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ABSTRACT

In this work, we analyze the growth of the cumulative number of confirmed infected cases by a novel coronavirus (COVID-19) until March
27, 2020, from countries of Asia, Europe, North America, and South America. Our results show that (i) power-law growth is observed in
all countries; (ii) by using the distance correlation, the power-law curves between countries are statistically highly correlated, suggesting the
universality of such curves around the world; and (iii) soft quarantine strategies are inefficient to flatten the growth curves. Furthermore, we
present a model and strategies that allow the government to reach the flattening of the power-law curves. We found that besides the social
distancing of individuals, of well known relevance, the strategy of identifying and isolating infected individuals in a large daily rate can help
to flatten the power-laws. These are the essential strategies followed in the Republic of Korea. The high correlation between the power-law
curves of different countries strongly indicates that the government containment measures can be applied with success around the whole
world. These measures are scathing and to be applied as soon as possible.
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Since the identification of a novel coronavirus (COVID-19) in
Wuhan, China, in December 2019, the virus kept spreading
around the world. One of the most remarkable characteristics
of COVID-19 is its high infectivity, resulting in a global pan-
demic. In this complex scenario, tasks such as protecting the
people from the infection and the global economy are consid-
ered two major challenges. In order to improve our knowledge
about COVID-19 and its behavior in different countries around
the world, we exhaustively explore the real time-series of cumu-
lative number of confirmed infected cases by COVID-19 in the
last few months until March 27, 2020. In our analysis, we con-
sidered the Asia, Europe, North America, and South America.

Our main findings clearly show the existence of a well established
power-law growth and a strong correlation between power-law
curves obtained for different countries. These two observations
strongly suggest a universal behavior of such curves around
the world. To improve our analysis, we use a model with six
autonomous ordinary differential equations, based on the well-
known SEIR (Susceptible–Exposed–Infectious–Recovered) epi-
demic model (considering quarantine procedures), to propose
efficient strategies that allow the government to increase the flat-
tening of the power-law curves. Additionally, we also show that
soft measures of quarantine are inefficient to flatten the growth
curves.
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FIG. 1. Cumulative number of confirmed infected cases by COVID-19 as a function of time for (a) USA, (b) Germany, (c) Spain, (d) France, (e) Italy, (f) China, (g) Brazil,
(h) Japan, and (i) Republic of Korea, excluding days with <100 infected cases. The black-continuous curves represent the function α + β tµ that fit the time-series, and the
parameters α, β , and µ for each country are described in Table I.

TABLE I. Details about the parameters of the fitting curves for the power-law behavior
α +β tµ shown in Fig. 1.

Country α β µ

USA 0 0.009 4.994 ± 0.216
Germany 0 0.223 3.734 ± 0.107
Spain 308 0.386 3.686 ± 0.037
France 280 0.467 3.341 ± 0.031
Italy 0 2.868 2.934 ± 0.040
China 98 24.013 2.492 ± 0.020
Brazil 59 18.450 1.971 ± 0.054
Japan 112 3.107 1.685 ± 0.034
Republic of Korea 0 62.574 1.670 ± 0.065

the data are independent and equal to one for maximal correlation
between data. Details about the numerical procedure to obtain the
DC are given in Appendix A.

Figure 2 presents specific results for the DC calculated between
some selected countries, namely, Brazil, Italy, Japan, and USA. Italy
was chosen due to their relevance to Europe, regarding the typi-
cal data of the virus. USA was chosen for being the top affected
country, and Brazil and Japan represent distinct continents and dis-
tinct epidemic containment measures. Thus, we compute the DC
between four continents. Figures 2(a)–2(c), 2(g), 2(h), and 2(i) are
the cumulative number of confirmed cases in each country, as in
Fig. 1, but considering data since the first day the infection was
reported. In these curves, we clearly see the initial plateaus due
to the incubation time. After the plateaus, a qualitative change
to the power-law growth (the same from Fig. 1) occurs. The
time for which the qualitative change occurs is distinct for each
country.
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part of the data, where the first θ eff and κ
eff
s are determined along the

data. It could be thought that such initial condition must be include
in the adjustable parameters. However, even in such case, r = 3 and
2r + 1 = 7. The lowest number of available data in the first part of
data is 9, as can be seen in Fig. 3(b), meaning that even in the worst
case our adjustments are trustful. The goal is to minimize the mean
square error between the predicted curve and real data. In the case
analyzed here, κa = 0 along the real data. It is only changed, not
adjusted, when there are information available about the test realiza-
tion in the population. We do not start the parameter’s adjustment
from the first day of reported infections, but later on. The model
produces better results in such cases.

Regarding the adjustment of the parameters (θ , κs) = (θ eff, κ
eff
s ),

we minimize the mean square error separately inside the three set of
data in Figs. 3(a) and 3(b) and inside the two set of data in Figs. 4(a)
and 4(b). To do so, we vary the parameters inside the intervals
θ ∈ [0, 6] and κs ∈ [0, 1] with a step of 0.05. The initial condition
for E(t0) is determined inside the first part of the data considering
(θ , κs, E(t0)) in the interval E(t0) ∈ [0, 5000] using a step equal to 5.

The initial conditions used in the numerical integration pro-
cess of the ODEs are the following: Q(t0) = R(t0) = 0; Ia(t0)
= βIs(t0)/(1 − β), where Is(t0) represent the number of confirmed
infected cases, obtained from the real time-series for the day t0. S(t)
is determined accordingly to the total number of people for each
country and the previous initial conditions.
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FIG. 1. Cumulative number of confirmed infected cases by COVID-19 as a function of time for (a) USA, (b) Germany, (c) Spain, (d) France, (e) Italy, (f) China, (g) Brazil,
(h) Japan, and (i) Republic of Korea, excluding days with <100 infected cases. The black-continuous curves represent the function α + β tµ that fit the time-series, and the
parameters α, β , and µ for each country are described in Table I.

TABLE I. Details about the parameters of the fitting curves for the power-law behavior
α +β tµ shown in Fig. 1.

Country α β µ

USA 0 0.009 4.994 ± 0.216
Germany 0 0.223 3.734 ± 0.107
Spain 308 0.386 3.686 ± 0.037
France 280 0.467 3.341 ± 0.031
Italy 0 2.868 2.934 ± 0.040
China 98 24.013 2.492 ± 0.020
Brazil 59 18.450 1.971 ± 0.054
Japan 112 3.107 1.685 ± 0.034
Republic of Korea 0 62.574 1.670 ± 0.065

the data are independent and equal to one for maximal correlation
between data. Details about the numerical procedure to obtain the
DC are given in Appendix A.

Figure 2 presents specific results for the DC calculated between
some selected countries, namely, Brazil, Italy, Japan, and USA. Italy
was chosen due to their relevance to Europe, regarding the typi-
cal data of the virus. USA was chosen for being the top affected
country, and Brazil and Japan represent distinct continents and dis-
tinct epidemic containment measures. Thus, we compute the DC
between four continents. Figures 2(a)–2(c), 2(g), 2(h), and 2(i) are
the cumulative number of confirmed cases in each country, as in
Fig. 1, but considering data since the first day the infection was
reported. In these curves, we clearly see the initial plateaus due
to the incubation time. After the plateaus, a qualitative change
to the power-law growth (the same from Fig. 1) occurs. The
time for which the qualitative change occurs is distinct for each
country.
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Modelos epidemiológicos da COVID-19 podem ser descritos por redes de 
“mundo pequeno” ou “livres de escala”

Sugere que…
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part of the data, where the first θ eff and κ
eff
s are determined along the

data. It could be thought that such initial condition must be include
in the adjustable parameters. However, even in such case, r = 3 and
2r + 1 = 7. The lowest number of available data in the first part of
data is 9, as can be seen in Fig. 3(b), meaning that even in the worst
case our adjustments are trustful. The goal is to minimize the mean
square error between the predicted curve and real data. In the case
analyzed here, κa = 0 along the real data. It is only changed, not
adjusted, when there are information available about the test realiza-
tion in the population. We do not start the parameter’s adjustment
from the first day of reported infections, but later on. The model
produces better results in such cases.

Regarding the adjustment of the parameters (θ , κs) = (θ eff, κ
eff
s ),

we minimize the mean square error separately inside the three set of
data in Figs. 3(a) and 3(b) and inside the two set of data in Figs. 4(a)
and 4(b). To do so, we vary the parameters inside the intervals
θ ∈ [0, 6] and κs ∈ [0, 1] with a step of 0.05. The initial condition
for E(t0) is determined inside the first part of the data considering
(θ , κs, E(t0)) in the interval E(t0) ∈ [0, 5000] using a step equal to 5.

The initial conditions used in the numerical integration pro-
cess of the ODEs are the following: Q(t0) = R(t0) = 0; Ia(t0)
= βIs(t0)/(1 − β), where Is(t0) represent the number of confirmed
infected cases, obtained from the real time-series for the day t0. S(t)
is determined accordingly to the total number of people for each
country and the previous initial conditions.
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part of the data, where the first θ eff and κ
eff
s are determined along the

data. It could be thought that such initial condition must be include
in the adjustable parameters. However, even in such case, r = 3 and
2r + 1 = 7. The lowest number of available data in the first part of
data is 9, as can be seen in Fig. 3(b), meaning that even in the worst
case our adjustments are trustful. The goal is to minimize the mean
square error between the predicted curve and real data. In the case
analyzed here, κa = 0 along the real data. It is only changed, not
adjusted, when there are information available about the test realiza-
tion in the population. We do not start the parameter’s adjustment
from the first day of reported infections, but later on. The model
produces better results in such cases.

Regarding the adjustment of the parameters (θ , κs) = (θ eff, κ
eff
s ),

we minimize the mean square error separately inside the three set of
data in Figs. 3(a) and 3(b) and inside the two set of data in Figs. 4(a)
and 4(b). To do so, we vary the parameters inside the intervals
θ ∈ [0, 6] and κs ∈ [0, 1] with a step of 0.05. The initial condition
for E(t0) is determined inside the first part of the data considering
(θ , κs, E(t0)) in the interval E(t0) ∈ [0, 5000] using a step equal to 5.

The initial conditions used in the numerical integration pro-
cess of the ODEs are the following: Q(t0) = R(t0) = 0; Ia(t0)
= βIs(t0)/(1 − β), where Is(t0) represent the number of confirmed
infected cases, obtained from the real time-series for the day t0. S(t)
is determined accordingly to the total number of people for each
country and the previous initial conditions.

REFERENCES
1T. Pueyo, see https://medium.com/@tomaspueyo/coronavirus-act-today-or-
people-will-die-f4d3d9cd99c for “Coronavirus: Why you must act now” (2020).
2A. Vazquez, “Polynomial growth in branching processes with diverging repro-
ductive number,” Phys. Rev. Lett. 96, 038702 (2006).
3H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev. 42,
599–653 (2000).
4G. M. Viswanathan, M. G. E. da Luz, E. P. Raposo, and H. E. Stanley, The Physics
of Foraging: An Introduction to Random Searches and Biological Encounters
(Cambridge University Press, 2011).
5D. J. Watts, Small Worlds: The Dynamics of Networks between Order and
Randomness (Princeton University Press, 2004).
6T. Ray, see https://www.zdnet.com/article/graph-theory-suggests-covid-19-
might-be-a-small-world-after-all/ for “Graph theory suggests COVID-19 might
be a ‘small world’ after all” (2020).
7H. M. Singer, “Short-term predictions of country-specific COVID-19 infection
rates based on power law scaling exponents,” arXiv:2003.11997v1 (2020).

8B. F. Maier and D. Brockmann, “Effective containment explains sub-exponential
growth in confirmed cases of recent COVID-19 outbreak in mainland China,”
arXiv:2002.07572v1 (2020).
9A. Ziff and R. Ziff, see https://doi.org/10.1101/2020.02.16.20023820 for “Fractal
kinetics of COVID-19 pandemic” (2020).
10G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing depen-
dence by correlation of distances,” Ann. Stat. 35, 2769–2794 (2007).
11C. F. O. Mendes and M. W. Beims, “Distance correlation detecting Lyapunov
instabilities, noise-induced escape times and mixing,” Physica A 512, 721–730
(2018).
12C. F. O. Mendes, R. M. da Silva, and M. W. Beims, “Decay of the dis-
tance autocorrelation and Lyapunov exponents,” Phys. Rev. E 99, 062206
(2019).
13World Health Organization, see https://www.who.int/emergencies/diseases/
novel-coronavirus-2019/situation-reports/ for “Coronavirus disease (COVID-
2019) situation reports” (2020).
14PreventionWeb, see https://www.preventionweb.net/news/view/71028 for
“How South Korea is suppressing COVID-19” (2020).
15G. J. Székely and M. L. Rizzo, “Brownian distance covariance,” Ann. Appl. Stat.
3, 1236–1265 (2009).
16G. J. Székely and M. L. Rizzo, “On the uniqueness of distance covariance,” Stat.
Probab. Lett. 82, 2278–2282 (2012).
17G. J. Székely and M. L. Rizzo, “The distance correlation t-test of independence
in high dimension,” J. Multivariate Anal. 117, 193–213 (2013).
18G. J. Székely and M. L. Rizzo, “Partial distance correlation with methods for
dissimilarities,” Ann. Stat. 42, 2382–2412 (2014).
19M. Y. Li, J. R. Graef, L. Wang, and J. Karsai, “Global dynamics of a SEIR model
with varying total population size,” Math. Biosci. 160, 191–213 (1999).
20J. T. Wu, K. Leung, and G. M. Leung, “Nowcasting and forecasting the poten-
tial domestic and international spread of the 2019-nCoV outbreak originating in
Wuhan, China: A modelling study,” Lancet 395, 689–697 (2020).
21K. M. Khalil, M. Abdel-Aziz, T. T. Nazmy, and A. B. M. Salem, “An agent-based
modeling for pandemic influenza in Egypt,” in Handbook on Decision Making
(Springer, 2012), pp. 205–218.
22B. J. Coburn, B. G. Wagner, and S. Blower, “Modeling influenza epidemics
and pandemics: Insights into the future of swine flu (H1N1),” BMC Med. 7, 30
(2009).
23M. Lipsitch et al., “Transmission dynamics and control of severe acute respira-
tory syndrome,” Science 300, 1966–1970 (2003).
24Y. S. Long et al., “Quantitative assessment of the role of undocumented infec-
tion in the 2019 novel coronavirus (COVID-19) pandemic,” arXiv:2003.12028
(2020).
25H. Hethcote, M. Zhien, and L. Shengbing, “Effects of quarantine in six endemic
models for infectious diseases,” Math. Biosci. 180, 141–160 (2002).
26Q. Li et al., “Early transmission dynamics in Wuhan, China, of novel
coronavirus-infected pneumonia,” N. Engl. J. Med. 382, 1199–1207
(2020).
27E. D. Sontag, “For differential equations with r parameters, 2r + 1 experiments
are enough for identification,” J. Nonlinear Sci. 12, 553 (2002).

Chaos 30, 041102 (2020); doi: 10.1063/5.0009454 30, 041102-9

Published under license by AIP Publishing.

From: Watts, D. J. e Strogatz S. H., Collective dynamics of small-world networks Nature, 393 , 440 (1998).

https://supplynow.co.uk/news/six-degrees-of-separation-try-two

Nature © Macmillan Publishers Ltd 1998

8

letters to nature

NATURE | VOL 393 | 4 JUNE 1998 441

removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/,grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes ,90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ) Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv 2 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.
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FIG. 2. In panels (a), (b), (c), (g), (h), and (i) the log–log plot of the cumulative numbers of confirmed infected cases as a function of time is presented for the possible pairs
of countries formed between Brazil, Italy, Japan, and USA. The semi-log plot of DC calculated between these pairs of countries is presented in panels (d), (e), (f), (j), (k), and
(l), respectively.

Figures 2(d)–2(f), 2(j), 2(k), and 2(l) display the corresponding
DC calculated between the countries. Results show that DC between
the curves is relatively high in the beginning. The lowest values
for the DC are obtained between Brazil and Italy, in Fig. 2(d), and
between Italy and USA, shown in Fig. 2(k); in both cases, DC is
around 0.4. DC decays substantially when the power-law starts in
one country but not in the other. The exception is between Japan
and USA. After some days, when both countries reach the power-
law behavior, the values of DC become very close to 1. Thus, they
are highly correlated besides distinct exponents µ. Furthermore, the
DC is not necessarily related to the exponent µ. One example can
be mentioned. Even though USA has the largest exponent and Japan
the lowest one (considering the error in Table I), they are highly cor-
related. Besides that a even though there are not many data available
for Brazil, it seems to become more and more correlated with Italy
and Japan.

III. PREDICTIONS AND STRATEGIES

The model proposed in this work for the numerical prediction
and strategies is presented in detail in Appendix B. It is a variation of

the well known Susceptible–Exposed–Infectious–Recovered (SEIR)
epidemic model19,20 to propose efficient strategies that allow the
government to increase the flattening of the power-law curves.
Our SEIR model takes into account the isolation of infected
individuals.8,21–23 In this case, quarantine means the identification
and isolation of infected individuals. The parameters are divided
in two categories: (i) those related to the characteristic of the
virus spreading, defined a priori from other studies and (ii) those
related to adjusting the model to the real data (for more details,
see Appendix B). These parameters can change according to social
actions and government strategies.

Numerical results of this section take into account possible
interferences or strategies from the government of each country,
what means that some parameters must be changed after the last
day of the real data. For each distinct strategy, we use distinct colors,
which are then plotted.

For a detailed explanation of variables and parameters, see
Appendix B. The colors used in Fig. 3 for the distinct scenarios are
the following (for continuous curves):

Red curves: the tendency which follows from the behavior

of the last points of real data (last values for θ eff and κ
eff
s ). This
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part of the data, where the first θ eff and κ
eff
s are determined along the

data. It could be thought that such initial condition must be include
in the adjustable parameters. However, even in such case, r = 3 and
2r + 1 = 7. The lowest number of available data in the first part of
data is 9, as can be seen in Fig. 3(b), meaning that even in the worst
case our adjustments are trustful. The goal is to minimize the mean
square error between the predicted curve and real data. In the case
analyzed here, κa = 0 along the real data. It is only changed, not
adjusted, when there are information available about the test realiza-
tion in the population. We do not start the parameter’s adjustment
from the first day of reported infections, but later on. The model
produces better results in such cases.

Regarding the adjustment of the parameters (θ , κs) = (θ eff, κ
eff
s ),

we minimize the mean square error separately inside the three set of
data in Figs. 3(a) and 3(b) and inside the two set of data in Figs. 4(a)
and 4(b). To do so, we vary the parameters inside the intervals
θ ∈ [0, 6] and κs ∈ [0, 1] with a step of 0.05. The initial condition
for E(t0) is determined inside the first part of the data considering
(θ , κs, E(t0)) in the interval E(t0) ∈ [0, 5000] using a step equal to 5.

The initial conditions used in the numerical integration pro-
cess of the ODEs are the following: Q(t0) = R(t0) = 0; Ia(t0)
= βIs(t0)/(1 − β), where Is(t0) represent the number of confirmed
infected cases, obtained from the real time-series for the day t0. S(t)
is determined accordingly to the total number of people for each
country and the previous initial conditions.
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Figure 2: Schematic representation of the model, their variables, and the role of the parameters connecting the variables.

9 ⇥ 102 simulations varying ✓ 2 [0.5, 5.0] using a step equal to 0.1 and s 2 [0.0, 1.0] using a step equal to
0.05. We need five sets of parameters in Fig. 3(a), namely P1, P2, P3, P4, and P5 for Belgium, and six
sets of parameters for the other countries, seen in Fig. 3,(b)-3(d). Details of the adjustable parameters are
given in Table 2. The initial condition E(t0) for the variable E(t) is determined inside the first period P1

of the data considering the interval E(t0) 2 [C(t0)/5, 10C(t0)] using a step equal C(t0)/5, where C(t0) is
the cumulative number of confirmed cases obtained from the WHO data for the first day in P1. We do not
start the parameter adjustment from the first day of reported infections, but later on. The model produces
better results in such cases.

After adjusting the parameters to the real data, the black-continuous curves in Fig. 3 display the results of
integrating equations of the model. We observe that these curves nicely reproduce the data in all cases. When
real data are not available anymore, the black-continuous curves represent projections of the cumulative
number of infected individuals until the day 150, considering that the pair (✓eff ,eff

s ) found in the last
period will not be changed.

Table 2: Values of ✓eff and eff
s for each period obtained by adjusting the model to the real data. The last column shows the

values of C after 150 days since the first case.
P1 P2 P3 P4 P5 P6Country

✓eff eff
a ✓eff eff

a ✓eff eff
a ✓eff eff

a ✓eff eff
a ✓eff eff

a
C

Belgium 2.50 1.00 2.60 0.00 1.00 0.00 1.20 0.80 0.70 0.40 - 6.0⇥ 104

Brazil 4.40 0.20 1.50 0.20 2.70 0.00 1.70 0.50 1.40 1.00 2.10 0.45 2.9⇥ 107

UK 3.60 0.10 2.80 0.00 2.60 0.10 1.90 0.00 1.30 0.05 1.00 0.30 3.4⇥ 105

USA 4.60 0.05 2.60 1.00 2.00 0.40 1.30 0.75 0.90 1.00 1.10 0.15 2.6⇥ 106

3. Containment measures: early, current and late actions

In this section, we discuss the effects of distinct strategies applied in different days on the total number
of infected individuals. Essentially we discuss two strategies:

(i) vary the degree of the social distance;

(ii) for a constant value of the social distance, vary the number of daily tests that identify and isolate the
infected asymptomatic individuals.

3.1. The social distance effect
As mentioned before, Fig. 3 displays the real data (empty circles) and black-continuous curves which

were adjusted to fit the data. The results are shown for Belgium in Fig. 3(a), Brazil in Fig. 3(b), UK in
Fig. 3(c) and USA in Fig. 3(d). During the integration of the ODEs of the model, it is possible to change

5
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DATA AVAILABILITY

The data that support the findings of this study are openly avail-
able from WHO (World Health Organization) (situation reports
1–68), Ref. 13.

APPENDIX A: THE DISTANCE CORRELATION

In this section, we give a precise description of the numer-
ical procedure to obtain the DC following Ref. 10. Consider
joint random sample (X, Y) = {(Xk, Yk) : k = 1, . . . , N} with X, Y ∈
Rp and N ≥ 2, with i = 1, . . . , N and j = 1, . . . , N. In addition,
consider matrix Aij = aij − āi. − ā.j + ā.., where aij = |Xi − Xj|p is
the Euclidean norm of the distance between the elements of
the sample; āi. = 1

N

∑N
j=1 aij and ā.j = 1

N

∑N
i=1 aij are the arith-

metic mean of the rows and columns, respectively; and ā.. =
1

N2

∑N
i,j=1 aij is the general mean. A similar matrix, Bij = bij

− b̄i. − b̄.j + b̄.., can be defined using bij = |Yi − Yj|p. The terms

bij, b̄i., b̄.j, and b̄.. are similar to those from matrix Aij. From these
matrices, we compute the empirical distance correlation from

DCN(X, Y) =
σN(X, Y)

√
σN(X)σN(Y)

, (A1)
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APPENDIX B: THE MODEL

The proposed model contains six ODEs and is an extension of a
model known in the literature.21–23 Many other related models have
been proposed with distinct characteristics.8,20–25 In our case, we con-
sider symptomatic Is and asymptomatic Ia infected individuals (Ia

also includes individuals with mild symptoms). Quarantine Q is also
contemplated, respectively. The transition rate from asymptomatic
to symptomatic cases is neglected as an first approach. The Ordinary
Differential Equations (ODEs) are given by

Ṡ = −
θ

Tinf

(Is + αIa)

N
S, (B1)

Ė =
θ

Tinf

(Is + αIa)

N
S −

E

Tlat

, (B2)

İs = (1 − β)
E

Tlat

−
(

κs +
1

Tinf

)

Is, (B3)

İa = β
E

Tlat

−
(

κa +
1

Tinf

)

Ia, (B4)

Q̇ = κsIs + κaIa −
Q

Tserial

, (B5)

Ṙ =
Is + Ia

Tinf

+
Q

Tserial

. (B6)

Dot represents the time derivative and the variables are

• N = S + E + Is + Ia + Q + R: total population.
• S: individuals susceptible to infection.
• E: exposed individuals, remain latent until infected.
• Is: symptomatic individuals. Represent individuals with strong

symptoms. We assume that these individuals look for health care
and are included in the confirmed cases.

• Ia: asymptomatic individuals and mild symptomatic cases.
• Q: infected individuals isolated (in quarantine).
• R: individuals which were infected and not identified but became

immune.

To adjust the parameters following distinct countries, as well as
government measures, we used the cumulative number of con-
firmed infected individuals Ccum. The number of confirmed infected
individuals as a function of time is defined by C(t) = Is(t) + Q(t).
Parameters which do not depend on strategies are

• Tserial = 7.5 days: mean serial interval.26 Is the mean time between
successive cases of the transmission of the disease.

• Tlat = 5.2 days: mean incubation period.26 Assumed to be equal to
the latent time,20 which is the time interval the exposed individual
remains infectious, also denominated incubation time.

• Tinf = Tserial − Tlat: infectious period.20

• α = 1.0: ratio between infectiousness of asymptomatic and symp-
tomatic individuals. We assume that the numbers of asymp-
tomatic and symptomatic individuals are equal.

• β = 0.8: population ratio which remains asymptomatic or mild
symptomatic, which is the most common observed cases (see the
situation report 46 in Ref. 13).

Parameters that are related to the use of distinct strategies are

• θ = γ R0: replication factor, with γ being a number that repre-
sents the proportion of interaction between individuals and R0

the basic reproduction number. In our model, θ is an adjustable
parameter according to WHO data.

• κs: isolation rate of symptomatic individuals.
• κa: isolation and identification rate of asymptomatic individuals.

In this model, no rigid quarantine is taken into account and no
immunization term is defined, since until today no vaccine has been
developed. In Eq. (B5), the factor Tserial dividing Q represents a rate
of exit from the quarantine (for the group R).

It is of most relevance to mention that the only adjustable
parameters in our simulations are θ and κs. This is important since
for systems composed of differential equations with r parameters,
2r + 1 experiments are needed to obtain all the information that is
potentially available about the parameters.27 Since in our case r = 2,
we need five real data to adjust parameters correctly. All real data

used in Figs. 3 and 4 to find θ eff and κ
eff
s are > 5. Furthermore, the

initial condition for the variable E(t0) is adjusted only in the first
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N

∑N
i=1 aij are the arith-

metic mean of the rows and columns, respectively; and ā.. =
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The proposed model contains six ODEs and is an extension of a
model known in the literature.21–23 Many other related models have
been proposed with distinct characteristics.8,20–25 In our case, we con-
sider symptomatic Is and asymptomatic Ia infected individuals (Ia

also includes individuals with mild symptoms). Quarantine Q is also
contemplated, respectively. The transition rate from asymptomatic
to symptomatic cases is neglected as an first approach. The Ordinary
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Dot represents the time derivative and the variables are

• N = S + E + Is + Ia + Q + R: total population.
• S: individuals susceptible to infection.
• E: exposed individuals, remain latent until infected.
• Is: symptomatic individuals. Represent individuals with strong

symptoms. We assume that these individuals look for health care
and are included in the confirmed cases.

• Ia: asymptomatic individuals and mild symptomatic cases.
• Q: infected individuals isolated (in quarantine).
• R: individuals which were infected and not identified but became

immune.

To adjust the parameters following distinct countries, as well as
government measures, we used the cumulative number of con-
firmed infected individuals Ccum. The number of confirmed infected
individuals as a function of time is defined by C(t) = Is(t) + Q(t).
Parameters which do not depend on strategies are

• Tserial = 7.5 days: mean serial interval.26 Is the mean time between
successive cases of the transmission of the disease.

• Tlat = 5.2 days: mean incubation period.26 Assumed to be equal to
the latent time,20 which is the time interval the exposed individual
remains infectious, also denominated incubation time.

• Tinf = Tserial − Tlat: infectious period.20

• α = 1.0: ratio between infectiousness of asymptomatic and symp-
tomatic individuals. We assume that the numbers of asymp-
tomatic and symptomatic individuals are equal.

• β = 0.8: population ratio which remains asymptomatic or mild
symptomatic, which is the most common observed cases (see the
situation report 46 in Ref. 13).

Parameters that are related to the use of distinct strategies are

• θ = γ R0: replication factor, with γ being a number that repre-
sents the proportion of interaction between individuals and R0

the basic reproduction number. In our model, θ is an adjustable
parameter according to WHO data.

• κs: isolation rate of symptomatic individuals.
• κa: isolation and identification rate of asymptomatic individuals.

In this model, no rigid quarantine is taken into account and no
immunization term is defined, since until today no vaccine has been
developed. In Eq. (B5), the factor Tserial dividing Q represents a rate
of exit from the quarantine (for the group R).

It is of most relevance to mention that the only adjustable
parameters in our simulations are θ and κs. This is important since
for systems composed of differential equations with r parameters,
2r + 1 experiments are needed to obtain all the information that is
potentially available about the parameters.27 Since in our case r = 2,
we need five real data to adjust parameters correctly. All real data

used in Figs. 3 and 4 to find θ eff and κ
eff
s are > 5. Furthermore, the

initial condition for the variable E(t0) is adjusted only in the first
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Estratégias 
de contenção 

Variável Significado Condições Iniciais
N População do país. Depende do país.
S Indivíduos suscetíveis à infecção. S(t0) = N � E(t0)� C(t0)/(1� �)
E Indivíduos expostos, permanecem latentes até que se tornam infecciosos. Ajustado conforme dados.
Is Casos infecciosos sintomáticos. Is(t0) = C(t0)
Ia Casos infecciosos assintomáticos ou com sintomas leves. Ia(t0) = �C(t0)/(1� �)
Q Indivíduos infecciosos isolados (em quarentena). Q(t0) = 0
R Indivíduos recuperados, tornaram-se imunes. R(t0) = 0
C Total de casos confirmados. Dados OMS [1]

Parâmetros Significado Classe
Tser = 7.5 Tempo médio entre sucessivos casos de transmissão da doença. Predefinido [29]
Tlat = 5.2 Período médio de incubação. Predefinido [15, 29]
Tinf = 2.3 Período de infecção. Tinf = Tser � Tlat Predefinido [15]

↵ = 1 Razão entre Ia e Is. Predefinido
� = 0.8 Razão da população que permance assintomática ou com sintomas leves. Predefinido [1]
✓ = �R0 R0 número básico de reprodução, � fator de interação. Ajustável/Estratégias

s Taxas de isolamento dos indivíduos sintomáticos. Ajustável/Estratégias
a Taxas de isolamento dos indivíduos assintomáticos. Estratégias
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Figure 2: Schematic representation of the model, their variables, and the role of the parameters connecting the variables.

preceding studies are also listed. The highlight lines in Table 2.1 call to attention to the variable C, which
is the main quantity analyzed in this work, to the adjustable parameters ✓ and s, and to the strategic
parameter a. After the adjustment, the parameters ✓ and a will be varied in order to give rise to specific
strategies. Worth to mention that ✓ = �R0, where R0 is the basic reproductive number without social
distance actions, and � is the interaction factor between individuals. This factor can be interpreted as the
ratio between the average of the daily social interaction due to the applied social distance actions and the
case with no actions at all. Larger social distance implies smaller values of ✓, which is equivalent to reduce
R0. The distinction between ✓ and R0 allows us to identify the direct effects of the actions in the battle
against the pandemic. Thus, the ideal situation would be to find ✓ < 1.

Suscetíveis-Expostos-Infectados-Recuperados (SEIR).
Figure 2 is a schematic representation of the model, showing the variables and the connections between

them through the parameters. Condensing the explanation of the schema, starting from the left, susceptible
individuals S develop into exposed individuals E by a rate ✓(Is + ↵Ia)/(NTinf ) which, after a latent
time Tlat, become symptomatic Is or asymptomatic Ia with the rate (1 � �)/Tlat and �/Tlat, respectively.
Applying daily tests in a rate s (a) to identify symptomatic (asymptomatic) infected individuals, they are
immediately sent to quarantine Q, staying there for a time Tser before recovering (R). On the other hand,
infected individuals who have not been tested are sent to the class R after the infection time Tinf . Matter
of fact, since no vaccine has been developed until today, the model does not contain an immunization term.
No rigid quarantine is taken into account. Furthermore, in Eq. (5), the factor Tser dividing Q represents a
rate of exit from the quarantine (to the group R).

4
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Resultado prático II: Um distanciamento social mediano, junto com a identificação e 
isolamento diário de 1% dos indivíduos infectados assintomáticos, não é suficiente  

para diminuir significativamente o número de casos 

dCcum

dt
= (1� �)

E

Tlat
+ aIa
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Resultado prático I: Distanciamento social é extremamente relevante 

Resultado prático III: Estratégias são igualmente válidas em diferentes países.
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confirmed cases since they represent the scenario following the ten-
dency demonstrated by the data. In the case of Italy, we obtain
5.6 × 106 and for France, 1.0 × 107. See the tendencies in Figs. 3(c)
and 3(d). The considerable difference between these projections is

explained by the last values of θ eff and κ
eff
s obtained for these coun-

tries. Besides θ eff being larger for France, we obtain κ
eff
s = 0, which

can be interpreted as the nonexistence of quarantine measures or
the inefficient isolation of symptomatic individuals. We are aware
that such asymptotic behavior can be hardly trusted with numeri-
cal simulation of models. However, our intention in displaying such
asymptotic behavior is to show that the proposed model converges
to reasonable values.

Now, we discuss results for some emblematic scenarios for the
model when specific strategies are applied to Italy and France on day
March 28th. For both countries, we assume κs = 1 for all strategies,
which means that all symptomatic individuals per day are put into
quarantine. We can see that the strategy represented by the orange
curves is not sufficient to significantly reduce the total number

of confirmed infected individuals for France, since the last value
θ eff = 1.90 indicates a large level of social interaction in this country.
On the other hand, for Italy, a considerable reduction is observed,
specially for the orange-dashed curve, which indicates only the
number of symptomatic cases. Strategies related to the blue curves
mitigate the growth of the number of confirmed cases and, with
exception of the dark blue case for Italy, lead to smaller asymp-
totic values when compared to the red and orange scenarios. The
light blue curves, related to large social distance (θ = 0.8), are the
most efficient scenarios to induce an accentuated reduction of the
growth and a fast convergence to the maximal number of confirmed
cases. Furthermore, green curves tend to approach the medium
blue curves, which means that, for θ = 1.0, there is no significant
difference between isolating 1% (κa = 0.01) of the asymptomatic
individuals per day or doing nothing. However, increasing the daily
ratio of detection and isolation of asymptomatic individuals to
κa = 0.05, a noticeable reduction of the asymptotic value of infected
individuals is observed (see magenta-dashed curves). Nevertheless,

FIG. 4. Log–log plot of cumulative number of confirmed cases (black circles) for Brazil [(a) and (c)] and USA [(b) and (d)] as a function of time and the projected number of
cases (colored lines) using distinct government strategies (discussed in the text).
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Estratégias de contenção 

Distanciamento social
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Possíveis contribuicões (ideias) dos físicos no combate à pandemia 
(Dinâmica não linear, caos e sistemas complexos) 

Análise das séries temporais (caóticas) 

Dinâmica da propagação de vírus em redes complexas 
(Exemplo: indivíduos, cidades, municípios, regiões, aeroportos etc) 

     
Simulações de modelos aplicados à economia, pós pandemia, “lockdown” parciais,… 

Controle de tráfego de pedestres, desportistas em epidemias, e depois….  

  Recomendações e Orientações Gerais para o Esporte Brasileiro frente à COVID-19 
Fernando Mezzadri (UFPR) e Paulo Schmitt (https://tinyurl.com/y78fsvdq) 

Bernardo Mello, UnB (https://arxiv.org/abs/2004.00423)
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