Nature, 393, 440 (1998).

FIG. 2. In panels (a), (b), (c), (g), (h), and (i) the log–log plot of the cumulative numbers of confirmed infected cases as a function of time is presented for the possible pairs of countries formed between Brazil, Italy, Japan, and USA. The semi-log plot of DC calculated between these pairs of countries is presented in panels (d), (e), (f), (j), (k), and (l), respectively.

Estratégias de contenção

Suscetíveis-Expostos-Infectados-Recuperados (SEIR)

$$\begin{split} \dot{S} &= -\frac{\theta}{T_{inf}} \frac{(I_s + \alpha I_a)}{N} S, \\ \dot{E} &= \frac{\theta}{T_{inf}} \frac{(I_s + \alpha I_a)}{N} S - \frac{E}{T_{lat}}, \\ \dot{I}_s &= (1 - \beta) \frac{E}{T_{lat}} - \left(\kappa_s + \frac{1}{T_{inf}}\right) I_s, \\ \dot{I}_a &= \beta \frac{E}{T_{lat}} - \left(\kappa_a + \frac{1}{T_{inf}}\right) I_a, \\ \dot{Q} &= \kappa_s I_s + \kappa_a I_a - \frac{Q}{T_{serial}}, \\ \dot{R} &= \frac{I_s + I_a}{T_{inf}} + \frac{Q}{T_{serial}}. \end{split}$$

Variável	Significado	Condições Iniciais
N	População do país.	Depende do país.
S	Indivíduos suscetíveis à infecção.	$S(t_0) = N - E(t_0) - C(t_0)/(1 - \beta)$
E	Indivíduos expostos, permanecem latentes até que se tornam infecciosos.	Ajustado conforme dados.
I_s	Casos infecciosos sintomáticos.	$I_s(t_0) = C(t_0)$
I_a	Casos infecciosos assintomáticos ou com sintomas leves.	$I_a(t_0) = \beta C(t_0) / (1 - \beta)$
Q	Indivíduos infecciosos isolados (em quarentena).	$Q(t_0) = 0$
R	Indivíduos recuperados, tornaram-se imunes.	$R(t_0) = 0$
C	Total de casos confirmados.	Dados OMS [1]
Parâmetros	Significado	Classe
Parâmetros $T_{ser} = 7.5$	Significado Tempo médio entre sucessivos casos de transmissão da doença.	Classe Predefinido [29]
Parâmetros $T_{ser} = 7.5$ $T_{lat} = 5.2$	SignificadoTempo médio entre sucessivos casos de transmissão da doença.Período médio de incubação.	Classe Predefinido [29] Predefinido [15, 29]
Parâmetros $T_{ser} = 7.5$ $T_{lat} = 5.2$ $T_{inf} = 2.3$	SignificadoTempo médio entre sucessivos casos de transmissão da doença.Período médio de incubação.Período de infecção. $T_{inf} = T_{ser} - T_{lat}$	Classe Predefinido [29] Predefinido [15, 29] Predefinido [15]
Parâmetros $T_{ser} = 7.5$ $T_{lat} = 5.2$ $T_{inf} = 2.3$ $\alpha = 1$	SignificadoTempo médio entre sucessivos casos de transmissão da doença.Período médio de incubação.Período de infecção. $T_{inf} = T_{ser} - T_{lat}$ Razão entre I_a e I_s .	Classe Predefinido [29] Predefinido [15, 29] Predefinido [15] Predefinido
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	SignificadoTempo médio entre sucessivos casos de transmissão da doença.Período médio de incubação.Período de infecção. $T_{inf} = T_{ser} - T_{lat}$ Razão entre I_a e I_s .Razão da população que permance assintomática ou com sintomas leves.	ClassePredefinido [29]Predefinido [15, 29]Predefinido [15]Predefinido [15]Predefinido [1]
Parâmetros $T_{ser} = 7.5$ $T_{lat} = 5.2$ $T_{inf} = 2.3$ $\alpha = 1$ $\beta = 0.8$ $\theta = \gamma R_0$	SignificadoTempo médio entre sucessivos casos de transmissão da doença.Período médio de incubação.Período de infecção. $T_{inf} = T_{ser} - T_{lat}$ Razão entre I_a e I_s .Razão da população que permance assintomática ou com sintomas leves. R_0 número básico de reprodução, γ fator de interação.	ClassePredefinido [29]Predefinido [15, 29]Predefinido [15]PredefinidoPredefinido [1]Ajustável/Estratégias
Parâmetros $T_{ser} = 7.5$ $T_{lat} = 5.2$ $T_{inf} = 2.3$ $\alpha = 1$ $\beta = 0.8$ $\theta = \gamma R_0$ κ_s	SignificadoTempo médio entre sucessivos casos de transmissão da doença.Período médio de incubação.Período de infecção. $T_{inf} = T_{ser} - T_{lat}$ Razão entre I_a e I_s .Razão da população que permance assintomática ou com sintomas leves. R_0 número básico de reprodução, γ fator de interação.Taxas de isolamento dos indivíduos sintomáticos.	ClassePredefinido [29]Predefinido [15, 29]Predefinido [15]PredefinidoPredefinido [1]Ajustável/EstratégiasAjustável/Estratégias

Resultado prático I: Distanciamento social é extremamente relevante

<u>Resultado prático II</u>: Um distanciamento social mediano, junto com a identificação e isolamento diário de 1% dos indivíduos infectados assintomáticos, não é suficiente para diminuir significativamente o número de casos

Resultado prático III: Estratégias são igualmente válidas em diferentes países.

Portal COVID19 - Setor de Ciências Exatas/UFPR Este portal tem por objetivo agregar informações atualizadas, modelos estatísticos, visualizações de dados e links úteis sobre a covid.c3sl.ufpr.br

http://covid.c3sl.ufpr.br

101

Monitoramento Outros

Portal COVID-19 no Paraná

Este portal tem por objetivo agregar informações atualizadas, modelos estatísticos, visualizações de dados e links úteis sobre a pandemia COVID19 no Brasil, mais especialmente no Estado do Paraná.

O conteúdo disponibilizado é um esforço conjunto de pesquisadores dos Departamentos de Estatística, Informática, Física, Matemática, Design e Saúde da Universidade Federal do Paraná e pesquisador do Insper-SP, com o apoio da Direção do Setor de Ciências Exatas da UFPR.

16:01 🗸

Curitiba Londrina Cascavel Maringá 500 casos confirmados 109 casos confirmados 86 casos confirmados 63 casos confirmados 26 mortes 14 mortes 5 mortes 4 mortes . May May May May April Apri April Apri Laboratório de Design Centro de Computação Laboratório de Estatística de Sistemas de Informação Científica e Software Livre e Geoinformação

Evolução dos casos

Developed & Designed by Bernardo Ferrari & Rafael Ancara

Grafo para o Estado do Paraná - em andamento

Professores **Sandro ES Pinto** e **Pedro Miranda** - Universidade Estadual de Ponta Grossa Agradecimentos: Professores **Eduardo Almeida e André Grégio** - Departamento Informática - UFPR

Possíveis contribuições (ideias) dos físicos no combate à pandemia (Dinâmica não linear, caos e sistemas complexos)

Análise das séries temporais (caóticas)

Dinâmica da propagação de vírus em redes complexas (Exemplo: indivíduos, cidades, municípios, regiões, aeroportos etc)

Simulações de modelos aplicados à economia, pós pandemia, "lockdown" parciais,...

Controle de tráfego de pedestres, desportistas em epidemias, e depois....

Bernardo Mello, UnB (https://arxiv.org/abs/2004.00423)

Recomendações e Orientações Gerais para o Esporte Brasileiro frente à COVID-19 Fernando Mezzadri (UFPR) e Paulo Schmitt (<u>https://tinyurl.com/y78fsvdq</u>)

