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ELECTRIC MAGNETIC DUALITY AND QUARK CONFINEMENT 

F. GLIOZZI 
Dipartimento di Fisica Teorica, Universita di Torino. 

via P. Giuria 1, 10125 Torino, Italy 

We give an elementary account of the Seiberg and Witten approach to N=2 super 
Yang-Mills theory which yields an exact form of the low energy effective action and 
suggests a simple confinement mechanism generated by monopole condensation. 

1 Introduction 

It is now widely believed that the phase of quark confinement observed or conjectured in many 
gauge theories in three or four space-time dimensions is described, as first suggested by t'Hooft, 
Mandelstam and Parisi I, by a sort of dual Higgs mechanism: a (composite) field Om carrying a 
magnetic charge acquires a non-vanishing vacuum expectation value < ›A 0. This conden-
sation gives a mass to the gauge field and a mass gap is generated like in ordinary Higgs effect. 
The important difference is that it is the dual or magnetic description of the gauge field which 
couples locally to the magnetized field M.  As a consequence, the chromoelectric field is expelled 
from the vacuum (dual Meissner effect) and the flux lines connecting a quark pair are squeezed in 
a thin flux tube .(dual Abrikosov vortex), giving rise to a confining potential proportional to the 
interquark distance. 

Unfortunately the above description for almost all known models remains at a conjectural stage. 
The only explicit example of this mechanism can be found in the Polyakov proof of confinement 
of U(1) gauge model in three space-time dimensions 2 . 

More recently, Seiberg and Witten worked out a new approach to four-dimensional N = 2 
supersymmetric gauge theories leading to some exact results on their spectrum and on their low 
energy behaviour which strengthen and sheds new light on the dual picture of confinement. In this 
talk I would like to give an elementary account of this new approach. 

2 N = 2 super Yang-Mills Theory 

The minimal N = 2 super Yang-Mills theory for SU(2) gauge group is described by a Lagrangian 
of the following form 

L ={(—.° i L 2 ) 	(r,F°  
47r 	27r 	 4 	" 	 2 

	

-1-(DpO d (D,c3). – 2(0 1'clib;;;,) 2 	fertnionsi 

where, in the usual notations, Fr = 8P  Aav  — 8".4: – eca'Ar,A ci', the complex Higgs field is in 
the adjoint representation, and (D"40) 0  = 8P 40,2 – ee k Ar,Oc- 

I.Ve need not to write out explicitly the ferznionic part of the Lagrangian which contains the 
contribution of the two Weyl fermions (the gaugino and the higgsino) which complete the chiral 
N = 2 supermultiplet. 

The structure of the bosonic part of the Lagrangian in eq. (1) is pretty much the same as 
the one in the Georgi-Clashow model. There is, however, an important, difference. Unlike the 
Georgi-Glashow case, here the potential 

•(0) = 2e2 (c'cibe.. ) 2 

	

(2) 

( 1 ) 
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does not fix uniquely the vacuum. In fact any field configuration of the type 0G = (0,0,a) corre-
sponds to a minimum of the potential with vanishing value (in order not to break the supersym-
metry) for any value of the complex variable a. The set of all values of a is called the classical 
moduli space of the theory. 

If a 0 0 the SU(2) gauge symmetry is broken to U(1) by the Higgs phenomenon and the 
charged components of the gauge fields get a non vanishing mass, while the Higgs and the gauge 
field of the unbroken U(1) remain massless. Thus the bosonic massless spectrum for a generic 
value of a consists of a photon A u , that is the gauge field of the unbroken U(1), and of a complex, 
neutral scalar particle ¢. If we are interested in studying the low-energy dynamics of these fields, 
we need to restrict ourselves to an effective Lagrangian with at most two derivatives and with no 
more than four-fermion couplings. The requirement of N = 2 supersymmetry fixes completely its 
form giving the following Lagrangian 3  

1 
L = —

117r
trz {7(0) [Opc48P0 – –

4 
(F2  + IPF) + fermiond 

where 
2.r 

r(0) = (4) 002 

is given in terms of a single holomorphic function F(0) of the scalar field 0 which fulfills the 
important constraint 

()

ozy  

	

> 0 . 	 (5 ) 002 

As a consequence, the low-energy dynamics `ynamics is completely determined by the function .7-  that in 
general will receive both perturbative and non-perturbative contributions. 

Comparing eq. (3) with eq. (1) we see that at the tree level the function .7' is given by 

	

0 	.47r 
Fes = –

2
rd 462 	Tel =  

27 	e2  

As a direct consequence of the fact that this theory is asymptotic free with a 13-function 
13(e) = –t-.1  one gets for the sum of the tree and one-loop contributions the expression 4 ' 5  

2 i 	2 	45 

Yel 	Tr 45 1°g A 2 ' 

where A is a dynamically generated scale. Conversely, inserting this expression in Eq.(4) one 
obtains how the running coupling constant varies with the scale a showing that for large a the 
asymptotic freedom takes over and the theory becomes weakly coupled. 

It can be shown that higher loops do not give any contribution to T. Only non perturbative 
effects, as for instance instantons, can give an additional contribution to it. 

We have seen that the moduli space of the N = 2 theory is parametrised, in the semiclassical 
theory, by the vacuum expectation value of the scalar field a =< ¢ >. We can endow this 2D 
manifold with a (tiahler) metric da 2  expressed in terms of with the constraint (5) as follows 

82T a) 
ds 2  = 3mr(a)dada , r(a) = aa 2 

However a cannot provide a global description of the moduli space. In fact any holomorphic 
function f(a) of the complex plane a with an everywhere positive imaginary part should be a 
constant (because expif(a) is bounded), while asymptotic freedom tells us that rrz(r(a)) diverges 
for 'al co. Therefore in Ref. 3  it was proposed to choose the gauge invariant quantity u = 1  < 
tr 0 2  > as the one providing a global parametrization of the moduli space and to regard both a(u) 

(3 ) 

(6) 

(7) 

(8) 
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and the auxiliary variable ap 	E ea  as functions of u. In terms of both a and ap the metric in 
eq. (8) assumes the more symmetric form 

dap 
ds2  = 9m ( 

da 	
9dada) = m(daDda) = --

2 
(dapda - dada D) 

dap ) it i Introducing the vector v 	
( 

da 
= 	 t s easily shown the invariance of ds 2  under the trans- 

formation v -4 My , where M is an arbitrary matrix of SL(2, R). This isometry group may be 

generated by the repeated action of two independent matrices Tb and S, defined by 

	

) 
	 0 I N 

	

Tb_ 0 ) 	= / - 1 0 

The former leaves da invariant and transforms da D according to 

	

dap 	dap + b da . 	 (11) 

This implies that r(a) is just translated 	• 

r(a) 	r(a) +.6 	 (12) 

yielding, when inserted in the effective Lagrangian, a translation for the vacuum angle 0 

0- 0 + 27rb 	 (13) 

Since physical•quantities are invariant when 

0 + 27rn 	 (14) 

for any integer n, we deduce that the transformation associated to the matrix Tb=1  is a symmetry 

of the theory. Thus only the SL(2, Z) subgroup of the isometric group SL(2, R) of the moduli 

space is compatible with the physical interpretation of the model. 
It remains to understand the meaning of the inversion S in terms of the gauge fields. Note 

that S transforms r(a) according to 

1 	da 
T(a)-+ 	 TD(aD) 

r(a) 	uap 

or, equivalently, it exchanges the field ¢ with the auxiliary field ¢D = ee 
-> 45D , 

(15) 

OD 	 • 	 (16) 

In order to see more clearly the meaning of such a transformation, it is convenient going into the 
weak-coupling region and set the vacuum angle 0 = 0. Then we see that, if 7727-(a) = 3-11-, then 

9rnrD (a D) = A , which is the typical effect of the electric-magnetic duality 6 ' 7 . Thus the auxiliary 
variable OD is nothing but• that the dual Higgs field in a dual formulation of the theory. • 

Notice that the action of S does not correspond necessarily to a symmetry of the theory, 
but provides a transformation between two different descriptions of the same physics. In fact 
the bosonic part of the low energy effective Lagrangian can be represented either in terms of the 
variables (A'', p, r(¢)) or in terms of the dual ones (4) , OD, TD(OD) = - 1/r(¢)) . One description 
may be more suitable for weak coupling, while the other for strong coupling. 

(9) 

(10) 

3 
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2.1 The spectrum 

We shall see now that in this N = 2 theory the holomorphic function Y(¢) fixes not only the low 
energy effective Lagrangian, but also its exact spectrum. Indeed, as in the Georgi-Glashow model, 
in the N = 2 super Yang-Mills theory there are also time-independent solutions 8  of the classical 
equations of motion corresponding to magnetic monopoles and dyons. These states survive after 
quantization and their mass, in the semiclassical limit, is given by 

M = ■filZdi 
	

(17) 

with 

Zc1 = a(n e  + rci ri m ) 

where ne  and nn, are the electric and magnetic charges and a is the vacuum expectation value 
of It has been shown 9  that Zei is the semiclassical limit of the central charge of the N = 2 
superalgebra. This algebra yields, in the same limit, the positivity constraint M > NfilZeil, with 
equality precisely for the so called "small" representations. States saturating the inequality are 
known as BPS-saturated states 10,11. 

Noticing that the coefficient of n en  is equal to aD in the classical limit, the mass spectrum of 
the possible BPS states can be rewritten as follows 

= Nfilz1 	, 	Z 	+ aDnin 	 (18) 

Seiberg and Witten 3  proposed eq. (18) as an exact formula and made several checks for 
confirming its validity. It easy to show (see for instance 3) that, when aD/a is not real, these states 
are stable provided that the integers n e  and n,,, be relatively prime. 

2.2 Singularity structure of moduli space 

In this section we study the singularity structure of a and aD as functions of the variable u, that 
provides a global parametrization of the moduli space. 

In the semiclassical region, corresponding to a large value of u, we get 

a = Nirti 	 aD = 	[21og--1 + 1
J 	

(19) 

Thus there is a branch point at u = oo. Under a rotation around such a point given by log u 
log u + 2in a and aD are not monodromic functions, but transform according to 

: 	a —* —a 	aD —aD + 2a 	 (20) 

The existence of a branch point requires the existence of another, at least. No other kind of 
singularity is allowed, because the physical quantities a and aD cannot diverge. But, if we had 
only one additional branch point, it should be at u = 0, because there is a global Z(2) symmetry 
that transforms u in —u . The only holomorphic functions a and aD with two branch points in 0 
and oo and the asymptotic behaviour given in Eq. (19) coincide with (19) everywhere in the whole 
u—plane. As a consequence, the positivity condition (5) cannot be fulfilled near u = 0. Thus we 
must require the existence of at least two additional branch points. 

Following the example of what is happening in some N = I supersymmetric theories Seiberg 
and Witten assume that the singularities occur at those points of the moduli space where additional 
massless particles appear in the spectrum. In the classical theory this occurs for a = 0 where the 
SU(2) symmetry is restored and W ±  become massless. This singularity at u = 0 does not survive 
quantization because of the positivity argument given before. On the other hand, restoration of 
the SU(2) gauge symmetry should be accompanied by conformal invariance in the infrared region, 
then this restoration cannot happen at a finite u 0, because it introduces an explicit breaking 
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of the scale invariance. There are instead indications that one at least of these singularities is 
associated at the point up where the monopole with 	= (1,0) becomes massless. 

Using the exact formula in eq. (18) we see that this occurs when aD(u 0 ) = 0 with a(u0) # 0 . 
With an obvious resealing it is always possible to choose u 0  = 1. 

The monodromy Mt around the singularity at u = 1 can be easily computed by observing that 
the low energy theory at the point u = 1 consists of a "magnetic" N = 2 super QED (the matter 
has magnetic and non electric charge). This theory is not asymptotically free and the coefficient 
of the fl-function, besides a sign, has a factor 1/2 of difference with respect to the /3-function 
previously used for studying the singularity around u = co. By taking into account this difference 
in the 13-function one arrives at the following monodromy transformation around the point u = 1: 

MI  : aD —> aD a a — 2aD . (21) 

The Z(2) symmetry implies that there is another singularity at u = —1 . The monodromy M_ 1 
 around the point u = —1 must be consistent with the previous ones , i.e. MI  M-1 = One 

obtains 
M_1 : 	aD -4 —aD + 2a 	a 	—2aD + 3a . 	 . (22) 

In order to see what massless state is associated to this singularity, note that these monodromies 
act also on the spectrum of BPS-saturated states because a transformation on the pair (aD, a) 
induces a corresponding transformation on the charges n m ,n e . A massless state associated to the 
singularity around which we are looping should remain invariant. Using this criterion one finds 
that the massless state associated with u = —1 is the dyon with 	n e ) = (1,-1) . 

2.3 Exact solution 

Having established the singularities and the monodromy transformations of a and aD their form 
is uniquely determined: any pair of functions with the same monodromies in the same points and 
with the positivity constraint (5) can differ only by a multiplicative constant. Such a constant 
is fixed by their asymptotic behaviour. Seiberg and Witten have built up an explicit solution by 
mapping the space of the quantum vacua into the moduli space of Rientann surfaces of genus one, 
where an explicit solution of such a monodromy problem is known. 

Here I would like to outline an elementary approach to this problem, based on some general 
properties of the p-function of Weierstrass. This is a merontorphic, doubly periodic function. Let 
us denote by {w} the period lattice, namely the set of points of the complex plane of the form 

= mw i  + n4o2) , with m and n integral coefficients and (,),,(.. ,2 two complex numbers ( periods) 
with non real ratio w 1 /c,.,2 . Then the double periodicity means 

+w) = /Az) • 

It satisfy the first order differential equation 

1..' 2  = 4 (p(z) 	et)(P(z) 	e2)(63 (:) 	e3) 

where ei are all distinct and given by 

el = P(w1/ 2 ) 	e2 = 93 (w2/ 2 ) 	e3 = 93 ((wt + w2)/ 2 ) • 

In terms of the new variables 

2p(:) 	ei + e2 	 Oz.) 

el — e2 	et --e2 	
y = ■12- 	

(el — e2) 3/ 2 

 Eq.(24) can be rewritten as the elliptic curve 

el + e•2 — 2e3 y2 	— 1)(x + 1)(x — u) 	 u —  	 (27) 
et 	e2 

(23) 

(24)  

(25) 

(26)  
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This algebraic equation describes a generic torus as a double cover of the x plane branched over 
oo, 1, -1 and u. It becomes singular when two branch points coincide, and this occurs precisely 
for x = 1, -1. 

Using the uniformizing parametrization (26) one can verify at once that 

2 	dx 	 dp 
	  dz 	 (28) 

ieTZT; y 	2V(p(z) - ei)(13 ( 2 ) - e2)(ia(z) ea) 

telling us that dx/y is a holornorphic differential and that its integral along a topologically non 
trivial closed path is proportional to a point of the period lattice (44. In particular, denoting with 
71  a path looping around the pair 1, -1 and with 72 the one looping around 1, u , the two periods 
defined by 

La i  = 	- ea) 
	dx 	

i = 1,2 	 (29) 

have precisely the same monodromies of da/du and daD/du. Moreover iii(co2/tal) > 0, thus 

dap 	da 	 w 2  
du 	du 

cc 	, - OC w1 	r(u) = - . (30) 

Integrating on u and adjusting the proportionality constant one gets the exact result 

■/5 
a(u) = 	J 1  dx 	 

- 1 
a D (u) = 	ju  dx 	 (31) 

r 

Generalizations of these formulas are now available for many other gauge groups 12  also with 
matter in the fundamental representation 13 . 

3 Monopole Condensation and Confinement 

One of the interesting properties of the N = 2 super Yang-Mills model described before is that a 
small perturbation produces a dramatic modification of the space of the possible vacua, leading to 
monopole condensation and confinement. 

Suppose to break explicitly the N = 2 supersymmetry to N = 1 by adding a mass term rne to 
the Lagrangian. Then the quantum moduli apace collapses to the two points < tr 56 2  >= ±u0  . 
If u o  is non vanishing the Z(2) symmetry is spontaneously broken and there is a simple argument 
3  indicating that u,, does correspond precisely to the value up where the monopole or the dyon 
become massless and that these monopoles condense. The argument goes as follows. Let U be 
the chiral superfield whose first component is 4gi 2 . In order to break the N = 2 supersymmetry 
to N = 1 we have to add to low energy Lagrangian an effective superpotential W = mU. Near 
the point at which there are massless monopoles, they can be represented by chiral superfields Q 
and Q. Since the monopoles couple in a non-local way to the original "electric" photon, we cannot 
use that photon in the effective Lagrangian. Instead we should perform a dual transformation and 
write an effective superpotential in terms of dual vector supermultiplet AD, i.e. the supermultiplet 
formed by the dual potential AD the gaugino and the dual Higgs field OD. The total effective 
superpotential is 

W = ADQ + rriU(AD) 	 (32) 

where the first term is required by gauge and N = 2 invariances of the m = 0 theory. The possible 
vacua correspond to solution of dW = 0, which yields for the bosonic component the following 
conditions: 

du 

Ci° m  don 
= 0 ; 
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aDQ = op0 =0 • 	 (33) 

One of the fundamental properties of the parameter u a.s defined in Eq. (27) is that du is always 
different. from zero, because u is a good global coordinate on the space of moduli of the torus and 
hence on the space of quantum vacua. Then the first. equation tells us that Q and Q are different 
from zero, i.e. there is a condensate of monopoles, while the second equation requires a!) = 0, 
which expresses the vanishing of the mass of the monopole at u = uo. This condensation gives a 
mass to the photon. However ;  since the photon around the point uo is described by the dual AS 
of the usual electric potential, we have actually the confinement of the electric charge. 
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Abstract 

We discuss some phenomenological aspects of extensions of the Standard Model related to the 
electroweak symmetry breaking sector with supersymmetry. The physics potential for Higgs 
boson searches at LEP200, including Majoron extensions of the Standard Model, the physics 
of invisibly decaying Higgs bosons, as well as some possible signatures associated to models 
with R parity violation are included. 

1 Introduction 

Although very successful wherever it has been tested, the Standard Model leaves unanswered many 
fundamental issues in particle physics to be an ultimate theory of nature. 

A basic assumption of the Standard Model is the Higgs mechanism, which is introduced in order to gen-
erate the masses of all the fundamental particles. This mechanism implies the existence of a fundamental 
scalar bosons [1]. If such an elementary boson exists some stabilising principle - like supersymmetry 
(SUSY) - should be operative at the electroweak scale in order to explain the stability of its mass scale 
against quantum corrections associated with physics at very high energies. The unification of the three 
gauge coupling constants as they are evolved from the presently accessible energies up to a common scale 
of N 10 16  GeV provides a hint that supersymmetry seems to set in somewhere around Mgugy N  103 

 GeV. Probing the details of this structure constitutes one of the main goals in the next generation of 
elementary particle colliders. 

Another fundamental issue in the Standard Model refers to the properties of neutrinos, in the sense that 
there is no principle that dictates that neutrinos arc massless, as postulated in the Standard Model. 
In fact, nonzero masses may be required in order to account for the data on solar and on atmospheric 
neutrinos, as well as for an explanation of the dark matter in the universe. 

The above two different extensions of the Standard Model may be connected via, for example, super-
symmetric models with spontaneously broken R parity, which necessarily imply non-vanishing neutrino 
masses. As a result in some of these models there are novel processes that could be observed at high energy 
colliders. One interesting aspect of these models is that they may affect the physics of the electroweak 
sector in such a remarkable way, that can be probed in various present and future experiments. 

`E-mail: fernando0ift.unesp.br  
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suc(3)® SUL(2)0 Uy(1) 

k (1, 3, 0) 

(1, 1, 0) 

0 (1, 2, 1) 

(1,2,-1) 

(1, 1, 2) 

(3, 2, 1 /3) 

(3, 1, —4/3) 

(3,1,2/3) 

Table 1: 

1.1 Standard Model Basics 

The Standard Model is a Yang-Mills theory based on the SU(3) ® SU(2) 0 U(1) gauge group, and 
described by the field representations in table 1, where all fermions are left-handed. The fundamental 
constituents of matter - quarks and leptons - interact mainly due to the exchange of the gauge bosons. 
In order to comply with the fact that the weak interaction is mediated by massive vector bosons, the W 
and the Z, the gauge symmetry has to be broken. The way to accomplish this is through the nonzero 
vacuum expectation value (VEV) 

(#o) vivq 	 ( 1 ) 

of the neutral component of a complex Higgs scalar doublet 

(2) 

The surviving electrically neutral Higgs scalar, the so-called Standard Model Higgs boson, has a mass 
given by 

mh oc VX (0) 	 (3) 
where A is the quartic coupling in the Higgs potential. A great effort has been devoted in designing a 
search for the Standard Model Higgs boson. This is one of the main open questions of the Standard 
Model [21.. As a result, the massless vector boson A m  is the photon, while Zi, has a mass 

gv 
mZ  	 (4) 2 cos Ow 

while the charged gauge bosons W± 	 1W2) have a mass 

gv 
mw =

2
. (5) 



150 

10 GoV 

200 

1ft  [GeV] 

A=103G V 

10 1/GeV 

10 "GeV 

10"GoV 

10"GeV 

105GoV 

50 
100 250 

100 

10 
	

XVII Encontro Naciona/ de Particulas e Campos 
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Figure 1: Theoretical Bounds on the Standard Model Higgs Boson. 

The W and the Z gauge bosons have been discovered at CERN. The properties of the Z have now been 
precisely determined by the LEP experiments [3], while those of the W mostly come from CERN and 
Fermilab [4]. The measured gauge boson mass values agree well with the electrowealc theory predictions, 
once radiative corrections are included. The success of the LEP experiments in the precise determination 
of the electroweak parameters has been so remarkable that just the internal consistency of the various 
measurements is sufficient to provide a very good determination of the mass of the top quark m t  = 180±14 
GeV, with the error largely due to the lack of knowledge of the Higgs boson mass [3]. This is in excellent 
agreement with the direct measurement at Fermilab [4]. In the same way, the agreement among the 
theoretical and experimental Rb and Re  values are improved [5]. 

The total Z decay width, as well as its partial widths have been precisely measured by the LEP collabo-
rations, leaving little room for new physics. Of special interest to us is the measurement of the invisible 
Z width [6] 

= 499.9 ± 2.5 MeV 	 (6) 

which can be translated into a measurement of the effective number of Standard Model neutrino gen-
erations. This places a very stringent constraint on models of neutrino mass where lepton number is a 
global symmetry spontaneously broken at low energies. 

1.2 Standard Model Higgs 

Unfortunately both the mass and self-coupling strengths of the Higgs boson are undetermined by the 
theory. However, an upper bound on the Higgs boson mass depending on the top quark mass through 
the renormalization group equation, is illustrated in Fig. (1). 
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Figure 2: Standard Model Higgs boson search potential at LEP200. 

The limit varies from ritHS600 GeV down to mfr200 GeV if one also assumes that there is no new 
physics below Mp ianck  [7]. 

From the analysis of the data collected at LEP one can place the following lower limit on the Standard 
Model Higgs boson mass [8] 

miffi5 GeV 	 (7) 

As illustrated in Fig. (2), if lighter than N  100 GeV, the Standard Model Higgs boson should be found at 
LEP 200 [9]. The minimum required luminosity per experiment, in pb', for a 50- Higgs boson discovery 
is displayed in the solid line of Fig. (2), while the corresponding 95% C.L. exclusion limit is shown as 
dashed. Heavier Higgs boson can be probed at higher centre-of-mass energies, such as at NLC, or at the 
LHC. Unfortunately the prospects for finding the Higgs boson in the intermediate mass range between 
mz and 2mz at the LHC are not too optimistic [11]. Above this mass the detection would be very easy, 
through the 4-lepton signal [11]. In addition to testing the Standard Model, one has the possibility of 
constraining the value of the Higgs mass, which enters through the radiative corrections to the Z and W 
boson self-energies. Combining the most recent LEP and SIC electroweak results [12] with the recent 
top-quark mass measurement at the Tevatron [4], a weak preference is found for a light Higgs boson mass 
of order mz [12]. Fig. (3) illustrate a typical x2  Standard Model fit constraining the Standard Model 
Higgs mass. The solid line includes all LEP, SLD, pp and deep inelastic neutrino data. The dashed one 
excludes the measurements of the Z width into bb and cc. The dotted line corresponds to the LEP data 
including Rb and Rc . In all cases one includes the direct top mass determination from the Tevatron. 

2 Supersymmetry 

The physics associated to the electroweak breaking sector plays a central role in particle physics. One 
of the most important physics motivations in favour of supersymmetry is the fact that it is the only 
symmetry one knows which can stabilize the elementary Higgs boson mass with respect to divergent 
radiative corrections. These would be expected in any fundamental unified theory including gravity, or 
simply encompassing the electroweak and strong interactions. Either way one has a very large mass 
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Figure 3: Standard Model Higgs mass determination from precision data. 

scale - the Planck scale or the grand unification scale - which can mix through loops and destabilize 
the electroweak scale in eq. (1). This is the so-called hierarchy problem, which can be solved through 
supersymmetry [13], to the extent that it holds at TeV energies and helps to cancel the loops. 

Supersymmetry is also theoretically attractive as it is the most general symmetry consistent with the 
basic principles of field theory [14]. Unlike most symmetries discussed in particle physics, that relate 
particles of the same spin, SUSY relates bosons to fermions, and vice-versa (see table). 

Finally, the experimental determination of gauge couplings at low energies plays in favour of the existence 
of SUSY particles t at the TeV scale. This hint is provided by the joining of these gauge couplings at high 
energies of order of the unification scale 10 16  GeV [15] as illustrated in Fig. (4) [16]. For these reasons 
the study of supersymmetric extensions of the Standard Model has attracted a lot of effort, including the 
theoretical understanding of supersymmetric models as well as the simulation of the expected signals at 
present and future particle colliders. 

2.1 The MSSM 

The simplest supersymmetric model is the so-called Minimal Supersymrnetric Standard Model (MSSM) 
[17], defined by the particle content given in table. and supplemented by the hypothesis that the basic 
interactions conserve a discrete R parity (Rp) symmetry, under which all Standard Model particles are 
even while their partners are odd. As a result the interactions of the MSSM are such that all SUSY 
particles must be only produced in pairs, with the lightest of them (LSP) being absolutely stable. 

The presence of two doublets of Higgs superfields is required by supersymmetry, anomaly cancellation, 

tFor definiteness, one assumes here those present in the so-called MSSM. 

12 

N 

ax 

2 
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Figure 4: Gauge coupling unification in the MSSM. 
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Table 2: 
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and in order to give different masses to both up and down-type charged fermions. 

With this assumption the MSSM is characterised by the following superpotential, 

Wo = cab 	 + 
	

(8) 

For our subsequent discussion we need the chargino and neutralino mass matrices. The form of the 
chargino mass matrix is given by 

Hd 

-off- 
is 	fig2vd 

vil92ViL 	M2 

Two matrices U and V are needed to diagonalize the 2 x 2 (non-symmetric) chargino mass matrix 

Xt = VirPt 

= Use 'i 

where 14-  = 	—i147 -1- ) and 	= 

On the other hand the neutralino mass matrix is 4 x 4 and has the following form 

ii. 	Hd —C1473 —i 

Hu 	0 	' 	—g2vu  giv u  

ltd 	—Is 	0 	g2vd —givd 

—ifk 3 —g2v u. g2vd 	M2 	0 

givu —givd 	0 	Mi  

This matrix is diagonalizal by a 4 x 4 unitary matrix N, 

= Nii14 

where 14 = (Hu , Hd, -ivv3, — if?), (the indices i and j run from 1 to 4). 

In the above two equations M1,2 denote the supersymmetry breaking gaugino mass parameters and g1,2 are 
the SU(2)® U(1) gauge couplings divided by V/. We assume the canonical relation Ml/M2 = itan 20w-
TYpical values for the SUSY parameters p, M2 and tan /3 lie in the range given by 

—1000GeV < µ < 1000GeV ; 20GeV < M < 1000GeV ; 1 < tan/3 40 	(14) 

Adding the soft supersymmetry breaking scalar mass terms to the supersymmetric gauge interactions(D 
terms) and the supersymmetric Yukawa interactions following from eq. (8) one can write the scalar 
potential characterising the MSSM. Its general form may be written schematically as 

aw  2 
VMSSM = E 	+ Tito [AW3  + 8W2  + h.c.i + E Izir + cv(iHur — Hdr) 2  azi 	

(15) 

where W3 and W2 denote the cubic and quadratic parts of the superpotential, or 2-9491  and zi denotes 
any neutral scalar field in the theory. The parameter A is the cubic soft breaking parameter and B=A-1 
is the corresponding quadratic one [17]. 

(9) 

(10) 

(11) 

(12) 

(13) 
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Figure 5: Radiatively corrected MSSM lightest Higgs mass versus SUSY scale. 

2.2 The MSSM Higgs Sector 

Due to the presence of two Higgs boson doublets in the MSSM there are two physical CP-even neutral 
Higgs scalars (h, H), a CP-odd neutral scalar particle, A, and a physical electrically charged scalar boson 
H. At the tree level the mass of the lightest CP-even neutral Higgs boson h can be calculated in terms 
of two parameters, which may be chosen as mA and the ratio of Higgs VEVS tan /3 [111. 

There is an upper bound on the lightest CP even Higgs boson mass due to the special structure of the 
MSSM Higgs potential. At the tree level, this bound is exactly the Z mass. However, it is sensitive to 
radiative corrections, which depend on the soft supersyminetry breaking parameters [19]. 

The full one-loop radiatively corrected h mass is given in [20] and [21]. A simple procedure for accurately 
approximating mh was described by Haber [22]. We assume that the ratio of Higgs VEVS lies in the 
range 1 < tan (3 < m"--tt and that the scale characterizing supersymmetry breaking Ms is less than 2 TeV. 
This scale can be roughly regarded as a common supersymmetric scalar mass. A large Ms value takes 
into account the possibility of large radiative corrections to the lightest CP even Higgs boson mass. We 
used a top quark mass in the range m t  = 175 ± 35 GeV which covers the region indicated by the recent 
experimental data from the Tevatron. In Fig. (5) we illustrate the dependence of the radiatively corrected 
lightest CP-even Higgs mass with respect to Ms for tani3 = 1.5. The one-loop leading logarithmic 
computation is compared with the RG-improved result which was obtained by numerical analysis and by 
using the simple analytic result [22]. 

The dependence of the upper bound on the lightest CP-even Higgs boson mass in the MSSM with respect 
to the top quark mass is given by the solid line in Fig. (6). The dashed line shows the corresponding 
result for the special case of b-r unification under several assumptions, explained in [21]. The complete 
spectrum of MSSM scalar boson masses, including the h, H, A and H± masses is shown in Fig. (7) from 
ref. [21]. The dashed, solid and dot-dashed lines refer to h, H and H± masses respectively. The region 
of interest is above 40 GeV, which is roughly the lower limit on the A mass accessible at LEP1. On the 
other hand, one sees that for m A  above 200 GeV or so there is a very slow variation in mh. 
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Figure 6: Radiatively corrected MSSM lightest Higgs mass versus mt. 
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Figure 7: Radiatively corrected MSSM Higgs boson masses. 



26 .C.L.a 	slo-La 

weave canto 

F. de Campos 
	 17 

0 	50 100 150 200 250 300 350 400 

rnA (0eV/c2) 

Figure 8: MSSM Higgs boson discovery contours at LEP200. 

The MSSM Higgs boson discovery contours at LEP200 are illustrated in Fig. (8) [10). This plot corre- 
sponds to centre-of-mass energies 192 GeV, substantially better for Higgs bosons searches at LEP than 
175 GeV, and for three stop quark mixing assumptions At = 0 and Ipl < Ms (no mixing), At = Ms and 

— MS (typical mixing), and At = /Mg and I pI < ms (maximal mixing), with Ms -= 1 TeV. 

2.3 Limits on SUSY Particles 

So far all searches for supersymmetric particles have been negative. The best existing search site for the 
weakly interacting SUSY particles is the LEP accelerator. The most recent results follow from searches 
performed at 130 and 136 GeV centre-of-mass energies and supersede some of the previous LEP1 results. 

From the non-observation of acoplanar lepton pairs, hadronic events with isolated leptons, hadronic 
events with missing energy, and acoplanar jet topologies, the Aleph collaboration has recently placed the 
following limits [81: 

1 	> 65 GeV If the chargino is mostly gaugino this assumes that the sneutrino mass exceeds 
200 GeV and, when it is mostly Higgsino, it assumes that the chargino-neutralino mass difference 
exceeds 10 GeV. 

2 The searches for neutralinos at Aleph lead to the excluded region in Fig. (9), for the case p = 1 
TeV and tan /9 = 2. Note that it depends on the assumption of universal soft-breaking gaugino 
masses and on the value of the selectron mass. The limits also substantially depend on the assumed 
decay modes of the heavier neutralino. 

0 

10 

1 

3 Searches for dilepton + missing momentum events have been performed by the LEP collaborations. 
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Figure 9: Limits on neutralino and selectron masses in the MSSM. 

The Aleph data give the following limit [8] 

60 GeV 
	

(16) 

For the smuons and staus there is no improvement over the 45 GeV LEP1 limit. For sneutrinos, 
the limit is worse than for charged sleptons. 

The limits on squark and gluino masses come mostly from hadron collisions [23]. These limits are 
correlated. For a very heavy gluino, one has mitZ100 GeV for the lower limit on the squarks, with a 
weaker limit on the top squark. On the other hand, in the limit of very heavy squarks one gets INZ140 
GeV as the corresponding limit on the gluino mass. The limits given depend on simplifying assumptions, 
and some of them may become stronger if one adopts specific parameter choices in the MSSM. On the 
other hand, they may get weaker in extended models. 

The limits for SUSY fermion searches may be combined in order to determine the shape of the corre-
sponding allowed region of region of SUSY parameters p and M2, for given choices of the ratio of Him 
doublet VEVS tan/3, as shown in Fig. (10). 

The region excluded by the chargino search is the shaded region, while the dashed line indicates the 
previous LEP1 region. The slepton masses are assumed to be 500 GeV. The dark area corresponds to 
the case that the chargino is lighter than all neutralinos. The searches for neutralinos at Aleph lead to 
the hatched excluded region displayed in Fig. (9), for the case p = I TeV and tan (3 = 2. 

In short, there is still a very large domain of parameters where SUSY would be a meaningful symmetry. 
From this point of view it is of great interest to look for its possible effects at higher energies, such as 
will be accessible at the LHC and other future elementary particle accelerators such as the NLC. 
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Figure 10: Presently allowed region of MSSM parameters. 

An important assumption underlying all SUSY searches conducted so far, is that of R parity conserva-
tion. This assumption dictates that all SUSY particles must be produced in pairs, the lightest of these 
(LSP), typically a neutralino, being absolutely stable. Thus the signal associated to the LSP is missing 
momentum. These properties have been taken as the basis of all searches of SUSY particles. 

Unfortunately there is no clue as to how SUSY is realized. Whether or not R parity is conserved is an 
important dynamical issue. However, for all we know so far, R parity conservation may very well break 
down at some level. 

Present SUSY particle search strategies are not adequate for the analysis of extended models where 
SUSY is realized with broken R parity. For example, if R parity is broken, it would be possible to probe 
SUSY even at the LEP1 energies through new signatures, such as single SUSY particle production [24 
Therefore one needs to re-analyse the existing data in order to place limits on these models. 

2.4 Explicit and Spontaneous 11 Parity Violation 

The minimal supersymmetric extension of the SU(2) 0  U(1) theory in general violates lepton and baryon 
number conservation. Indeed, SU(2) ® U(1) gauge invariance and SUSY are consistent with adding to 
the basic euperpotential, eq. (8), many Yukawa terms that violate lepton number conservation, such as 

WR e ab [Aqkli?viEf + aijk Li 3jDk + Eiiciff4 	 (17) 
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Here ij,k denote flavour indices and A is anti-symmetric in i,j. Similarly, one could add terms such as 
UcD`Dc, as they are consistent with all symmetries of the Standard Model, plus supersymmetry. The 
presence of such terms, along with those in eq. (17), will lead to baryon number violating processes 
such as proton decay. In their presence R parity symmetry is broken explicitly, as can easily be checked. 
There are several constraints on these coupling', some of which are quite stringent [25]. Recent results 
by the Aleph collaboration has placed limits on explicitly broken R-parity models [26]. One normally 
forbids these terms by hand, invoking R parity conservation. It is possible, however, that 11 parity is 
explicitly broken only by a subset of these terms, at a sizeable level, yet fully consistent with observation. 
The missing terms could arise by imposing some global and/or discrete symmetry. Moreover, explicit R p 

 violating interactions could be tolerated in the presence of a mechanism that could generate a nonzero 
baryon asymmetry at low energy, as suggested in [27]. 

In Spontaneous R Parity Violation scenarios the breaking of R-parity is driven by right-handed isasinglet 
sneutrino vacuum expectation values (VEVS) [28, 29], so that the associated Goldstone boson (Majoron) 
is mostly singlet. As a result the Z does not decay by Majoron emission, in agreement with LEP 
observations [3]. 

Here we focus on what is the conceptually simplest model for Spontaneous 11 Parity Violation, in which 
two SU(2)0U(1) singlet leptons, instead of one, are added in each family [28] The simplicity of the model 
follows from the fact that the magnitude of all R Parity violating effects is strictly correlated to the mass 
of the tau neutrino. We will focus on the simplest model and start by recalling its main ingredients. 
Indeed, many of the phenomenological features relevant for the accelerator studies already emerge in an 
effective model where the spontaneous violation of R parity is reproduced through a the addition of the 
explicit bilinear superpotential term in eq. (17) [30]. 

The superpotential is given by 

hu (2 fru + hdHdQ D` + iie tHdE` + (hi) Mid — c2 )(T►  + hpeFlu i,  + 14(1)Sv e  + h.c. 	(18) 

where we have omitted the hats in the superfields, as well as generation space indices in the coupling 
matrices h u,hd, he , h„, h. This superpotential conserves total lepton number and R parity. The superfields 
(41), vci, Si ) are singlets under SU(2) ® U(1) and carry a conserved lepton number assigned as (0,-1,1), 
respectively. These additional singlets ric,S [31] and (T) [32] may drive the spontaneous violation of R 
parity in the model [28]. This leads to the existence of a Majoron given by the imaginary part of 

2 VL 	 VLVR 	VS 
k

r,'" 
tits nu — Vcificil + Vv ̀r — 	—0 	 (19) 

Vv2 	 V 	V + V 7  
where the isosinglet VEVS 

IJR 	( 01:17- ) , VS = (§T) 

	
(20) 

with V = 	+ vs characterize 11-parity or lepton number breaking arid the isodoublet VEVS 

vu  = ( Hu ) , vd (Hd) 

	

(21) 

drive electroweak breaking and the ferinion masses. The combination v2  = V12, v?, + vL is fixed by the 
W,Z masses. Finally, there is a small seed of R parity breaking in the doublet sector, i.e. 

vr = kr) 	 (22) 
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whose magnitude is now related to the Yukawa coupling hy . Since this vanishes as lh, 	0, we can 

naturally obey the limits from stellar energy loss [33]. 

The form of the chargino mass matrix is common to a wide class of SU(2) 0 U(1) SUSY models with 
spontaneously broken R parity. It is given by 

  

ei 
Cl

Hd 

	

hmipd -- 414VRj ATVLi 	 (23) 
—heijvm 	 Ifig2vd 

0 	Nag2v, 	M2 

   

Two matrices U and V are needed to diagonalize the 5 x 5 (non-symmetric) chargino mass matrix 

	

Xi = 	 (24) 

	

= 	 (25) 

where the indices i and j run from 1 to 5 and Ipt = (et , e2 ,e1" , H LL,-ile+) and tp; = 

Hd , -1W - ). 

Under reasonable approximations, we can truncate the neutralino mass matrix so as to obtain an effective 
7 x 7 matrix of the following form [28] 

v; 	Flu 	ild -ig73 -in 

Vi 0 	hviit1Rj 	0 92VLi -givti 

Hu  hvipni 	0 	-p -92 1)u 91Vu (26) 
Hd 0 	-P 	0 92Vd —91Vd 

--41,71/3 92vti 	-g2vu 	92vd M2 0 

-ib 

This matrix is diagonalized by a 7 

-givu 	9 i vu 	 -givd 

x 7 unitary matrix N, 

X? = Nij/P3 

0 Mi 

(27) 

where I/ = (vi, if„, ild, -1 -1473, -113), with vi denoting weak-eigenstate neutrinos (the indices i and j run 
from 1 to 7). 

Here we make the same parameter assumptions and conventions as used in the MSSM. Typical values 
for the SUSY parameters p and M2 are as before. The parameters 144,3 lie in the range given by 

10-10  < 14, 13, /4,23 < 10' 	10-5  < h„33 < 10-1 	 (28) 



22 	 .X VII Eneontro Nacional de Particulas c Campos 

while the expectation values are chosen as 

VL = vL3 = 100 MeV 
	

VLI = 24,2 = 0 

tyR = vR3 = 1000 GeV 
	

vRi = VR2 = 0 
	

(29) 

vs = 1000 GeV 
	

1 < Lana = 	mb 

The diagonalization of eq. (26) gives rise to the mixing of the neutralinos with the neutrinos, leading to 
R-parity violating gauge couplings and to neutrino masses, mainly the y r  mass. Although the yr  can be 
quite massive, it is perfectly consistent with cosmology [34], including primordial nucleosynthesis, as it 
can both decay through Majoron emission yr  —) yi  + J [35, 36] due to flavour non-diagonal couplings 
such as h„23 , as well as annihilate to a Majoron pair due to the diagonal coupling h1,33 [37]. 

In what concerns the R-parity breaking couplings, the largest ones correspond to the case when the 
standard lepton belongs to the third family. These coupling can reach a few per cent or so for mass 
values accessible in accelerator studies [38]. 

2.5 Implications of Spontaneous R Parity Breaking 

2.5.1 Invisibly Decaying Higgs boson searches in the e+ e -  -4 H Z and e+e-  H A channels 

The mass spectrum for both CP-even and CP-odd scalar bosons was studied numerically in this model, 
both at the tree level and after including radiative corrections (39]. For centre-of-mass energies attainable 
either at LEP200, LHC or NLC, not all of the scalar bosons are kinematically accessible. Typically 
one or two of the CP-even ones (h, H) will be accessible and one of the massive CP-odd (A) scalar 
bosons. Although the Majoron has very tiny couplings to matter and gauge bosons, it can have significant 
couplings to the Higgs bosons, leading to the possibility that the Higgs boson may decay with a substantial 
branching ratio into the channel [40] 

h 	J + .1 	 (30) 

Since the Majoron J is weakly coupled to the rest of the particles, once produced in the accelerator, it 
will escape detection, leading to a missing momentum signal. Since the strategies to search for the Higgs 
boson depend heavily on its expected decay pattern, the presence of such an invisible decay signal affects 
them in a very remarkable way. 

The production and subsequent decay of a Higgs boson which may decay visibly or invisibly via the 
process e+ If Z production involves three independent parameters: its mass Mil, its coupling 
strength to the Z boson, normalized by that of the Standard Model, E 2 , and its invisible decay branching 
ratio. The LEP searches for various exotic channels can be used in order to determine the regions in 
parameter space that are already ruled out, as described in ref. [41]. The exclusion contour in the plane 
c2  vs. MR, can be found in ref. [41]. 

The invisible decay of the Higgs boson may also affect the strategies for searches at higher energies. 
For example, the ranges of parameters that can be covered by LEP200 searches for various integrated 
luminosities and centre-of-mass energies have been investigated [42], and the results are illustrated in Fig. 
(11). Similar analysis can be made for the case of a high energy linear a+ e- collider (NLC) [43], as well as 
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Figure 11: Higgs mass and coupling that can be explored at LEP200 in c+e- 	If Z production. 

the LHC [44]. In the latter case the invisible decay has an advantage for searches in the intermediate mass 
region, namely, that the invisible decay branching ratio can be of order 1, while the standard H 
decay branching ratio in either the SM or the MSSM is rather small, 0 (10-3). Although it can lead to 
sizeable signals, the invisible decay has the disadvantage that the Higgs mass can not be reconstructed 
at a hadron collider. In any case, Him.; boson masses in this range can be probed in less than a year 
LHC running. However, the NLC would he a cleaner machine for invisibly decaying Higgs boson searches 
beyond the LEP200 reach. 

Due to the existence of two SU(2) U(1) doublets of scalar bosons, there is another mode of production 
of invisibly decaying Higgs bosons, in which a CP-even Higgs boson is produced in association with a 
massive CP-odd scalar. 

Present LEP1 limits on the corresponding coupling strength parameter were given in [45]. The region of 
parameters that can be explored at LEP200 is shown in Fig. (12), aS a function of the A and H masses, 
for the case of a visibly decaying A boson and an invisibly decaying H boson. 

2.6 The Fermionic Sector 

;. ...... 

In the MSSM all supersymmetric particles are always produced in pairs. If R parity is broken, they may 
be singly-produced. As we have seen, in models with spontaneous R parity breaking the mixing of the 
standard leptons with the supersymmetric charginos and neutralinos leads to the existence of R-parity 
violating couplings in the Lagrangian when written in terms of the mass cigenstates. It is in the couplings 
of the W and the Z where the main R-parity violating effects reside [38]. As a result one is no longer 
forced to produce the SUSY particles in pairs. For example a SUSY fermion such as a chargino or a 
neutralino may be produced in pairs (standard MSSM production) as well as singly, in association with 
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Figure 12: Higgs masses and coupling that can be probed at LEP200 in e+e —  -4 H A production. 
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Vs= ? 75 GeV L=500 iD1D-1  

a r or lAy. (R-parity breaking single production). 

On the other hand the RPSUSY model rates for pair production of SUSY particles are similar to those in 
the MSSM. However, in contrast to the MSSM, where all supersymmetric particles have cascade decays 
finishing in the LSP which is normally a neutralino, in the RPSUSY case there are new decay channels and 
the supersymmetric particles can decay directly to the standard states breaking R-parity. Alternatively, 
they may decay through R-parity conserving cascade decays that will finish in the lightest neutralino, 
which then decays. This way one can generate novel supersymmetric signatures in R parity violating 
models even when the single production SUSY particle cross sections are small. 

The lightest neutralino can decay to standard states breaking R-parity. If its mass is lower than the mass 
of the gauge bosons there are three-body decays such as 

x0 _4 uj  ff x0 _4  ij fu7; 	 (31) 

where the first decays are mediated by the neutral current, while the second are charged-current mediated. 
Here f denotes any fermion, while h and fd  denote up or down-type fermions, respectively. 

If the neutralino is heavier than the W it may have the two body decays 

x° ► x°  vjZ 	 (32) 

The explicit expressions for the widths are given in 138]. Neutralinos of mass accessible at LEP have 
mostly three-body decay modes mediated by charged and neutral currents. The only exception will be 
the two-body Majoron decay, characteristic of the simplest spontaneous R parity breaking models eq. 
(33). 

In SU(2) 0 U(1) models of spontaneous breaking of R-parity the LSP is not the neutralino, but rather the 
Majoron, which is massless and therefore stable The existence of the Majoron implies that in SU(2)0U(1) 
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spontaneously broken R-parity, the neutralino can always decay invisibly to 

(33) 

For definiteness let us consider the case of the lightest neutralino and chargino, which one expects could 
be the earliest-produced supersyrnmetric particles. Here are some examples of signals related to their 
production in the spontaneously broken R parity (RPSUSY) models: 

• Single chargino production in Z decays 

Z X ± T 	 (34) 

where the lightest chargino mass is assumed to be smaller than the Z mass. This decay is char-
acteristic of spontaneous R parity violation. In the simplest models, the magnitude of R parity 
violation is correlated with the nonzero value of the by mass and is restricted by a variety of exper-
iments. Nevertheless the R parity violating Z decay branching ratios can easily exceed 10-6  and 
thus lie within the sensitivities of the LEP experiments performed at the Z pole. The maximum 
branching ratio allowed by other experiments and by theory is directly correlated with m i,„ which 
is a characteristic feature of the model of [28]. 

• Single neutralino production in Z decays 

Z x°v, 	 (35) 

To the extent that x decays into charged particles are dominant the neutralino is not necessarily 
an origin of events with missing energy, as in the MSSM. Thus the decay Z -4 would give rise 
to zen events, similar to those of the MSSM, but where the missing energy is carried by the v. r  and 
the visible tracks come from the decays of the x. The searches for single particle SUSY production 
at LEP I should place restrictions on the parameter space available for studies at LEP200 energies 
[46]. 

• Pair production of the lightest neutralino in Z decays, followed by neutralino decays. 
Even if its single production cross section is small, the x x pair production process at LEP will 
generate zen events where one x decays visibly and the other invisibly. The corresponding zen-event 
rates can therefore be larger than in the MSSM and may occur even if there is no energy to produce 
the next-to-lightest neutralino x'. 

The allowed rates for single l ■Aajoron emittingµ and r decays have been determined in [47] and are 
compatible with present experimental sensitivities [61. An illustration of the 14 mass dependence of 
the allowed decay branching ratios can be found in [47]. This example also illustrates how the search 
for rare decayi can be a more sensitive probe of neutrino properties than the more direct searches for 
neutrino masses, and therefore complementary. Moreover, they are ideally studied at a tau-charm factory 
[48, 49]. 
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Figure 13: Sneutrino decay branching ratios in the .RPSUSY model. 

2.7 R Parity Breaking Scalar Boson Decays 

Explicit violation of 11 parity in the minimal supersymmetric model through bilinear terms LH u  plays 
an important role in the scalar sector [30]. The presence of such bilinear superpotential term will induce 
the mixing of sleptons with Higgs bosons, thus affecting the decays of both. 

The most illustrative example of this is the possibility that, below the threshold for SUSY particle 
production, the sneutrino mostly decays to Standard Model particles, as shown in Fig. (13) However, 
even when the sneutrino is not the lightest SUSY particle, there may be a sizeable branching ratio 
for the R parity violating sneutrino decays, even for a moderately small value of the Higgsino-lepton 
superpotential mixing parameters ei. 

As shown in [30] this may lead also to sizeable branching ratio for the supersymmetric Higgs boson decay 
mode II xt, where x denotes the lightest supersymmetric particle - LSP - or a chargino, and a is either 
a neutrino or a tau lepton. This R parity violating Higgs boson decay mode may compete favourably with 
the conventional decay if 1,6, at least for some ranges of parameters of the model. In these estimates 
one has taken into account the relevant constraints on R parity violation, as well as those coming from 
SUSY particle searches. 
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Revisitanios alguns cfeitos preditos pela gravito.cao semi-classica c em particular rediscii- 
Limos neste contexto o conceito de particula elemental.. Ulna breve introduciio historica 
é incluida para situar a Teoria de Campos cm Espacos Curvos no cenario da gravitacao 

Encerrarnos corn alguns rcsultados recentrs que dial!) respeito it soluerio do prob-
lerna se .cargas estziticas ern campos gravitacionais tambern estalicos irradiam. 

Prefacio 

0 presente artigo foi parcialmente inspirado cm. minha palcstra cntitulada "Bremsstrahlung, efeito Davies-
Unruh, radiaerio Hawking. Gravitacio serni-cldssica: Nova luz para velhos problemas" proferida no XIII Encontro 

Nacional de Particulas c Campos ern Caxambu-1992 e parcialnicare em minha palestra entitulada "Solution to 
the paradox whether or not static charges in gravitational fields radiate" proferida no XVII Encontro Nacional de 

Particulas c Campos ern Serra Negra-1996. lsso Inc parcceu propicio ja que a palestra de Serra Negra e•uma 

continua45o natural daquela proferida cm Caxambu, cujos proceedings nunca foram publicados. De fato, a presente 

contribuivio foi construida sobre iima verao preparada em 92 e acrescida da sec5.43 i clue trata do paradoxo se 

cargas estriticas em campos gravitacionais tamb6m estaticos irradiam ou 
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1 Introducao 

A gravitacio semi-classica, Lambert] conhecida como Teoria de Campos cm Espacos Curvos, pretende ser mais urn 

passo na construcito dc uma tcoria quantica da gravitacito. Sua geneses remonta aos fins dos anos 60 quando L. 

Parker e Ya.B. Zel'dovich decidiram analisar a criack de particulas em Cosmologia (veja por exemplo [1] e seas 

referencias para uma abrangente revisio.) Em sintesc, a ideia resume-se em fixar urn espaco-tempo s  de fundo onde 

se efetua a quantizacao dos carnpos. As propriedades gcometricas da variedade podem ser artificialmcnte dadas ou 

definidas pelas cquacoes de Einstein, (3,,, = 8IrT„„ ;  onde Go „ e o tensor de Einstein, e Tp„ e o tensor de energia 

moment°. Restringindo-nos, por simplicidade, a solucao de vicuo, resssrevernos as equagoes de Einstein could 

G„„ = O. 	 (1) 

Contudo, apesar de no vactio o tensor de energia moment° classic° ser nulo, a curvatura e/ou topologia do 

espaco podem perturbar a flutuacito do viol° quantico, found° corn que em geral (01T 14 „10) seja diferente de zero. 

Esse tipo de fenomeno constitui uma especie de efeito Casimir gravitational. E natural entao se perguntar qual a 

auto-reacao do valor esperado no vacito do tensor de energia moment° sobre a geometria. A maneira mais natural 

de se introduzir correcoes semi-classicas na rnetrica d conseguida modificando-se (1) para 

= 	 (2) 

Para campos livres, por exernplo, o lado direito de (2) 6 de orders h, o que evidentemente induz correcoes quanticas 

na metrica. Note quo sendo (T„„): (0rro,10)  de origem quantica, o valor esperado no vacuo do tensor de energia 

moment° nao precisa satisfazer as condicOes classicas do positividade do energia, usadas na maior parte dos teoremas 

de singularidade deduzidos por Hawking e Penrose via tecnicas globais. lsso permite a evasao de importantes 

resultados por ells demonstrados no contexto classic°, assim corno veremos depois. 

Apesar de nao podermos esperar quo a validade da tcoria possa ser extrapolada para alem da escala de Planck, 

a gravitacao semi-classica ja tern antecipado efeitos de origem purarnente quantica em gravitacko, tal como a 

radiacao Hawking sobre a qual voltaremos a falar brevemente mais adiante 2 . A existencia de um inecanismo no 

qual buracos negros evaporarn levando possivelmente ao sen desaparecimento :3  foi ulna predicao notivel [3], c mudou 

completamente o conceito de indestrutibilidade quo a teoria classica conferia aos buracos negros. Isso levou rnuitos 

pesquisadores a analisarem mais cuidadosarnente a construct:to de teorias de campos em diversas variedades nao 

triviais. Corn isso, o estudo da Teoria de Campos em Espacos Curvos acabou enriquecendo em contetido veihos 

conceitos. Em especial, notou-se que o conceit° de particula elementar a fortemente dependente do referencial no 

qual o camp° c quantizado. Tal fato pocne ser ilust.rado polo assirn chamado efeito Davies-Unruh [4]. Suponha 

urn detetor acelerado no vial° de Minkowski. 4  Au contrario do quo esperado inicialmente, Lai detetor acilsa a 

presenca do particulas. Mais especificamente. urn detetor corn aceleracio prdpria constants no vacua de Minkowski 

deteta urn banho termico de particulas caracterizado por uma temperatura proportional k sua aceleracko propria. 

Voltaremos a isso nos sego- es seguintes. 

0 objetivo principal delta palestra d o de enfatizar as principals conquistas 'la area, discutindo rapidarnente 

ao final alguns novos resultados. Na secio 2 faremos urn breve incompleto) histOrico do alguns resultados da 

Relatividade Geral corno inotivacio a Teoria de Campos em Espacos Curvos. Para tanto, enfatizaremos a fisica 

de buracos negros corno pa.radignia. guia. Na secao 3 sera evidenciado no context° classic° corno a estrutura da 

variedade, influencia na constriicio de teorias de campos. Na secao 4 vcremos que a i!xistencia de simetrias ternporais 

s5o cruciais para o conceito de particula eleme.ntar. Dedicarernos a seciio 5 para discutir mais detalhadamente o 

efeito Davies - Unruh. Na secito 6 responderemos h questao se cargas uniformemente aceleradas irradiam corn respeito 

IFormalmente definirnos o espaco-tempo corno 	variedade M rminirla de ulna metrica Lorentziana g ab [2). Intuitivamente uma 
variedade 4 urns superffere de climensiin n que localmente possui as propriedades do Hn . No espaco de Minkowski, M esti associado a 
/14  c gob n metrica de Lorentz n ab• 

2  Athalmente tem silo urns pratica conium se user n efeisn I lawking como 	test,: a baix as energias pars possiveis teoriss quiinticas 
de gravit rick, 

3  Os estagios finals da evaporaciin de buracos negrns tern skin kilter de especulaciro. Niro é elaai se buracos evaporam completamente 
Oki se perrnanece alguma estrutura esttivel no final. Apenas urns teoria quintica complete da gravitagifio poderia trazer urns resposta. 

4 0 vAcuo dP, Minkowski if o cstado nn quad observadores inercisis nao inedern a presenca de particulas. 
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observadores em co-movimento. Finalmente na sccio 7 abordaremos o problerna se targa-s estaticas em campus 

gravitacionais tarriberri estaticos irradiam. Comentarios finais seri° reservados para a secito S. 

2 Notas Historicas 

Porto tempo depois de Einstein ter publica.do suas equagoes pares descrevcr o campo gravitational no vicuo (1), 

K. Schwarzschild as resolveu para o citS0 estatico c corn sinictria esterica. 5  0 clement° de hrilia encontrado por 

Schwarzschild 

(15 2  = (1 — - 1-L42 	dt 2  — ( 1 — L—M ) (!r•` — r 2  (de + sin 2 042 ) 	 ( I) 

nao é apcnas importante para o estudo do campo gravitational ao redor cia enorme maioria. dos corpos celestes 

que sao aproximadarnente esfericos, corn° tambern descreve a solucao para buracos negros eGtaticos de massa Al 

que passararn a ser chamados huracos de Schwarzschild. Contardo. foi apenas ern 1933 que Lcmaitre reconhecen 

<pre o raio de Schwarzschild r„ = 2M nao era uma singidaridade fisica [6]. A 'Mica singularidade fisica presente se 

encontra ern r = onde se "concent.ra" a massa do buraco negro. 0 raio de Schwarzschild define a regiao denominada 

horizonte de eventos deutro da coral os cones de luz encontram-se Lao distorcidos quo nada pode escapar. 6  Qualquer 

forth! do energia adentrando o horizonte, inevitavelmente colapsa part o contro. 

Depois de um periodo de relativa !Merida, a gravitacao voltou a ganhar irnpulso na dricada de 60. Ulna solticao 

de vactio r..creverido buracos negros est acionarios axialtnente simetricos, caracterizados por sua massa e moment() 
angular, foi descoberto por Kerr em 1963. Corn efeito, Irina Eerie de reoremas dernonstrados entre •1967 e 1975 

yarticulamcntc por Israel, Carter. Hawking c Robinson rnostrararn quo huracos negros estacionarios, derivados das 

solircOes de vactio das equacoes de Einstein, devout ser tipo Kerr, ou seja, sao caracterizados apcnas por sun rnasso 

niornento angular (veja [7) e suns referencia:0 A gencralizacao destes teorernas, coribecidos corn° teoremas no-
hair, nos fax crer que, hirracos negros sac) compliAamente descritos por sun massa M, moment() angular J e carp 
eletrica Q. Para cvitarmos a preserica de singulariclades nuas, (i.e. liar) vesticla_s do inn horizonte de eventos,) tais 
parametros devem satisfazer ,tile > Q2 + .12/M2 .  

Neste niesino period() Hawking e Penrose most raram quo buracos negros, urna vex forinados, nao podem ser 
destruidos on se bifurcarem. 7  Finalinente em 1971 Hawking provou que num espaco forternente predizivel assintot-
icamente, c satisfazendo liabOkb > 0 para todo ka tipo Iuz,8  a sauna total da area dos horizontcs do evento nunca 
decresce. 

A area do horizonte de eventos associado a urn buraco negro de Kerr-Newmann (i.e, caractcrizado por sua massa 
M, moment° angular J e carp cletrica Q) é dada por [8] 

A = [2 M 2  — + 2m (m 2  - Q2  — —11/1 112  122 )1 

interessante inverter (2) pant isolar a massa 

(24 '\ + Q2 
167r 	A ) 	4 ) 	2 

Diferenciando (3) obtentos 

d,14 = 8w —dA +0dJ + 

5  Um espaco-tempo r. clito esfcricamente simetrico se n grupo dc isonietrias contivcr 	subgrupo 80(3). 
6  De maneira Timis gecal, buracos negros podem ser defmidns cm espacos assintoticamente pianos, come. B M — 	(V), onde M 

dcnot a a variedade associada ao cspaco-tempo, c J— (7+ ) o passadn causal do infinito futuro nulo. 0 horizonte de eventos 	deign WO 
por hf = 	rt M. 0 conccito de horizome de eventos estit intimamente relacionado coin o conceit° de linrizonte de Killing, i.e. 
uma hipersuperficie nula corn urn camp° de Killing Vi normal l hipersuperficie. 

De passagcm comentamos que Canto este Como o teorema scguinte assurnem clue 0 espaco-Lempo 6 fortemcnte predizivel again-
toticamcnte. i.e. todos os observadores externos a buracos negros ou sabre o liorizonte de eventos nip podem ser infinenciados por 
singularidades nuas. 

6  Note que csta conclicao cm conjunto coin as equaciies de Einstein implicam em Tm,k"kb > 0. 
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que relaciona a diferenca do massa enure doffs buracos negros corn pequenas difereucas de area, moment.° angular c 

carga eletrica. A gravidade superficial a definida por 

iM2 — Q2 _ .12/ M 21 1 / 2  
K = 47r 	 (5 ) 

a. frcqiiencia angular como 
477J 

Q = 
MA 

e o potencial eltitrico sobre o horizonte de eventos corno 

4 n.(2 
iM ,/M 2  — Q 2  — ./ 2 /M 2 ] . 	 ( 7 ) 

A sernelhanca entre (4) e a forma diferukcial da prirneira lei da termodinarnica nos faz associar ail/87r uma 

grandeza tip° ternperatura, c a area A uma grandeza tipo entropia 9  [10]. 0 prOprio Hawking, Um alio depois, ao 

est.udar a qikantizacao de campos no espaco extern() ao de estrelas colapsando mostrou quo buracos negros irradiam 
corn uma temperatural n  

T = — 
27r ' 

( 8 ) 

assirn Como observado no infinito ll , c fica a.ssociada uma entropia are huraco negro de 

abn = 	• 	 ( 9) 

	

Especificamente no caso de Schwarzschild T = 1/87rM c Shy, = 	Foi corn enorme surpresa quo este resultado 

foi recebido, pois ao contrario do quo previsto classicamente, buracos negros poderiank eventualmente evaporar ate 
sea possivel desaparecimento. Out.ras conseqiiencias marcantes sao a violacao de algurnas lois de conscvacao , 12 ca  

generalizacao da segunda lei da termodinamica quo passa, a ter o seguinte enunciado: Em qualquer process° fisico, 

6S' > 0, onde S' = E Smateria E Sbn- Sr:lager- in 6. a entropia termodinarnica usual externa ao horizonte de eventos 

e Sbn  e a entropia rissociada aos burritos negros. 

3 Espaco-tempo e teorias de campos classicos 

Mesta sccao pretendemos.evidenciar ar.raves de exernplos, como a estrutura da variedade dcterrnina e limit a a 

construcao da teoria de Campos ainda a nivel clikssico. Para onto supornos urn campo escalar real n5o rnassivo 

descrito pelts equacao de Klein - Gordon 

	

= 0. 	 ( 1 ) 

Suponha quo a variedade M associada ao espaco - Tempo (.M, gab ) C nrrn 4-toro de lado espacial L e temporal T. 
Entao se T2 /1,2  for irrational, (1) na° admite solucao. 

Ent contrapartida, se. (M, gab) for globahnente hi perbolico," cons )2, seudo lima superficie de Cauchy suave, entio 

a solucao de (1) e urn problema a valores iniciais born posto, no seguinte sentido: Midas funcoes suaves (60,7ro) de 

0 Note-se gate, segundo o teoretna de Hawking, a area total dos Itorizontes de evento nunca decresce., em perfeita analogia coin a 

entropia total de urn sisterna termodinimico fechado. Cuntudo, antes de 197 ,1, isso parccia apenca uma cnineide:ncia 

"It should however be empluu:ized that 11787r and A are distinct front the temperature and entropy of the black hole. 

In fact the effective temperature of a black hole is absolute ;Edo." 

w A gravidade superficial k. a dermida conics segue: Seja 	inn carnpn de Killing normal ao Itorizonte de Killing II. Erni° Vb(VC„) 

—2Q 6  sobre If. TarnlArn poclemos escrever igualmente = 	( Va), Oride V {,R7.1 a , a =abet„ e aG = G.,; 

II Em geral, a temperatura Para 1L111 nutro observador sera "!j am  = 	t.  • 

17  Suponha clue uma estrela coin mitnero leptimico (bariOnico) nko nulo cnlapse em um buraco negro. Pelos teoremas de no-hair, nao 

somente a inform:K:1(J snbre estes mimerns quAnticos semi penlida. COM ) tantbern havera explicita violftcho cIrstes ntimerns devido h 
radiacho tennica na qual o buraco evapora. 

130 cc-Ince-nu 	espaco-tempo globalmente hipertailicu esta intim:undue relacinnado from 0 de dominio de dependencies. Seja E ulna 
supe.rficie acronal, i.e. 1+ (E) n E = 0. Deriakmos :1 dominio de depemiencia de E pnr D{E) = (p E .A41 tuna curvet causal clue passe pnr 

p, intercepte E }. Se /)(E) = M. dna:, E c dies ‘1.171i1 superficie de Cauchy c NI globaimente hiperhaca. 

(6) 
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ordem Cc° sobre E, entio existe ulna rinica soluc'ho suave de (1) sabre M tal que ¢1E = th, naV„401E = 71'0 1  ondc 

na é o campo vetorial normal a E. 

Fica claro assim que as propriedades da variedade de fundo influenciam na construcao das possiveis teorias de 

campo mesmo a nivel cli.s.sico. Evidentemente isso deve se refletir na gtiantizaeao corno vereinos a seguir. 

4 Particulas e teorias de campos 

Antes de prosseguir devemos averiguar qual a dependencia do conterido de particula de urna dada teoria de campos 

corn as simetrias temporais do espaco de fundo em questa°. Para tanto, voltemos a analisar o campo escalar real 

nao massivo no bem conhecido espaco de Minkowski. 14  Os modos norrnais de vibraS5.o aa"o dados pela solucio de 

❑415 = 0. Ondas planes of = e"'")  (0) > 0) sao solucao e formam urn conjunto completo. Na representaiiio do 

espaco das configuracees, E Assim, como 

2u-(x). T,01 + (x), 

	

.

t 
	 (1) 

definimos u_(z) como modos de freqiiencia negativa etr + (x) como modos de frcqiiencia positiva. Fazemos entio a 

uxpansio em Fourier do campo ern ondas planar 

d3 k 	 „, 
45(x v ) = 	

1-2w(2703 
a(k)e 	') + 11.c.) . 	 (2) 

A questa) que se coloca d corno discernir modos de freqiiencia positiva de modos de freqiiencia negativa numa 

teoria invariants por transformacoes gerais de coordenadas. Para responder a isso é necessario generalizar a relagio 

(1). Dizemos que 11 4.(xP) é urn modo de freqiiencia positiva w coin relacdo a urn campo de Killing tipo tempo se 

iGeu+  = tau+ , 	 ( 3) 

onde w > 0 e C indica derivack de Lie. 15  Lembramos que se e urn campo de Killing entao Ccg = 0. 0 grupo a 

um parAmetro de difeomorfismos associado a° campo vetorial define uma isometria. 

Analogamente, se uma flinch. ° de onda u_ satisfizer 

iLcu_ = 	 (4) 

entio dizernos que u....(x) é urn modo de frequencia negativa w, corn relacho ao campo de Killing ti  tipo tempo. 

Assim, urna vez dado o campo de Killing tipo tempo e descoberto urn conj unto completo de modos ale freqiiencia 

positiva e negativa, procedemos de maneira usual a expansao do campo 

ikry) = E 	+ 11.c.} , 	 (5) 

onde somamos sobre os mimeros quanticos que rotulam o campo. 

Pela definicao acirna, nao a claro como definir o conceito de particula em espacos sem algumasimetria temporal. 

Podcmos contornar parcialmente esse problema quando o espaco-tempo tende a Minkowski assintoticamente no 

passado e futuro. Neste caso pode-se comparar o ntimero de particulas nos espacos assintoticamente pianos, e atribuir 
urna possivel criacao de quanta h variacho do campo gravitational. Uma situacio analoga pods ser encontrada no 

cletromagnetismo [11]. Uma situacio mail interessante e o caso de espacos que admitem mais de urn campo de 

Killing tipo tempo. Neste caso pode-se extrair diferentes contelidos de particula, associados a cada campo de Killing, 
de uma mesma tcoria de campos. 

14  0 espaco de Minkowski t obviamente globalmente hiperbolico. 
15  Defulimo5 a derivada de Lie de urn campo tensorial T corn relacito a urn czunpo vetorial t no ponto p de utna variedade M como 

C4T = 	 , onde gera o grupo a urn parLrnetro de difeomorfismos A g e denotamos por A; o isomorfismo induzido por A t  
(A; : Tp 	TA,(p))• 
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5 Efeito Fulling-Davies-Unruh 

Anal de analisar o efeito Hawking aunt context° mais simples, Davies e Unruh (vide (4]) analisaram o caso de inn 

observador corn ac.eleracio prOpria constante no vacua de Minkowski. De fato, descobriu-se quo inn observador 

acelerado no e.spaco de Minkowski detetor urn banlio termie° de particulas cuja temperatura c dada por (veja (8)}, 

T= 	 (I) 
2-r ' 

onde a corresponde a aceleracio prOpria do observador. Para discutirmos o efeito Davies-Unruh [4] investigaremos 

brevernente a resposta de urn detetor acelerado no viol° do Minkowski. 

A amplitude de transicno ern primeira ordeal tle perturbacito para urn detetor no cstado fundamental lEo) e 

acelerado no vim) do Minkowski 10) do se excitar para inn estado 1E 1 ) (E 1  > E0 ) c ainda emitir urn quantum Ilk) 

pode ser escrita como 

= io(Et, lk1Si10, En), 	 (2) 

onde c ulna constante de acoplamento pequena 

+00 

Si = 	driit(T)(3[X “(7)] 	 (3)
J 

denota a aciio de interacao entre o campo escalar (ii(ro) e o delaor 16  descrito por tan monopole, nt(r). A linha de 

Univers° do detetor é descrito por zo = xli(r) coin r sendo sell tempo pr6prio. 

Usando a liarniltoniana H onde 111E) = EIE), pot-lentos evoluir o monopolo ni(r) associado a.o detetor como 

fil(r)  = e ifir 	r 
	

( 4 ) 

t corn isso reduzimos (2) a 

+co 

= ia(il int(0)1E0) 	c i(13 ' - Eu )T  (1 k 1((x")10)dr, 	 (5) 

Expandindo o campo ern termos de ()mks planas (2), obteinos 

( 1 k1INTP )1 0) = ( 167r3w)
-1/2ci(wt 

corn o que podemos reescrevcr (5) 

	

1110E)-•IlV) = ift(Eiirn(0)ii30)(16 7r3 W) -142 
 ir +Cu 

e.i(E I -Eu )r . ei(1.41-ic. 	dr. 	 ( 6 ) 

A probabilidacie de transicao sera simplesmente 

110.1-;(0-.11 k ,E,} = 11-4 10,1:0)—Ilk,E 1 ) 
	

(7) 

Note agora que (6) depentle da trajetoria do detetor i = 1(r). 

fact] ver (1] quo se o detetor esta numa trajetoria inercial 	= r0  -I- 	= 	 r), entio (7) se anula 

corn° esperado. No entanto, se o iletetor possni tuna aceleracio propria constante a, a prohabilidade de transicao 

(7) (por unidade de Iernpo proprio)nao so ;Lida, podendo ser escrita coin° 

Plo,E0-11k.E1) 	(1 2 	- E0)1(Eilm(0)11501 2  
r 	 211 	,27r(E,-E0 )/n 	1 	 (8) 

0 fat.or tipo Planck [e2 '( E. - E.)/d - 11 -1  indica quo o detetor no sett referencial de repot's° seine urn banho 

termico caracterizado pela tempsratura 17  = al2r. Cons efeito, a fungi° de Green para um detetor corn aceleracao 

16 Basicamente o detetor pock ser encarado colon tint sistrrinn de dais 

"'Elm fenanieno tanabCrn nig() contra-intuitivo pole ser encontrado em elctrorlinti lll ica 	 Stiponha tuna carga corn aceleracao 
pro'pria conbtante. Urn observador inercial deteta rasliacio provinda da carga, engnanto tine urn observador co-acelerndo coin a carga 
nao. Interpretandu radiaciu.  corm, sendo Colons, vemos mesmo nest e context(' que a Sillherveic1u0 de futons dependent do referencial. 
(Vila discussho nn secho 

—co 
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pi-6pda constanLe a corresponde a fungi .° de Green termica para urn detetor inertial num banho corn temperatura 

T = a/27r. 
0 fato do detetor emitir siruultancamcnte urn quantum e se excitar a urn nivel do energia mais elevado somente 

possivel porque o agente que acclera o detetor fornece essa energia. E interessant.e notar tambern [12] quo cada 

particula de Minkowski emitida pelo detetor assim como observada no referencia' inertial, c descrita polo observador 

acelerado como a absorcdo de urea particula de Rindler presente no banho termico. As denominacOes particula de 
Minkowski c par/kr/a de Rindler esti() associadas a quantizacio do campo coin respeito aos vetores de Killing a, e 
a, respectivarnente. 

A busca pela confirmacao ohservacional da radiacao Hawking continua intensa [13], mas ate o memento os 

rosultados negativos tern sido apenas Oteis para fixar limites superiores sobre a densidade de mini-buracos negros. 

Em contra-partida, a observacao da depolarizacao do feixes de particulas em acelcradores pode ser interpretado 

no referencia' co-acelerado como devido presenca do banho termico quo induziria urn flipping no spin 114]. Em 

scguida veremos como o banho termico de Davies-Unruh 6 irnportante na re-interpretacao da emissao de radiacao 
por cargas accleradas. 

6 Cargas aceleradas irradiam segundo observadores co-acelerados? 

Mesta secao varnos re-interprctar o efeito de irra.diacao por carps classicas uniformemente aceleradas no contexto 

da QED em primcira ordem de perturbacao no referencia' cm co-movimento corn a carga [15]. E bem sabido quo 

carps aceleradas irradiam tal como observado em referenciais inerc;iais. Classicamente ;  contudo, havia alguma 
controversia sobre se observadores co-acelerados corn a carga rnediria alguma radiacio. Atualmente existe urn 

consenso no context.o classic° de que observadores co-acelerados corn a carga nao medem qualquer radiacio, porque 

Coda Oa se dirige a uma regiao inarcessivek para estes observadores [16j. No contexto da mecauica quantica, a 

investigacao destes questoes se torna ainda mais intcressante, devido ao papel desempenhado pelo banho termico 
no qual a carga esti imersa ern scu referencia' de repouso. 

Existem dois ingredientes basicos quo devem ser levados em conta neste estudo: 

• A corrente quo descreve a carga no scu referencia' de repouso nao pode excitar modos de Rindler de energia 
finita pois 6 cstatica. 

• Existent infinitos "fotons de Rindler de energia Enda", i.e. modos do energia nula corn respeito ao tempo 
proprio da carga acelerada, no banho termico de Davks-Unruh. 

0 prirneiro ingrediente antecipa porque apenas "modos de Rindler do energia nula" serao excitados. 0 segundo 

ingrediente permite que a taxa do emissao e absorcao destes modos nao se anulem, apesar do sua energia uula. A 

mancira de contornar estas duas tendcncias concorrentes r. introduzir urn regulador na corrente, suprimindo-o ao 
final dos calculos. 

Suponlia urna carga q corn aceleracao propria constante a na direct o z. 0 regulador é introduzido substituindo 
a corrente e:statica 

it = (16(e)45(2)6(y), 

=. Y =  0 

que descreve a carga no sou referenciai de repouso, pelo dipolo 

Jr 	 - c-2.2E6(c - 141 or p5( y) ,  = \Fig cos(Er) [6(0 

= NfiqEsin(Er)e -2°4 0(00(L - 05(45(y), 

J r  = jY = 0. 

Ao final dos calculos o regulador is rernovido, i.e, 	U, 	+co.rs  
18 511 usadas coordenadas de Rindler porn cobrir o Rindler wedge. 0 Rindler wedge e a regiao do espaco de Minkowski vinctdada por 

1! > 'If I. Estas coordenada-s estito relncionadag corn Rs coordenadavde Minkowski por t = A",4 sink ar, z = 	coshar. 
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A corrente (3)-(5) se acopla ao campo de Maxwell A„ via a Lagrangiana de interacho 

Ling = 	 (6) 

atraves do quc os rnodos de Rindler podem se excitar. 

Depois de quantizar adequadarnent.c o campo cletromagrukico  no Rind ler wedge, podemos obter a taxa total de 

emissao de fotons de Rindler corn moment° transversal k i  = fk,2  + ky (por unidadc de tempo proprio total r) Lai 

coma calculado no referencial accicrado 

dtv ac plink _= Jo 	1_217w7k...) 1 2  (1 + 	 

	

e -t Le/a 	I 

Os termos dentro do parateses em (7) estao relacionados corn cmissao espontanca c estimulada respectivamente. 

Analogamentc, a taxa de ahsorcao de fotons de Rinciler do haulm e dada por 

ac pab., 	dw
1 l a" 	1 7 	 ( 8 ) 

1 
k 1 — 0 	(w.k.g.) 62tiwin _ 

Efetuando os calculos e cntaci retirando o regulador (E — 0, L 	+oo), obtern-se a resposta total da carga corn 

respeito a fotons de Rindler de energia nula 

ac tot 	 (k ico r 
( k .' ,L Y) 	47r3 a Ih  

(9) 

on de  ac prof 	= ac pein 	_L ae pubs 
' (k.,k u ) 	(k.,k.) ' 	' (k.k v )" 

Afirmarnos em seguida que a taxa total de ernissio de fotons de Minkowski corn moment() transversal k1, assim 

como calculado no referencial inertial coincide inteiramente corn esse resultado 

L 	 (1 2 
in oot 

r(k...kw) 	 1Kg(kija)12. 
4r a 

Note que k 1  e invariance por boosts na dirccao c , I: portanto tern o mesmo valor eng arnbos os refcrenciais. Esta 

igualdade (i.e. "FIT' 	=in 	) ilustra nossa principal conclusao: 
emisstio de foions corn Tnomento transversal k i  assim conzo vislo no referencial inertial, pode ser interpretada 

conic a cini.ssrio/absorcdo de foions de Ilindler de energia nula corn o mesTrzo 11101ZICTILO transversal kl para/dn banho 

tirmico de. Davies-Unruh no qual a carga estd inicr.so ern sea referential de repouso. 

Corn respeito it mensurabilidade dos fotons tie Rigidler de energia nula, notamos quc apesar de carregarem 
moment° transversal finito, fotons de Rindler ernitidos pela carga nao sao detetaveis. Isso se Cleve, nao apenas 
ao fato de que existem infinitos fotons de encrgia nula no banho termico, mas tambem porque a taxa de emissiko 

absorcao destas particulas é a mcsma c o banho nao sofre disrupciio (i.e., In) — In + 1) tern a mesrna taxa 

de transicio de In + I) In).) Esta conclusao esta dc acordo cunt a aniilise feita no contexto cla_ssico de que 

observadores co-acelerados corn a carga nito observam radiacao (veja por exemplo (16]). 

7 Cargas estaticas em campos gravitacionais tambem estaticos irra-
diam? 

Nessa secao tratamos da classica controversia se devegiamos esperar polo Principio de Equivalencia que cargas 
estatica.s em campos gravitacionais tambem estAticos irri-tdiassem. 0 "paradoxo" pole ser enunciado como segue: E 
sabido que cargos aceleradas irradiant corn respeito a observadores inerciais. Como radiardo pode ser interpretada 
quanium-mecanicamente em lermos de fotons, seria natural esperar qua observadores co-acelerados corn a carga 
tambem observassem radiaedo. Por Jim, usando ingenuamente o Principto de Equivalincia, poderiamos scr levados 
a concluir que carps esidticas cm campos graviiacionais lambent cstdlicos ernitern radiacdo, o que stria inconsistence 
do pont° de vista de consernacrio de energia. Corno ji viinos acigna, o fato do conceit° de particula elementar ser 
dependente do ohservador permite quc observadores em co-itioviinento coin uma carga uniformemente acelerada nao 

(7) 

(10) 
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observem fotons de energia finita scndo irradiados pela carga, ao contrario de observadores inerciais. Entretanto, 

como ja visto, esses observadores co-acelerados atribuem a carga emissao e absorcio de fotons de energia nula. E 

natural entail se perguntar se observadores estaticos corn tuna carga nuns campo gravitational tambem estitico 

podem igualmente atribuir a ela a emissao e absorcao de algum tipo de particula de energia nula. Tratamos aqui 

especificamente do caso no qua] urea carga se encontra ern repouso fora de urn buraco negro de Schwarzschild 

crnitindo radiacio Hawking. Por sirnplicidadc, considerarnos [17] Irma fonte escalar ekissica interagindo corn urn 

campo escalar nao massivo, ao hives de tratar de urna carga eletrica interagindo corn o campo de Maxwell. Os 

calculos e demais consideracOes sao bastante analogas its feitas na secao anterior, contanto que as devidas adaptacilies 

sejarn feitas. 

A fonte escalar q ern repouso fora do buraco negro nas coordenada_s de Schwarzschild (r 0 ,00, (1)0) sera descrita 

pela corrente escalar 

= 	6(r — r0)6(0 00)6(0 — 00), 	 (1) 
VT" 

undo h = det[ho ] é o determinants; da metrica espacial. Para evitar rcsultados indcterminados introduzirrioa 

novamente urn regidador oscilatorio, w 0 , na corrente acima 

	

j = --q  Nfi cos(w01)6(r ro )45(0 — 00 )6(0 — On), 	 (2) 

que é naturalmentc suprimido ao final. A corrente (2) se acopla ao campo .calar 0 via a Lagrangiana de interacio 

Lint = 	 ( 3 ) 

Em seguida, depois dc quantiza.r o carnpo escalar no espaco de Schwarzschild (1) e repetir o procerlimento acima 

descrito para o caso de unlit carga no espaco de Rindler, podemos calcular a taxa total de emissao c absorcao de 

fotons de energia nula [17], corno calculado no referencia] de repouso da fonte: 

0Cpial = 11 2  era .)  
4;7 2  

onde "P" Eat peva +rtc pabs c u(r0) e a aceleracao propria experimentada pela fontc quando C111 repouso em r ro . 

Assim, um observador parado corn a fonte estatica fora do buraco nao observa nenimin fOton de energia nio-nula 

sendo emitido pela fonte c por conseginte nenhuma inconsistencia corn o principio de conservacao de energia 
verifi c ado! 

8 Comentarios finais 

A gravitacao seini-classica, a.ssim como preconizado no inicio nao pretends ser tima teoria completes de gravitaci'io 

quantica. No cntanto, esperamos ter conscguido convencer o leitor da riqueza de informacoes quo ela acrescenta 
aos nossos conhecitnentos de gravitacao COITIO urn todo. A formula para a temperatura corn que baracos irradiam 
conseguc agrupar as constantea fundarnentais C, c, h, k o talvez acabe sendo o primeiro resultado intrinsecamente 
quantico observado na gravitacao. Mas rnasmo quo isso nao so confirinc, nao devemos esquecer os beneficios que 
Teoria de Campos cm Espacos Curvos ja tronxe para ulna mclhor COM prcensAo do alguns de nossos velhos conceitos 
tais coin° o de particula elementar. Guardadas as devidas proporcoes, a relcvancia day particulas de energia nula 

introduzidas acima., por exemplo, dove ser cornparada corn a. relevancia do coaceito de particulas virtnais: Apesar 

do, por definicao, serem nao-observitvois, sao muito importantcs para a intelecgao da fisica subjacente a varios 

fenOmenos tais corno do efeito Lamb shift, efeito Casimir, etc. Apcnas o futuro podera aquilatar corn propricdade 
o qua° relevante esta teoria sera para o desenvolvimento da Fisica Teorica. 
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A Profusion of Black Holes From Two to Ten Dimensions 

:Jose P. S. Lemos 
Departamento de Astrofisica, Observatdrio Nacional-CNPq, 

Run General Jose Cristino 77, 20921 Rio dc Janeiro, Brasil, 

Departamento de Fisica, Institute Superior Tecnico, 

Au. Rovisco Pais 1, 1096 Lisboa, Portugal 

Black holes in several dimensions and in several theories are studied and discussed. The the-
ories are, general relativity, Kaluza-Klein, Brans-Dicke, Lovelock gravity and string theory. 

1. Introduction 

Black hole physics and black holes (BHs) have by now a long and interesting history since they were first 
predicted in 1939 by the prescient work of Oppenheimer and Snyder [1] following some hints left. by Zwicky in 1934 

[2] that neutron stars, stars of very high densities and very small radii, could form as the end product of a supernova 
explosion. 

It is not here the place to comment. on the development of these ideas, but maybe, some would like to know 
that in the same year, Einstein published a paper [3] arguing forcefly that the gravitational radius, what we now 
call the event horizon of a 1311, could never be surpassed. Einstein was, in a sense, isolated in Princeton, while 

Oppenheimer was on the west coast, the other side of the country, commuting with his students between Berkeley 
and Caltech each six months. in Caltech he could share ideas with Tolman the great relativist, and Zwicky a master 

of prophesying correctly (although there is no direct sign of communication between Zwicky and. Oppenheimer). 
With hindsight, it seems that Caltech was the right place to study gravitational collapse and predict BH formation. 

It. is also relevant to note that 150 years before, dark stars, the Newtonian Blis, were predicted by Michell [4] 
in Cambridge, an idea that Laplace followed 12 years later [5]. In modern terms Michell's idea can be put in the 
form: give a mass M of an astronomical object; find its radius so that the escape velocity is the velocity of light c. 
The answer is 2C = c7M where G is the gravitational constant. Objects with radii below this value are dark stars. 
However, the argument is not strictly valid because c does not have a fundamental meaning in Newton's gravity. 
One could detect tachyonic particles emmited from the surface of the star, or an observer not placed at infinity, 
in the neighborhood of the star, say, could still see the light coming from the star. However entertaining was the 
dark star idea, it was dropped down for one or other reason until 1939, where it appeared in the right context, the 
theory of general relativity. Curiously enough, a good condition for the formation of a 1311 is that the radius of the 
star obeys Michell condition R =L, , although now M and R have the corresponding relativistic meanings and 
C and c are both fundamental constants. 

So, what is the picture of a star collapsing into a B11? One can best see it through a spacetime diagram. As the 
star collapses there is a last ray emerging from the center that can reach spatial infinity. This is the event horizon, 
signaling the existence of a B11, see figures 1 and 2. 

When the BH forms there are two distinct but connected regions, the inside and the outside of the event horizon, 
explicitly showing that time in relativity is observer dependent. As the matter of the star continues to collapse 
inside the event horizon it will form a singularity where curvatures and densities of infinite strength are formed and 
the usual concept of spacetime is lost. Inside the event horizon light is trapped. Light not only does not escape to 
infinity, it cannot escape to the outside of the BII. However, to an outside observer the story is different. As the 
BR is being formed, the luminosity of the original star decays exponentially, L = Lo e - + where the characteristic 
time is very short, T = 31/3-4 = 2.6x10-5  ms ic in a few millionths of a second the star turns totally black 
(Ale = solar mass). In addition, to an outside observer the collapse of the star results in a BH whose properties 
are characterized by three parameters only: mass, charge and angular momentum. One then says that BHs have 
no hair (in fact, they have three hairs). AlI the other properties, or 'hairs', of the matter of the star that formed 
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the 13/I disappear. No observation can reveal the nature of the original star, whether it possessed anti-matter, or 

was made of fermions, or bosons, or whether it had any other hairs. 

Figure 1. Eddington-Finkelstein diagram for the collapse of a star, (eh = event horizon). A double line in all figures 

represents a polynomial singularity. 

center 
of the 

star 

infinity 

Figure 2. Penrose diagram for the collapse of the same star of figure 1. Light rays move at ±45° and each point in 

the diagram represents a 2-sphere. 

This picture is drastically altered if the collapse produces a singularity first, not dressed by an event horizon. 

.131-1s are well studied and their existence is highly plausible. Naked singularities do not enjoy the saute satus. They 

are a threat. to the predicability power of general relativity ;  and for this reason a cosmic censorship conjecture 

forbiding the existence of such nasty objects was formulated [6]. There are many theoretical counter-examples to 

the cosmic censorship conjecture [7, 8], although it is still arguable that these examples cannot occur in nature, 

either because they may be physically unrealistic or possibly highly unstable. One drawback to the conjecture, 
often invoked, is that its validity implies the impossibility of observing quantum gravity phenomena, coming out 

right from the singularity. 

BHs formed from the collapse of stars can have masses between :i — 1001410. There is also the possibility that 

supermassive stars or the core of star clusters collapse to form fills with masses of the order of 1000M0. fills with 

much higher masses 10 6  — 109 M0 may form in the center of a galaxy via gravitational collapse of a mixture of 

clusters of stars and gas. Primordial BHs with masses ranging up to 10 -13 M0 10 14 g, and the radius of a proton 

10 -I3cm, could have been formed in the fluctuations of the early and very early universe. 

For stellar size objects, the mass is a good indicator to separate 1311s from neutron stars. If the compact object 

has a mass M N  3.5M0  then there is no equation of state, however stiff, able to support the neutron star (a cold 
star with a radius of — 10Kin) against complete collapse. There. are strong candidates in the sky to stellar BHs, 
the most famous of all is Cygnus XI, a binary system emmiting X-rays and harboring a dark compact object with 

16M0 (see e.g. [9] for a review). There are no candidates for 131-1s with — 1000 M o  (even the existence of 

supermassive stars is pure theoretical speculation). Galactic BHs should inhabit the center of active galactic nuclei, 

compact sources which can shine more than an entire galaxy. In some cases like quasars, the nuclei of the galaxy 
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has a brightness equivalent to the brightness of several thousands of galaxies, in a region not bigger than the solar 
system. In two galaxies with active galactic nuclei the value of the central mass points to the existence of a BII: (i) 

in the elliptical galaxy M87 the Hubble Space Telescope measured a rotation velocity of v 550Km/s for the gas 

at. an orbital radius of 60 light years, which, through Kepler's law gives M = — 2 — 3x10 9 M0 ; (ii) for the spiral 

galaxy NOC 4258 Keplerian velocities of -- 1000Km/s in an inner orbit of very small radius, R 0.41y, have been 

measured through water masers which imply a central mass of M 2x10 7 M0. This work is considered to provide 

the strongest case for a supermassive BB in the center confirming the predictions of Lyndon-Bell [10] ;  (sec [9] for a 

review). All these methods are indirect, and to probe directly the existence of a PH one should measure relativistic 
speeds of the matter circulating in the disk very near the event horizon. In addtion, when the gavitational antennas 
are operating we should directly detect the formation of HHs either through collapse of a single star, or through 

the merging of binary systems. There is no observational evidence of the existence of primordial Blls. 
A quantity that givt ,  some insight to the physical processes occuring during the collapse is the average density of 

the collapsing matter p when the MI is forming, i.e., when R = 244Lf  , yielding p = 4.( 5 (b-) 2  1.3x10 1604)2 ,+. • 
For a 1M0  BB this gives a density ten times larger than the nuclear density, whereas for a 10 8 M0 BH it gives the 

density of water. This means the larger the mass the less uncertain is the physics at the 1311 formation. Even if Blls 
have not been produced in our cosmos, one could envisage an astronomical experiment, by assembling a very large 
mass in the form of dust and let it alone to collapse to form a B11. After the matter has passed its own gravitational 
radius, the singularity theorems (1 11 plus theoretical models indicate that the density raises to infinity, p co. is it 
really infinity? In principle there are strong suggestions that there is a minimum scale, the Planck scale (constructed 
from G, c and Planck's constant h), below which the usual physical concepts break down. At the Planck scales, 

= 10-33cm and Afrd = 4(.7f 10-5gm, the density of the matter is p Pic = 1092  ( .14) gm/cm3 . 
At these scales it is expected that the topology of the spacetime breaks down in order to accomodate these large 
masses in such a small volume. It is interesting to note that the Planck density p pi  = A 10 92gm/ctn 3  is the 
density at which a Planck mass turns into a BH, as well as merging into the singular structure of the spacetime. 
General relativity provides an adequate description of &Is that are much bigger than the Planck mass. On the 
other hand for Planckian BHs a description in terms of general relativity breaks down and it has to be replaced by 
a quantum theory of gravity. 

Even much before the quantum gravity regime starts to be important, the PH already presents a quantum 
mechanical behavior. Indeed following hints that a BH has an associated entropy and therefore, through the 
relation S = Q/7', an associated temperature, Hawking [121 using quantum field theory on a BB background found 
that Buis are not black but radiate with a blackbody spectrum at a temperature 1' = Gko bi • 	m = 6x10-6(4.  )h, 
and have an associated entropy Sim  given by SBH = 	where .4 is the area of the BII and kn is the Boltzmann 
constant. Since so many fundamental constants enter these formulas one can say that. quantum mechanics, general 
relativity and thermodynamics must merge together in a unified theory. For Al 	1M0  one has T 	10 -7K, 
whereas for a Planckian BH, 10'gm, T 1032 K. An important unsolved problem raised by this thermal 
evaporation is the information paradox, which is the problem of knowing to where all the information contained 
inside the original star has gone after the BH has evaporated completely [13, 14]. 

Classically, BHs are stable objects, however quantum mechanically they are unstable. As the BB radiates 
energy its mass decreases, the temperature increases in a runaway process which probably ends in a final explosion. 

Suppose now that instead of neutral Mk one considers a charged non-rotating BII. Then T = ,1  Oil - Q3  If 
(M+ 

the charge is large enough, IQ! = AI, then T 0 and one could expect these objects to he stable. However, vacuum 
polarization effects will discharge the BH itself rapidly. There are two ways to stabilize the situation: 

1. Take a topological charge so that there are no particles to radiate [15]. 

2. A charged BH will preferentially radiate away its charge, depending on the charge to intms ratio of the particles 
in the theory. if m  is small most of the radiation will he in the form of neutral particles and Q will remain 
constant. Take then that the lightest charged particles are heavy enough so that they cannot he created by 
the BH. This could be done in two instances. 

(a) For example, suppose that the BII carries magnetic charge instead of electric charge. The only way for 
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the BH to loose this charge would be via the creation of monopoles. However, if the monopoles are heavy 

enough the probability of decay is heavily suppressed [16]. 

(b) A variant of this scenario is to suppose that the charge arises as a central charge in a supersymmetric 
algebra. It is known that in N = 2 supergravity the bosonic sector is Einstein-Maxwell theory with a 

Bogomolnyi hound given by Q < M. One can then show that extreme R.eissner-Nordstrom solutions 

IQ! = /11 (which saturate the bound) are supersymmetric, in the sense that under a supersymmetric 
operation the metric remains invariant and the fermionic sector remains null [17). These Buis have zero 
T and are stable. 

Stable BHs can be considered as solitons of the theory and as such belong to the non-perturbative sector and 
should be put. on the same foot as the elementary particles of the theory. To see more directly that the distinction 
between B1Is and elementary particles can be blurred, suppose there is an elementary particle with a mass greater 
or equal to the Planck mass. Then its Coinpton wavelength is smaller or equal to its Schwarzschild radius. At 
these scales it is therefore hard to distinguish between what is an elementary particle from what is a BH. It is then 
natural to think of such particles as HHs and conversely BHs may be viewed as elementary particles [18]. It is 

expected that gravity must become the dominant field at the quantum Planck scale 10 -33cm, which as we have said 

represents the minimum scale at which spacetirne can he considered smooth. BHs, viewed as elementary particles, 
are the objects to test this scale, through Hawking radiation. Imagine the following futuristic experiment: two 

incoming particles in a huge accelerator are set to collide face-on, such that, a center of mass energy of 10 19Gev 

is produced. Then, one might form a Planckian 1-5H which will evaporate quickly in a burst, allowing us to study 
the physics at the Planck scale. One might think that by increasing the energy the study of sub-Planckian scales 
would follow. However, this is not the case, since one would produce a BR with larger ina.ss, which would decay 

slowly. 

From all this one can see that quantum gravity plays an essential role in every theory of extremely strong 

gravitational fields such as 1.11Is and singularities. One could think of reconciling general relativity with quantum 
mechanics, but it is known that general relativity is perturbatively unrenormalizable which is taken at face value by 
many people as an indication that the quantum theory does not exist. At present, the best candidate to a consistent 
theory of quantum gravity is string theory, a theory remarkable in sonic respects. The idea of string theory is to use 
strings as fundamental entities and treat its vibrations as manifestations of the physical world, as fields, particles, 
etc. 'I'hc string action plus sonic rules (like preservation of conformal invariance at the quantum level) place strong 
restrictions on the possible theories and on the spacetirne itself. For instance, string theories treat the dimension 
of spacetirne as a parameter to be settled by the theory. For the pure hosonic string theory (inconsistent at the 

quantum level), the dimension is D = 26, while D = ]0 for the four consistent supersymmetric string theories which 
seem to belong to a D = 11 M—theory [19, 20] or even a 1) = 12 1P—theory [21]. Although apparently incorrect, 

these dimensions can, in principle, be dynamically compactified into the D = 4 dimensions actually observed in our 

universe. Superstring theories can also be formulated in any dimension D < 10, with the left 10 — D dimensions 

treated as being compactified somehow [22]. A remarkable feature of the theory is the presence of a bewildering 
variety of MI solutions in any dimension from 2 to 10. The study of I1H solutions in 1) > 4 dimensions is not new 

[23], although string theory has made an important impact in their appearance and development in the lower 2 
and 3 dimensions. Besides string theory, RHs in different dimensions also appear in theories like general relativity, 
Kaluza-Klein theory, Brans-Dicke theory, Lovelock gravity and in their corresponding supersymmetric versions. In 
the subsequent sections we will discuss some of these solutions and some of their properties. 

2. DHs in 4D 

Let us start with general relativity in 4D, i.e., Einstein-Maxwell theory, characterized by the action 

. 
S = 	(14 x,r—g(R — 1 72 ), 

167rG 
(1) 

where g and R are the determinant of the metric and the curvature scalar, respectively, and F 2  = F,,, P", where 
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h',„ is the Maxwell tensor (c = 1). Uncharged BHs are described by the Schwarzschild solution 

M 
ds 2  = –(1 --)dt2 	

dr2 	
•2d022, _ znr (2) 

where dc2 2 2  is the line element of the 2-sphere, M is the mass of the Lill, and we have put C = 1. 'The causal 
structure is conveniently described by the Penrose diagram of figure 3, where light rays move at ±45° and each 
point in the diagram represents a 2-sphere. The event horizon is located at r = 2M (where g" = (.1). 

r=co 

Figure 3. Penrose diagram for the Schwarzschild solution. 

A charged BH in general relativity is described by the Reissner-Nordstrom solution. 

2 	dr2  
ds2 	

2M 	Q 
= – ( 1  – — + —2 )dt 2  +  	.-I- /.... ' dfl 2  • 	2 1 

	

r 	r 	_ 
r 

2Af , 
-1- 
 3 

 72-  
( 3 ) 

where Q is the charge, Fr, = ,4 for electric Q, and Fo4, = Q sin 0 for magnetic Q. The causal structure is richer 
now. There are three distinct cases depending on the charge to mass ratio. For U < IQ( < M there are two horizons 
(the event and the Cauchy horizon) given by the roots of g" = 0, r±. The Penrose diagram is sketched in figure 4. 
For an extreme BR. IQ' = Al, the two horizons merge in one, and for Q > M the singularity is Limelike and naked. 

The Hawking temperature of static Bits can he calculated in several ways. The original calculation involves 
the analysis of quantum matter fields in the B11 background [24]. A cleaner calculation is achieved by analitically 
continuing the metric in time t and requiring that the resulting Riemannian space be non-singular. This implies a 
periodic identification in imaginary time with the temperature being equal to the inverse of the period (25). One 
can then show that this Fill instanton is related to a real MI in thermal equilibrium with radiation. As mentioned, 

for the Reissner-Nordstrom BH T which for Q = U yields the familiar T = 
- 1.  (Ai+ AP47W 

r=x, 

Figure 4. Penrose diagram for the Reissner-Nordstrom solution. 
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Near singularities general relativity should be replaced by a quantum theory. String theory is a consistent theory 

that may give some clues at the Planckian scales. This raises the question of whether BHs in string theory are 
different from BIN in general relativity. We will see that these two theories give distinct BTU. Due to the existence 
of dilaton, axion and other fields in string theory there are even BHs without singularities. There are also solutions 
describing one-, two-, and p-dimensional objects surrounded by event horizons, i.e., black strings, black membranes 
and black p-braries. We will also show in the next section that general relativity also possesses these type of objects, 

a feature not known until! recently [26, 27]. 
Without further details for the time being, let us consider the low energy action to heterotic string theory [22, 28] 

1 s 	. 
= 

4ir 	 12 
—

1 
I dr)  x N/Lge -2° [R.- 2A + 4(N70) 2  - F2  - —H 2 	 (4) 

where the new fields are the dilaton scalar field 0, and the 3-form field H„- „,,, such that H 2  = 11,,,,,Hu" and 

defined by H = dB - A x F where Bp" is the axion 2-form potential and A N  is the vector potential that defines 

the U(1) Maxwell field, F = dA. These fields arise naturally in string theory. The cosmological constant A is set 

by the internal consistency of the theory and related to the dimension D of the spacetime and the central charge 

of a possible internal conformal field theory. The constant factor -I T, in front of the integral in the action (4) is 

somewhat arbitrary. This arbitrariness will remain throughout this article, although without loss of precision, since 

we are dealing mostly with classical results. 
To have a full theory and not• only the low energy action (4) one would have to add higher order correction terms 

R2 , H?, F4 , etc. All the higher order terms are important. for studying Buis of Planckian size and the spacetime 

singularities. However, using (4) one can study the properties of larger liFfs away from the singularities. For D = 4 

and in a background where A = 0 = 11 the action simplifies to 

1 
S — 

4z- 
cl4 xV-7,1e -  [R+4(Vc5) 2  - F 2 ) . 

Note that ¢ plays the role of a coupling constant, since comparing (I) and (5) roughly one has C c 24' g,, where 

g, is the string coupling constant. In order to directly compare with the Einstein-Maxwell action one rescales the 

string metric go, (which is the metric seen by the strings) to the Einstein metric gr a e -24 „ (the metric that 

puts the string action in an Einstein form) to have the action, 

SE = —47 f arlxVii [RE + 4(Pq5) 2  c-2°F 2 I . 	 ( 6) 

For F -= 0. i.e., uncharged solutions, one deduces from (6) and the no-hair theorems [29] that uncharged BHs in 
the low energy string action are the same as the Schwarzschild RH of general relativity. On the other hand, for 
F # 0 and ci) # 0 the charged BBs in string theory are different from the Reissner-Nordstrom BHs. This could give 
a low energy test of string theory: if string theory is the correct one then charged BHs are not described by the 

Reissner-Nordstrom metric but instead by the solution [30, 31, 32] 

ds 2 = — (1 	271 )(1 + 217151;111 3   )di2 + 	+ 2 dS2 2 2   ■27" .  

e 	= 1 + 2m Binh' a  A  _ 	msinh 2n  

	

F 	— 411F+2,71 sinh o) 

where the mass and charge are giver, by M = In cosh 2 0, Q = lirnsinh 2cr. For F = 2m there is an event horizon 
whereas for F = 0 there is a singularity. At the singularity g, = e2 ° — 0 which might mean that in the full 
string theory, the string coupling remains negligible and quantum effects are suppressed. To compare with general 
relativity we then do the conformal resealing mentioned above (d4 = e.-24'ds2 ) and obtain 

	

ds5 = -(1 - 241)dt 2 + dr2 	r(r - c)(102 2cr  + 
. 

	

P 20 = 	2 
Jr. rt  

where for convenience we have defined r = F + lc. The charged string metric is identical to Schwarzschild in the 
r t plane (same Penrose diagram as in figure 1), however the spheres have smaller radii. There is the extremal 

(5) 

(7) 

(8) 
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limit IQ] = M given by the diagram of figure 5. For [QI > M the singularity is naked. The string metric (7) has 

the same corresponding Penrose diagrams since these diagrams are unaltered by conformal transformations. 

r=00 

Figure 5. Penrose diagram for the charged extreme BH in string theory. The singularity is null, or in other words, 

the event horizon is singular. 

What about magnetic BHs? We have seen that in general relativity, electric and magnetic RHs have the same 
metric, i.e., neutral particles do not distinguish the two types of BHs. In string theory one can find magnetic 1311s 
by performing an S - duality (or strong-weak) transformation, which transforms weak coupling into strong coupling 
and vice-versa. The transformation is [28] 

F 	 — 0 gE 
	

( 9 ) 

where F is the dual of F, f;;,„ 	!7 ,; -245 c„,„°PP,rp , transforming electric into magnetic charge. Since the Einstein 
metric is unchanged the Penrose diagrams for magnetic BHs arc identical to the Penrose diagrams for electric Buis. 
In terms of the string metric we have 

ds2  = 	 dr 2  	7.2di2,2 
I - 	 ( 1-  af!iRI- Yr37. 

e -.26  = 1 - 	, Po o  = Q sin ef 	 (10) 

The singularity happens at a finite area, when r = The extremal limit is given by Q 2  = 2M 2 , for which 
the temperature is zero. On the other hand for the non-extreme BII given in equation (10), the temperature is 
I. - - 	 independent of the charge. This means that the BH radiates past beyond the extremal limit, indicating 011 

in turn that the semi-classical approximation for the calculation of the temperature breaks down. 
We have only mentioned non-rotating Ms. In string theory, uncharged rotating HHs have the same metric as 

Kerr Ms. However the charged rotating BHs are different [33]. 

3. BHs in 3D 

It is now known that 3D general relativity is important to study as it provides a bedtest for 4D and higher D 
theories (34, 35, 36]. Two features in 3D general relativity are relevant: (i) the theory has no Newtonian limit (it 
is still an open question which 3D theory has a Newtonian limit), (ii) there are no propagating degrees of freedom, 
which means that in vacuum, outside matter, spacetime is locally flat, anti-de Sitter or de Sitter depending on 
the value of the cosmological constant, A = 0, A < 0, and A > 0, respectively. Due to this simplicity and lack 
of structure it can be thought that there -  is rio interesting object emerging from the theory. Surprisingly, from the 
action 

S = —/d 3x1Z3(11.- 2A). 
1 

(1 1) 

and its equations of motion, liaiiados, Teitelboim and Zanelli [37] found a 3D rotating Bli metric known as the 
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81'Z BB, given by 

ds2  = —( 	M+ 	  
7,2 	j2 	 dr2 
/2 	4r- 	

j, + r2 (dip ;2 7 di)2 , 

where 1 2  E— k and J is the angular momentum. For IJI < MI there are two horizons r± given by the zeros 

of grr. There are also ergoregions for r +  < r < r„g  where particles and observers are dragged along certain 

trajectories. In the extremal case, IJI = MI, the two horizons merge. For J = 0 the BH is static. The rotating case 

resembles in many aspects the Kerr metric and the non-rotating case the Schwarzschild solution, although there 

are no polynomial singularities, only (milder) causal singularities. The maximal analytical extension of the static 

and rotating Blis are given in the Penrose diagrams of figures 6 and 7. 

r=0 

47 

(12) 
— 	 2r - 

r=oo 

Figure 6. Penrose diagrani for the 3D static BB. The line r = 0 in this figure and in figure 7 is a milder causal (not 

polynomial) singularity. Spacetime is asymptotically anti-de Sitter. 

Besides the HH solution, 3D general relativity with A < 0 also has the anti-de Sitter (ADS) spacetime as a 
vacuum solution with metric given by 

	

,2 	 dr2 
ds 2  = 	+ 0(11 2 	 r2 d;o2  

	

is 
12 	 + 1 

(13) 

We note that for r —+ co the BH solution (12) is asymptotically ADS. Asymptotically ADS solutions and ADS 

spacetime itself are interesting to study for various reasons: (i) theories of extended supergravity in which some 
group, like 0(N), is gauged have ADS as a vacuum state, and (ii) there exists a positive energy theorem, i.e., it is 
possible to give Witten's proof of the positive mass theorem of Schoen and Ya.0 to asymptotically ADS spacetimes, 
implying in turn that asymptotically ADS solutions are stable. 

Now, in 3D there is the relation R ab  cd = E abe t t diG e  J. Therefore, a solution of G ab = 0 is flat, and a solution 
of Gar, = —Agab has constant curvature. Since the 1311 metric and the ADS solution have both constant curvature, 
one concludes that patches in the BII spacetime have an isometric neighborhood to the ADS spacetinie and the BH 
'spacetime can be defined by a collection of such neighborhoods. Indeed, it was shown in (38) that the BH can be 
represented as a quotient space of time universal covering of ADS, ADS, by some group of isometries, which provides 
a powerful mathematical tool in examining the BH spacetirne. 
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Figure 7. Penrose diagram for the 31) rotating B11. 

3D ADS spacetime can be obtained from the plane 1:1 4  with two time and two space coordinates (XI, X2,11 , T2) 

(we follow f39] here). The ADS metric is then the induced metric taken from the 4D fiat metric, 

ds2  —dTi 2  — di? +dx,2 + dx, 2  , 	 ( 14) 

restricted to the hyperboloid 

	

x 2 7.1 2 + x 2 2 7,2 2 = 	 ( 15) 

From (14) and (15) the isometry group is 80(2, 2), of course. One can go further and combine (X1, X2, T1, T2) in 
a 2 x 2 matrix. 

X = 	+ XI 12 + X2 
- T2 + X2 Ti — X t ) 

with detIX = I and X E SL(2, II). Here, the isornetries can be represented as elements of Lhe group SL(2, R):6 L(2, 11) .  
80(2,2), with each SL(2, I -?) acting by left and right multiplication, such that X' = piApR, with (pl., PR) 

Prt) - 

Now, given A DS spacetime one may cover it using three different regions parametrized by (r, t, so) with 0 < r < 
co, —co < t < co, and —co < < co. For instance, in the region r > r +  we have X 1  = 1ciT(T)sinli(7-cp — Wit), 

= 1Vc7(T)cosk( co — Wit), X2 = /10(r) — 1 cosh(r&t — 'tip), and T2 = 1 VO.(1') - I Sirlh( t - 5-92), where, 

or(r) = 
r -r 	

Th is corresponds to give region I of the Penrose diagram in figure 7. Analogous transformations can 

be given to the regions r_ < r < r +  and 0 < r < r_, i.e., to regions II and 111 of the figure 7. By repeating these 
regions ad lull nit= one covers the entire ADS spacetime. One can pick up X 1 ,71 , .22 ,'1'2  from these transformations, 

(16) 
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put back in the induced metric (14)-(15), and recover the form of the BH metric (12). However, note that this 
is not the BB spacetime since p  ranges from to +oc). To make w an angular variable one has to indentify 
w with so + 27r. In this construction it is easy to see that such an identification is an isometry of ADS, in fact it 
is a boost in the X i  - Ti and X2 — T2 planes. Indeed, it leads to, Xi = (cosh 17-t-)X 1  + (sinh 21P-)T1, 

TI  — 	= (sinh 	)X1 + (C0811 2 	)7'1 , and analogously for X2 and 1 2 . This corresponds in the S L(2, R.) 

formulation to an element (pr., PO given by pL  = ding (ex ( 	c 	pR = diag 
L Pat 
	

c 

The BTZ BII may then be viewed as a group manifold given by the quotient. space ADS P, where P denotes the 

group generated by (PL, pn). 
This formulation has great advantages: the A DS spacetirne is an extremely simple manifold and if one makes 

appropriate global identifications one finds a 3D 1111 which has inherit, its own complex structure . The implications 
are many: (i) one can compute the Green functions in the ADS spacetime and then make a direct connection to the 
1311; (ii) one can find Killing spinors fairly easily, which provides an identification of the existence of supersymmetry; 
if the B11 is embeded in a supergravity theory with vanishing gravitino field ;  then the existence of Killing spinors 
leave the metric and gravitinos invariant. It was found that Killing spinors exist for extreme Fills only [40]; (iii) 

the temperature of the BH is T = 2T , which for zero rotation yields ;  T = and an entropy S = 704&. 

Unfortunately, this does not help in solving the long standing problem in 4D, to know whether or not the B11 
evaporates completely, since in 3D T ---0 0 as Al — 0; (iv) on the other hand ;  one can show that the 3D 1311 forms 
from gravitational collapse of 3D matter ;  as in the 4D case [41]; (v) 41) gravity can be written in a first order 
formalism as a Chern-Simons theory. Viewing the 1311 as an ADS space with proper identifications helps in the 
study of the holonomies (see [39] for a complete list of references). 

Another important result, is that the 3D 1311 we have been discussing is also a solution of 3D string theory 

[42, 43]. Using the action (4) with D = 3, 0 = 0 and lipvp = 1 r r ,, p  one obtains the same 3D 1311. This displays the 
versatility of string theory. One can also find a black string solution by applying a duality transformation. We have 
already seen the S-duality at work. There is another well known symmetry of string theory that [naps any solution 
with a translational symmetry of the low-energy action into another solution. This symmetry is usually called 
T-duality or target-duality. Given a target-space solution (g„, 11„, 0) which is independent of one coordinate, like 
4./ in the BH solution, then there is another solution (gp,„ B„,0) related to the previous one by a T-duality [28]. 
The T-dual solution for the 3D Bil is a blac.k string. 

What else can we do with the 3D 1311? It can be embedded in 4D general relativity [44, 45]. One takes the 
product of the BTZ BR with the real line R, with metric ds2  = dskrz  + dz 2 ;  and imposes that it satisfies the 
4D Einstein equations derived front the action S = f di  Ni7I[( n 2A) + Lmatter]• By suitably chosing the 
energy-momentum tensor T„ = 

	

	 one finds that the 3D MI can be converted into a black string in 4D v-g 
general relativity. The idea is analogous to the well-known result that point particles in 3D are related to straight 
infinite strings in 4D. 

There is yet a different solution which relates vacuum black strings in 4D general relativity with 3D tills of a 
dilaton-gravity theory. Starting with the Einstein-Maxwell action S = 1 f ex,./(li- 2A - F 2 ) one imposes 

the existence of a Killing vector such that the metric. can be written in the forum ds2  = ga(3b) thradxb + e -411 dz 2 , where 
b = 1 ;  2, 3 and gab, and 0 arc functions of za. Then by dimensional reduction one obtains a dilaton-gravity action, 

S = forf  d3 :e17/e -20 (11).- 2A - F 2 ). It is then easy to relate 4D and 31) solutions. In 4D general relativity there 
is a black string solution, with charge and rotation, given by [46] 

( d.52  = — 0  2r2 	451(1- . 2 . 7  ) 
or 2  ± ;4:-Jj'2  ) dt 2+ 

4nm 11-'A—. 2  ( I 	 )2dtd9+ or 	 Af(1--E-1)orr 

-1 
(0 1,2 	4 m(. 1 -inx.x) 	ira  (1-4,32ax) 	

(1T"+ar 	 r (I_ a2f__. 3 ) 

q7  ( i — —5— )Mor 
(17) 

where here a =- -4A ;  Al and Q are the mass and charge, respectively, and a is related to the angular momentum 
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J via J = 2aM1-1 — 	with 0 < an < 1. This solution has many similarities with the Kerr-Newman BH. 

For instance, the causal structure for the non-extreme BH, i.e., 0 < a 2o2  < — 1828  m40 
6(0,0)3 ) is given by the 

Penrose diagram of figure 7, with r =. 0 being now a polynomial singularity. However, unlike the Kerr-Newman 
F1II, the topology of the horizon is cylindrical or toroidal, rather than spherical, violating Hawking's theorem [47] 
due to the presence of a negative A. It also has implications on the hoop conjecture [48]: gravitational collapse in 

such a background can generate a black string even if one is not able to pass a hoop of given circunference through 

the matter. If there is no charge then the causal structure changes drastically, resembling the Schwharzschild-ADS 

RH rather than the Kerr BH [26]. 
The 3D 1311 generated through dimensional reduction of 4D general relativity, has a dilaton in addition to the 

metric and Maxwell fields. A study to put these black solutions in a supersymmetric context is being carried [49]. 

Generalizations of the 3D action to a Brans-Dicke type of action, given by S = is f r1 3  .c g e-26  R.+4:a(Vc6) 2 -2A) 

also yield static and stationary BH solutions [50, 51]. Using a metric with two Killing vectors, one can find black 
membranes in general relativity, related trough dimensional reduction to 2D dilatonic BHs. This is a matter for 

the end of the next. section. 

4. DHs in 2D 

To analyse BHs in 2D we first return to string theory. In 2D there is less freedom for dynamics, for obvious 
reasons. For instance, for a compact. orientable 2D manifold of genus g (e.g., sphere y = 0, torus g = 1, etc), the 

Einstein-Hilbert action, k f d2r3R= 2(1 — g), is the Euler characteristic of space, a topological invariant with 
no dynamics. Therefore, if one wants to go further in 2D one has to find a different action. An interesting action 
is provided by string theory. Por understanding the appearance of Bib; in 2D string theory is now important to 
introduce some basic concepts of the theory itself. In string theory one has to distinguish the world-sheet action 
for the string from the target-space or spacetime action for the usual spacetime fields. The latter follows from the 
former upon imposing certain restrictions related to renormalization procedures. (In particle theory there is also 
such a distinction but the respective actions arc not inter-related a priori.) The propagation of strings in a generic 
curved spacetime is described by the Polyakov action 

S = I 	d2 crviitel3 V,,eVexygm ,, 
47roi 
	 (18) 

where had is the world-sheet metric of the string, xP are the spacetime (or target-space) coordinates, g„„ is the 
metric of the background, and cri is the string coupling constant (see figure 8). Such an action is also called a 
non-linear sigma model. It. is invariant under reparametrizations of the string world-sheet a 	ce and moreover, is 
conformal invariant (i.e, local scale invariant), ho 	02 ho. In principle, one should also include in the action, 
besides the graviton, the other massless states or fields of the (closed) bosonic string, namely, the antisymmetric 
tensor 1:3„„ and the dilaton ¢ (see [22] also for the inclusion of fermionic fields and supersymmetry). The hosonic 
world-sheet action or a—model is then. 

S = tiro f d2aVrlhaPV.XPVfleg iji, (X) 
f d2 (7E"Va xmV5r m  B„,„(x) + 	f (12 0- 1.11-114c(x) , 	 (19) 

where R H  is the curvature of has. Imposing Wcyl invariance at the 1-loop level to get rid of the ultraviolet. 
divergences translates into the requirement that the so called heta-functions associated with the background fields 
vanish. The beta-function associated to the metric g„„ is f3f,,, = ll.„„ — .1

4 11 Al  + 2V„V„ which should be set 
to zero. The 3-form If is related to D through /1„,A = V„B„A + '7„/-3A, + VAB,,,. The other a—functions are 

= 	II,i,, 	2 (VA¢H'`,,p) = 0 	= R+ 2A + 4V2 ¢ — 4 (Ve5) 2  — A.1-1 2  = 0 . The constant A is connected to 
the dimension of spacetime. For the bosonic string A = whereas for the supersymmetric string with fermions 
A ec (D — 10). The dimensions D = 26, 10 are the critical dimensions for the hosonic and supersymmetric strings. 
respectively, because in these dimensions the theory is free from divergences and anomalies. However, one can go 
away from these dimensions to the more familar 2, 3 or 4, by considering additional internal conformal field theories 
with central charges to complete, so to speak, the other extra dimensions. 
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Figure 8. Spacetime diagram showing the nomenclature for the propagation of strings. 

The equations for the three a-functions are the field equations of first order string theory, which can be derived 

from a spacetime effective action given by 

=  Srrr  
4
-

1
1r di X1-C -  2°  (it - 2A + 4(00) -  + —

12
H . 	 (20) 

The Maxwell field 	has been left out in this discussion (compare (20) and (4)), as well as other fields like the 

tachyon T of the bosonic string, but, they can he included consistently. Pitting D = 2 and H = 0 in the equations 

of motion derived from (20) one finds a 2D B1[ solution in 152] given by 

dr
-2,1* 
2 

= -(1 - c -2A ')dt2  + 	 ,e-20 	Ar 	 (21) c   

where A 2  E A. This solution has horizons at r +  = 0 and a singularity at r = -co. The Penrose diagram is 

identical to the Schwarzschild diagram in figure I. Since this is a solution of the low-energy action it is only valid 

as long as the curvature is small compared to the Planck curvature. Is there a way to find an exact solution of the 

full action, i.e, of the world-sheet action, without. resorting to perturbation theory? Yes, and the idea was initiated 

in [53]. One starts with the lAress-Znmino-Novikov-Witten (WZNW) model described by the action 

SwzNw [g] =. -8r J 
d`criiiiiOtr (Vo y -  Vol) + ikr(g) , (22) 

where g is an element of some group, function of a field x", k is a real and positive number (called the level of 

the lac-Moody algebra) and the last term is the Wess-Zurnino term which garantees conformal invariance of the 

action and for the purposes used here is of no importance. The motivation for this model comes from the need to 
simplify the background in order to find solutions. One good simplification is to assume string propagation in a 

group manifold of a Lie group G with elements g. Note the analogy of (22) with the world-sheet action (18), where 
the trace has the role of a metric. Now, if one supposes that g E SL(2, R)/U(1) one can parametrize it by 

-v b ) 
a 	u 	

(23) 

with ab + uv = 1. Since SL(2, H) has dimension 3, and U(1) has dimension 1, the quotient space group manifold 
SL(2, 10/1.1(1) has dimension 2, which, in turn, can be parametrized by the coordinates is, v. After imposing that 
the action (22) is gauge invariant and solving the equations of motion one finds [531 

, 	V,i‘Vou 
SwzNw[g] = 	j r 4V V171 1. 	 • 	 (24) 

1 
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Comparing with the world-sheet action (18) one immediatly finds that the target space metric is 

d 
ds2 = 	

udv 
 

I - uv 

which upon further coordinate transformation can be put in the form (21). The dilaton can also be made to enter 
in this picture, sec [53]. Since one has to solve the classical equations of motion this treatment is semiclassical. The 
full treatment. was attempted in [54] where it was found without approximations that the metric and dilaton arc 

given by 

ds 2  = 2(k - 1) [- 	- 1) 2  de + 

-20 	.0 
e 	= 	

-1 
 

where x is a new radial coordinate. In the semiclassical approximation, when k 	cc one recovers Witen's result. 

The causal structure is given in figure 9 [55], the novel feature being that in the exact solution of the full theory 
the Bit has no singularities! This indicates that string theory has indeed new things to show at the singularities. 

(25)  

(26) 

X= 00 

Figure 9. Penrose diagram for the non-singular 2D BH in string theory. 

Having this exact solution and using the tools of string theory, namely, conformal field theory, one can in 
principle know how strings propagate in the BH background, calculate the latest. stages of the BH evaporation and 
solve the information paradox. However, in practice the problem is still out of reach [56]. Extensions to 4D of the 
idea of using a Ih7.,NW model to find exact solutions with associated conformal field theories have been tried with 
some interesting but limited progress [57]. 

We have just seen that the dilaton gives non-trivial dynamics to 2D. This has been known since the works of 
Teitelboim [58] and ,lackiw [59] where the power of 2D theories was first understood. They proposed the theory 

1 
S = 

2r 
d 2X1=--ge -26  (R- 211) , 	 (27) 

with A < 0. Although spacetime has constant and negative curvature it is possible to find a BH solution which is 
asymptotically ADS [GO, 61, 62]. The thermodynamics of this BH has been study (see this volume [63] and [64]). 

In trying to find meaningful 2D actions one can look for connections with 41) general relativity, as it was done for 
3D theories (see last section). Starting with the Einstein-Hilbert action S = Tkr  f (14 x 2A) and imposing 
planar symmetry (two-killing vectors), with a metric given by ds 2  go bdedx 6  e-2IS  (dx 2  dy 2 ) , one finds upon 
dimensional reduction the following 2D action [27] 

S = 	d 2x-e -295  (II+ 2(V 0) 2  - 2A) . 	 (28) 2r 
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This theory also possesses a BH which, when reinterprested in 4/) yields a black membrane in general relativity 

[27]. An obvious generalization of these three 2D theories is given by the Brans-Dicke action [65] 

1 
S 	(12x11-y-e -2 '5  (R+ 4w(Vt.;,) 2  - 2A) , 	 (29) 971. 

where w is a free parameter, and w = -1, A, 0 corresponding to string theory, planar general relativity and the 

Teitelboini-Jackiw theory, respectively. When w oo one obtains the 2D analogue of general relativity [66], also 

called the R = T theory [67]. The BH in this case is a massless BH as has been shown in [65]. The BIls of action 

(28) for all rational WS have been analysed in detail in [65] and the quantum version in [68]. What about the 

temperature of these BHs? Usually the temperature goes with some power of the mass M. 7' cc Al', where for 

instance for w = 0, y = [63, 64]. Thus, these '217 theories cannot tell much about the latest stages of the BH 

evaporation. A notable exception is string theory (w = -1) for which 7 = 0 and T ec constant, independent of the 

mass. Thus, following this result, the BH radiates indefinitely, which cannot. be correct. In order to remedy the 

situation one has io make a full quantum treatment of the backreaction (see e.g. [69, 70]). 

5. BHs in higher 

We have been considering BHs in general relativity, Brans-Dicke and string theories in 4 and lower dimensions. 

Ilowever, higher dimensional RHs are also important. to study since they may shed some light on the understanding 

of non-perturbative effects in quantum gravity (such as the cornpact.ification scheme), as well as expose which of 

the features of the usual four-dimensional 1411 solutions remain in higher dimensions. Let us then go on to higher 

dimensions and consider, for a change, the original Kaluza-Klein theory in 51). This is simply 51) general relativity 

in which the fifth dimension is a Killing direction, i.e., the fields are independent of the 5th dimension, x 5 , say. The 

theory has two descriptions, the first given by the action 

= —
1 

fdsr.R , 	 (30) 
16r 

and metric components gr',), g5(55)  and (/551 , 1.1.v = 0, 1, 2, 3. In the other description the action takes the form 

. 	 1 
S =

16 
 I (14 x1- 77 (R - 2(Vd) 2  - e 2 `15° F 2 ) 
Ir 

with the 5D metric related to the 41) fields by the usual Kaluza-Klein ansatz, p./ (,.,5„)  = e 	(ed 

(51 4 	• c 	. „ and g55 = C 	Due to this connection, one can generate with little effort static non-vacuum 

solutions from static vacuum solutions. Given a static vacuum 41) metric one can take its product with the real line 

U, 4D solutionxIf , to obtain a 5D solution with two symmetry directions (t, x 5 ). 11 one boosts this 51) solution in 

the 5th direction it still satisfies the 5D equations. However, when reinterpreted in 41) one obtains a solution with 

non-zero Maxwell and dilaton fields. In other words, given a 4D metric gu , one obtains a new solution (g i,„,.4,„ci) 

given by the transformations, 

gtt = 	  
(cosh' n+g,, sinh a) 

gij = gej(COSh 2  ± u tt sinli2  n) 11 , 

oinh 2a  A, = 2(cosh. a +9 , 

cosh 2  a 	Binh -  (32) 

where a is the boost parameter and i, j = 1,2,3. Example: given the Schwarzschild solution (2) one obtains after 

performing the above transformations, the following [71, 72. 73] 

dr 3 	  ds2  =  	 ' 2  — 7*) dc23 , 

= Vr r r-  , 	= 1 - r=r  , 	 (33) 

(31) 
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where we have redifined' the Schwarzschild radial coordinate (vs, say) in (2) to r5 = r (1 — r-,F-) ;  and put r_ = 

2m sinh 2  a, r+  = 2rncosh 2  a, m being the Schwarzschild mass. The ADM mass and electric charge are M = 

rnsinh2a, Q = m cosh 2a, respectively. There are horizons at r = 1.1 and the singularity is at r = 0. Another 
type of transformation, called Harrison transformation [74], transforms metrics within general relativity, taking for 
instance, the Schwarzschild metric into the Reissner-Nordstrom metric. Now, in string theory there is the analogue 
of these boost transformed solutions. In a simple case, one starts with a static solution 0), with Boy  = 0 and 

A, = 0. Then one gets a new solution (go„, 	0) by making the following transformations [75] 

9,,  
gri — (cosh? 	ainh 2 0 ) 2  

ainh 2a  
2A'cosh a  a +91 r sinh 2  a) 

–20 	h 2  = e 	cos a + gig  sinh 2  cr . 

Recalling that the Schwarzschild solution (2) is a solution of string theory, one can apply (34) to obtain the electric 
charged Blis given in equation (7). But we are still discussing 4D Bile. 

To obtain charged BM in higher D, one starts with a D-dimensional uncharged BH [23], 

C771 	dr2  
ds2  = —(1 — —)dt 2  + 	+ r 2 d1t2. +1  , 	 (35) 

rn  

where n = D —3 and c. is a constant. This is a solution of both D—dimensional general relativity and string theory. 
By using the transforming equations (34) one can obtain the D—dimensional electrically charged Buis in string 
theory [31], 

ds 2 	 ( + 	sinh 2   ) 
' 	/ 	 dt2 dr 2 	r2dc1 ,2„.1  

cm ainh 2a  At = 
2vri(rn -l- cm Binh 2  () ' 

C -26  = 1 + er4 sinh 2  ct . 	 (36) 

The ADM mass and charge are given by M = rn(1 + 	sinh 2  a) and Q = C TTI a„inh 2n . The event horizons1 

arc at r = (criz) ),7, and the singularities at r = 0. In constrast with 4D we have that in the extremai limit the 
singularity is timelike rather than null, and the temperature of the extreme BH is zero. There are no higher D 
magnetically charged BHs because there are no Maxwell magnetic charges (one cannot integrate a 2-form F over 
a D — 2 sphere). However, using a magnetic charge associated with the 3-form field N, one can find magnetically 
charged BR solutions in string theory [76). 

From Ellis in D—dimensions one can find straightforwardly black strings in (D + 1)—dimensions. It is only 
necessary to take the product of the BH with R [76], 

r" 
) dt

2de em • •
2 ds2 = 	 di2 	 ,2dt-In2 +1  d x2 .  

r 	• 1  _ r.   

If one takes the product of the Bll with R 2 , R3 , RP, one obtains a black membrane, a black 3-brane, and a black 
p-hrane. These branes are simple products. For instance, to get a black string that is not a simple product one 
performs, after Lorentz boosting to get charge, a 'f-duality transformation on the simple product black string to 
obtain 

(18 2  = 	(I 	r1 —c1r2  + 2  ii/ 2 	d='' 	1 	r 	I + 	 I 1+" 	 

cm Binh 2a 	

ff 

Sri = 	2(r•+c ainh 7  u) ' 
C -24' = 1 + 	sinh 2  or . 

The causal structure is identical to Schwarzschild. In the extremal limit the metric field is given by 

—dt 2  dx 2  
ds2  = 	

1 + m  + 417.2  + r2d0T,2 +1  

(34) 

(37) 

(38) 

(39) 
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where c is a redefinition of c. There are two novel features in this solution (39): (i) an extra symmetry has appeared, 

the metric is now boost-invariant in the (x, 1) plane, and (ii) the solution is the same solution found in [77] for a 

straight fundamental macroscopic string. These objects appear as stable extended sates of closed-string theories 

and are distinct from the cosmic strings of string theory. This means that fundamental strings are extreme black 

strings. There is no such analogue in general relativity. The electron, a fundamental particle is not an extreme 811. 

Ultimately, one would like to get a BII solution of IOD string theory, suitably dimensionally reduced to 4D. 

One .  starts with the 10D action 

= 
lfirr 

1  f droxvcr., [Ra  + vmsv m 4, _ 1 H 2 _ 1 1 1 2 1 
1.2 	4 	

(40) 

where 11 2  = 1151NpH A1NP , F12  = capital letters denote IOD fields and indices, and I is an internal 

index. Through a Kaluza-Klein reduction to 4D, one can find an effective 4D action, with the other dimensions 

compactified on a six torus. One writes the ansatz, 

GAIN = 
(e2ogpv  j+4,?GnzA ttn,  A nnu  AFT 	 (41) Grim ) 

Grnn 
 

with the 4D spacetime indices le v = 0,1,2,3, m , n = 1, ..., 6, and ck and A are the 40 dilaton and Kaluza-Klein 

(I(1) fields, respectively. The action (39) then turns into 

S =tar f (144 17/ (ll 	1, 41517° 44  le24i V 1,0 17' 

Fp , FP" + itr(Vp M VP M )) , 

where M is a 0(6, 22) matrix of the scalar (moduli) fields appearing in the reduction process and 	is the axion 

related to //„„A by If po, = ve.,_ 2 0" A PV p 7,1.), see [78] for all details. This is quite complicated to solve, but. applying 

a generalized boosting procedure and using all the symmetries it is possible to find the most general BH solution 
with all charges [78]. An important consequence brought from this 4D analysis is that the extreme BH solutions 

correspond to massive excitations of 4D superst.rings, suggesting that Bits are simple string states [79] and confirming 

the idea that elemetary particles (represented here by those string states) might behave like Bib. These BlIs 
saturate the Bogotnolniy-Prasad-Somerfield bound of the underlying snpersyrnmetric theory and arc called extreme 

BPS Ms. 
There are also studies on black p-branes in string theory (e.g. [80]) motivated by their importance in the non-

perturbative dynamics of the 11D M —theory [19], a theory not explicitly formulated, but known to agglutinate the 

four consistent (heterotic, type 1, type IIA and B) superstring theories. 
We have been presenting higher dimensional HIl solutions in Haluza-K kin theory, string theory and general 

relativity. Yet, although pure general relativity can be formulated in other dimensions, when one goes to dimen-

sions higher than four it is not anymore unique. The natural generalization is given by the Lovelock action [81] 

so that the field equations for the metric remain of second order. The theory can also be considered as a dimen-

sional continuation of the Euler densities of lower dimensions [82, 83, 84]. In four dimensions one has to take in 

consideration two Euler densities. The Euler density of the 0-dimensional space which is proportional to Nr—g, and 

the Euler density of the 2-dimensional space, proportional to ll'., where g is the determinant of the metric and 

R the Ricci curvature scalar. Thus Lovelock gravity in four dimensions reduces to Einstein gravity, with action 

r67.1  f c14  —2A +R). A similar construction and action is obtained for three dimensions. In six dimensions one 

has still to add the Euler characteristic of four dimensional space, i.e. the Gauss-Bonnet term, to have the Lanczos 

action, given by, —74- 
16 1T f dcx ‘7 g (-2A + R + nr2(11,,5,0 1P 5" 	R'113  + R.2 )) , where cr2 is a new constant. A 

similar construction and action can be obtained for five dimensions. For each two new dimensions there exists a 
new constant cli p . These constants do riot seem to have a direct physical meaning. In order to find a meaningful set 

of constants in any dimension 0, it was proposed in [85, 86]a method which restricts drasticaly the number of inde-
pendent constants to two, G and A, thus yielding a restricted Lovelock gravity. This method separates, in a natural 
manner, theories in even dimensions (0 = 2n, with n = 1, 2, ..) from theories in odd dimensions (D = 2n + 1). The 
BII solutions are given by [86] 

2sM 	—LT — 	r dsz = _ 1  _ (___ + q) 	
_ (I 	,44  2 4. 	  { 

rP 	 -r  I j 	"' 1  _ (2e: dr2 + q) TIT + ( D2 + r2dC1D  .... 2  

(42)  

(43)  
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where for odd D one puts (s = 1,p = 0. q = 1 .), and for even D one has (s 1,p = 1, q = U). There are horizons at 

r = r+  given by the zeros of grr and the singularity is at r = 0. Note that there is no restriction in the dimension 

of spacetime, it can be any natural number from 3 to co. Since in general relativity fills appear as the final state 

of gravitational collapse it is important to know if the RH solutions found in Lovelock gravity can, in an analogous 

manner, form from gravitational collapse. It was shown that, indeed, Lovelock BHs form from regular initial data 

[87). The collapsing matter is modelled by a Friedmann type metric, and the solution can be viewed as a dimensional 

continued Oppenheimer-Snyder gravitational collapse. A possible scenario for the occurrence of this collapse in D 

dimensions, would be in the very early universe, before the — 4) extra dimensions have been compactified. hi 

turn, these newly formed higher dimensional IJlls could play a role in the compactification process. It is interesting 

to note that these BII and collapsing solutions show that some important features of classical general relativity are 

preserved and carried into Lovelock gravity in any dimension. 

5. Conclusions 

We have investigated Bit, black string and black membrane solutions in several dimensions and in several 

theories (general relativity, Kaitiza-Klein, Brans-Dicke, Lovelock gravity and string theory). We have seen that new 

properties come into play. For instance, in string theory there are tills without singularities. It was also shown 

that the existence of a negative cosmological term can he important in producing black solutions, as was the case of 

black strings in 4D general relativity. We have also seen that some features appearing in general relativity remain 
in other theories, like in Lovelock gravity, where the tills also form from gravitational collapse of matter. Other 

important developments not discussed here are solutions of Blis with both electric and magnetic charges, rotating 

Buis, and multi-BH solutions in the various theories, to name a few. 

With such a profusion of BlIs in all these gravity theories, one could hope to understand in some detail the B11 

evaporation process, at least, in one of those solutions. However, the problem of calculating Hawking radiation of 

fills, black strings and black membranes, through the latest stages of the evaporation process, remains. 

A remarkable poperty of BIls is that they appear in all scales, from the Planck length to astronomical dimensions. 

This seems to be unique. Electrons, molecules, stars and galaxies have well defined scales, Blis do riot.. 

Acknowledgements I thank Paulo SA and Filson Zanchin for collaborations and conversations. I also thank 
Antares Kleher for reading the manuscript carefully. 

References 

[I] J. R. Oppenheimer, 11. Snyder, Phys. Rev. 56, 455 (1939). 

[2] W. Baadc, F. Zwicky, Phys. Rev. 95, 138 (1934). 

(3] A. Einstein, Ann. Math. (Princeton) 40, 922, (1939). 

[4] J. Michell, Phil. Trans. R. Soc. (London) 74, 35 (1784). 

[5] P. S. Laplace, Exposition du Syst6rue du Monde (J. B. M. Duprat, Paris. 1796). 

[6] H. Penrose, Bit.. Nuovo Eirnento 1, 252 (1969). 

[7] J. P. S. Lemos, Phys. Rev. Lett.. 68, 1447 (1992). 

[8] P. S. Joshi, Global Aspects in Gravitation and Cosmology, (Clarendon Press, Oxford, 1993). 

[9] J. P. S. Letuos, in Proceedings of the XXI"' Annual Meeting of the Sociedade .4stroruirnica Brnsileira (August 1995), 
eds. F. Jablonski, F. Elizalde, L. Sodre Jr., V. Jatenco-Pereire, (1A0 1996), p. 57. 

[10] D. Lynden-bell, Nature 223, 690 (1969). 

[11] R. Penrose, Phys. Rev. Lett. 29 (1965) 57. 

[12] S. W. Hawking. Nature 248, 30 (1974). 

[13) S. W. Hawking, Phys. Rev. I) 13, 191 (1976). 

(14] A. Strominger, Phys. Rev. Lett. 77 (1996) 3498. 

[15] S. Coleman, .1. Preskill, 	Wilczeck, Nucl. Phys. 8378, 175 (1992). 
[16] B. Carter, Phys. Rev. Lett, 33, 558 (1974). 

[17] G. Gibbons, C. M. Hull, Phys. Lett. 13109, 190 (1982). 



Jose P. S. Lemos 
	 57 

[18] S. W. Hawking, Mon. Not. R. astr. Soc. 152, 75 (1971). 

[19] P. K. Towsend, M-Throng for mortals, Lectures delivered at the XVII °  IIK Institute for Theoretical High Energy 

Physicists (1996). 

[20] E. Witten, Nucl. Phys. B443, 85 (1995). 

[21] C. Vafa, hep-th/9602022. 

[22] M. B. Green, 3. H. Schwarz, E. Witten, Superstring theory, (Cambridge Unversity Press, Cambridge 1987). 

[23] F. R. Tangherlini, n Nuovo Cim. XXVII, 636 (1963). 

[24] S. W. Hawking, Comm. Math. Phys. 43, 149 (1975). 

[25] S. W. Hawking, in General Relativity, eds. S. W. Hawking, W. Israel (Cambridge University Press, Cambridge 1979). 

[26] J. P. S. Lemos, Phys. Lett. B 352, 46 (1995). 

[27] J. P. S. Lemos, Class. Quantum Gravity 12, 1081 (1995). 

[28] C. Horowitz, Proceedings of The 1992 Trieste Spring School on String Theory and Quantum Gravity, (World Scientific, 

Singapore 1993), hep-th/921019. 

[29] P. T. Chrusciel, Contemporary Mathematics - AMS 170, 23 (1994). 

[30] G. Gibbons, Nucl. Phys. B207, 337 (1982). 

[31] G. Gibbons, K. Maeda. Nucl. Phys. B298, 741 (1988). 

[32] D. Garfinkle, (3. Horowitz, A. Strominger, l'hys. Ike. 1) 43. 3140 (1991); 45, 3888(E) (1992). 

[33] A. Sen. Phys. Rey. Lett. 69, (1992). 

[34] S. Deer, R. Jackiw, G. 't Hooft, Ann. Plays. 152, 220 (1984). 

[35] A. Achticarro, P. K. Townsend, Phys. Lett. B180, 89 (1988). 

[36] E. Witten, Nucl. Phys. B311, 46 (1988). 

[37] M. Baitados, C. Teitelboim and J. Zanelli, Phys. llev.Lett. 69. 1849 (1992). 

[38] M. Baiiarlos, M. Henneaux, C. Teitelboint and J. Zanelli, Phys. Rev. 1)48, 1506 (1993). 

[39) S. Carlip, Class. Quantum Gray. 12, 2853 (1995). 

[401 0. Coussa.ert, M. Ilenneaux, Phys. Rev. Lett. 72, 183 (1994). 

[41] R. B. Mann, S. F. Ross, Phys. Rev. D 47, 3319 (1993). 

[42] G. T. Horowitz, D. L. Welch, Phys. Rev. Lett. 71, 328 (1993). 

[43] N. Naloper, Plays. Rev. 1) 48 (1993) 2598. 

[44] N. Kaloper, Phys. Rev. 1)48 (1993) 4658. 

[45] J. P. S. Lemos, V. T. %amain, Phys. Rev. D 53, 4684 (1996). 

[46] .1. P. S. Lentos, V. T. Zanchin, Phys. Ree. D 54, 3840 (1996). 

[47] S. W. Hawking. C. F. It. Ellis, The Large .Scale Structure of Space - Time, (Cambridge University Press, Cambridge, 
1073). 

[48] K. S. Thorne, in Magic without Magic, ed. J. R. Klauder, (Freeman and Company, San Francisco 1972), p. 231. 

[49] .1. P. S. Lemos, P. V. Moniz, "Supersymmetry of the black strings", in preparation. 

[50] P. M. Si, A. hither, J. P. S. ',clams, Class. Quantum Gray. 13, 125 (1996). 

[51] P. M. Si, J. P. S. Lemos, hep-th/9503089. 

[52] G. Mandril, A. M. Sengupta, S. R. Wadia, Mod. Phys. Lett. A 0. 1685 (1991). 

[53] E. Witten, Phys. Rev. D 44, 311 (1991). 

[54] R. Dijkgraaf, H. Verlinde, E. Verlinde, Artici. Phys. B371, 269 (1992). 

[55] M. J. Perry, E. Teo, Phys. Rev. Lett. 70, 2669 (1993). 

[56] K. Becker, Strings, Black Holes and Conformal Field Theory, (PhD thesis, University of Bonn 1994), hep-th/9404157. 

[57) C. V. Johnson, R. C. Myers, Phys. Ike. I) 52, 2294 (1995). 

(581 C. Teitelboini, in Quantum Theory of Gravity, ed. S. M. Christensen (Hilger, Bristol, 1984). 

[59] R. Jackiw, in Quantum Theory of Gravity, ed. S. M. Christensen (Bulger, Bristol. 1984). 

(60) J. P. S. Lemos. P. M. Si, Mod. Phys. Lett. A 9, 771 (1994). 

[61] M. Cadoni, S. Mignemi, Phys. Rey. D 51, •139 (1995). 



X VII Encontro Nacituta/ de Particulas e Campos 

[62] A. Achticarro, M. E. Ortiz, Phys. Rev. D 48, 3600 (1993). 

[63] J. P. S. Lentos, 'Comparative study between the thermodynamics of the 2-dimensional black hole in the Teitelboim-
Jackiw theory and the 4-dimensional Schwarzschild black hole", this volume. 

[64] J. P. S. Lernos, Phys. Rev. D 54, 6206 (1996). 

[65] J. P. S. Lemos, P. M. Si., Phys. Rev. D. 49, 2897 (1994). 

[66] .1. P. S. Lemos, Paulo Si, Class. Quantum Gravity H, 1.11 (1994). 

[67] R. B. Mann, S. F. Ross, Phys. Rev. D 47, 3312 (1993). 

[68] .1. D. Hayward, hep-th/9508090. 

[69] C. C. Callan, S. B. Giddings, J. A. Harvey, A. Strominger, Phys. Rev. D 95, RI0I15 (1992). 

[70] S. W. Hawking, Phys. Rev. Lett. GO, 406 (1992). 

[71] P. Dobiasch, D. Maison, Gen. Rd. G'ray. 14, 231 (1982). 

[72] A. Chodos, S. Detweiler, Gen. Rel. Gray. 14, 870 (1982) 

[73] G. Gibbons, 1.). Wiltshire, Ann. Phys. 167, 201 (1986); 178, 393(E) (1987). 

[74] B. Harrison, J. Math. Phys. 9, 1744 (1968). 

[75] S. Hassan, A. Sett, Nucl. Phys. 13375, 103 (1992). 

(76] G. Horowitz, A. Strominger, Nucl. Phys. 11360, 197 (1991). 

(771 A. Dahholkar, G. Gibbons, 3. A. Harvey, F. Ruiz Ruiz, Nucl. Phys. 8390, 33 (1990). 

[78] M. Cvetic, I). Youm, Nuel. Phys. B472, 249 (1996). 

[79] M. J. Duff, R. H. Khuri, R. Minasian, J. Rahmfeld, Nucl. Phys. B418, 195 (1994). 

[80] J. M. Maldacena, Black Holes in String Theory, (PhD thesis, University of Princeton 1996), hep-th/9607235. 

[81] D. Lovelock, J. Math. Phys. 12, 498 (1971). 

[82] T. Regge, Phys. Rep. 137, 31 (1986). 

[83] B. Zumino, Phys. Rep. 137, 109 (1986). 

[84] C. Teitelboirn, J. Zanelli, in Constraint Theory and Relativistic Dynamics, eds. G. Longhi, L. Lussana, (World Scientific , 
Singapore 1987). 

[85] M. Baiiados, C. Teitelboim, 	Zanelii, in J. J. Giarabiagi Festschrift, edited by H. Falomir, R. Gamboa, P. Leal, F. 
Schasposnik (World Scientific. Singapore 1991). 

[86] M. Bailados, C. Teitelboirn, J. Zanelli, Phys. Rev. D 49, 975 (1994). 

[87] A. Ilha, J. P. S. Lemos, "Dimensionally continued Oppenheimer-Snyder gravitational collapse. solutions in even dimen-
sions", Phys. Rev. D, to appear (1097), hep-th/9608004. 



XVII Encontro Nacional de Particulas c Campos 	 59 

Black Holes as Atoms: Classical Hair and 
Quantum Levels in the Light of General Relativity 

Jacob D. Bekenstein 
Racah Institute of Physics, Hebrew University of Jerusalem, 

Civat Ram, Jerusalem 91904, Israel 

I marshal the heuristic arguments, based squarely on general relativity and.elementary 
quantum notions, that suggest the quantum numbers relevant for a black hole in a stationary 
state. The evidence for believing that horizon area is an adiabatic invariant is reviewed. 
This fact when combined with an argument going back to P. Ehrenfest points to a discrete 
spectrum of black hole horizon area with uniform spacing between eigenvalues, as also found 
on other grounds by V. Mukhanov as well as others. This immediately leads to quantization 
of black hole mass with the spacing between neighboring "energy level? roughly inversely 
proportional to mass, in harmony with N. Bohr's correspondance principle. The degeneracy 
of the "energy levels" can be gotten by identifying degeneracy with the exponent of black 
hole entropy. I delineate an algebra for the relevant black hole operators which reproduces 
the uniformly spaced area spectrum. It also, independently of other arguments in physics, 
leads to charge quantization for black holes and free Particles in multiples of a universal 
charge unit. I remark on the differences between the conclusions listed here and those from 
the loop quantization of gravity. 

1 INTRODUCTION 

In classical general relativity the mass spectrum of black holes is a continuum. However, venerable arguments 

[I, 2] suggest that in quantum theory this spectrum must he discrete and highly degenerate. The simplest way to 

summarize these conclusions is by stating that black hole horizon area is quantized with equispaced levels whose 

degeneracy corresponds, by the usual Boltzmann-Einstein formula, to the black hole entropy associated with each 

area eigenvalue. The first of these conclusions has been recovered by a number of workers using diverse ideas [3]. 

On the other hand, the loop quantization scheme for general relativity [4] seems to give a different spectrum [5]. 

Here I shall marshal the arguments favoring the equispaced area spectrum, arid point out the clarification they 

afford of the nature of the quantum black hole. 

In what follows 1 use units for which 	= c = 1. Then h 112  is the Planck-Wheeler length ep. 

2 NO HAIR — NO NEW CLASSICAL PARAMETERS 

A primary question here is what is the complete set of quantum numbers that describe a black hole in a stationary 

quantum state. In the absence of a lucid quantum theory of gravity, 1 here opt to infer the answer front the generic 

parameters of a black hole in classical general relativity. The issue is the same as that in Wheeler's "no hair" 

conjecture [6] which has illuminated so much of black hole physics. Inspired by Israel's and Carter's early black hole 

uniqueness theorems [7], Wheeler anticipated that "collapse leads to a black hole endowed with mass and charge and 

angular momentum, but, so far as we can now judge, no other free parameters". He stressed that quantum numbers 

such as baryon number or strangeness can have no place in the external description of a black hole. Support for 
this last expectation was soon forthcoming from the "no hair" theorems of Chase, Teitelboim, Hartle and myself 

[8]. 
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Wheeler's characterized a 'free parameter' as one subject, to a Gauss type law, which circumstance permits its 

determination from measurements tirade far away from the black hole. It. is entirely in harmony with this philosophy 

to add magnetic charge to Wheeler's list: magnetic monopole is subject to a Gauss law, and duality invariance of 

the Maxwell-Einstein equations implies that there should be analogues of the Kerr-Newman solution with magnetic 

charge alongside electric charge (these are in fact known). The question of whether charges of nonabelian gauge 

theories - color in modern parlance - should be added to the list arose early. I [9] found no obstruction to such "hair", 

while li'asskin [10] provided explicit, if trivial, solutions of black holes with nonabelian gauge hair. Nevertheless, the 

discovery of the black hole solution with SU(2) gauge hair by Volkov and Gal'tsov [11] took everybody by surprise. 

The ensuing plethora of black hole solutions with "hair" (for reviews see ref. [12]) was interpreted by some as 

debunking the "no hair" principle. 

But, at, least for spherical static black holes, this reaction has proved premature. The Volkov-Getsov black 

hole as well as the Green-Mathur-O'Neill Proca-hair and sphaleron-hair black hole solutions [13] have turned out 

to be unstable [14]. in like manner the hoary Bronnikov-Bocharova-Meluikov conformal scalar hair black hole [151 

was found unstable [16]. The Skyrme hair black hole [17] and the black hole with a nonabelian monopole [18] are 

the only known general relativistic spherical black hole solutions which have hitherto evaded unstability symptoms. 

In addition powerful new theorems rule out the existence of static solutions with scalar hair, whether charged and 

interacting with an Abelian gauge field [19, 20], or neutral [21, 20] (in the latter case the proof still does not cover 

the range 0 < < :1- of the nonminitual coupling parameter). 

What about nonspherical black holes ? The Kerr-Newman family contains all known general relativistic solutions 

representing stationary rotating black holes. For static black holes, three nonspherical examples are known. The 

first is the the ZePdovich and Novikov [22] quadrupolar black hole; this is not asymptotically fiat and, therefore, 

represents a nonisolated black hole. The second is the Achucarro-Gregory-Kuijken [23] black hole transfixed by a 

cosmic string. Again this is not asymptotically flat, and is not ostensibly equipped with a parameter not. already 

present in the spherical black hole or straight cosmic string. Thus these examples fail to supply us with new black 

hole parameters beyond the usual ones; they are not hairy black holes. The third nonspherical example is Ridgway 

and E. Weinberg's black hole [24]; it is a solution of a rather contrived gauge theory, and as such not directly of 

interest to our search for parameters that may translate into quantum numbers. 

Reviewing all this evidence we see that today only the Skyrmion black hole and the black-hole-in-a-monopole 

deserve the status of viable (that is stable) hairy black holes. Things have not changed much since Wheeler made 

his clever guess. We do have to add to his list of black hole parameters magnetic monopole, both the Maxwell kind 

and the kind in sortie specific nonabelian gauge theories, as well as Skyrme topological number. 

3 BLACK HOLE QUANTUM NUMBERS 

[low do we convert information about classical parameters to a selection of quantum numbers '? Again, the lack of 

a lucid quantum gravity motivates us to seek illumination from analogy. Consider then the case of the Higgs field 

with Mexican hat potential in flat spacetirne. A configuration with the Higgs field taking on values on a slope of 

the potential is not a stationary classical solution. No stationary quantum state corresponds to it. A configuration 

with the field at a minimum of the potential is a classical stationary stable solution. It is well known that small 

perturbations away from it, which classically oscillate around it, are interpreted in quantum theory as excitations of 

the field arising from the minimum state. By contrast, a configuration with the field at. a maximum of the potential 

is a classical stationary but unstable solution. A small perturbations away from it. runs away. In the quantum 

theory such perturbations are reinterpreted as tachyonic excitations which, at the level of this discussion, certify 

the underlying stationary configuration as pathological. 

By analogy we may conclude that to each stable stationary classical black hole solution corresponds a stationary 

quantum state which is capable of excitation. Again by analogy, the excited state can be interpreted as the base black 
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hole state plus quanta of various fields propagating on its background. By contrast, an unstable stationary classical 

black hole solution cannot be associated with a stationary quantum state because excitations of the later would be 

tachyonic in nature. Thus, the unstable nonabelian hair black holes and the Bocharova-Bronnikov-Melnikov black 

hole do not furnish classical analogues of quantum stationary states. 

The classical nonstationary solutions of the Higgs theory include sonic which have the field shuttle in time 

from one potential well to the other and back. These are big perturbations which are not confined around a single 

minimum. In the quantum theory the appropriate base state is a linear superposition of two quantum stationary 

states, one for each well. It would seem that in the black hole case the appropriate analog is a linear superpositions 

of two distinct black hole stationary states. In other words, the shuttling solutions do not imply new quantum 

stationary black hole states. 

Although the above arguments cannot rule out quantum stationary black hole states without classical analogs, 

they are suggestive that, as far as present evidence requires, the only quantum numbers of a stationary black hole 

state are mass, electric and magnetic charge (this last including nonabelian varieties) and Skyrmionic topological 

number. I am not too clear about what to do with this last number, so I will ignore it at this preliminary stage. I 
. 

thus focus on black hole eigenstates of mass M, electric charge Q, magnetic monopole K , angular momentum J 2  

and Jr  and of course, linear momentum P. This last can he set to zero if we agree to work in the black hole's 

center of mass. The eigenvalues of 0, k,.1 2 :  J, are well known. By making the standard assumption that this last 

set of operators are mutually commuting, we may immediately establish the spectrum of the mass for the extremal 

black holes. 

The classical extremal Kerr-Newman black hole is defined by the constraint 

m 2 = Q2 + K2 4.  j2/m2 
	

(1) 

so that 

M = 2-1/2 [Q2 + K2 + 0Q2. + K2)2 ± 4./211" (2) 

where the negative root solution has been discarded because it gives imaginary M. By replacing in this expression 

Q q(ali) 112 , K g(ft/4a) 1 1 2  and J 2  j(j + 1)h2  with q,g integers ;  j a positive integer or half-integer and 

a the fine-structure constant, we enforce the quantization of charge, magnetic monopole and angular momentum, 

and obtain the mass eigenvalues (also discussed by P. Mazur [25]) 

Mo.; = (h/2)112  [aq2  + g 2 /40 + V(oq 2  + g`/4a) 2  + 4j(j + 1 )] 	. 

Substituting these in the classical expression for horizon area of an extrema! black hole 

A = 4s [Q 2  + K2  + 2J 2 //t/ 2 ] 

we obtain the area eigenvalues. It should be noted that these last, which can hardly be quibbled with, are at 

variance with the area eigenvalues claimed to follow from the loop quantization program (4, 5]. Therefore, since 

the eigenvalues of charges which force this conclusion cannot be tampered with, one must conclude that either the 

algorithm from loop quantization is manifestly inapplicable to extremal black holes, or else that extremal black 

holes are forbidden by loop gravity theory. Most would view the last alternative as highly unpalatable. 

Por generic black holes 1 shall use other arguments. As 1 shall niake clear, for them horizon area is more 

immediately quantized than is mass. I shall avail myself of the relation between mass and area of the generic 

Kerr-Newman black hole to write, as first done for the classical quantities by Christodoulou and Ruflini ;  [26] 

A 
M2 

= 
I  + 

(. 2  47 ( '02 + ji-2)) 4752 

(5) A + 	A 

This relation allows one to read off eigenvalues of kl from those of A, the charges and the angular momentum; it 

was first used in this sense long ago [1]. 
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4 BLACK HOLE AREA: AN ADIABATIC INVARIANT 

In the absence of a complete theory of quantum gravity, I seek to quantize the black hole area of a generic Kerr-

Newman black hole in the style of the old quantum theory, by exploiting its similarity to an adiabatic invariant in 

mechanics. What is an adiabatic invariant. 

A physical system governed by a harniltonian which depends on an exterior parameter A is said to undergo an 

adiabatic change if A varies on a timescale long compared to the longest t.imicale of the internal motions T. Thus 

if H (q, p, A(0), the change in the system is regarded as adiabatic when A - IdA/dt << T. An adiabatic invariant 

is any dynamical quantity .4(q, p) which changes little during the period when Li accumulates a large total change. 

Ehrenfest [27] showed that for a quasiperiodic system, all action integrals of the form A = f pdq are adiabatic 

invariants. For instance, for an harmonic oscillator of frequency w, the action integral equals 2rE/6.7. Thus when 

the spring constant varies on a tirnescale w -  E/w remains constant even when E has changed sizeably. 

One can understand this adiabatic invariance of E/w in quantum terms. For au harmonic oscillator in a 

stationary state labelled by quantum number n, E/w = (n ; )h. One expects n to remain constant during an 

adiabatic change because the perturbations imposed on the system have frequencies < w, so that transitions between 

states of different n are strongly suppressed. Therefore, the ratio E/w is preserved. Now in the Bohr-Sommerfeld 

theory (old quantum mechanics), action integrals are quantized in integers: f pdq = 27rnh. The above logic then 

explains why the classical action integrals are adiabatic invariants. 

Actually Ehrenfest stated a broader hypothesis [27]: any classical adiabatic invariant (action integral or not) 

corresponds to a quantum entity with discrete spectrum. The rationale is that an adiabat.ic change, by virtue of its 

slowness, is expected to lead only to continuous changes in the system, not to jumps that change a discrete quantum 

number. The preservation of the value of the quantum entity would explain the classical invariant property. 1 shall 

apply Ehrenfest's hypothesis to black hole area of generic Kerr-Newman black holes, which, as I show now, shows 

all the signs of being the analog of the mechanical adiabatic invariant. 

Consider a Reissner-Nordstrom black hole of mass M and charge Q. We shoot. in a classical point. particle 

of charge c with (conserved) energy E = eQ/rn , where 7.7i is the radius of the black hole in Boyer-Lindquist 

coordinates. In Newtonian terms the particle should marginally reach the horizon where its potential energy just 

exhausts the total energy. Study of the exact equation of motion supports this conclusion: the particle's motion has 

a. turning point at the horizon. Because of this the assimilation of particle by the black hole takes place especially 

slowly; it is an adiabatic process. 

Now the area of the horizon is originally 

A = 4 rrii  2  = 4 r 	+ 012  - Q2) 	 (6) 

and the (small) change inflicted on it by the absorption of the particle is 

AA = ORN -1  • (AM - Q 1.1Q17.7.i ) 

where 
1 

OR N E —
2 

A 	Al 2  — Q 2  

Thus if the black hole is not extremal, 'AA = 0 because AM = E while AQ = e and E = 	Therefore, 

the horizon area is invariant in the course of an adiabatic change of the black hole. For an extremal black hole 

this conclusion fails: when Q = M, - Q2  in Eq.(6) is unchanged to 0(r 2 ) during the absorption, so that 
AA = 8rM E D. 

As a second example consider a Kerr black hole of mass M an angular momentum J. Send onto it a scalar wave 

of the form 1/1„,(0,¢)e'. It is known [28] that the absorption coefficient has the form 

= 1C,,,e,„,(M,J) • (u.i - 	rn) 
	

(9) 

(7) 

(8) 
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where 
J 

- 	   
rn 2  + (J/M)2 	

(10) 
 

is the rotational angular frequency of the hole, while 	, J) is a positive coefficient.. If we choose w = m 

the wave is perfectly reflected. By choosing w - in slightly positive, we arrange for a small fraction of the wave 

to get absorbed. If the reflected wave is repeatedly reflected back towards the black hole by a large spherical mirror 

surrounding it, one can arrange for a sizeable fraction of the wave's energy and angular momentum to eventually 

get absorbed. But since this takes place over many cycles of reflection, the change in the hole is an adiabatic one. 

The horizon area of the Kerr black hole is 

A = 4Ir [(Al + N./ Al 2  — (J / Al ) 2 )
2 
 +(11 )21 

and small changes of it are given by 

LNA = OK • (A.A.! - SIAJ) 

where 

OK -a.  -A -1 1111 2  -(1/111) 2  

In our case the overall changes LIM and 1.1.1 must stand in the ratio whn (as a mental aid just think of the wave 

as made of quanta, each with energy hw and angular momentum h 	But since we chose w It In, we see from 

Eq.(12) that if the black hole is not extremal, Ail 	0, to the accuracy of the former equality. Evidently, here 

too horizon area is invariant during adiabatic changes. This conclusion fails for the extremal black hole for reasons 

similar to those in our first example. 

The two examples and the one in the next section support the thesis that for a generic black hole, horizon area 

A is, classically, an adiabatic invariant. By taking Ehrenfest's hypothesis seriously, I conclude that horizon area of 

a generic quantum black hole, A. must have a discrete eigenvalue spectrum: 

elee = f (n); 	71 = 
	

(14) 

The function f is supposed to be positive and monotonically increasing (this last just reflects the ordering of 

eigenvalues by magnitude); however, nothing else can be deduced about f from this argument. At any rate, in light 

of Eq.(5), and the quantization of charge, magnetic monopole, and angular momentum, this result tells us that 

black hole mass has a discrete spectrum. The form of it will he elucidated in Sec.V 

5 AREA QUANTIZATION 

For generic Kerr-Newman black holes, Eq.(14) raises the pressing question, what. is the spacing of the area levels, 

and how does this spacing vary along the spectrum ? Here I shall answer this question by recalling a modification 

[29] of Christodoulou and Rufiini's reversible process (26]. Christodoulou asked, can assimilation of a point particle 

by a Kerr black hole he made reversible in the sense that all changes of the black hole can be undone by absorption 

of it suitable second particle ? His answer, as later generalized to the Kerr-Newman black hole 1261, is that the 

process is reversible if the particle, which may he electrically charged and carry angular momentum, is injected at 

the horizon from a turning point in its orbit. In this case the horizon area (or the irreducible mass in the original 

terminology) is left unchanged. Since horizon area cannot decrease [31], it is plain that. the effects on the black hole 

can he undone by another reversible process which acids charges and angular momentum opposite in sign to those 

added by the first. For generic Kerr-Newman black holes Christodoulou's reversible process is an adiabatic process 

(in the sense that assimilation from a turning point proceeds slowly) which leaves the horizon area unchanged. It 

supplies us with a further example of the adiabatic invariance of horizon area. 
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Note that the particle in the reversible process has to be a point particle in order for its absorption to leave the 

area unchanged. In fact, recalculation of the process for a particle of iiia.ss p and radius b shows [29] that there is 

a minimum increase in area, 

OA = 87rpb. 	 (15) 

which is attainable if the particle is captured when its center of mass is at a turning point of its motion a proper 

distance b away from the horizon. Classically one can here take the limit b 0 and recover Christodoulou's 

reversible process. However, a quantum point particle is subject to quantum uncertainty. If it is known to be at 

the horizon with high accuracy, its radial momentum is highly uncertain; this prevents the turning point condition 

from being fulfilled. And of course, a relativistic quantum point particle cannot even be localized to better than 

a Compton length hip. Thus in quantum theory the limit b 	0 is not, a legal one. One can get an idea of the 

smallest possible (quantum) increase in horizon area by replacing b 	7t/bade in Eq.(15), where 7 is a number of 

order unity and the 87r is for later convenience. That minimal increase is 

(AA )min = 7eP 2 
	

(16) 

The surprising thing here is that (AA) m i n  is independent of M, Q and J of the black hole. This strongly suggests 

that it corresponds to the spacing between eigenvalues of A in the quantum theory, a uniform spacing. For it would 

he strange indeed if that spacing were CO vary, say with mass of the black hole, and yet the increment in area 

resulting from the best approximation to a reversible process would contrive to come out universal, as in Eq.(16), 

by involving a number of quantum steps inversely proportional to the eigenvalue spacing. 

A check of our identification is furnished by a calculation of the mass spacing between area eigenvalues. For a 

black hole with zero charges and angular momentum, it is easy to derive from Eq.(5) that 

	

h 	327rM tp 2  327rM 

1 	iS,4 	-y 	
(17) 

This result is in pleasant agreement with Bohr's correspondance principle: "transition frequencies at large quantum 

numbers should equal classical oscillation frequencies" because a classical Schwarzschild black hole displays 'ringing 

frequencies' of order M -1 , just as Eq.(17) predicts. The agreement would be destroyed if the area eigenvalues were 

unevenly spaced. Thus there are two good grounds for replacing Eq.(14) for a generic Kerr-Newman black hole by 

a n  = 141, 2 (n q); q > -1; n 1,2,- (18) 

where n allows for the possibility, entirely consistent with all that has been said, that the smallest area eigenvalue 
is either very small or very large on the scale of the spacing ^re 1,2  . 

Our conclusion that the minimal area increase is given by Eq.(15) fails for extrernal black holes because the 

analog of the quantity 9K in Eq.( I:1) diverges. Just as we found in Sec.1V that for an extrema! Kerr black hole the 

area does increase during the adiabatic process, so we find here that the minimal increase in area is not Eq.(15). 

but a quantity dependent on Al, Q and J. We cannot thus deduce that the area eigenvalues of an extrema] black 

hole are evenly spaced. This is entirely consistent with Eqs.(3-4) which show the area spectrum of the extremal 

black hole to be very complex. 

To get an idea about the magnitude of y in Eq.(18), I now consider the degeneracy g„ of the eigenvalue 
first discussed in these terms by Mukhanov [2]. We know that black hole entropy Su it = A/4fp 2 + const. (recall 
that black hole entropy is determined by thermodynamic arguments only up to an additive constant) quantifies how 

many internal microstates of the black hole correspond to the particular externally describable black hole macrostate. 

Accordingly, in the spirit of the Boltzmann-Einstein formula, I make the identification exp(SHH) 9,, or 

9,' 	
4ep 

exp 	coast.) = g i  exp (7(n. - 1)/4) 
	

(19) 
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As stressed by Mukhanov, fh, has to be a whole number for every n; this is only possible if [32] 

gi = 1,2, • •• 	and 7 = 4 x {In 2,1n3,• -} 	 (20) 

I now consider some special cases. 

In case gt = 1 (nondegenerate black hole groundstate), the additive constant in Eq.(19) must be retained, for 

were it to vanish, a t  would also vanish; however, in any state a black hole should have nonvanishing horizon area. 

Just this case was studied in Ref. [32]; it is a bit ugly in that the cigenvaluc law Eq.(18) and the black hole entropy 

include related but undetermined additive constants. For g i  = I the simplest. choice for 7 is 7 = 4111 2. 

The next case, q 1  = 2 (doubly degenerate black hole groundstate), no longer requires an additive constant in 

the black hole entropy. I view this as a virtue. With zero additive constant and y = 41112, Eq.(18) specifies that 

71= 0. Thus this is an economical option in that both the additive constant in the entropy and the offset q vanish. 

The area spectrum is 

(E T, = 4f.p 2 In 2 • n: 	n = 1,2, • • • 
	 (21) 

If instead we take 7 = 4 InIr with x = 3,4, • • then q = —1 + I/ 	x. The resulting spectrum is a n  = 4fp 2  In x 

— l + 1/ Ina x). For instance, if x = 4, the horizon area is quantized in half integers. 

For g i  = 3.4, • • the choices 7 = 4 In 3,4 In4, • • •, respectively correspond to ri = 0 and vanishing additive 

contant in the entropy. They are as elegant as the case gi = 2 with 7 = 4 Iii 2 discussed above, but in the present 

state of ignorance I prefer this last one for its lowest ground state degeneracy. 

For an extrema' black hole the area eigenvalues that follow from Eqs.(1) and (3), if substituted in Eq.(19), would 

in general give nonintegral values of gr,. However, we recall that the black hole entropy of an extrema' black hole 

is thought to vanish [33]. This decoupling of area from entropy means we must ignore Eq.(19) and set • t = 0. 

For the nonextremal black holes we still have to decide among the various choices of 7  for g i  = 2. I now propose 

a new kind of argument. 

6 ALGEBRAIC APPROACH 

In quantum theory one usually obtains spectra of operators from the algebra they obey. With Mukhanov I have 

been studying various algebras that might. enlighten us on the quantum basis of the results just discussed. Let 

me here describe one algebra of this kind; it. has the advantage of simplicity, and offers as a surprising bonus the 

quantization of electric (or magnetic charge), which in this paper has so far been assumed to be a given. 

In ordinary quantum theory the algebra of operators usually reflects symmetries in the system. I cannot claim 

that. I know how to derive the relevant algebra of observables from the underlying symmetries of black holes. My 

approach here shall be axiomatic. Our earlier heuristic arguments have already pointed us to the operators that 

should be involved. and have even suggested that one should focus on horizon area quantization as the key step. I 

shall thus try to guess, by appealing to analogies with well known physics and simplicity, the form of the algebra 

that is required. In the final analysis what is being done here is trying an algebra for consistency with our previous 

conclusions. 

I now state and discuss three axioms: 

• Horizon area is represented by a pu.sitivc se ►ni - definilc operator 	with a discrete spectrum (a n ; n = 0,1,2 - - • ). 

Discretimss of the area spectrum, as suggested by the adiabatic invariant character of horizon area, is formalized 

in this axiom. One imagines the eigenvalues to be arranged so that an = U corresponds to the vacuum 10) (no 

black hole case) while the rest of the a„ are arranged in order of increasing value. These eigenvalues have various 

degeneracies g,; I take gu  = 1. 

• The operators .1, 	 and J t  mutually commute, and for each set. of their joint eigenvalues there exists at 

least one black hole creation operator R.„ 1 „i,„, such tl 1? yi sig .  mg .7 	1 0 ) is a one-black hole state with area a n , with 



66 	 Jacob D. liekenstein 

electric and magnetic charges q(oh) 1 / 2  and g(hi4la) 1 / , and with total spin j(j + 1)h and z-component of spin rnh. 

The index s represents internal quantum numbers invisible to an external observer. 

That .0, 	j 2  and Jr  mutually commute requires no explanation. That A commutes with all of them is 

in agreement with the feeling that horizon area is invariant under gauge transformations and bodily rotations of 

the black hole. Creation operators are common in field theory. In view of the similarities between black hole and 

elementary particle, it seems not farfetched to treat black holes as particles of some field. Internal quantum numbers 

are necessary because we know from the black hole entropy that each state seen by an external observer corresponds 

to many internal states; these need to be distinguished by additional quantum numbers. 

• The subalgebra spanned by A, 0, Ii , d, and all theRngg;,n s and i{ nuin.,, for n > I is linear and closed. 

In general it is always possible to choose operators such that their algebra is linear, but there is no guarantee 

that these will be the physically interesting operators. Thus the third axiom is a physical one and nontrivial. Note 

that I have left out j 2 ; this is because being a square it cannot have a linear algebra: it is easily verified that even 
iz  2  cannot have commutators with the .fi.,, ggi„„ which are linear in has such. 

In applying these axioms, it will be convenient to use the index K as an alias for nqgjrn. One example of a 

commutator consistent with the axioms is 

[A, 	 + k(; )A + 	kv,c) + k.E.) 	 (22) 

where h::3 ' and the kW are suitable structure constants. Clearly all of A, 	and J, annihilate the vacuum; 

therefore, 

[A, 4,110 	10) = 	 (23) 

However, R,, is to create an eigenstate of A from the vacuum; therefore we must set 

= 	6: I 	 (24) 

with n identical to the n in the group s: for consistency. Now suppose we redefine 

kr = k„ + an I 	A + k(,3)0 + kV;') + 	 (25) 

f?"„esw obviously still creates a state with quantum numbers is out of the vacuum. But in terms of it the commutation 
relation (22) becomes 

1-4 , kr] = Itw 
	

(26) 

From now on I drop the superscript "new". 

Now we operate with Ries , ft,,, on the vacuum arid employ the said commutation relation to get 

A fLa 	1 0 ) = i?‘ -xs(A + "n ) her' 1 0) = (ari 	keel () ) 	 (27) 

so that kc ,i1„ , , , 10) has area which is the sum of the areas of R,“10) and it,,,,r10). Analogy with field theory might 
lead us to believe that the state te.„,i?e ,,10) is just a two—black hole state. In this case the result just obtained 
would seem to he trivial. But in fact, the axiomatic approach allows other possibilities. 

To clarify the matter, let us write down one more generic commutation relation allowed by the axioms: 

[ 1-?Ao 	= 	km" 8" + 	f,T2isr()+ 	 + ,V.;?.r 
	 (28) 

Here the 	and 	are additional structure constants antisymmetric under the exchange K S 	KY KS 

Operating with this relation on the vacuum gives 

s 	1 0) — fire a' firs' 1 0) = 	11'•ic h  '1 " 1 0) 
	

(29) 
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Since on the R.H.S. of this relation stands a one-black hole state, any state like ii„,./L.,r10) is a linear combination 

containing one-black hole states. The statement that a n  + an ,  is also an eigenvalue of A must thus also accrue to 

one-black hole states. 

The last result means that 2a1 must be an eigenvalue of A at least as big as the second eigenvalue, a 2 . Likewise 

2a1 + a l  = 3a i  must be eigenvalue at least as large as the third, 03. Continuing this scheme we see that {nal; n = 

1,2, - • ) is a series of eigenvalues of A. The only question is, are there other eigenvalues sprinkled in between these 

? I shall show, by contradiction, that there cannot. be . 

Suppose that the k-th eigenvalue is given by ak  = (k' + ()a ]  where k' is an integer below k while 0 < < 1. 

Let us take recourse to the adjoint of Eq.(26) 

[A. 	= 
	 (30) 

In entire analogy with Eq.(27) we have 

A let,„ 	e (o) 	(fel, A — a„?1,) 	, , 10) = (an,  - an) ftl a te. ,  10) 
	

(31) 

We may now conclude that the difference of two area eigenvalues of one black hole is also an eigenvalue. In addition, 

it follows from the postulated positive definiteness of A that Al i ke,' annihilate the vacuum whenever n > n' (from 

the fact that eigenvalues are ordered by magnitude). Anyway, the difference (k' + Oa' - = (al of two 

eigenvalues singled out by our previous discussion must also be an eigenvalue. But this contradicts the assumption 

that a l  is the lowest area eigenvalue. Thus the assumption that can be nonvanishing must be wrong. We thus 

come out with the spectrum 

= nal; 	n = 0, 1,2, - • • 	 (32) 

Comparing with Eq.(18) we see that the axiomatic approach requires n = 0. Further, referring to the discussion 

accompanying Eq.(21), we find that necessarily ry = 4 In 2. Thus if we accept the argument from simplicity that 

g i  = 2, all free parameters in the formula for area eigenvalues are fixed by the algebraic approach. 

7 QUANTIZING CHARGE AND SPIN 

A bonus of the algebra just described is that. it gives quantization of black hole charge, as well as of the z component 

of black hole spin. To see this consider the Jacobi identity 

	

it -0,Abi?..d+[(fi,..e21,Ai+([A.k..],0- ia- 
	

(33) 

As argued already, (Q,;1] = 0; taking Eq.(26) into account this can be written as 

	

[A, [Q, ie.]] = anP, Rica] 
	 (34) 

Now the third axiom allows us to write in analogy with Eq.(22) 

0, kJ] = HZ:3. 	+ 	-F 6A, ) ;1 1V2k 	 (35) 

By operating with this equation on the vacuum we get, in analogy with Eq.(24), that 

H::' = q6: 5: ' 	 (36) 

with q identical to the q in the group Pe. If we now substitute these two results in Eq.(35) we get 

	

a„ (/(3 ) 0 + i,() A + 61,0  + '(,.) 	= 0 	 (37) 
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Thus so long as a., is not null (so that a,, 	0), the 1„, coefficients must vanish because the four operators in Eq.(37) 

are independent.. Hence 
(38) 

Eq.(37) is entirely analogous to Eq.(26). By analogy with the discussion of Eqs.(27) and (31), we conclude 

that if q and q' are two eigenvalucs of Q, then so are q q' and q — q'. Here there is no reason to forbid negative 

eigenvalucs. Thus all positive and all negative integer multiples of some smallest charge t are eigenvalues of Q. So 

is zero (because q — q = 0). The proof that there are no eigenvalues in between these proceeds just as in the case 

of area eigenvalues. hence, 

q = ke 	k = 0, ±1,±2, • 	 (39) 

And because two black holes may merge, and charge is conserved in the merger and subsequent, relaxation to 

stationarity, the charge e must be the same for all black holes. 

Not only that, but if there is just one black hole in the universe ;  all particles in the universe must have their 

charges quantized according to the same rule (39) since particles can always fall into the black hole, and charge 

is conserved in that event. We thus get for free an explanation of why electric (or magnetic) charge is quantized 

in integers. In physics there arc only a couple of ways to understand charge quantization: existence of magnetic 

monopoles (which maybe do not exist) and grand unification (which may not happen), so it is gratifying to find 

another one here. 

From the point, of view of our algebra, there is very little difference between Q and L. By arguments similar 

to the above we can show that the eigenvalues of J, arc restricted to zero and all the positive and negative integer 

multiples of some fundamental unit. But this is precisely the spectrum that follows in the well known manner 

from the SU(2) algebra of J 2  and .1, when both integer and half integer values of j are allowed, and when the 

fundamental unit is identified with h/2. Thus the algebra expounded here is consistent with angular momentum 

quantization. We note that as far as the formalism goes, black holes may he bosonic or fermionic. 
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Selected Topics on DO Physics 

Jussara M. de Miranda 
Lafex/CBPF - Rio do Janeiro 

I Introduction 

En this paper we cover a few selected topics on DO physics. Top physics, the W mass measurement and the inclusive 

jet cross section were taken as examples of fundamental tests of the Standard Model. Several interesting results 

were presented in the summer conferences[1]. We do not mean to exaust the three chosen topics nor to compare 

ours results with the ones from the other Tevatron Collider experiment, CDF [2]. 

Our intention is to show some of the newest results from DO as well as presenting to a non specialist audience 

a flavour of how we extract physics from the data. For that reason we've decided to emphasize the top analysis 

description. We did not have time to detail all the topics. 

The 1)0 detector was designed to study high transverse momentum (p7') physics topics [3] in pp collisions. 

It does not have a central magnetic field, making possible a contpact, hermetic detector with almost full solid 

angle coverage. A vertex, central and forward drift chambers provide charged particle detection in the region 

17/ 1 < 3.2, where ri  = - In tan zand B is the polar angle. The tracking system is surrounded by finely segmented 

uranium liquid-argon calorimeters (one central and two end-caps). The overall resolution of the DO calorimeter is 

= 71.7°-15 00.004 for electromagnetic showers arid E  °-6°  = for hadrons. Electrons and photons are identified by the 

shape of their energy deposition in the calorimeter and a matching track (for electrons). A muon system consisting 

of proportional drift tubes and magnetized iron toroids (1.9 Tesla) located outside the calorimeter provides good 

muon identification in the region < 3.3. The deflection of the moon candidates in the magnetic field provides the 

momentum measurement with a resolution of a () — °.18(Pc -2)  ED 0.008 where p is the muon momentum measured 
P 

in GeV/c. Neutrinos are not identified in the detector but their transverse momentum is inferred from the missing 
transverse energy in the event(gr ) 1  

II Top Physics 

After the announcement of the top quark discovery by the DO [4] and CDF [5] collaborations at the Fermilab 

Tevatron Collider, the DO analysis was redone with more than twice the statistics (— 100 pb'), now focussing on 

the best possible measurement of the top production cross section and mass. 

Presently only Fermilab's Tevatron has sufficient energy to produce top quarks. Fortunately the top mass is 

such that the quark is produced with low enough momentum to keep its decay products well isolated and large 
enough to pass the detector thresholds, thus enabling it's observation over a huge background. 

At the Tevatron, top quarks are predominantly pair produced, via qi annihilation ("-85%) or gg fusion('s'15%) 
[6]. Due to its large mass, top quark decays before hadronization [7]. According to Standard Model expectations 
the branching ratio of process t --+ W + b is 99.8%. The various DO analysis are classified by the subsequent W 
decay, as follows: 

• Dilepton: both W's decay leptonically to ev or ,w (the Tv channel is in progress). '['he rather small branching 
ratio of these channels ( 5%) is compensated by the extremely small backgrounds. 

cal 
I 1/73- 	= — E, En gine where the sum i extends over all cells in the calorimeter. gTineludes muon in its calculation. 
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Figure I. The DO detector 

• Lepton+jets: one W decays leptonically to ev or /iv and the other hadronically. This is the compromising 

mode with a sizable branching ratio (30%) and a reasonable background. The dominant background comes 

from W + jets direct production. These channels are subdivided into b-tagged or untagged according to 

whether or not a soft moon consistent with the b quark decaying semileptonically is observed. Selection 

criteria based on the topology of the top-like event are applied to the it-untagged to further clean the sample. 
The best top mass measurement comes from these channels and will be described below. 

Two other analyses are being pursued by DO. The all jets channel, where both W's decay hadronically [8] and 

an inclusive ev + jets where sonic of the kinematic cuts are relaxed to try and recover some of the efficiency lost. 
We will not present these analysis. Particle identification and detector techniques are described elsewhere [3], [9]. 

In the various analysis that we'll present here the topology of the top-like events is explored. As result of a grid 

search process using Monte Carlo (to represent top signal) and data (for the background) two variables prove to he 

effective on reducing the background: aplanarity (A) and FIT. 

Aplanarity A is defined after the normalized three-momentum tensor constructed from the selected jets in the 
event: 

Ara, Ei 44  
Ei 	' 

in such a way that 
3 

A 	— 
2 x 

(smallest eigentralue of M). 

The maximum value for the aplanarity is 0.5 for a spherical event. For a planar or linear event, it. is zero. Top 
events tend to be more spherical than events due to radiative QCD background processes. Large aplanarity means 
that there is little difference between the jet with the highest ET and the one with the lowest Ee'r and that the jets 
are spherically distributed 2  . 

HT is defined as the scalar sum of the I.ransverse energies of all jets which pass the selection cuts: 

HT a EIEToet.01 

2  Aplanarity would not be a good variable if the top quarks themselves carried very high ET , or in the case of a much larger top 
mass where the b jets would take more momentum than the W decays. 
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Figure 2. NT distribution of dilepton events. The open histograms show die expected distributions for ft events for mi = 170 
GeV/c 7  and background. The hatched rectangles show the events from our data before the HT cut. 

A large /1r is a signature of the decay of a massive particle. It is a good variable because the top is very heavy, 

and it would be a poor variable for a light top. 

1I.1 Cross section 

The Top quark production cross section is given by 

N 
air = 	 

AC 

where N is the total number of events that survive the analysis cuts, G is the integrated luminosity, B is the 

estimated background and A is the acceptance for top events to correct for detector, trigger and selection cuts effects, 

weighted by the braching ratios for the specific modes. In principle we would like to have a model independent 

measurement but we cannot. avoid using Monte Carlo to estimate acceptances and some aspects of the background. 

Various generators are used and discrepancies among them are accounted for on systematic error estimation. In 

the following we summarize the various analysis used in the cross section measurement [14] a . 
The dilepion channels are characterized by two high pr isolated leptons (ee, ep, pp), two or more jets and missing 

ET. Table 1 summarizes the kinematic cuts as well as topological and specific selection criteria for these modes. For 
the ee channel the electron's ET are included in calculating HT. In figure 2 we compare /IT distributions for MC 
top signal (m e  = 170 GeV/c2 ), expected major backgrounds and final cuts data events. Physics backgrounds are 
Drell-Yan Z, 74 11, vector boson pair and heavy flavour production. To remove the specific background Z ee 
we require Im„ - 112z I > 12 GeV/c 2 . The lilt events are required riot to be consistent with the Z — pp hypothesis 

by a global kinematic fit (prob40. Unphysical backgrounds due to jets misidentified as electrons are estimated 

using data controlled samples. Typical value for the misidentification probability is 2 x 10 -4 . The unphysical muon 
backgrounds were found to be negligible. 

a 
a 

V 

a 

3 We. use 1SAJET [to) or HERWIG [10 for top event generation, VECROS [12] for backgrounds, and CEANT {13) to model the 
der.  ector. 
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Figure 3. Multiplicity distribution of e jets after lepton identification and kinentatic cuts applied. 

For the three dilepton channels four events altogether survive the cuts. The background is estimated to account 

for 1.6±0.3 events. 

The signature for the lepton+ jets channels is one high p t  isolated lepton (e or p), missing ET and a number 
of high ET jets (in principle top events should produce at least 4 jets, but we study the background content as a 

function of the jet multiplicity). Figure 3 shows the jet multiplicity spectrum for W e + jets data, as compared 

to absolutely normalized ni t  = 180 GeV/c 2  Monte Carlo where we required pr isolated electron and missing ET. 

It becomes clear that we need more stringent selection cuts to see top events under the huge W + jets background, 

even at large jet multiplicity. Two independent arid non overlapping analyses were pursued by DO. The first, 

"p-tag", requires a muon to tag a semileptonic decay for one of the b quarks. These are usually soft muons running 
close by the jet. This is imposed by pi, > 4 GeV/c 2  and R(p, jet) < 0.5 4 . Since "all" top events should have 

two b and taking into account the inclusive branching ratio for b p+ X, —44% of the top events should have at. 

least. one p tag. DO reconstructs 45% of those muons leaving — 20% of the events with a p-tag. 

Events not selected by the p-tag are subrnited to the topological analysis. Here the emphasis is the overall shape 

of the top-like events. To select the events the already mentioned HT and are A variables are used in such a way 

that minimizes the relative error in the cross section measurement, riot necessarily the best signal to background 

ratio. In figure 4 we show a scatter plot of H•. vs. A for top Monte Carlo, backgrounds and final data. 

Two major backgrounds are considered. The physical background is dominant and comes from direct W pro-

duction with jets. The second conies from QCD rnultijet production where one jet is misidentified as an e. In 

either case one of the jets can be a real b or c that undergoes a semileptonic decay contributing to the background 

on the p-tag analysis. To estimate the background the basic ingredients are real data and the fact that W + jets 
production follows the Berends scaling [15]: 

NW; 

N 
	= 0, 

where NW; is the number of W 	t+ i jets. The estimative of the various sources of background is specific for each 
analysis, we take the W + jets background on the I + jets mode as an example. Before applying the topological 
cuts, and having already subtracted the unphysical background, we can write: 

4  AR(i, = v/417,2i 	being the distance in the to — ¢ of the objects i and j 
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Figure 4. A(1,17  + jets) vs. II T  for data, Monte Carlo signal and W 	+ jets and QCD multijet backgrounds. 

Nieba er ed = N 	* cv i -1 	fi* A rt  
1 

Where Nfb'eru'd is the number of events with i or more jets, lepton identification and missing Et . The first term 
on the right accounts for the direct W + jets contribution. f1 is the fraction of dexpected for multiplicity i and N1 

 is the total number of top events surviving the kinematic cuts. NW, , o and N, are extracted from an Nfb""cd us. 
inclusive multiplicity plot and fi  comes from Monte Carlo. Next the topological cuts arc applied and their efficiency 
for both Lop and background are extracted from Monte Carlo. As a result of this process we estimate a W + jets 
background of 7.68 f 2.83 and a QCD multijet contribution of 1.55 ± 0.49 events for e/ p + jets channel. 

Tables 1 and 2 summarize the results for these seven channels. We observe 37 events with an expected background 

of 13.4±3.0 events. The cross section measurement as a function of the top mass hypothesis is shown in figure 5. 
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Table 1: Summary of dileplon channels 
channel ep + jets ee + jets pp + jets 
lepton pf > 15 > 20 > 15 
electron lqj < 2.5 <2.5 
anion < 1.7 < 1.0 	' 
teTtot > 20 1  > 25 
# of jets >2 >2 >2 
jet PT > 20 >20 	. >20 

jet Inl 
/IT 

< 2.5 
> 120 

<2.5 
> 120 

<2.5 
> 100 

specific cuts I M„ - Mzo I > 12 Prob(, • fit) < 1 % 
signal$(m, = 180) 1.69 ± 0.27 0.92 ± 0.11 0.53 ± 0.11 
f Cfpb - 1) 90 ± 5 106 ± 6 87 ± 5 
events observed 3 1 1 
Backgrounds 
Z - TT 0.31 ± 0.07 0.17 ± 0.04 0.03 ± 0.01 
WW 0.03 ± 0.01 0.04 ± 0.02 0.009 ± 0.003 
Drell- Yan-,  TT 0.02 ± 0.03 
Fake e 0.02 ± 0.01 0.32 ± 0.14 
Z ,  II - 0.13 ± 0.03 0.46 ± 0.26 
QCD - 0.00 ± 0.05 0.05 ± 0.01 
total 0.36 ± 0.09 0.66 ± 0.17 0.55 ± 0.28 

Energy in Gev, muss in Gev/c 2  
Aditionul cut of kt TL10(includes p) 
Expected number of top events based on ref 116] 

'Fable 2: Sum mar • of lc ton+ .ets channels 
channel c + jets p 	• jets c + jets/Et p + jets/ il 
lepton PT 
lepton Irti 

4/.7' c° ' 

> 20 
< 2.0 

> 25 

> 20 
< 1.7 

> 20 

> 20 
< 2.0 

> 20 

> 20 
< 1.7 

> 20§ 
# of jets >4 >4 > 3 >3 
jet ET > 15 > 15 > 20 > 20 
jet 	irli < 2 <2 <2 • 	<2 
Lagging tit -- -- 1 I 
E iv • T > 60 > 60 -- -- 
.4 > 0.065 > 0.065 > 0.04 > 0.04 
HT >180 >180 >110 >110 
signall (m, = 180) 6.5 ± 1.5 6.4 ± 1.4 2.4 ± 0.4 2.8 ± 0.9 
events observed 10 11 5 6 
1 C(Pb -1 ) 106 ± 6 96 ± 5 91 ± 5 96 ± 5 
background 3.8± 1.4 5.4 ±2.0 1.4 ± 0.4 1.1 ± 0.2 

Energy in Gev, Enass in Gev/c 2  
§Aditional cut of $7- > 20 (includes p) 

Expected number of top events based on ref 1161 
t 74 > 4 GeV, A72(p. jet) < 0.5 

Er =  i$T1 -F 
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Figure 5. Top production cross section. 

11.2 Mass Measurement [17] 

In the direct measurement of the top mass there are two major problems. First, we don't fully measure the 

neutrino momentum, the transverse component, is obtained from the total energy balance and its z component is 

undetermined. Second, except for it-tagged jets there is no way to uniquely identify them. Here we will present the 
DO measurement using only the 1+ jets modes, that has evolved considerably since the observation. We apply the 

kinematic cuts listed in table 2 for the topological 1+ jets analysis. For the subsample without a it-tag we require 

> 60 GeV and 177w I < 2.0 in this selections process, 93 events survive, 8 of which have a u-tag . Notice that 

the focus of the analysis changed from cross section to mass measurement and consequently, the variables chosen 

to select the events are very weakly correlated with the mass. 

The 6 final state particles are fully determined by 18 parameters, of which we measure 17. We then perform a 
constrained fit to the hypothesis m(lv) = rn(g) = mw = 80.9 GoV/c3  and mt  = m(W+b) = mt = rn(14/ -  to 

obtain what we call fitted mass (rnfit). As we have no a priori way to assign the jets (except the tagged ones) we 
do all combinations retaining only the best x2  one provided that X 2  < 7. The jet permutation runs over the 4 most 

energetic jets in the event. The Monte Carlo distribution peaks at the correct. value (m 1 ) and the width is 
dominated by jet combinatorics. 

After all the mentioned cuts (refered as precut), we are left with 73 events, most of which are background 

(signal/background 1/2). To discriminate between signal and background we use two multivariate techniques 
based on the following variables; 

E ET 

v 2  .A 
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HT2 E HT — 4.1  

H 1 l 

v4  E 	E- (min of. 6 ARii).E7F:" er 

vs E HT2 

V5 E KTmin 

where 07Zji is the distance between any two jets, Hii is the scalar sum of 1)9,1 of the jets, charged leptons, and 

neutrino. In the first method we construct a top likelihood discriminant (D) based on the the variables vl through 

u4. These variables are weakly correlated with the m t . We tit simultaneously the mass and a likelihood discrimi-

nant distributions. The second method consist on using neural network techniques to construct a top probability 

discriminant (tprob)  based on all variables listed above. Figure 6 ilustrates the discrimination power of the method. 

Using the variables above mentioned we obtain a top enriched sub-sample or 32 events refered as low bias (1,13), 

where signal/background — 2/1. The top mass results for the two samples obtained with the two methods are listed 

in table 3 below. 

'fable 3: Top mass for the precut and low bias samples obtained with the two methods 

D tOPprob 

PR LB PR LB 
m, (Gev/c 7 ) 168 :1_- 10 168 ± 8 169 ± 10 168 ± 7 
n,  27.5 ± 7.0 24.51:6 26.4 ± 7.6 26.6 ± 5.5 
rib 45.5 ± 10.0 4.9T2  39.5 ± 7.6 2.4 ± 2.0 

III W Mass 

The Standard Model requires interrelations among its parameters, and, given other measurements, the theory may 

predict the parameters of the W. At lowest order, an important relation holds between the weak boson masses 
and the weak mixing angle: p = Mw/Mzcos0 = 1. Deep inelastic scattering, forward-backward and left-right 

asymmetries at the Z° ressonance establish a value for the weak mixing angle, sinOw, that., together with the LEP 

precision measurement of the Z° mass, give a prediction for Mw. So, a precision measurement of Mw can be 

compared with the theory prediction. 

More than that, a precise measurement of Mw, combined with other eletroweak precision measurements and 

the measurement of the top quark mass, tests the consistency of the standard eletroweak model, and within the 

framework of the model, can give an indication of the Higgs mass (Mir). in figure 7, the curves show the dependence 
of Mw on nit  in the minimal Standard Model using several Higgs masses. The data point represents the DO current 
result. 

DO plans to measure the W-boson mass within 50 MeV/e 2  for the next run [18]. This measurement, coupled 
with a 10 GeV/c 2  for the top mass, would severely constrain the theory and give information about the Higgs. 
As we will see below, the challenge here for a hadron collider is to control the momentum scale to such precision. 
LEP 200 also plans to measure Mw with an equivalent precision, and there the problem is to achieve the necessary 
statistics. 

The DO measurement is based on W 	et. decays 5  where the electron is detected in the central calorimeter. 
The calorimeter is not calibrated independently to the precision needed and therefore the ratio of the W to Z 

'The notion mode is not used in this analysis since the electron momentum is better measured. 

V3 = 
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masses was measured and scaled to the precisely known LEP/SLC Z mass. This ratio cancels various systematic 
uncertainties. 

The longitudinal momentum of the neutrino cannot be determined because the detector cannot measure with 

enough precision the longitudinal component of the total energy flow of the hard scatter. The invariant mass cannot 

be reconstructed, which imposes the use of the "transverse mass", the invariant mass using only the transverse 

components of the momentum vectors. it is defined as 

A14.11  = 	— 21.74,V 

where pi.;, and 	are the transverse momentum of the neutrino and of the electron, respectively. 

The mass of the W was determined by a maximum likelihood fit of the measured MIr distribution to Monte 
Carlo distributions which were generated for several values of Mw . The fast Monte Carlo simulation used a 

theoretical prediction of W production and decay and a parameterized model of the detector response. The same 
applies to Z events. The underlying event was modelled by superimposing the W event onto a minimum bias event 
obtained from data.. QCD multi-jet. production and Z ee events where one electron is not identified were the 
considered backgrounds to the W event sample. 

The result is Mw = 80.340 ± 0.140(stat.) ± 0.160(scale) f 0.165(syst.) GeV/c 2 . The systematic uncertainties 

are dominated by the electromagnetic energy resolution, hadronic energy resolution, input pi.(W) distribution and 

parton distribution functions, number of minimum bias events, hadronic energy scale and electron angle determi-
nation. 

IV Inclusive Jet Cross Section [19] [20] 

The experimental determination of the inclusive jet cross section ( cr(p75) — jet+ X) is probably one of the simplest 
tests of QCD, yet a very fundamental one. The complete next-to-leading order 0(0. 33 ) calculations [21][22][23] have 
small theoretical uncertainties (10-20)%. In a.dition, this measurement can be used to test the validity of diferent sets 

of parton distribution functions. It is also a good place to look for new physics", for example quark compositness. 

The Tevatron enables probing a wide portion of the phase space producing jets with large statistics up to nearly 500 
GeV. DO is particularly well suited for the task due to its highly segmented liquid argon calorimeter with < 4.0 
coverage. 

The basic entity for this analysis is the hadronic. jet. In principle we would like that the experimental definition 
of a jet represent theoretical quarks and gluons. More over we would like that the various experiments use the 
same definition in a way to simplify comparisons. In DO jets are reconstructed offline using an interactive jet cone 
algorithm, with a cone radius of = 0.7 in the e5 space [24]. Starting with preclusters formed from > 1 GeV 
calorimeter tower seeds, the algorithm builds up a jet by includinging neighbouring cells. The jet ET is defined as 
the sum of each cell ET. After all jets are formed, they are split or merged according to whether they share more or 
less than 50% of the smaller energy jet. Effects like out of cone energy deposition, non linearity of the calorimeter 
for soft particles (< 2 GeV) and extra energy from the underlying event. may deteriorate the measurement of the 
jet energy [19]. Calorimeter energy scale calibration is of course fundamental. We use the expected energy balance 
of 7 + 1 jet to estimate the jet. energy scale correction. 

In figure 8 we show the inclusive jet cross section measurement with very good agreement with the NLO parton 
event generator JETRAD [22] over seven orders of magnitude. The NI,0 calculations require specification of the 
renormalization scale = Ere/2, where ET is the maximum jet ET in the generated event), parton distribution 
function and the parton clustering algorithm. Figure 81) shows the ratio (1..) — T)/T for data (D) and theoretical 
(T) prediction based on different choices of parton distribution functions. We see that the shapes of all predictions 
are in very good agreement with data. 
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V Conclusion 

We presented the latest DO results on top physics and briefly discussed the IV mass measurement and the inclusive 

jet cross section. The DO collaboration is working actively on the upgrade of the detector for the next run when 

there will be a factor of twenty increase in integrated luminosity. 
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We briefly review some attempts towards a field-theoretical comprehension of turbulence. 
After a discussion of basic phenomenological ideas, like the laminar-turbulent transition and 
the Kolmogorov's cascade picture of the inertial range, we introduce the fundamental set 
of Hopf's equations, describing the stationary statistical state of a turbulent fluid. The 
application of conformal field theory methods in two-dimensional turbulence is studied, as 
well as the computation of corrections due to realistic three-dimensional effects. 

1 Introduction 

Turbulence is one of the most common experiences of our everyday life. Nevertheless, its understanding has been a 

real challenge along the centuries. It is amazing to know that the phenomenon of turbulence was formerly studied 

around 500 years ago by Leonardo da Vinci, who clearly noticed the generation of eddies across a certain range of 

length scales in turbulent water flows, an observation that could be regarded as an anticipation of some relatively 

recent ideas [1, 2]. A large historical gap followed Leonardo's studies until the very first sistematic investigations 

of turbulence by O. Reynolds [3] and Lord Rayleigh [4] in the last decades of the 19th century. Since then, 

many approaches and new insights have been devised ;  originated from completely different branches of science 

and technology. Even though a unified theoretical description grasping most of experimental turbulence is still 

lacking, we believe that field theory methods are promising, not only by their fundamental character, from which 

phenomenological results should be derived, but also by a number of suggestive ideas by now accumulated in the 

study of a plethora of models, like short-distance expansions and anomalies. 

Besides the interest we may have in turbulence by itself, it is important to note that there are physical phenomena 

like localization in condensed matter systems [5], hadronic jets in high energy physics [fi], or the dynamics of chaotic 

systems [7], which seem to be deeply connected with the cascade processes happening in a turbulent fluid. Essentially, 

all of these phenomena exhibit some kind of intermittency, or, in other words, strong deviations from simple gaussian 

statistics, leading to an infinite set of anomalous exponents, typical of multifractal distributions [8]. 

Our aim in this short review is to describe first basic phenomenological ideas and then some of the modern 

field theory attempts in the study of turbulence. The interested reader is also encouraged to take a look at other 

"classic" and recent accounts on turbulence [2, 9, 10, 11]. 

This paper is organized as follows. In section II , we explain in an elementary way how the laminar-turbulent 

transition comes into place in fluid dynamics. Furthermore, we describe the celebrated Kolmogorov's picture of 

the energy cascade process in fully developed turbulence [12], as well as deviations from it due to intermittency 

[13]. In section III, we establish the fundamental statistical equations (Ilopf's equations) of turbulence and a field 

theory formulation for the computation of velocity correlation functions [14]. We, then, comment on some advances 

obtained in this way by means of renormalization group [15, 16] and saddle point techniques [17, 18]. In the next 

section, we examine the problem of two-dimensional turbulence. After a discussion of the orthodox view [19], the 

recent conformal field theory approach [20] is introduced. It should be clear, however, that purely two-dimensional 

turbulence is just an idealization, possibly corresponding, in the real world, to rotating fluids. An analysis of 

perturbations associated to the three-dimensional nature of space is carried out in section V, in the framework of 

the conformal approach [21]. Finally, in section VI; we comment. on some problems not touched in this review, 

along with general conclusions and possible directions of research. 
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2 Phenomenological Aspects 

Our basic assumption is that an incompressible fluid may be described, either in laminar or turbulent regimes, by 

the Navier-Stokes equations, 

at  v„,+vs oo va 	 + fo  + va2 ve, , 	 (1) 

i)-0.as  
	

(2) 

Above, vo  is the velocity field, P is the pressure, f. is an external force and v is the viscosity. Boundary and initial 

conditions have also to he defined. The role of pressure is just to assure the incompressibility constraint, given by 

(2). Taking the divergence of (1) and using (2) we get an expression for P that may be replaced back in (1), yielding 

atvo  + n a7 v o as v 7 	 va2t,„ 
	

( 3 ) 

where R ol, = 45„7  Oa a7 /(9 2  is the projector on transverse modes. The nonlinear term of (3) is associated to 

convection, representing eddy interaction at different length scales, while the viscosity term is the one responsible 

for energy dissipation, through diffusion. 

In order to discuss the laminar-turbulent transition, it is simpler to assume that there are no external forces 

acting on the system, that is, f. = 0. The transition is related, roughly, to a competition between convective and 

diffusive processes. To understand it, let us imagine that the fluid, initially at rest, was perturbed in a small region, 

ft, such that the rms velocity in this region is now V. As the fluid evolves, 12 will grow and we may ask how long 

it will take to reach a size of order L. There are, in fact, two time scald here, corresponding to different physical 

regimes. One follows from convection and is given by T c  L/V . The other characteristic time is due to diffusion. 

If the convection term in (3) could be discarded, meaning that diffusion is the dominating process, the dynamics 

would be completely described by the heat equation. Therefore, the time spent in the propagation of the initial 

velocity configuration would be Td p/ L 2 . We may define, thus, a dimensionless quantity, the "Reynolds number", 

given by 
Td LV 

RE 7c 	 . 

According to the above definition, R. --. 0 means that diffusion is much more important than convection, implying 

that the fluid is lamiliarly flowing. On the other hand, as R grows, convection starts mixing more and more portions 

of the fluid, diffusion is not relevant anymore and turbulence appears. We regard, more concretely, L and V as 

typical values for these quantities in an experiment, like the size of an object immersed in the fluid and the rms 

velocity close toils boundary layer, respectively. In the case of turbulence sustained by random external forces, L 
may be considered to be their correlation length, a natural macroscopic scale characterizing the effective system 

size. Perhaps the most well-known example of the laminar-turbulent transition is given by a flow past a circular 

cylinder. From experimental observations, it turns out that there are flow patterns below a critical Reynolds number 
R.„, like 'Carman vortex streets. Above R,, the flow looses its regular aspect and becomes turbulent [22]. For many 
diverse water flows. R c  = 103 , explaining why turbulence is so easily generated: for L 	Icm, the critical velocity 
is V, 	10cm/s. The laminar-turbulent transition at a finite critical Reynolds number is still a very open problem, 

waiting for more experimental and theoretical investigations. In most of the fundamental studies, the interest has 
been concentrated in "fully developed turbulence," related to the limit R 	co. 

In 1941, Kolmogorov [12] proposed a cascade theory of turbulence, establishing, through simple dimensional 
arguments, the universal decay of the energy spectrum in Fourier space, for the region of higher wave numbers. 
The cascade mechanism, qualitatively foreseen by L. Richardson [23] several years before Kolmogorov's work, is 

something that may be understood directly from equations (3). As mentioned before, in a sligthly diverse way, 

the convection term in the Navier-Stokes equations represents a coupling between different Fourier modes of the 

velocity field. On the other hand, the viscosity term implies that energy dissipation is more intense at higher 

wave numbers. Kolmogorov's idea, combining these two effects, is that in fully developed turbulence, eddies will 

"break" into smaller ones until they reach a minimum size, where dissipation acts. It is assumed that there is an 

(4) 
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energy cascade from large to small scales, characterized by an energy transfer rate which is constant. and viscosity 

independent. 

We may express the averaged energy density in the fluid as 

1 	2 
< V ( X ) > 	E(k)dk . 

CO 

(5 ) 

where E(k) is the energy spectrum at. wave number k. In order to define the energy transfer rate, c(k), at wave 

number k, we imagine that at some time, 4, when the fluid was already in a stationary statistical regime, all the 

external forces were turned off, so that 

c(k) = -8,[1 E(k,t)dki 	E c . 	 (6) 

Thus, Thus, according to Kolmogorov's reasoning, it follows that in general, E(k) = F(c, k). The only possible choice, 

considering the dimensions of E and k, is to take F(c, k) = C .2/ 3 k -5/ 3 , where kot hCko  is a dimensionless and universal 

constant. In a similar way, the "Kolmogorov length scale," q, where dissipation starts being relevant and viscosity 
cannot be discarded anymore, may be proposed to depend only on f and v. Using again dimensional analysis, we 

get q N  (v3/e2 ) 114 . It is important to observe that as viscosity vanishes so does n. Also, if one wants to study 

turbulence in a discrete version of space, at Reynolds number U, the number of lattice sites should be, roughly, 

N (L/7)) 3  = 119/ 1 , showing why it is so hard to perform straightforward computer simulations of turbulence at 

higher Reynolds numbers, without the use of additional assumptions. 
The Kolmogorov's picture of turbulence may be summarized by noticing that, it distinguishes essentially three 

different physical processes happening in Fourier space, each one associated to well-defined length scales: 
• Energy pumping occurs at scales given by 0 < k < 1/1„ where /, is the length scale of external random forces. 

This is not a universal region, since velocity correlation functions will depend on the specific forcing mechanisms or 
on the system geometry; 

• The energy generated at larger scales is transferred to smaller wave numbers across the region IA < k < 1/71. 
In particular, we hope that velocity fluctuations will have a universal character for IA < k < 1/q, the so-
called "inertial range," where energy pumping and dissipation are not, relevant and the energy spectrum decays as 
E(k) 	k -513 . It is also believed that translation symmetry and isotropy, broken at larger scales, are restored in 
the inertial range; 

• Finally, at scales given by k > lin, energy is completely dissipated, through annihilation of the small eddies 
created at the end of the inertial range. 

In the field theory approach to turbulence, one is mainly interested to find results in the inertial range, working 
in the presence of natural infrared and ultraviolet cutoffs, given by 1//, and 1 /n, respectively. In principle, the limits 
L co and ri 0 should be taken, leading to physically acceptable answers, like velocity correlation functions or 
probability distribution functions. 

A large amount of experimental arid numerical data has been collected supporting Kohnogorov's theory in its 

general aspects [21]. However, there arc deviations concerning predictions for the scaling exponents of the structure 
functions, Sp (IE— E< kV) — 17( IP >. From Kolmogorov's analysis, it follows that in the inertial range, defined 
by rl < 1E— gi r < L, we must have Sp (r) rC(P), with ((p) = p/3. In this respect, general arguments tell is 
that C(3) = 1, one of the few quantitative exact results in turbulence [25], and also that ((p) is a convex curve, that 
is ("(p) < 0, as it follows from probability theory [26]. A nselmet et al. [13] obtained experimentally that ("(p) < 0, 
in contradiction with the expected linear behavior of ((p). The physics behind this disagreement has to do with an 
old comment by Landau 110), regarding Kolmogorov's theory. The point is that in the eddy fragmentation process, 
it was assumed that the energy transfer rate is a non-fluctuating quantity. However, it is likely that, while the 
mean energy transfer rate is really scale independent, fluctuations might introduce a length scale in time problem, 
modifying the scaling exponents. Later on, and even before experimental studies. Kotrnogorov [27] arid Ohukhov 
[28] tried to include the effects of possible energy transfer fluctuations in the original cascade theory. Anyway, 

experiments still show deviations when these improvements are taken into account. 
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A better phenomenological understanding of the scaling exponents is due to the multifractal theory of eddy 

fragmentation [7], where it is supposed that the eddies generated in the cascade towards smaller scales do not 

fill all space, but in fact give rise to a rnultifractal structure. The multifractal model is physically related to the 

phenomenon of intermittency ph viz., the existence of strong fluctuations of the velocity field, far beyond the ones 

predicted by any simple gaussian statistics. It is, however, a very phenomenological model, containg a certain 

number of arbitrary parameters whose values are defined so that the best agreement with experiments may be 

achieved. Recently, a conceptually simpler phenomenological model with no arbitrary parameters was proposed 

[29], based on a hierarchy of singular structures like vortex filaments, leading to an accurate prediction of the 

scaling exponents. 

Another recent progress concerns the behavior of S p(r) for the dissipative region, r < q, where no simple scaling 

relation exists. Surprisingly, the crossover from the inertial range to the dissipative region was found to be well 

described by Sp (r) 	(r)r1 ((P) , where f(r) gives corrections to the scaling behavior in the dissipative region [30]. 

'['his result, named "Extended Self Similarity" (ESS), has been useful for the analysis of experimental data, yielding 

more precise values for ((p), resorting to the fact that ((3) = 1. We believe that ESS is indeed a property shared 

by a larger class of multifractal systems, like strange attractors and localized electrons in random potentials, as 

indicated in some numerical computations [31]. 

3 Statistical Field Theory Formulation 

In the statistical field theory approach to sustained turbulence, we are interested to compute E\-point correlation 

functions, like 

GM(1" ii:ti)) E< 	 (7) 

There are many ways to define the averaged product of fields considered in (7). We may choose a set of different 

initial conditions and, then, after a long time, when the fluid has reached a stationary statistical state, take the 

average over the ensemble generated in this way. Another procedure, this time independent of initial conditions, is 

based on an ergodic hypothesis, yielding 

I 	
N 

. 
—r MIT vo 	, Li  + . 	 (8 ) 

i=1 	 T—co T 0 	iff;; 

A third method of computing averages, which will be the one we will consider in practice, is to imagine that the fluid 

is evolving under the influence of external random forces. Averages are now taken over the ensemble corresponding 

to all realizations of the stochastic forces. Of course, in order to obtain meaningful results, we have to suppose that 

the random forces fa  act at large length scales, without spoiling general features of the inertial range, which is the 

region we want to describe. The simplest: choice for the statistics of random forces is the gaussian case, where 

< 	t)f„,(2.  , e) >= gb., (05(t — e)F(Ii  

Above, !'(r) is a function which decays quickly for r > L. We may take F(r) 	L3 exp(—r2 /L 2 ). Physical results 

correspond to the large scale limit, L 	c*, such that the Fourier transforn of F(•) approaches F(k) 

Defining the correlation function (7) at equal times, ti = t, an equation describing the asymptotic stationary 

statistical limit may he promptly obtained: Og G{1,,v}} ({ii , t}) = 0, that is, 

0 = E < 	 > . 	 (10) 

Using now equations (3), we may replace the above time derivatives by expressions containing random forces and 

space derivatives of the velocity field. We get 

0 = L 1- < 

(9 ) 
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02 

+ 9 	 — Ed) < 
-x, 

where we used the result that for gaussian random forces, described by (9), holds [32] 

N 	 N 	 N 

	

< (E, e) 11 v.. (ii , 0 >= g E 	is < 	 • 

	 (12) 
i=1 	 i=1 

The so-called Hopf's equations, given by (11), mix correlation functions with different number of points. We have, 

therefore, an infinite chain of coupled equations, similar to the Schwinger-Dyson equations of quantum field theory. 

In the past, many (modestly successful) attempts based on closure techniques were devised, consisting of truncations 
which would render (11) a finite and closed set of equations [33]. 

A further simplification is obtained if these correlation functions arc studied in the inertial range, that is, taking 

< I. i — ijI « L. In this situation, we may neglect in (11) terms proportional to q and LI, since external forces 
and viscosity play their roles out of the inertial range. Hopf's equations become now 

0 = 	< 	 (13) 
j=1 

The consequence of neglecting the mechanisms of energy injection and dissipation is that we need to do more than 
merely solve (13). We could find, in principle, many solutions of the simplified Hopf's equations, with none of them 

satisfying the physical imposition of a constant energy flux through the inertial range. In order to establish a relation 

for the energy flux in Fourier space, let us consider the fluid as initially at. rest and contained in a volume V co, 
where periodic boundary conditions were imposed. Its evolution, as governed by the stochastic N-S. equations, will 

be described, therefore, by translation invariant and isotropic correlation functions. The time dependence of the 
energy spectrum is obtained from 

0 R E(k,t)+ 	J (k , t) = 2 0 < 1,41-c Olio ( , I) > +c.c. > — k 2  E(k t) , 	 (14) 

where 

J(k,t) = 1 
	

d3 12 < Eil wr vgapt17 1 	t) > 	 (15) U 

and 	 is a. notation for the Fourier components of the convection term. Equation (14) gives the energy 
balance in the fluid. In the asymptotic statistical limit, at E(k,t)— 0. In this case, taking a wave number k in the 
inertial range, 1/L « k < 1/q, the RHS of (14) may be discarded, implying that oh J(k) = 0. This means that in 
real space, for 1J < < L, we must have 

< (11,, 7 10/3v.,„) l zvc,(c) 	1/1 0  = coast. 	 (16) 

In this way, Ilopf's equations (13) are supplemented by the contraint of a constant energy flux in the inertial range, 
written as (16). If (13) and (16) admit more than one solution, further work will he necessary to single out the 
answer compatible with the large scale statistics of the random forces. In three dimensions, the solution of the 
above equations is still a major problem of turbulence theory. In two dimensions, as we will see in the next sections, 
some advances were obtained recently, through the application of conformal field theory methods. 

A field theory formalism, developed by Martin, Siggia and Rose [14], from which Wyld's perturbative expansion 
[34] may be obtained, addresses in a fundamental way the problem of computing velocity correlation functions. It 
amounts in defining the generating functional 

ZU] = 	DbDvexp ( — S[v, f?) i l d d Ecitjo(i,t)v o (i,t)) 	 (17) 

where 

S [u,1;]= i r d d idtc4„(00,,,,+1:1 07 tieOpti-,, — va 2 v a ) 

g I dd il dd i2dt'O n  (El 01)-1(i2, nay 	 (18) 
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in such a way that N-point correlation functions may be written as 

I i-rN  
Grc:,)}({Eii tip= 	bia  (4, ti)ZU1 

j.o 	

(19) 

For the sake of simplicity, we omitted, in (17), a jacobian which just cancels tadpole diagramms in a perturbative 

expansion, where the only vertex is given by the nonlinear convection term. 
Straightforward perturbation theory is faded to fail here. As the limit L 	03 is carried out, individual terms 

in the perturbative expansion will show infrared divergencies, suggesting, due to unsuccessful efforts to regularize 

them, that the problem has to be attacked essentially by nonperturbat.ive methods. Anyway, a renormalization 

group procedure, based on a perturbative approach has been studied [15], where the force-force correlation function 
(9) is replaced by a different expression, which would, hopefully, correspond somehow to an effective theory of the 

inertial range. The replacement is given, in Fourier space, by 

	

r(k) Doka-d( mg k 2 ) -0 	 (20) 

Above, d is the dimension of space, c > 0 is an arbitrary parameter, playing a role similar to the one in the 

&expansion in critical phenomena, and mo — 0 is an infrared regulator. It turns of that the field theory given 

by (17) has an infrared stable fixed point, with E(k) k 1- it and renormalized Reynolds number R E 1/2 . 

As c — 4, we recover Kolmogorov's law of energy spectrum decay. Even though there are conceptual problems 

(turbulence should riot be associated to a stable infrared fixed point) and also technical difficulties (there are infrared 

divergencies as e > 3) in this ad hoc formulation, a number of quantitative results [16] show a remarkable agreement 

with experiments, like the prediction of the Kolmogorov's constant, Ck o  ti  1.6. 

An important problem of turbulence is the evaluation of probability distribution functions of velocity dependent 

observables, like 0(v,) = (.6(i) - 17(0) • ii, where. is an arbitrary unit. vector. They are defined as 

ao 

P (0(v0) = 
2r J_ 

c/A < exp (iA0(v a )) > . 	 (21) 
ro 

Recently, it has been proposed that the saddle-point solutions obtained from the modified action 

SA[v, = S[v, + 	) 	 (22) 

may give the non-gaussian tails of probability distribution functions related to intermittency [17]. The first inves-

tigations so far have been motivating, specially regarding applications in one-dimensional turbulence, where many 

diverse techniques may be compared [18, 35, 36, 37]. 

4 Two-dimensional Turbulence 

Investigation of turbulence in other than three dimensions has shown, in general, interesting concrete applica-

tions. In the real world, approximately two-dimensional motion may be observed in many systems, like soap films, 
stratified flows, or rotating fluids [38]. The later, in particular, have been receiving much atention due to their rel-

evance to oceanic and atmospheric sciences. One of the advantages of lower-dimensional turbulence is that higher 

Reynolds numbers may he achieved in numerical simulations. Also as a general rule, intermittency effects are 

more pronounced here than in the three-dimensional case, making it easier, in principle, to study their generation 
mechanisms. 

Defining the stream function 12) by the relation v„, = efi o aob and the vorticity w = 192 1,b, the two-dimensional 
N-S. equations for c,. ■ may be written as 

19 1 447  EapOn0 02 (9130 = tnBaafi ij a2"1  • 
	 (23) 

In the inviscid case 	= 0) and in the absence of external forces, the above equation implies that there is, be sides 
energy, an infinite number of conserved quantities, given by 

= f d2 i1.1" , 	 (24) 
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where n is a positive integer. 12 is known as "enstrophy," having an important role in the cascade picture of two-

dimensional turbulence. Kraichnan [19] advanced the hypothesis that not only energy, but also these additional 

conserved quantities would flow across the inertial range. A careful analysis of the energy and enstrophy fluxes leads 
to a surprising result. Energy is transported now to larger length scales, while enstrophy flows towards smaller ones, 

in such a way that both fluxes cannot coexist in the same range of wave numbers. Regarding the energy spectrum, 

if the system is forced at wave number k 0 , the energy transport to wave numbers k < leo  is characterized by 

E(k) 	k -513 , as in the Kolmogorov's theory, and the constant enstrophy flux towards k > ke is associated with 

E(k) 	k -3 . It is believed that Kraichnan's idea of the enstrophy cascade is physically correct, but numerical 

simulations [39] show that the energy spectrum decay is given by exponents close to -3.5, varying according to the 
nature of the large scale external forcing. 

Polyakov has suggested, recently, a conformal field theory approach to two-dimensional turbulence {20], from 

which the exponents describing the energy spectrum decay may be found exactly. Conformal methods have been 

very important in the understanding of critical phenomena in two dimensions, where specific models were seen to 

correspond to different. realizations of the Virasoro algebra. Among the conformal theories, the "minimal model? 

play a special role, since they have a finite number of scaling operators. These models [40] are generically defined 
by a pair of relatively prime numbers, (p, q), with p < q. They contain a subset of (p - 1)(q - 1)/2 scalar primary 
operators,tr ( m labelled by I < < p and 1 < n < (q - 1)/2, if p is even, or 1 < m < (p - 1)/2 and 1 < n < q, 

otherwise, having dimensions A ( ,,n)  = ((pia - qtri) 2  - (p - q) 2 ) / 4pq. The reason for the choice of scalar operators 
is that we deal with isotropic correlation functions iii the turbulence problem. The operator product expansion 
(OPE) of two primary operators ti.; ( ,.,,,,)(z) and t/i(,..,,„Azi), with iz - — U is written as 

00%4 , ) (z)th r„„)(z t ) 	 E C(r." 31  
fOl..••,nkMirlii•-.,m , )} 

(r3,33) 	 (,1,M) 

X 1.,_ n 	 ••• - aki aE n  ZiE rn  O(ra ,s 3 )(:) 
	

(25) 

where 	r2 1-1- < rs  < 	-Fr2  - 1, 2p- -r2- 1), 	- s2 I+ 1 < s3  < 	+ s2 -1, 2q - - 82 - 1) and we 

have introduced, in (25), the Virasoro generators of conformal transformations, L, and L._„ . The interest, in these 
models is related not only to their finite number of primary operators, but also to the fact that their dimensions 
and the form of short distance products are completely known. 

Let us now apply the above operator structures in the probletn of t.wo-dimensional turbulence. We may write 
Hopf's equations for the vorticity correlation functions, 

01 1< w(xi,t)w(x2,1)...w(z„, t) 	= 0 , 	 (26) 

where time derivatives are expressed through equations (23). In the inertial range, as discussed in the previous 
section, both forcing and viscosity terms may he neglected in order to formulate a simplified set of Hopf equa-
tions. Considering, furthermore, the convection term in (23) as a vanishing point-split product. of fields, that is, 

A,, , I =1„1(dz7n)Eattantb(z)0 2 0/3t✓(2') — 0, when Iz - zli 0, we would have, then, an exact solution of (26). A 
concrete realization of this possibility may be achieved if we regard the stream function 7,0 as a primary operator of 
some conformal minimal model. In this case, we may use all the available information on operator dimensions and 
OPE's to obtain physical results. According to this assumption, let, q, be the primary operator which has the lowest 
dimension, AO, appearing in the OPE 00, between fields with the same dimension AO. Taking a a lal exp(0), we 
will have, thus, 

dzi 
lirn4-11=1,4 --eno11n0(z)020130(zi) 

dO [ag0.0, - 0.,2,(9.021 00(46-2")  Ec{n;,, }  L_ n, 

oii)( 10-2°0 ) [L_ 2 12 i  - 	d 

aE naE mcqz, 

(27) 

as the dominant contribution in this short distance product. It is important to note that in order to get (27) it was 
necessary to set C,• {1;2}  = C12;11  and C{1 ;(1,1)} = C{(1,1) ; 0, as it follows from the pseudoscalar nature of the e factor 
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above. We see, then, that (27) vanishes with tel — 0 if 

6.0 > 2,1.10 , 	 (28) 

which is one of the constraints that the chosen minimal model has to satisfy. An additional constraint comes from 

the condition of a constant enstrophy or energy flux through the inertial range. In the energy cascade case this 

means, according to (16), that < ti c,(x)ve,(0) 	x 0 . Analogously, it may be proved that the condition for a constant 

enstrophy flux is < w(x)to(0) 	x°, which gives 

< di( x),..0 ( 0) 	(aa) { a6-2°0  < RI' - 2 L 2  i — 	ow] 32 11(0) > 
	

(29) 

The correlation function at the RHS of (29) is now evaluated by means of a purely dimensional argument, as 
L-2("+"+3), which makes sense if one thinks that there is an effective infrared cutoff in the theory at the length 

scales given by L, where random forces act. Imposing (29) to be independent of L, we get 

	

Arb+Atii+3=0. 	 (30) 

In the case of an energy cascade, the argument is the same and the constraint turns out to be 

+ 	+ 2 = 0. 	 (31) 

It is known that there is an infinite number of minimal models compatible with (28) and (30) or (31) [41, 42). 

The general belief, and still an open problem, is that there may be universality classes, associated to the statistical 

properties of the forcing terms, which would single out one or another of the possible solutions. Let us note that the 

minimal models found in this way are non-unitary, since the short-distance product 1,6(z)tb(z9 goes to zero when 

z z'. 
An alternative analysis of conformal turbulence regards the existence of boundary effects on the vacuum ex-

pecation values (VEV's) of single operators in non-unitary theories [44 In this case, one has to consider the OPE 
between d(x) and .0(0) in (29), picking up the most relevant operator, let us say, x. Now, (30) is modified to 

r.1¢ + d - ix + 3 = 0, with an analogous change for the constant energy flux condition. Some of these further 

solutions (in the enstrophy cascade picture) were obtained in ref. [44]. 

The connection of the conformal approach with real experiments or numerical simulations is made through 

the computation of inertial range exponents, which describe the decrease of energy in the region of higher Fourier 

modes. In the situation where VEV's of single operators vanish, the inertial range exponents are given by 4Atb + 1 
and, in the opposite case, by 4Atb - 2:10 + 1. A good agreement has been reached between the former possibility, 

for the direct enstrophy cascade case, and numerical simulations [39, 45, 46] of the two-dimensional Navier-Stokes 

equations. There are, however, deviations with the results obtained in real laboratory investigations [47]. In fact, 

as we will show next, the inclusion of three-dimensional effects in the conformal field theory approach may give 

corrections to the inertial range exponents, in reasonable agreement with experimental data [21). 

5 3-D Perturbations in Conformal Turbulence 

In a series of interesting experiments, Hopfinger et at [48, 49, 50] studied the turbulence phenomenon as it happens 

in a rotating tank, where at its bottom there was an oscilating grid responsible for perturbations of the fluid motion. 
According to the Taylor - Proudman theorem [51, 52, 53] a rotating fluid tends to behave as if it were two-dimensional 
and in fact this was observed in the form of coherent structures (vortices) organized in the direction parallel to 
the rotation axis of the tank. Ilowever, "defects" in the vortices were seen to propagate from the very turbulent 
region at. the bottom of the tank up to the effectively two-dimensional system. The essential picture extracted from 

these observations is that the fluid should he best described in terms of two-dimensional equations containing not 

only large scale forcing terms but also small scale random perturbations, originated from either vortex-breakdown 

or soliton pulses propagating along vorticity filaments. The experimental data suggested then the existence of an 

inertial range, likely to be related to a direct enstrophy cascade and well approximated by E(k) which 
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represents a less steep energy spectrum than the one obtained by Kraichnan, E(k) k -3 , or even other proposals 

[54, 55], not excluding conformal turbulence [41]. This puzzingly result is presently understood to he due only to the 

measurement techniques used in the experiments, based on the analysis of the dispersion of suspended particles in 

the fluid [50]. More recently, similar experiments were conduced by Narimousa et al. [47] and direct measurements 

of the turbulent velocity field were recorded. '['he results pointed out the existence of a possible energy spectra 

E(k) k7 5/3  at lower wave numbers, in agreement with the conjecture of an inverse energy cascade [19], and a 

range at higher wave numbers, where E(k) N k -5.5±13: 5 . In this region, the spectral slope was seen to depend on 

the controlling external conditions, with results varying from E(k) k -5-5  up to E(k) k -6. °. It is worth to 

note that a spectral law E(k) 1.7. -5  follows from Rhines theory of /3-plane turbulence [561 and, alternatively, is 

closely approximated by some solutions of the constant. enstrophy flux condition in the conformal approach, like 

the minimal models (9, 71) or (11,87). 
The variation of exponents obtained in the experiments may have a theoretical counterpart in the existence 

of a set of operator anomalous dimensions, making it interesting to analyze the problem from the conformal field 

theory point of view. It. is clear, however, that the inertial range exponents, found in ref. [41], cannot reproduce the 
experimental situation. We believe that the important ingredient, missing in the previous conformal approach, is 

precisely the existence of three-dimensional perturbations, which must be taken into account in any realistic model 

of a quasi two-dimensional fluid. 

In view of the above considerations, let us write the two-dimensional Navier-Stokes equations as 

vpoov a 	vo2 tict 	+ 9.62) _ De„. p 	 (32) 

where jc,(1)  and /12)  are stirring forces defined at large (L) and small 	<< < L) scales, respectively. The dimensionless 
constant. g represents, roughly, a coupling with the three-dimensional modes of the fluid. We assume that the 
dissipation scale, r, , is related , in principle, to the other scales of the problem as ri << p << L. This means that 

even though the perturbations act at very small scales, when compared to the macroscopic size of the system, they 
are still much larger than the scale where dissipation occurs. 

An important point here is that the condition of incompressibility, when formulated in three dimensions, reads 
a' vi + av), + 8:03  = 0, suggesting that the "projection" of this constraint to the two-dimensional world has to be 
given by 0,„v„ = 0(g), in the framework of equations (32). The velocity field may be described, then, by means of 
a stream function, 0, and a velocity potential, 0, as 

va = cp„Oi4 + 	. 	 (33) 

It is of further interest to study, besides the vorticity w, the divergence of v„, given by p = go2 0. An exact, although 
infinite, chain of equations may be generated if we expand 0 and 0 in powers of g, substituing them into (32) and 
collecting the coefficients of the obtained series. Defining, in this way, 

C.1 

	

vp, = E  n 	w  E  
n=0 	 n=0 

CIO 	 Cn) 

= E  fin o(n), 
p= 

E 
n=o 	 n=0 

we get the following set of coupled equations, 

n -1 
E c.„ 0.,,,,(p) 0802 0(.-p) E  
p=0 p=0 

//82 1.dt n  ) 	(0800,42) 15n,1 

+ coo  On  v,( 0 )00  0200) = v (?2,0 1.0) + (co o°  /1; 

n -1 

▪E [a.8,0(p) ana„on-p- I) (9.0(0 1Loyri-p-1)] 

p=.11 

8,.(0 

8 1 w(o1 

in) 8,p' n) 

[do  OP),(913  82 zir) (n - p - 1) 

(31) 

820(p)020(n -p- 
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E [2( c,130130c,th ( P ) 0,, t,b( n— P) ( „pc% V; ( " —  P )  0002  401 
p =0 

n +1 
E [8.000 (p) aciook(n_p+1) _ 820(p) a2 On— p+11 = v p( n) 

p=0 

+2.90a000 )0.0013(  iv) at p(° ) 	 + 2c „ft apa 40 )  ac09,4(°)  cap&AV °  ) 002  OM 
_2a2 o(o) 02 	p ox do) + ac, f12) , 

and, finally, the constraint of incompressibility for the g-independent part of the velocity field, which defines the 

pressure term, 
(3a8,50 0 ) ) (0,0000)) — a2 0(0) ,92 00) 	 492,, 	 (36) 

In the ahove expressions, u > 1. We have obtained, therefore, a set of stochastic partial differential equations. In a 

statistical description, reflecting a stable asymptotic limit for the correlation functions of c..) and p, Hopf equations 

may be straightforwardly written as 

a, <11,,,(-0(.;  , 	II p(n  j )  (3! , >=- 0 . 	 (37) 

i=1 	 j ..,v 

We observe now that in (35), equation ii) is identical to the one which corresponds to an unperturbed (y = 0) 

two-dimensional fluid. This means that the field OM will be related to an enstrophy or energy cascade, even in 

the presence of three-dimensional effects. This field plays the role of an external random variable in the other 

equations, since its dynamics is independent, of the other components 10(n) or to the field 0 (in general, the subset 

(0(0) , , ;I:(" , OW, 0 { " -  Ill contains fields which act like external random perturbations in the equations 

for rb(P) and 0(P -1 ), with p > n I). Considering that (35) gives relatively complex equations, the analysis of the 

problem might seem hopeless, being perhaps adressed•only to a numerical treatment. However, we can extend 

the conformal approach, applied previously to the unperturbed case, to find here solutions of the Hopf equations. 

Our basic assumption is that not only (/)( 0 ) but also the other components in the power expansions of IP and ¢ arc 

primary operators which belong to some minimal model in a conformal field theory. It is necessary, then, to define 

a scale E, possibly associated to intermittency effects, which allows us to write the following dimensionally correct 

expansion, 

r t2(4, 0 00 -av, (0.) n 	) 
11)  = 	n 	 Y 

n=0 
CU 

46 E fn, e2(4,000.-aon)l y ri o „) 

n=0 

(38) 

where rk(n) and 0 ( " )  have dimensions ‘10(" 1  and L10( n ) , respectively. 

The introduction of a scale e in (38) means that the perturbed system exhibits a breaking of scale invariance 

in the inertial range. It may he seen that this phenomenon is signaled by the existence of constant enstrophy or 

energy fluxes which depend on the small scales of three-dimensional perturbations. IL is conceptually important to 
understand the physical origin of E. A clue for this comes from the structure of couplings between OM and the 
other fields, as expressed in (35). As we have already observed, 0 0)  is effectively an external field in the equations 
for On)  (with n > I) and 0(n )  (for any n). In this way, it is plausible to have a relation between E and the scales 
involved in the dynamics of OM. Now, if we consider the turbulent lirnit of the equations for ;WO, corresponding to 

v 0 (or, alternatively, n — 0), we are left. essentially with the correlation length L of large scale random forces. A 
simple choice, thus, is to consider E = L. In this respect, one may observe that the small scale it could also he used 
in the definition of E. We have, however, physical reasons to believe that this does not happen: p is related to the 
forcing terms in the equations for 0(r)  and 0 (1) , which we expect to he irrelevant when compared to the nonlinear 
convection terms in the range of wave numbers given by << I/p. 

(35) 



92 	 XVI/ Encontro Nacional de Particulas e Campos 

It is interesting to note that there is an analogy between our problem and the statistical mechanics of second 
order phase transitions for a system close to its critical point. In this case, one can study deviations of the critical 

temperature 7', by means of an expansion in (T —T,) and through the use of the operator structure of the critical 

theory [57]. Here, in the turbulence context, the "critical theory" is just what we get when g 0. 

We are interested to get possible combinations of primary operators in equations (38) that would not affect, in 

the limit 0, the constant enstrophy or energy fluxes, derived from the dynamics of the field 0 0:1) . We may 

write a set of operator product expansions from equations (35), generalizing (27). In this way, all the conditions 

necessary to find minimal models related to an enstrophy or energy cascade in a quasi two-dimensional fluid may be 

obtained. We will not write these conditions here, which would render our discussion very technical. The important 

observation is that the models we have to find must belong to the infinite set of solutions found in the former 
study of unperturbed conformal turbulence. This follows directly from the conditions which depend only on 1,b(°). 

A strategy of computation could be, thus, just a numerical analysis of all possible combinations of fields for these 
previously known minimal models. As straight it may sound, this approach is hardly useful when the number of 

priniary operators becomes large, a fact that happens already for the first few minimal models. 

A more interesting computational scheme is provided if we look for solutions of the form 

= IGo + fa(g)th 

= —Oo 
	

(39) 

where f,,,(0) = fb(0) = 0, that is, we are considering solutions with ili (P ) 	, for p > 1, and ,O(P) = Os, for 
any p. This approach is valuable since it turns out that if it is impossible to satisfy the constant flux conditions 
through any pair of fields th and 00, then there are no further solutions for the model under consideration. All our 
task is, therefore, to consider the set of minimal models representing conformal turbulence without perturbations, 
from which the fields 00 may be immediately obtained, and add, according to the new constraints associated to 
three-dimensional effects, the fields 0 1  and 00. 

In the study of the inertial range exponents, we may think of, at, least, three limits for fa ,b(g): a) g 	0, that 
is, fa,b(g) 0, b) I, and c) g >> 1, which may he defined as a "strong coupling" regime. In the first 
case, the perturbations play a negligible role and everything is described by unperturbed conformal turbulence. A 

competition between exponents appears in the second case, where the less steep spectral slope will be the most 
relevant in the limit of higher wave numbers. We see, in this way, that cases a) and b) cannot. give any of the 

steeper spectral slopes observed in real experiments. The third case is, in fact, where we have some hope to find a 
relation with experimental results. It would be unphysical to have fa,b(g) 	0, for large values of g, since in this 
limit we would recover the unperturbed system. Let us assume that fa,b(g) diverges as g 	co. This means that 
the inertial range exponent derived from th may be discarded and we have to analyze only the competition between 
the exponents obtained from tb i  and 00. 

An investigation of the first six minimal models for both the enstrophy and energy cascade cases was carried 
out. In the enstrophy case, there are solutions for all the models studied. The results show a good agreement with 
experimental verifications, with the only considerable deviation occuring for the very small set of two solutions for 
the model (2,21). The solutions, excluding the model (2,21), are organized in the table below, where values of mean 
exponents and standard deviations are described. It is clearly seen that the perturbed exponents are in general 
lesser than the exponents of the unperturbed fluid. 

minimal model exponent (g=0) mean exponent (g 	0) standard deviation 
(3,25) -4.6 -4.90 0.28 
(3,26) -4.23 -5.25 0.27 
(6,55) -3.73 -5.89 0.21 
(7,62) -4.03 -5.46 0.28 
(8,67) -4.51 -4.90 0.34 
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Table I: Statistical data related to the solutions for the constant enstrophy flux condition, iu the strong-coupling 

regime, where a comparison is made with the unperturbed values of the inertial range exponents. 

In the energy case, an interesting fact happens: most of the models studied do not yield any solution for the 

fields ?Pi and Oa. Only the model (10,59) gives solutions, all of them with inertial range exponents close to —3.0, 

which do not support the conjecture of a Kolmogorov exponent —5/3 for the range of lower wave numbers. It is 
worth to note that E(k) k -3.13  has been observed in atmospheric studies, which have been puzzingly for a long 

time, since they refer to large length scales. Thus, the apparent agreement with Kraichnan's prediction seems to be 

fortuitous . However, more theoretical and experimental work is necessary in order to arrive at a conclusive answer 
on this point. 

6 Conclusions 

We discussed briefly the field theory approach to turbulence, keeping in mind its most important phenomenological 

aspects. We focused, then, in a more detailed way, on the application of conformal methods to the problem of 

two-dimensional turbulence, considering also the effects of three-dimensional perturbations. 

We believe that the large experience accumulated in the last decades, through the study of field theory models, 

will be extremely useful towards a better understanding of turbulence. Of course, the connection of turbulence and 

field theory is not expected to be only one way. Perhaps one of the important advances to follow from this relationship 

regards multifractality, which is a peculiar scaling behavior observed in many different systems. The problem here 

is to find a general description, similar to a renormalization group treatment. In this respect., Gawedzki [58] evokes 

the idea of an "inverse renormalization group" analysis of turbulence, where the scaling behavior of correlation 

functions arises in the ultraviolet region, opposite to what happens in critical phenomena. It would be desirable to 

have also some perturbative expansion in turbulence, free of infrared divergencies. A recent proposal by L'vov and 

Procaccia [59) seems to generate a well-behaved perturbative series, from the replacement of velocity by a galilean 

invariant field, which would cancel the infrared divergencies. 

Another interesting recent idea worth of mentioning, is the "loop" formulation of turbulence 1801, similar to 

the well-known loop approach of gauge theories. The interest, here is concentrated on the galilean invariant order 

parameter 

F[C,1 -< exp [i 	17. dzl > , 	 (40) 

were C is an arbitrary loop. Migdal conjectured that F[C] should depend only on the minimal area enclosed by C. 
Related numerical investigations [61] show that further theoretical work is in order, mainly regarding an account of 

intermittency effects. 

Turbulence is, at the present moment, a fundamental open problem of theoretical physics. S. Orszag once 

observed that we know more about the small scale structure of the proton than about turbulence in some atmospheric 

layers. There is some truth in this comment., even if we know that "quantification" of scientific knowledge is always 
a vague concept. 
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Abstract 

We study a class of lattice field theories in two dimensions that include quantum 
Yang-Mills theory as a particular example. Given a two dimensional orientable 
surface of genus g, the partition function Z is defined for a triangulation with n 
triangles of size E. These models are called quasi-topological in the sense that Z is 
a function of g, n and E only. We compute the partition function and show that the 
continuum limit is well defined if when € 0 the model approaches a topological 
theory. We show that the universality classes of such models can be easily classified. 

1 Introduction 

Exactly soluble models in statistical mechanics [1] and field theory are extremely valuable 
examples where one hopes to learn about the physics of more realistic models where 
exact calculations are not available. The Ising model, for instance, has proven to be an 
incredible source of important ideas, such as duality and finite size scaling [2], that can 
be applied to much more general situations. 

The simplest examples of soluble models are probably the so called lattice topological 
field theories [3, 4, 5, 6]. Let M be an oriented 2-dimensional compact manifold and TM 
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a triangulation of M. Starting from a quite general ansatz, the authors of [4] determined 
what are the conditions that the local Boltzmann weights must satisfy in order that the 
partition Z(TM) do not depend on the specific triangulation TAI of M. In other words, 
Z(TM) is a topological invariant of M. A large class of models, corresponding to semi-
simple associative algebras, were found. The reason we say that these lattice topological 
theories are soluble is because to compute Z(TM) for a triangulation TM with an arbitrary 
number n of triangles, it is enough to take another triangulation Tgf  with the minimal 
number of triangles, and compute Z(T2f) explicitly. 

Lattice topological field theories (LTFT for short) are in a sense too simple. They are 
almost trivial from the dynamical point of view. Consider for example a cylinder with 
boundaries S'US 1  , and the corresponding evolution operator U (or transfer matrix in the 
language of statistical systems). It is trivial to show that for a LTFT U is equal to the 
identity when restricted to physical observables. (However, if instead of a cylinder one 
has some other manifold interpolating the two circles S 1  U Sl, U is no longer the identity.) 
Despite their simplicity, topological models represent an attractive class of models since 
they can be generalized to higher dimensions and still be exactly soluble. The same type 
of models considered in 141 have being carried out in 3 dimensions [5]. A different approach 
have been used by the authors of [6] to produce subdivision invariant theories in several 
dimension, including four. 

There is a large variety of fully dynamical soluble theories in d = 2 [1], but in di-
mensions bigger than 2 this is far from being true. Unfortunately the general situation is 
that physical models in higher dimensions are either soluble but too simple as LTFT's, 
or dynamically nontrivial but too hard be be exactly solved, as for example lattice gauge 
theories in 3 dimensions. It would be desirable to find a class of models interpolating these 
two extreme situations. We want to look for models that are a little more dynamical than 
LTFT and still can have its partition function computed. The answer is not known in 
general, but in two dimension Yang-Mills theories (YM 2 ) are legitimate examples of such 
models. It is well known that the partition function of a gauge theory on a 2-manifold 
M is not a topological invariant. Nevertheless its partition function can be explicitly 
computed both in the continuum and in the lattice [7]. It turns out that the partition 
function depends not only on the topology of M but also on its area a. This is an example 
of what can be called a 2d quasi-topological field theory [7]. Another feature of YM 2  is 
that the theory is a perturbation in a of a topological theory. When the area a goes to 
zero, the model becomes topological. 

In this report we shall discuss how to construct quasi-topological theories on the lattice. 
They will include gauge theories as a particular example. Let Mg  be an orientable 2d 
surface with genus g, and T(g, n) a triangulation of M9  consisting of n triangles. For 
simplicity, we will assume that all triangles have the same area e. To each link in T(g, n) 
we associate a dynamical variable taking values in a discrete (or even continuous) set I. 
Then we follow [4] and look for models such that the partition function Z(T(g,n),E) 
depends on the topology through g, on the total number n of triangles, and on c but not 
on the details of the triangulation T. In other words, Z is a function Z(g, n, e) of the 
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global topology, the number of triangles and their size. That will be our definition of a 
lattice quasi-topological field theory (LQTFT). We will show that the continuum limit 
of a LQTFT is well defined whenever the model is a deformation of a lattice topological 
theory. The partition function Z(g,n,e) can always be computed and the continuum limit 
is recovered by taking n co and e 0, while keeping the total area a = ne fixed. 

We start by defining what we mean by a lattice quasi-topological field theories in 
Section 2. In Section 3 we compute the partition function in full generality. The dynamics 
of LQTFT' is discussed in Section 4. There we compute the evolution operator U for the 
case of a cylinder and comment on how to extend the answer to the generic situation. We 
also determine what are the physical observables and compare with the topological case. 
In Section 5 we study the continuum limit. Section 6 is dedicated to a simple example. 
Finally on Section 7, we conclude with some remarks. Some results used through this 
report are given in the Appendix. 

2 Quasi-Topological Lattice Theories 

The definition of the model follows the basic steps of [4]. Let T(g, n) be a triangulation 
with n triangles of a two dimensional surface Mg  with genus g. A configuration is determ-
ined by assigning to each edge of the triangulation a "color" i belonging to a index set I. 
If the set I is finite, we may think of i as a sort of spin variable siting on the links of the 
lattice. For gauge theories, I is nothing but the gauge group G. To each triangle A, with 
edges -colored by i, j, k and area E, we associate a Boltzmann weight Ciik(e). We assume 
that all triangles have the same area e and that Ciik(e) is invariant by cyclic permutation 
of the color indexes, i.e., 

	

Cijk(e) = Ciki(c) = Ckij(c). 	 (2.1) 

The weight associated with two triangles, as indicated in Fig. 1, is determined by a 
gluing operator gki and is given by 

Cij a (E) gab  Cbki(E) 	 (2.2) 

where the summation on the repeated indexes a and b is understood. One may use gob to 
lift indexes and write (2.2) as Cii b (c)Cbkr(e) or Cija(e)Caki(e)• 

It will be convenient to restrict the gluing operator g ij in such way that there exists a 
inverse gij, 

• giagaj = 	 (2.3) 

The partition function for the triangulation T(g, n) is obtained by perforMing the 
gluing operation on all pair < ab > of edges that should be identified in order to build 
the triangulation. In other words 

Z(T(g,n),e) = 	H ciik(egab 	 (2.4) 

	

) 	. 
AET <ab> 
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Fig.1. The figure shows how the gluing operator g ab  is used to give the weight corresponding to a pair 
of glued triangles 

If the weights Ciik(c) are not restricted, the partition function (2.4) depends on the 
triangulation and it represents a complicated and fully dynamical theory. 

It is convenient to represent a given triangulation T(g, n) by its dual graph f(g, n). 
Figure 2 (a) shows the gluing of triangles in terms of the dual graphs and Fig. 2 (b), an 
example of the graph corresponding to some triangulation. The graphs must have double 
lines in order to encode the same information as the triangulation. 

Given two triangulations T(g, n) and 7"(g, m), or the corresponding graphs r(g, n) 
and ri(g,rn), of a surface with genus g, it is possible to transform one into another by a 
set of local moves that do not change the topology, namely g. It is well known that two 
basic moves are needed in order to go from one triangulation to another. We are going 
to use the so called flip move and the bubble move. In terms of the dual graphs, these 
moves are given in Fig. 3. Note that the flip move preserves the number n of triangles, 
whereas the bubble move, change it n by 1. 

The theory is called topological [4) if Cij k(c) do not depend on 

dCip c (e) 
de 

and it is invariant under any topological move. Invariance under the flip move implies 
that 

C•j k Ckim ^ Cik m Cit k , 
	 (2.6) 

whereas the bubble move is equivalent to 

C ; 06011  j = gii• 	 (2.7) 

A partition function that is invariant under both moves, can not depend on the tri-
angulation, and therefore is a topological invariant. In other words, Z is a function Z(g) 
depending only on the genus g of the surface M9 . 

A topological theory defined by Cijk has a enormous symmetry. Thanks to this fact, 
the partition function can be computed. Since Z do not depend on the triangulation, one 

(2.5) 
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) la  

(a) 

(b) 

Fig.2. Figure (a) shows the gluing of triangles in terms of the dual graph. Figure (b) is a simple example 
of a triangulation and its dual graph. 

   

   

   

   

  

(b) 

Fig.3. The two basic topological moves in terms of the dual graphs. Figure (a) is the flip move and 
figure (b) is the bubble move 
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chooses the minimal triangulation and writes down Z(g) explicitly. Topological models 
are very special when compared to a generic theory given by (2.4) that has little or no 
symmetry at all. What we are going to do, is to consider an intermediate situation where 
part of the full topological symmetry is not present. That is the reason for the name 
quasi-topological models. 

The simplest thing to do is to give up the invariance under one of the two topological 
moves described before. It will be interesting to have a partition function that depends 
on the size of the lattice, so we choose to break the invariance under the bubble move and 
keep the invariance under the flip move. We also want to allow for variation on the size c 
of the triangles. Therefore, the model is defined by a set of local weights Cijk(c) invariant 
under the flip move, and partition function given by (2.4). In our class of models, we will 
assume the flip move, or in other words 

Cii k (OCkt m (e) = Cam(c)Cii k (c) 	 (2.8) 

for any value of the parameter e. 

It may happen that for some value co  of the parameter c, the weights Co(e) also 
satisfy equation (2.7). At this critical point, the full topological symmetry is restored. As 
we shall see, if E = 0 is a critical point, the model has a well defined continuum limit. 

Let us assume for simplicity that the index set / is a finite set with r elements. 
Consider a vector space V with bases {0 1 , ..., cA.}. Then, for each value of the parameter 
E the numbers Cij k (c) define a product structure in V, namely 

	

15i0i := Ciik(e)Ok. 	 (2.9) 

Because of the flip symmetry (2.8) the product cbicbi is associative. We may think of 
Cij k (c) as given a family A, of algebras on the space of associative algebras defined on V. 

Since we are assuming that gii has an inverse gij we-can define a dual base {0} given 
by 

= g ijgj . 	 (2.10) 

For the dual basis, the product is 

	

:= cik(f)e . 	 (2.11) 

3 Partition Function 

For a triangulation T(0, n) of the sphere, the corresponding graphs r(0, n) are planar. Let 
r(0, n) and fq(0, n) two planar graphs representing two different triangulations of S 2  but 
with the same number n of triangles. It is a well known fact that r(O, n) and fi(0, n) can 
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always be connected via a sequence of flip moves [8]. Therefore if Ciik(c) fulfills equation 
(2.8) the partition function (2.4) computed for I'(0, n) and r(0, n) have to be identical. 

Using a variation on the proof presented in [8] we were able to show that any pair of 
dual graphs r(g,n) and Ng, n), for arbitrary genus g can also be connected by a sequence 
of flip moves. For completeness we give a demonstration of this fact on the Appendix. 
As a result, our partition function (2.4) depends only on g, n and e, provide that (2.8) is 
fulfilled. We will write Z = Z(g, n, c) for this matter. 

The'particular graph 11 (g, n) we use to compute Z is immaterial. The result of the 
Appendix shows us that f(g, n) can be reduced to the canonical graph F°(g, n) given on 
Fig. 4(a) via a sequence of flip moves. The canonical graph is obtained by gluing the 

      

• • • 

      

       

       

          

Kul   —0. H i j 

(h) 
	

(c) 

Fig.4. The dual graph corresponding to the standard triangulation of a surface of genus g is given in 

Figure (a). It can be constructed by repeating the basic blocs shown in Figures (b) and (c) respectively 

2--jg and g times. 

elementary blocks on Fig. 4(b) and Fig. 4(c). They correspond to operators 

A'si (c) 	Ciab(e) C hai (e) 	 (3.1) 

and 
Hij (c) 	cicki (e) ck-n(e) 	cr pi (e) 

	
(3.2) 

respectively. If we define matrices K, and 14 with matrix elements (KO? = Kik(f)g ki 
and (14) 1 .7  = Hik (c)gk 3 , then the graph on Fig. 4(a) shows that Z(g, n) can be written as 

Z(g,n,c) = Tr (K,Va  He ) 	 (3.3) 

Due to the flip symmetry, the computation of the partition function for a two dimen-
sional lattice has been reduced to a one dimensional problem. If the set of states I is a 



(c) 
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finite set with r elements, K, and II, are r x r matrices. In this case, (3.3) can be calcu-
lated for an arbitrary g and n. For this note that the algebra of observables 
has a natural inner product given by the gii: 

< cki,(1); >= gi; , 

and that A', and 14 are both self-adjoint with respect to this inner product. Moreover, 
we will see below that they also commute 

K,H, = 11,K„ 	 (3.4) 

therefore they can be simultaneously diagonalized. As the trace is unchanged by a co-
ordinate transformation, the partition function can be computed as 

Z(g,n,c) = Eki 2V-2- kg, 	 (3.5) 

where ki  and h i  are the eigenvalues of K, and Hf . 

We now show that equation (3.5) is fulfilled. This is a direct consequence of the 
flip symmetry. Consider the graphic representation of Ke(e)Hai(c) on Fig. 5(a). By 

Fig.5. The figure shows equation (3.6). 

performing a flip transformation, the leg of the graph marked with 2 can be moved to 
the position presented on Fig. 5(b). Repeating the same step one can move it further, 
arriving at Fig. 5(c). Finally, Fig. 5(d) is obtained by repeating the process with leg 1. 
This sequence of flips shows that 

Ki a (6)Hai(c) = Hi a ( 6)/(0(0 	 (3.6) 

and therefore A', and Hf  commute 
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4 Dynamics and Observables 

The dynamics of a model is controlled by its evolution operator U. For a topological 
theory, U is equal to the identity when restricted to the physical observables (see (4)). 
Since our models have less symmetry then a LTFT we expect that it must have some 
dynamics. 

Let T(pi ,p2,n) be a triangulation of a cylinder where n is the number of triangles and 
pi , p2  are the number of edges on the boundaries ai  and a2 . We enumerate the edges on 
the boundary in a clockwise fashion, as in Fig. 6. We define the operator 

Fig.8. A cylinder with boundary given by two polygons with p i  and p2 links. The boundary elements 

are enumerated in a clockwise fashion. 

as the one given by coloring the boundary links at o f  and a2  respectively with (i 1 , 
and (ji ,..., jp ,), and then gluing (summing over) the internal links by the rules explained 
in Section 2. In other words, 

	

= 	Ciik(c)gab 	 (4.1) 
ET <ab> 

where < ab > runs over the pairs of glued internal links. What we will call the evolution 
operator is the matrix 

Uji 
	

1P2 	U 	 kilt 	kp2
• • 	 ; 	1....kp2  g 	- • • g 

	
(4.2) 

It is clear from the definition that 0'•• 91'3  fulfills the factorization properties of an •1,•11, 1  
evolution operator. If the triangulation T(p i ,p2 ,71) splits in two cylinders Ta (pi , p, nu ) 
and Tb(p, p2, n6), n t, + nb  = n, then 

'''' iP2 (T) — U k '''''' kP(T )Ui' 	(T ) 	 (4.3) i  
a 	 b • 
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We are going to assume for the moment that the set of I of colors is equal to 1,2, ..., r. 
Then, the vector space V A, of states associated with a single link is generated by 
a basis {(61, 1, 7-2, •••3 04- In other words, a generic state b  is given by 71) = 11)*. The 
space of states V(P1) corresponding to a boundary with p i  links is just the tensor product 
V (P1) = V 0 V 0 ® V with p i  factors. At the boundary cr 2  the space of states V (P2) is 
defined in the same way. We recall the usual interpretation for U as an linear operator 
from V (P 1 ) to V(P 2 ) given by 

U(0i, 0 ... 	) = Utti  cki, ••• 0 (ki„ i  

The computation of U follows the same idea as in the calculation of the partition 
function on Section 3. Given two triangulations T(p 1 ,p2 , n) and T'(p i , p2 , n) with the 
same number of triangles, and the same number of links on the boundary, we were able to 
show that they can be connected by a sequence of flip moves. Therefore the U only depend 
on the triangulation through the numbers p i , p2  and n. In fact any triangulation can be 
brought to the canonical form given on Fig. 7. Note that once more, the computation 

N- - p2  -2 

2 

(4.4) 

1/41,3 -1 ) 	i 2 	i 

     

j2 	j(132-  

//L  
JP2 

  

0 o ED 

 

   

   

Fig.7. The canonical graph for a cylinder. 

has been reduced to a one dimensional problem. It involves the product of the operator 
10E) defined in (3.1), and a new operator 

Sci(e) := Ci b(c)Ca bi(e) 	 (4.5) 

We are going to use the following property of S i i(e): 

Si m (e)Cmik(e) = Sim (e)Cmkj(c)• 	 (4.6) 

A graphic proof of (4.6) is given in Fig. 8. 

Now let us consider the linear map S, : A, —r• A, given by Me). On a generic element 
a = a'44 E A, it act as 

S,(a) = a'Sil(c)01 . 	 (4.7) 

As a consequence of (4.6) and (2.1), it is very simple to verify thatfor any a 1 , (12  E A, 

a 1 5,(a2 ) = Sc(a2)a1 	and 	5,(nia2) = Se (a2a1). 	 (4.8) 
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Fig.8. The figure shows a sequence of moves that proofs equation (4.6). 

The first part of (4.8) shows that Sg (a) belongs to the center Z(A,) of the algebra A,. 
Contrary to the topological case, S, is not a projector from A, to Z(A,). Actually, one 
can show that 

Si l (c)Sij(c) = K i t  (OS? (c) = Si' (OK? (e) 	 (4.9) 

One can see from Fig. 7 that the form of 114 1::::47 	p2 , n, c) is 

n-P1,72  ) [4:::::47 (pi , p2, n, 	= [Sc (41 0k2 ...04)1 a 	 a  [S,(0iP2 OriP2 -1  ...ctri')1,„ 	(4.10) 

Therefore the evolution given by U(p i ,p2 ,n, 0, is actually an evolution for the data 
) and Sc (cfriP2Oin-'...0) in Z(A,). Note that S, is invariance under cyclic 

permutations of the factors crS's. This is clear from the second part of (4.8). Therefore 
the functions ,S,(4);,...0 ip, ) and .9,(0P. c/OP2-I ...Oh) depend only on the oriented loops al  
and a2  and associate to each one of them a well defined elements of Z(A,). It is useful 
to introduce variable W(a) E Z(A,) analogue of the trace of the Wilson loop in gauge 
theories, where a is any loop given by an oriented sequence of p links. We define 

W(a) = 
	

(4.11) 

Analogous, we define its conjugate W(a) = W(—a), where —a is the same loop with 
reverse orientation, by 

W(a) = Se(e2 041- '...0) E Z(A) 	 (4.12) 

The observables, or loop variables W(a), are elements of the center of the form S,(a) 
for some a E A,. The question is whether .5,(a) span the entire Z(A,) or just a subspace. 
That will depend on the particular set of weights Ciik(c). Consider an element b E ZOO. 
One can show that S;-7 (e)b` (Obi . Therefore if K(  restricted to the center is invertible, 
then the image of S. is the whole Z(A,). 
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Note that, when restricted to the observables, the evolution U is given by 

m=21=2 
UI phy  = K6 	2 (4.13) 

A Cylinder is topologically equivalent to a sphere with two holes. For this reason U is 
also called the two point correlation function for genus zero. To complete out discussion 
we would need to consider the corresponding operator for a surface with g handles and N 
holes, i.e., the N points correlation function for genus g. It is a well known result that it 
is sufficient to compute the three point correlation function Y for genus zero. Any other 
correlator can be written in terms of Y and U. Consider a sphere with 3 holes representing 
a cobordism from SI x SI to SI. Let 71 (p i ,p 2 ,p3 ,n) be a triangulation with n triangles 
and pi  links on the oriented boundary cr i . It is not difficult to show that analogously to 
(4.10) we have 

yk t I ••.kp3 	 la ruff NI /-1 	[Kt 
St m r; ,, 

I ,• 

•

••ipi ; ,•••,/p2 (P 1  P23 P3, n) = [ W(Cf 1).1 	kam b  i,ab i ke) 	 P w kers)m, 

where q = n p1 — p2 — p3  — 4. 

(4.14) 

5 Continuum Limit 

The continuum limit is obtained by making the number n of triangles going to infinity. 
We will be interested in the scaling situation, when the area e of each triangle becomes 
smaller but the total area a of the surface remains constant. Therefore 

a 
= 

n 
(5.1) 

At the limit, the partition function will be a function Z(g, a) of genus g and area a. 

In the continuum limit, the weights associated with the two triangles of Fig. 9 (a) 
should be the same, since both would be triangles of zero area. The corresponding dia-
grams are shown in Fig. 9 (b). It is clear from the figure that Ciik(0) should satisfy 

Crab(0)C17(0) = gii 	 (5.2) 

or, in other words Kii(0) = b;i. But (5.2) is exactly the condition (2.7) to have a lattice 
topologiCal field theory. In other words, to have a well defined continuum limit, the. 
weights Ciik (e) have to be a perturbation of a LTFT, or 

Ciik(e) = 	+ 7;49  Ciik(0) + 0(c 2). 
• 

(5.3 ) 

Similarly 	
K,' (e) = 61 + 2cBij + 0(c2 ) 	 (5.4) 
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k 

(a) 

>> 
Fig.9. In the limit of e 	0 both triangles in (a) have zero area. 
derived from (b). 

where B, is defined by 
1 8 	• 

:= i(Te.  (Cli ki (E)C 1kj(e)) 

Therefore 
2=12 	, 	2a 	=Lig urn Kap'  2 	= 

n—oo 
liM (1 + —II) 

n-4co  

From (3.3) one sees that in the limit the partition function 

Z(g,a) = Tr (e° 8 (H0 )9). 

The restriction on the . weights can be 

. 	 (5.5) 
e=0 

2 	= e cd3 . 	 (5.6) 

is 

(5.7) 

The continuum theory is clearly a perturbation of a topological theory. 

The operator U also has a well defined continuum limit when restricted to the physical 
observable. In the limit n -+ cx) the algebra A, becomes A o. Let of  and o2  be the boundary 
of a cylinder. The observable are given by two loop variables W(c i ) and W(a2) belonging 
to the center of Z(A 0). From (4.13) we have to compute 

mph, 	 1-721-F2Z2 . 
	 (5.8) 

As pi  and 292  are of the order NAT, we get 

Mph),  = e°8 	 (5.9) 	. 

where a is the area of the cylinder interpolating between o f  and cri. 

It is clear from the above discussion that the continuum theories are determined by a 
topological theory and an operator B,'. The pair Ciik(0),0 defines a topological lattice 
field theory and and Bij contributes with a non trivial dynamics. Note that Bil in (5.5) 
is fixed by the derivative of Ciik (e) at zero. The global behavior of Cijk(c) is irrelevant.. 
To classify the possible continuum theories, or universality classes, one has to determine 
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what are the possible dynamics Bil that can come from a generic Cijk(c) via (5.5). As we 
shall see, for a given Ciik(0),g", the allowed Be are not arbitrary. 

Consider the matrices C`„, defined by 

1•C` m lii  := Cm ij(c) 	 (5.10) 

As it is illustrated by Fig. 10, the matrices C' m  fulfill 

C`,K, = K,C",,. 	 (5.11) 

This equation has to be valid in all orders of e = a/n. It is easy to see that at first order 
in e, equation (5.11) is equivalent to 

C ° m B = BC u in  or [B, C °.) = 0 	 (5.12) 

Fig.10. A proof that Cc m -•, = K,Cem . 
Any pair Cijk(0), 	and Be coming from (5.3) and (5.5) has to satisfy equation (5.12). 

Actually this is the only restriction on Be . Given a topological theory Ciik,g" and an 
operator Be fulfilling (5.12) we can always find at least one Ciik (e) where they came from. 
A simple calculation shows that it is enough to take 

Ciik(f) = [elf  Grip, 	 (5.13) 

Therefore, given a topological lattice theory Ciik(0),g ii,the the set of allowed quasi-
topological theories, are given by all matrices 

Bij = Biagai 
	

= B 

commuting with Cm . It is easy to verify that any element z = z iOi  in the center Z(A0) 
defines a possible operators B(z) 

B(z) = zinC°m . 	 (5.14) 

Actually, as we will see next, all operators B are of the form (5.14). 

We will show that there is a bijection between the space of all B and the center of 
the algebra. For a given symmetrical commuting with the C2, we can associate an 
element of the center of the algebra by the mapping 

p(M) = Ci a aM ijcba. 	 (5.15) 
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(a) 

     

- 4 

 

1=t 

   

(b) 

Figal. Figure (a) shows that the image of # is in the center. Figure (b) shows that B o# is the identity 
map. 

Fig. 11 (a) proves that CijkBibCba' = ciik Bibcba  a and therefore ficki  = 40 and $ is 
indeed an element of the center of the algebra. We can see that (5.15) is the inverse of 
(5.14) in Fig. 11 (b). The symmetrical matrix commuting with the C,,„°  is displayed as a 
box. It follows from.the commutation that we can attach the box on any side of the Cij k  . 

Fig 11 (b) shows that [(B o f3)(M)ri  = M.; for any M commuting with CZ. Hence B o 
is the identity map. On the other hand, Q  o B is also the identity map on the algebra. 
Given an element of the algebra zmcb n, we will have 

KO 0  B)(zm 4m)) = 0(z m Cm) = Ciaa.zni Cm itch = zmckm . 	(5.16) 

Hence # is a bijection and therefore any operator B is of the form (5.14). 

6 Example 

We will now consider an example of quasi-topological theory. We will study the•case 
where the topological constants Cij k  are derived from a group algebra. 

Given a group G, we can construct a group algebra over the complex numbers in the 
usual way: 

C[G] = ED cop, 
9EG 

with the algebra product inherited from the group, i.e., Oz cky  On . 

We can then calculate the topological part of Cii k : 

Cij k (0) = S(ij, k) , gii = 6(0 -1 ) , Ciik(0) = 6(ijk,1), 
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where 1 is the group identity. 

We saw in the last section that the two constraints on B are i)Bii  = Di; and ii) the 
matrix B with entries Bi' must commute with the C°„, defined above. In other words, 

E J(ij, 1)B(1, k) = E b(il, k)B(j, 1), 
1EG 	 tEG 

where we use B(i, j) for B;'. Working out the details, we will have 

B(ij, k) = B(j, 

We then realize that B(i, j) = B(j - li, 1) E 	= B1-i 1 . As Bq is symmetrical, 
it follows that B(ij - I) is a function which depends only on the conjugacy class of the 
product ij -1 . In other words, B is given by a class function. It can be therefore expanded 
on the characters xR of the group as 

B 	= E BRdRXR(ii -1 )• 
	 (6.1) 

The sum runs over representations and the complex constants BR spans all possible B. 
This is consistent with the discussion of Section 5, since there is a one to one correspond-
ence between the set of all class functions and the center of the group algebra. 

The relation with the elements of the center of the group algebra is easily seen as 
follows. Let F be the set of all functions f : G 	C such that 

f (hg 	= f(g). 

For each class function 0 E F we can assign an element of the center of the group algebra 
by the map 

b : F 	C[G] 

f q.t .] = E f (g)g 
9 EG 

Note that the image of b is the whole group algebra, for arbitrary functions f . Therefore, 
for b[f] be an element of the center of the group algebra, it suffices to prove that we have 
b[f]b[h] = b[h]b[f] for any class function f and any function from the group to the complex 
numbers h. 

b[f]b[h] = E f (x)x E h(y)y 
xEG 	v eG 

making the transformation on x, x 	yxy - ', we will have 

E f(YxY -1 )h(Y)YxY -I Y = E h(Y)Y E ./(x)z 
.,y 

which equals b[hib[f]. The reverse is also true: if b[f]b[h] = b[h]b[f] for all h, then f 
is a class function. Note also that each element of the group algebra defines a unique 
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function f : G 	C, the coefficient of each group element giving explicitly the value 
of the fuhction on that element. Therefore b is invertible and the space of all B have a 
bijective correspondence with the center of the group algebra. 

It is interesting to go a little further and calculate the partition function for a triangle 
on the continuum limit. For this consider a single triangle with a triangulation such that 
an external edge of the triangle belongs to only one triangle of the triangulation. After 
reorganization by flip moves, this will correspond to a single triangle, whose weight tends 
to the topological one, attached to a chain of operators K; (e), whose weights tend, on 
the continuum limit, to the exponential of B (5.9). Note that we can easily Compute the 
exponential of B, using (6.1) and the orthogonality of the characters: 

(eBA )ii E  eBRA d RxR (ii-1) .  
R 

So the partition function for the triangle at this limit is: 

Z(i,j,k, A) = cOji ( eBA) k i = E  ,BRA d 	 (6.2) 
R 

The reader will recognize the Yang-Mills partition function [7) if we take the quadratic 
Casimir operator C2 (R) as BR for continuum groups, such as SU(N). 

7 Concluding Remarks 

Two dimensional lattice quasi-topological field theories are less trivial than the corres-
ponding topological models. They have less symmetry but it is enough to reduce the two 
dimensional model to an equivalent one dimensional problem. If the link variables assume 
values in a finite dimensional set, the partition function can be exactly computed. 

The set of Boltzmann weight Cii k (e) and the gluing operator 	give a one parameter 
family of associative algebras A, together with a bilinear form. The scaling limit e r 0 
is well defined whenever Cij k (0) and define a lattice topological filed theory. At e 0 
the topological symmetry is restored and the theory becomes invariant by subdivision. 
The continuum theory is not topological in the sense that the partition function depends 
also on the total area of the surface. However, in the limit of zero area, the theories 
become topological. This is usually what is meant by a quasi-topological field theory, 
the prototype being YM 2  [7]. It is clear that a single topological theory can be the zero 
area limit of more that one continuum quasi-topological theory. That will depend on how 
Cii k (e) approaches the critical point. We have seen that the set of all quasi-topological . 
theories associated with Cii k (0) is in one to one correspondence to the center Z(A 0) of 
the semi-simple algebra Ao. 
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It is not clear whether our continuum theories can be described by means of a Lag-
rangian field theories. The continuum approach is certainly possible in the case of YM2. 
It would be very interesting to find other examples of such Lagrangian theories. The 
simples approach is to look for the analog of a Schwarz type topological field theory, i.e., 
one considers Lagrangians that are invariant under area preserving diffeomorphisms. If 
there is no anomalies, the zero area limit should be a Schwarz type topological field the-
ory. Volume preserving theories have been considered in [9]. However this may not be 
generic enough and one may need to find the quasi-topological analog of the Witten's type 
topological field theories. This possibility is presently under investigation and results will 
be reported elsewhere. 

A Appendix 

We will now present a proof that any triangulation representing a surface with genus g 
and consisting of n triangles is equivalent. This will be done by an argument somewhat 
similar to the one of [8]. Our idea is to reduce any triangulation to a special one which we 
will refer as standard. This one is constructed by attaching several bubble-like structures 
composed of two triangles, as well as some double-handled structures composed of four 
triangles, the latter giving information about the genus. These two are shown in their 
dual representation on Fig. 4 (b) and Fig. 4 (c) respectively. 

It is well known that any surface of genus g can be represented as the inner part of a 
4g-sided polygon with its sides identified suitably. Hence any triangulation of the surface 
can be viewed as a triangulation of the polygon itself. We will make a distinction between 
the triangles by now. We will call "external" triangles those which share an edge with the 
outer boundary of the polygon. As the polygon has 4g sides, that will be the minimum 
number of "external" triangles. We will now prove that no matter how complicated the 
triangulation is, we can always reduce the number of "external" triangles per one side of 
the polygon by one and therefore reduce it to the minimal number. In other words, we 
can consider only one triangle per side of the polygon. Suppose that there is some side 
with two such triangles. As the graph is connected, we can always do some flip bonds 
in order to make these two triangles share an edge. Now we flip this common edge and 
the result will look like Fig. 12. To proceed, remember that this polygon is in fact a 
genus g surface, and therefore this side we are considering is identified with another side 
of the polygon. Note also that this identification is somewhat arbitrary. The edge defined 
as the side of the polygon could be in fact any edge nearby. In particular, let us pick 
that common edge we flipped as the side of the polygon. Now our number of "external" 
triangles has decreased by one. 

The action on the dual graph will now be the cutting the lines which connect each side 
with its "opposite". We are then left with a triangulation of a 4g sided polygon with 5ust 
one triangle at each side. Our problem reduces now to getting the standard triangulation 
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A 
A 

B 

 

 

C 

Fig.12. How we can decrease the number of "external" triangles. From left to right: in the first figure 

we have two triangles, and the external edges are ABC, in the second we made a flip move, in the third 

we redefined our external edge as AC. The dashed line means that B has been sent "to the other side". 

of a sphere with 4g boundary elements. As this graph are planar, we can draw them with 
single lines and still encode the same information as the triangulation.The action of the 
flip bond move will be then the simple sliding of one edge over another as shown on Fig. 
13. 

Fig.13. The action of the flip move on dual graphs. As the graph is planar, we can represent it by single 

lines. The figure shows the flip move as the sliding of lines one over another. 

This triangulation is, in terms of the dual graphs, represented by internal loops, con-
nected by several links among then, and some links connecting this complex to a greater 
loop, formed by the external triangles. This greater loop has several links pointing out-
wards, which will be suitably identified among them later on in order to re-build the 
g-torus. Consider now the internal loops. As we can slide one edge over another, we can 
then arrange all the edges of a given loop to link it to at most two different loops, these 
three loops interconnected. Fig. 14 shows how to disentangle this compound, forming 
"pins" in the process. 

We are left then with structures like two loops linked by some edges. Fig. 15 shows 



P. Tcotonio-Sobrinho e B.G.C. do Cr»,ha 
	 115 

Fig.14. The action of disentanglement of three internal loops with edges linking them. This results in a 
number of "pins" attached to any of them. 

how to transform it into two loops linked by just one edge, again forming pins. We have 

Fig.15. The action of disentanglement of two internal loops creating "pins". 

by now some internal loops, with some pins attached, connected by just one edge to at 
most two different loops, and this compound connected by just one edge to a greater 
loop which encompasses all internal loops. The pins can be carried one by one to the 
last internal loop - the only loop that is connected to just one different loop - and thus 
becoming the last one. Repeating this process, we will eventually reach a triangulation 
with a chain of loops linked by only one edge with one end of the chain linked by inside 
with the big "external" loop. This end will have an edge finishing at a vertice with two 
other edges, these two belonging to the outer loop. Then carry one edge of these two 
to the other end of the chain. We will have then a chain of bubbles attached in each 
end to a chain of "external" edges. Now we identify the external edges by the usual way 
ai bi aT i bi-1  • • • a9 b9 a;lbil, we will have our standard triangulation as depicted is Fig. 4 
(a). 

One may notice that, although all we did was for a surface with genus greater than 
zero, we could also extend the argument for genus zero. With a given triangulation of 
the sphere get a vertice with coordination number 3. If it does not exist, create one by 
some flips. cut these three out and we will have a structure just like we had before in 
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the non vanishing genus case. One goe6 through all the procedures listed above and will 
end with a chain of loops on the dual graph, with one end attached to the other plus a 
single vertice with three edges attached to the chain. We will then merge it into the chain 
making two more loops, as shown in Fig. 16. 

Fig.16. (a) How a vertice with coordination number 3 can be transformed into Fig. 4 (a). The vertice 
is represented by a triangle in the dual graph. 
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14104  0.2140±0.0016 0.2166 
.4071 0.1163* 0.040 0.016 
.4. 171 4623 t 0.004 0.667 

c) Stand Of 

60.156t 0135 10.153 d
 si 

my [GNI (PT Intl 
1 - 114/16.11141 1e -101) 0.2244± 04312 03333 

"1,  IG"V11161 1 16-171) 175 4 6 172 

'A. Blondel, ICHEP Warsaw '96 
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0.008.; 

0.3205 t 0.0014 t 0.0018 

0218s .:: 0.0028±0.00±3 

?A: 

0.21 1/.1 t 0.01114 t 0.11021 

▪ :.11.4012 	0.04.1.1 

100 3% 

O.217R t 0.0011 

mama 7 mamma co r. added 

lato://www.cern.ch/LEPEWW0/plots/rh..bar.ens  

ALEPH (90-94) Electron spectra 
0.1649±0.0070±0.0066 

ALEPH (91 -95) D• excl./Mei. 
0.176±0.013±0.011 

ALEPH (91 -95) D excl./excl. 
0.169±0.013±0.011 

DELPHI (91 -94) Charm counting 
0.168±0.011±0.013 

DELPHI (91-95) Do excl.lincl. 
0.167±0.015±0.015 

DELPHI (91-94) D• 
0.17110.0130.015 

OPAL (91 -93) 	Charm counting 
0.167±0.011±0.011 

OPAL (91 -95) 	13* exelJincl. 
0.182±0.011±0.014 

ALEPH average 
0.16831-0.0091 

DELPHI average 
0.16-57±0.007410.0071 

OPAL average 
0.17451:0.00M-0.00So 

Rc 

http://www.cern.ch/LEPEWING/plot9/rc.bar.cps  
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Warsaw 1996 
Maasuremen l Pull 

-2 	-1  4 _i_LJ 
mi  IG9V) 91.1863 ± 0.0020 .17 

rz  !GeV' 2.4946 ± 0.0027 .05 

oLd, I nbl 41.508 ± 0.056 .97 

R. 20.754 ± 0.057 -.22 

RI, 20.796 ± 0.040 .73 

R., 20.814 ± 0.055 .00 

AV 0.0160 ± 0.0024 .32 

A ctif 0.01132 ± 0.0013 .74 

At' 0.0201 ± 0.0018 2.70 

A, 0.1401 ± 0.0067 -.37 

A. 	. 0.1382 ± 0.0076 -.57 

RO 0.2179 ± 0.0012 1.70 

R. 0.1715 ± 0.0056 - .14 

Ar 0.0979 ± 0.0023 -.137 

Ar 0.0733 ± 0.0049 .43 

sin24 0.2320 ± 0.0010 -.09 

1/a 128.894 ± 0.090 -.25 

-3 -2 -1 0 1 2 3 

http://www.cern.c11/1.EPEWWC/plots/summer96..lep-pulls.ps  

Preliminary 

0.215 	0.2175 	0.22 

Rb  

in1p://www.cera.ch/LEPEWWC/plo1.4/rbac.eps  
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Unanswered Questions... 

• What is responsible for Electroweak Symmetry Breaking? 

—Technicolor, Composite Higgs, Dynamical SUSY Breaking,— 

• What is responsible for Flavor? 

—Extended Technicolor, Family-Symmetric,... 

• What is the origin of CP-violation? 

— 7? 

• What explains the gauge structure of the standard model? 

—Grand-Unified Theories, Compositeness 

• Why is the cosmological constant small? 

- ?? 

• What is the quantum theory of gravity? 

- String Theory 

'What's Wrong with the Standard Model? 

Fundamental Scalar Doublet: 

46  = 4)04°) 

with potential: 	

2 ) 

V (0) = A ((t• t — 	2  

• No explanation of Electruweak Symmetry Breaking 

• Hierarchy and Naturalness Problem 

2  A rYi CX A2  . 

• Triviality Problem 

3.X2  
> 0 . 
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Wilson Renormalization Group 

Define theory with a fixed UV-cutoff: 

CA 
	

Do Of 	+ m2  (A)Ot + *(ot 

+0(0'0)3  +. .. 
 

Integrate out states with A' < k < A: 

LA #•• LA ,  

	

m2  (A) 	In2  (A') 

	

A(A) 	A(A') 

	

rs(A) 	tc(A') 

Consider evolution of couplings in the IR.-limit.... 
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Implications:  

• it 	— Renormalizability. 

• nt2 	00 -. Naturalness/Hierarchy Problem: 

And (A)  v2 
 m2 (A) c<  A2  

• A -4 0 - Triviality. 

Perturbative analysis, but Wilson approach in principle non-perturbative: 

• Nontrivial Fixed Points 

• Large Anomalous Dimension 

Solving the Naturalness/Hierarchy Problems 

Stabilize the Hierarchy  
While scalar iriasses are susceptible to 0(A 2 ) mass renormalization, they can 

be protected by a.....yinule.try. 

1.. Supersyminetry 

 

H2  –+ 6rd►i  c< log A2  

2. Composite Higgs 

• Higgs as Goldstone Boson 

• EWSB due to "vacuum (nis)-alignment" 

Eliminate the Hierarchy... 

• EWSB due to x-symmetry breaking in a gauge theory with massless 
fermions 



FTC 
Scale up QCD by 

fn 
sr 2500 . 
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Dynamical Electroweak Symmetry Breaking 

Technicolor:  SU(Nrc) gauge theory, 

'11  
U 

= D 	UR,DR 
L 

with massless fermions 

= OLiPUL +CIROPUR+ 
D i,i1PDL + DRiPDR 

Like QCD in tri,„, and 4 0 limit: 

• Chiral SU(2)L x SU(2)R symmetry 

• Dynamically broken SU(2)L x SU(2)R -+ SU(2)v 

U,D 
	grC 

(ULUR) = (bL Dn) 	. 

Broken Chiral Symmetries = Goldstone Bosons 
Gauge SU(2) w  x U(1)y Higgs Mechanism 

ire , ITU  -4 	ZL 

gF rc 
= —2 i FTC 250GeV Mw 

Generalizations: 

• strongly interacting gauge theory with 

SU(2)w x U(1)y C G H D SU(2)c D U(1)ern 

• where "custodial" SU(2)C symmetry insures that 
• Mw 

P- 	- 1 
Mz sin Ow 

at tree-level. 
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This results in Universal Low-Energy Theorems: 

	

M[WiF:Wi-  -4 WtWE] --= 	;77) 

M[Wi l: 	ZLZL) = 	(4 — 	 (3) 

	

M[ZLZL ZLZL) = 	0 . 

What dynamics cuts off growth in amplitude? 

• New particles. 

• Born approximation fails 	strong interactions. 

• Both. 

10 

0H 

00 

04 

02 

711g..1 -4.  • 	! • 	•
•

0 0 0 
	 200 	400 	BOO 

(1.1e4) 

QCD Data (from Donoghue, et. al.) and low-energy theorem prediction for 
the spin-1/isospin-1 pion scattering amplitude. 

To get predictions for QCD-like technicolor, scale by v/ f„ 2600. That is, 

Mp„ 2 TeV 
ivTic 

BOO 	1000 



100 

g 10 

A 
0.1 

0.01 
0 10:0 2000 

Mt 
3000 0 1000 203 

MT 
3000 

'M. Golden, et. al., hep-ph/9511206. 

126 	 XVII Encontro Nacional de Particilas e Campos 

Gauge-Boson Scattering at the LHC'  

For M,,„ = 1.0 TeV, 2.5 TeV: 

10 

8 

ol 

0.01 

	

leptonic cuts 	 jet cuts  

	

111(1)1 < 2.5 	 Eth.j ) > 0.8 TcV 

	

mit) > 40 GeV 	3. 0  < 	< 5.0 

	

Fqlm > 50 CcV 	PrU.,1> 4o GeV 

	

pr(Z) > t Mr 	pr(j..) > 60 CeV 

	

MT > 500 GeV 	 < 3.0 

'J. Bagger et. aL, hep-ph/9306256, 9504426. 

Gauge Boson — Vector Meson Mixing at LEIC*  



2 

UR 	9Fire (4'LUR)(9Rqr,) di 2  ETC 
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Fermion Masses & ETC Interactions 

Extended Technicolor Interactions — Connect chiral-symmetries of TFs to 
quarks & leptons. 

771

9 
	(17U)ETC 

 METC 

Parrc 
(UU)orc (UU)Tc exp (112.c. 	7rn(P)) 

For QCD-like TC ("precociously" asymptotically free), 7rn is small over this 
range: 

(FIU)orc (U(.1)Tc  4774c  

FTC 
	(

100 MeV \ 
g ETC 
	' 40 TeV (

25 
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The Status of Models of DEWSB... 

• Dynamical electroweak symmetry breaking can provide a natural expla-
nation for Mw & MZ 0 0. 

• Fermion masses require additional, ETC interactions. 

• ETC is a dynamical theory of flavor, no complete theory exists. 

• The following obstructions to an ETC theory may be alleviated in a theory 
of "walking technicolor": 

1. Flavor-Changing Neutral-Currents 

2. Light Pseudo-Goldstone Bosons 

3. S(?) 

Top (and Bottom) pose a particular challenge... 

Top Mass in Models of DEWSB 

M 2  ETC LU R)(i R L) 

(UU)ET.  C 
„2 

TC  „, NA  
al Poe 	 2  

Al  ETC 

Using 

we find 

(TIU)ETc (UU)Tc 47rF?-c  

	

gETC 
1 TeV ( 

 FTC 	175 GeV  
250 GeV)  ( 
	\ merc  

nit  i 

Scale of top-quark ETC-dynamics is very low. 
Since .11,fb-rc =-: ATC, 

	

(UU)ETc --011)TC eXP 	 7m(P) 
Arc 	f* 

Marc d p  

walking doesn't alter this conclusion. 
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ETC Effects on Z 

Top-quark ETC-boson couples to the current 

C(4-77-eQ ii) + C -1 (UaRetR) 

(or h.c.) where o is a TC index, and the contracted i are weak-indices. 
N.B.: We assume here that [SU(2), ETC] = 0. 

—1• 

Defining Rb = rb ir,„ 
6Rb  arb (  Trig

175 CeV 
) 

1— 	( 	-5J% 
Rh 	rb  
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Isospin Violation: Op 

ETC-interactions must violate weak-isospin in order to give rise to m 1  >> mt. 
This could induce dangerous t. I = 2 te.chnifermion operators (Appelquist, 

et. al.). 

ETC 

\ 01\1 4=-2  (11F170T3 /11 R) 2  
AI 	• KTC.: 

In the vacuum-insertion approximation 

2g2ET D  N2  F4  C 	TC  
Af2 
	V 2 ETC v  

orc43FTC 
 )

2 
( 

1 TeV  
Op 12% 

250 GeV 	METC1gETC 

If we require that Aft < 0.4%, then 

METC > 5.5 TeV • 
gETC 

to large to produce m l  = 175 GeV. 

.1,hW)F7v 2  
250 GeV 

Another possibility: It is possible that NDF2  TC < (250 GeV) 2 , if the sector 
responsible for the top-quark mass does not give rise to the bulk of EWSB. 

In this scenario, the constraint is 

105 GeV  (METC1gETc  ) 112  
Fro < 	/2  

ND 	 1 TeV 

Topcolor-Assisted Technicolor (TC2) 
C. T. Hill, Physics Letters B345, 483 (1995) 

• Strong Technicolor dynamics at. 1 TeV dynamically generates most of 
EWSB. 

• Extended Technicolor dynamics at scales much higher than 1 TeV generate 
the light quark and lepton masses, and ETC contributions to the third 
gPecration masses (mtbr.c) of order 1 GeV. (Nu large Ar b ). 

• Strong Topcolor dynamics also at a scale of order 1 TeV generates (it) # 0, 
170 GeV. 

• Topcolor does not form (bb). 

• Topcolor contributes a small amount to EWSB (f, 60 GeV). 

• Low-Energy Phenomena: Extra pscudo-Goldstone bosons ("Top-pions"), 
Top-glu oils", etc. 
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Compositeness 

Composite Vector Bosons:  WI, Z 

• Weinberg: As My 	0, consistency requires that the coupling to a con- 
served current, hence... 

• Gauge couplings (& universality) inevitable in the limit Mv/A 0 

Following Hagiwara, et. al: 

e cot° Cwwz = 	
— Witi Z„WP'') 

+ Kz 	+ + c--Za 	Plu 

Where: 

— 1 	M2 
rc^ — 	 A2  — 

Current Limitst: 

117 lincenaleos Couplimp from pp • VI 
116 CL L6r.11 Contour. 

al al 	I 5 "dr 
CPI 0-64 

I TO' 
r 

I 

2 [ 

I! 0 1 

 0F 

-or 
A Rr 

10 	' 	 " 
.-10 -I -6 -4 ∎  0 2 4 6 6 10 

or; 



• 019, 

pp - qr - .wqr 

 

Ti - L I to,  

 

   

• •Dle tk.7' 
L 

-

Let 
"110 	 -000 	qq0 

01 053 CL 

-0 0004 	  
-1104 	-001 	000 

h 

103 CL 

101. 	910 

= 14 TeV, 100 lb' 
and NLCt: 
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emsale• Coupes. lea n - re es. 9. 
es a 100 o■h.p... . 	7 I.  b) 	Di  " -.2r  n .. 1,1,47 1  

a. - OS le 

- 	\ 
• 

1 

I = ) iE--- Z 

• 

i 
reel-le 
nee • el at PS-e Up 
4 •• 10 Ur 4-10 re 

- 	0 I 2 3 4 4 

t'Aihara et. al., hep-ph/9503425. 
Experimental Prospects at the LHCt: 

),/73 = 500, 1500 GeV, 80 & 190 fb -1 
 t Aihara et. al., hep-ph/9503425. 

4 

-3 

5 
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Composite Ferrnions 

• 't Hooft: confinement & unbroken chiral symmetry massless composite 
fermions. 

• In limit ?Iv —■ 0, SM has (SU(3) x U(1))5  global chiral symmetry: can 
fundamental theory have fewer fermions? 

Following Eichten, et. al., low-energy effects: 

47r (ii-r"t,,) 
2A2  

Leads to rise in cross-section: 

cr2  ( 	47rs 	) 
v(s) •-, — 1 + 	+ ... 

9 k an2 

Current limits: MUM> 2.9 TeV 
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High-ET Jet Data at the Tevatron: 

r 
2!A2  

Dashed lines for a model' with A(qqqq) as 2 TeV. 
' hep-ph/9603311 

However, this effect could be due' to lack of understanding of structure 
functions: 

CTEQ Collaboration hep-ph/9606399 
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Conclusions 

• There is still NO DIRECT EVIDENCE for physics beyond the standard 
model. 

• There are strong theoretical reasons to believe that there is, probably at 
energies of 0(1 TeV) or below. 

• Models of Dynamical Electroweak Symmetry Breaking provide a natural 
and dynamical explanation of EWSB. 

— Accommodating the I. mass = TC2 or related model(s): 

• Gauge-Boson or Fermion Compositeness would result in interesting phe-
nomenological signatures and remain a possibility. 

However, no complete, consistent, compelling models exist ... 

"Oh, yeah! Well I'd rather be a living corpse made from dismem-
bered body parts than a hunchbacked little grave robber like you!" 

We Need Experimental Direction! 
(Apologies to Larson, and thanks to K. Lane.) 
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Casimir Effect for the Real Boundaries 

Mostepancriko 
Departamento de Fisica - Uniuersidade Federal do Paraiba -Jona Pessoa 

(On leave from St.Petersbarg State Technological Institute (Technical University) 

and .4. Friedmann Laboratory for Theoretical Physic!' (Russia)) 

1 Introduction 

The physical phenomena generally known as the Casimir effect. are interesting because of their exclusively quantum 
nature associated with the presence of zero-point oscillations in the vacuum states of quantized fields. Due to 

the change of zero-point oscillation spectrum in restricted quantization donia.in some force arises acting upon the 

boundaries. For two perfect plane parallel uncharged metallic plates placed in a vacuum at a distance a the Casimir 

attractive force per unit area is [1] 
7r 2  he 

240 a4' 	
(1) 

where h is Plank's constant, c is the velocity of light. A unique perculiarity of this force is that it does nct depend 

on mass, charge or any other coupling constant. The attraction (1) was observed experimentally [2]. For plates of 

area I cm 2  and a = 0.5pm the value of the force was 0.2 • 10' N in agreement with (1). 

We will discuss here the corrections to the Casimir force (1) due to non-ideality of the electrical properties and 

of the geometry of the boundaries restricting the quantization domain. Such corrections must be taken into account. 
in experiments on measuring the Casimir force and in applications of the Casimir effect for obtaining more strong 

constraints for the constants of hypothetical long-range interactions [3,4]. 
In Sec. 2 the corrections to the Casimir force (1) will be studied due to the electrical imperfections of the plate 

metal. In Sec. 3 the new formalism will be presented which helps to calculate corrections to (I.) due to i:he small 

geometrical imperfections of the plates material. In Sec. 4 the configurations Which are important for experiment. 
will be considered. 

Below the units in which h= c = 1 are used. 

2 Corrections due to the electrical imperfections 

We begin with the corrections due to the non-ideality of plates metal. The result (1) was obtained for the ideal 
metal, i.e. when on the surface of the plates the boundary condition is fulfiled: 

et 	= °1 
	 (2) 

Where E t  is the tangential component of the electromagnetic zero oscillations electric field. 

It is known [5] that the penetration of an electromagnetic field into a real metal can be modelled by imposing a 
so called "impedance" condition at, the boundary: 

B t  = Z(w) [iii x n], 	 (3) 

where Z(L)) is the impedance, n is the internal ("into" the medium) normal, and the tangential components of 
the electric and magnetic fields arc given by 

Et  = 	— n( E • ?I), 	= H — n(II • n). 	 (4) 
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When the medium is characterized by definite electric permittivity e(w) and magnetic permeability p(co) the 

impedance can be expressed as 

Z(w) /"(w)  • 	 ( 5 ) 
c(cd) 

Below we shall assume that 	<< 1; for an ideal metal Z(w) E O. 

We impose condition (3) on surfaces of plates bounding the quantization domain and pose the problem of 

calculating the resulting electromagnetic field vacuum energy densities and Casimir forces [6]. 

Condition (3) similarly to the simpler boundary condition (2) changes the vacuum fluctuation spectrum. We 

determine it for the case of two plane parallel plates modelling half-spaces separated by an empty gap -a/2 < < 

a/2. 

We will look for eigenfunctions to i.he Maxwell equations obtained after separating the time variable in the form 

	

E = e(z)exp(iQ • p); 	 (6) 

G a-  iwfl = g(z)exp(iQ • p) = V x E , 	 ( 7 ) 

where Q, p are two-dimensional vectors in the plane of the plates (2., y); the vectors e and g satisfy the equations 

	

e" + K 2e = 0; g” + Al 2 g = 0; K2  = w2  - Q 2 . 	 (8) 

Here the prime denotes the derivative with respect to z. 
Substituting (6), (7) into (3) and taking account to the direction of the normal, we find that at the boundaries 

= ±a/2 

iZ 
er = 	 - er], 

	

ey  = f 1wZ 	
ey ]• 	 ( 9) 

In addition from V•E=0 it follows that 

i(Q • e)+ c'T  =0 	 (10) 

everywhere. 

Without loss of generality we will assume that Q y  = 0. If e s, E 0 then by symmetry considerations the solutions 
of (7) has the form 

	

", COS NZ; er ^, Sin KZ 	 (11) 

or vice-versa. Substituting (11) into (9) we obtain time dispersion equation for the determination of the spectrum: 

	

, 	•) 

sin 
	iZ(Q 2  + n:2 ) 	PC a 

sin — + 	 cos 	= 0 	 (12) 
2 

 

	

I 'CCU 	 2 

or 
Ka 17(Q 2  + K 2 ) . Ka 

cos   sin — = 0. 	 (13) 
2 	tau 	 2 

Equations (8) also have the solutions 

= er = 0; ey 	0. 	 (14) 

leading to the equation 
Ka iZ . Ka 

	

cos 
2 
 - —K SIR —

2 
= 0 	 (15) 

Or 
K. a 	1Z 	Ka 

sin — 2 + —K. cos - 
2 
 - = 0 	 (16) 

It is obvious that in (12)-(16) Q = (Q.:Qy ) may be considered as arbitrary. 
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When the penetration depth 6 = Ica and the eigenfrequencies are real, the vacuum energy averaged over z 

is given by the half-sure of frequencies 	

Ea  = E Cd T i 
	 (17) 

r ■ 

and the argument. principle may he used to calculate it,. We obtain 

c..) 	co 

Ego, Z) = 	
2 

—I  I dc; 	d(;)  In D[Q, i(j, 
271. 	 7r 

0 	0 

where Q = 10 and the replacements arc used w 	 \K2  + Q2 	ii?, aml 0 is a function that vanishes 

For every solution of (10), (13), (15), (16). 

For arbitrary complex Z the eigenfrequencies w = tcr: —.1- Q 2  governed by (12)-(16) will have an imaginary 

part. It is known that in this case the vacuum energy should be determined from the solution of an auxiliary 

electromagnetic problem [71 and does not coincide with the half-stun of the eigenfrequencics (which is already clear 

from the complexity of the w„). However, formula (18) is in fact still valid: we recall that after the contour rotation 

i( the integral in (18) evidently real. 

Multiplying (12) and (13), and using the previous replacements, we obtain 

= sinh Re + 	 cosh Re, 
1 ± a- 

where a E Z(/R. 

To ascribe a finite value to E 0  it is suitable to use a subtraction procedure which reduces to the subtraction 

from En of its asymptotic behaviour as r, 00. This subtraction eliminates fictitious divergences of lower orders 

as well as the vacuum divergence ti  R4 . 

'I'hc subtraction is equivalent to replacing of Di by the regularized value 

/4,, g  = 0°  [1 + 	 ' liT 	 . 	  
(I + a) 2  exp(2Ra) - 11 

If 	I - exp(-2lla). 	 (20) 

Here D° describes the spectrum for perfect metallic plates and the second factor gives the corrections caused 

by imperfection. 

From (15) and (16) we similarly obtain 

Oki% 	
4Z 

= D°  1 1  + 	  

14; 

The renormalized energy R is thus given by formula (18) in with 	 is replaced by the product. D rIegDricig  

from (20), (21). For the force acting per unit area, F = 	Riau we obtain 

F - a  I  

	

T7-7  I (I(  j 'IQ OR 	(0 1  )11  opRa) 	reg I reg. • 

For perfect plates with Z = 0 we have prieg  = Dricig  = 00 . and front (22) we obtain once more the result (1). 

The main contribution to F is given by the frequencies ( = < Direct computation shows that any 

approximation to Z(co) that is exact for wavelengths 1. ,la < A < 30a and satisfies d[g(i())/d( > 1 gives I.' with 

an error no greater than 0.01%. 

When Z 0 0 the value of the force is P = Ft, + AP. In linear approximation with Z(k)/(a as a small 

parameter we obtain from (22) the following correction to the force: 

CV 	C) 

1 
1( 11  F = 	d( 1 dQQRv+all) 

i)(2Ra) exp(2Ru) - 1 
u 

(23) 

(18)  

(19)  

(21)  

(22)  
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To obtain the second-order correction to the force AMF 	FoZ 2 /( 2 a 2  it is necessary to identify those terms 

in the expansion of In Drii161  in (22) that are quadratic in S and Z R/C. Because the neighbouring terms in the 

expansion of In° z) in powers of z have opposite sings, it is obvious that the corrections LIMP and Al 21 F 

have opposite signs. We finally get - 

CO 	MI 

-i4  id( dQ Q R (cr2  + 4c  R 2 ) 

	

. 	• 
o 	o 

0(2Ra) [exp(2Ra) - 1 ( 1  exp(2Ra) 	1)1 

	

a   	

(24) 

We underline that in the integrals (23), (24) Z is taken with the replacement Z(6) -4, i(). Here, by its analytic 
properties, Z(K) has real values independently of the behaviour of 7(w) on the real axis [5]. 

'['he results (22)-(24) obtained above enable us to determine the influence of dispersive properties of real metals 

on the magnitude of the Casimir force. To obtain the specific dependence of .AF on a one should use an expression 
for the.itnpedance Z in terms of the frequency :a and other parameters such as the conductivity c r, electron Fermi 

momentum pp etc. The main contribution to the Casimir effect comes from vacuum fluctuations with wavelengths 
of the order of the distance between the plates. Because for fields with different wavelengths the impedance Z 
behaves differently, to calculate the dispersive corrections to the Casimir force one must consider several cases. 

We first consider the domain with plate separation from a few tenths of a micrometer to around a hundred 
micrometers (infra-red optics). In this domain imperdance is purely imaginary: Z(w) = -ita/f/, where ft is the 
effective plasma frequency of the electrons. For such impedance the penetration depth of the field into metal is 
frequency-independent [8] 

5(w) = So = iZ(w)/w = 1/c2. 	 (25) 

The domain of applicability of the condition 6(w) =const depends on the specific metal from which the plates 
are made, and also on the temperature (which should be sufficiently low) when the distances between the plates are 
large. Here the small parameter of the perturbation theory may be interpreted as the relative penetration depth: 

Z/(a = 60 /a. 

Changing the variable of integration in (23) according to Q = 	we obtain the first-order correction to 
the force 

	

11 (1) 1P = 
so 	

di (1 + 	d"4  

	

4T 	 sinh 2(a(vii) .  

Performing this integration and using the result (1), we find 

Aw p  = 	( i  16
1 

 6o 
240(11 	7) 

or, in the same approximation, 

F(a) = Po(aeff), 
4b0 

'tar = ao -I- -7-3  . (28) 

We note that the first-order correction in 15 0 /a was found in [9] with a coefficient differing by a factor of 5 from the 
correct value which was firstly found in [10]. 

We consider now corrections of second order in So/a for the same values of a. With the change of variable 
Q = (1 and integrating with respect to C, the integrals in (24) may be found from tables. We finally get 

L..1 (2)  F = - 7250 
10a6.  

The total force in two orders of perturbation theory is [6] 

= po  + Amp ± A(2)p = _ 71' 2  (. 16 60 
240a4 — 7 —a + 24  -") a- 

1 	 0 

(26) 

(27) 

(29) 

(30) 
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From (22), using (20), (21), it follows that the force F has the constant sign for all 6 and tends to zero in the 

formal limit 6 — co. This allows us to obtain a simple interpolating formula giving the same result for small bo/a 

as (30), but applicable over the broader range 0 < 60/a 

F = —  
240a 4 	3 a 

71.2(
1+ 

 II 60 ) 	
(31) 

For good metals 60 	0.1a when a 	I pm, and so it is clear that corrections to the Casimir force due to the 

imperfection of the plate metal are ragher significant.. 

We now consider the normal skin-effect domain, which corresponds to the distances between plates of a?: 0.1 cm. 

In this domain the impedance Z is complex 

	

Z.(w) = (1 — i)V sra . 	 (32) 

where fr is the conclactivity of the plate metal. The field penetration depth 6 is connected with the impedance by 

the relation 
Z(o., ) 	1 

6  = (I +
(33) 

Substituting (32) into (23) and performing the change of variable Q = 	1 we obtain expression for the 

first-order correction to the force: 

	

6(1) F = 	 dt (1 + t) 
8;r 2 177 	 Binh` n^f 

	 (34) 

1 	 0 

Calculating these integrals and using the result (1), the Casimir force in the first order of perturbation theory is 

( 	1.93 
— 	 (35) = 

240a 4 	faTr 

We note that this expressions holds only at absolute zero. 

The anomalous skin-effect domain lies between the domain of infra-red optics and the normal skin-effect domain. 

The quantity c(w) has then only a formal meaning because of the strong non-locality, and the impedance acquires 

a vectorial nature and depends on the shape and sizes of the Fermi surface. In the isotropic approximation 

	

L(w) •••-• 	 , 	15(o.,) 	
.
,, 

4J./ ) 

	
• 	

(36) 

where pi: is the Fermi momentum of the electrons. Substituting (36) into (23) and performing the integration, we 

get the first-ordrs correction 

	

A(I1F (4
1
4 p a) s 
	

(37) 

3 Perturbation approach for taking into account small geometrical 
imperfections 

The configuration, for which the Casimir force has been investigated for the first time, consists of two plane parallel 

metal plates. At once this is the simplest geometry. In this Section we investigate the Casimir force for configurations 

with small deviations from that geometry. Our aim now is to give a complete description for all possible deviations. 

Hereby we consider plates made up of arbitraty materials. 

The exact result for the Casimir force per unit area between two plane parallel plates made of arbitrary materials 

may be expressed in the form [11) 

	

Po = —41(E1.E2)
10a4' 
	

(38) 
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where a is the distance between the plates, 	are the dielectric permittivities of the plates, and we note that 

VfEti  ez) = 1  :73 	dX 	dp-3- {[ (si  P)(s2 
 p) 

 et 11 

1 
	P2 	(s ►  - P)(s2 - P) 

[

(si + Pe 1)(s2 + PE2)  ez 	1 1 -1 } 
	

(39) 
(s1 - PE1)(R2 	PE2) 

Here, si,2 ==" (E1,2 - I +p .2 ) 112 . For example, for perfect conductors we have c i  = E2 	00 and Q(c 1 ,e) -.7r/24. 

More information — a graphical representation, for instance — concerning this function can be found in Ref. [11]. 

Under small deviations from the plane parallel geometry we understand all kinds of deviations whose amplitude 
is small in comparison with the distance between the plates. All these deviations can he described by somile function 

depending on the point on the plate, i.e. on two variables. The deviations from the plane parallel geometry give 

rise to corrections to the Casimir force (38). 

First let us outline the main features of an approximative method which may be applied for the calculation of 

the Casimir force for configurations of arbitrary form [12]. According to this method the potential of the Casimir 

force acting between two t.t bodies can be obtained by summation of the interatomic potentials over all atoms of 

the test. bodies with a subsequent. multiplicative renormalization: 

fUn(u) = 	 pap a 	dr• 	- r2 1 -7 . 	 (40) 

111 

Here the integrations run over the volumes V 1  resp. V2 of the test. bodies, A' 1  resp. N•, are the numbers of 

atoms per unit, volume, C is the constant of the retarded van der ‘Vaals interaction potential, K is a special 
renormalization constant and a is the distance between the test. bodies. Note that even the simple summation of 
the interatomic potentials (i.e. (40) without the correction factor K -1 ) gives the proper dependence of UR on a 

for three-dimensional configurations. But the values of the coefficients in such dependencies come out to be larger 
than their true values due to the screening effects. 

The renormalization procedure allows us to take into account approximately the effects of screening of the farther 
layers of the test bodies matter by the nearer ones. The value of constant K is determined in [12] as the ratio of 
the Casimir force potential between two infinite plane parallel plates obtained by the summation method (using 
integrations (40) without the correction factor K) and by the exact solution (38). The result. is 

C 
It= 	 > 1, 

qi (Ei . 6 2) 

where the function klf(E1,r2) is as defined in (39). 

Equations (40) and (41) may be rewritten in the form 

br ir? (a ) = — 41 (E1 , E2 
	
dru j d7,2 I rt — 

As was shown in (12], the relative error of the potential (42) is less than 3.8% for configurations of an arbitrary 
body over a plane plate. For the configuration of two plates with small deviations from planes it, is even much 
smaller. 

For zero approximation in our perturbation theory we consider the Casimir force between a square plane plate 
VI  with thickness D and sides of length 2L and another plane plate V2 which is parallel to V I  and has the same 
sides and thickness. Our aim is to calculate the Casimir force between plates with surfaces that deviate slightly 
from plane geometry. We describe the surface of the first plate by the equation il s)  = Alfi(xt. yi 1 and the surface 
of the second plate by the equation = a + A2i2(2:2,?P),  where a is the mean value of the distance between the 
plates. The values of the amplitudes are choosen so that max IL(Iri, 	= 1. We can choose the zero point on the 

(41) 

(42)  



i=0 k.o 

Here F0 is the Casimir force (38) for perfectly plane parallel plates. 

The coefficients in (45) are found in (13]. We first note that 

4 4-i 	 i 
 ( 	

k 

= L Ecik (7 112 
—
a 

) 

C04 = 35 <n>, 

c4o = : is <fil >, (47) 
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z-axis so that 

L 	L 

(3) _ 	 Ai 
< 	>= A l  < ( x i 	( 2 L)2 	dx1 	dy  f1(zi,y1) = 0, 

( 1 ) 
< Z2 >E a + A2 < f2(x2, Y2) >= (43) 

The perturbation expansion assumes that A; << a, a << I) and a << L. At the same time, in all real 

situations we have a/D, a/L << Ai /a, so that we are looking for a perturbation expansion in powers of A i /a and 

of zeroth order in a/D and a/L. 

The Casimir force per unit area between the plates is given by 

1 OUR 

(2L) 2  8a 

where UR is defined in (42). 

We represant the force (44) as a sum of terms of up to fourth order in the small parameters 

Coo = 1, 	C01 = C10 = 0, 	 (46) 

(44) 

A 1 / A 2 /a: 

(45)  

where the last two equalities follow from our choice (43). 

Coefficients with a. single zero index are 

c02 = 10 < >, CO3 = —20 <PI >, 

C20 = 10 < >1 	c30  = 20 < >, 

where notations for averaged values are the same as in (43). 

Expressions for the "mixed" coefficients (which depend on the deviation functions of both plates) are quite 

complicated. The results are (13i 

CO CO 

_ 	E  E 02;31) (1', 71,0 77  (Z„m), Cli = 	
3 

rn=o 

_2 ./ 
c 12  = 	

G  frt;,.2)(zmn 	[zmn 	(z r„,) — K.75 ( zmn 
3 Vr L-4  m=0 n=0 

m=0 n=0 

C22 = 21011V0) 11 (020)  

+ -3- 	E EG2;,2)(z,..,01 [=m,1i 4 (zm„)— A-4 (z,„,„)1 . 
CO CO 

m=0 n=0 

The 1C,,(z) are Bessel functions of imaginary argument amd 

27ra 	 
zmn = — V n2  + 7a. 

The quantities C.;4',4„)  from (48) are given by 

4 

k„)  = ( 1 + 45,70 + 6 7, 0)7 a(i)(k ) k 
'I 	

b,»0 	-p,mni 
p=1, 

Ci3 —
9
— 	E EG;j1,p(zmrk) [z,„„K„(z )— 	( 2m71)1 
2 

171 T4 

co ea 

(48) 
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where g,`, L, h (pk,,L are Fourier coefficients of the functions ft and .1 4,' , considered as periodic functions with the 

period 21.. The quantities 420 1  and Ii (020)  are zeroth terms in the Fourier expansions of the functions f? and E 
respectively. The coefficient c 21  differs from c 12  by its sign and by the sequence of upper indices of C. To obtain 

c31  it is sufficient just to change the sequence of upper indices of Ci in c ri . 

We now give some particular results which follow from (45)-(48) for various deviations from plane parallel 
geometry [13]. Hut first it is interesting to consider the configuration of t.ho plane plates with an angle ao between 
them. 'flue angle n o  is assumed to be small, so that croL << a holds. This configuration is an example of a 

plate perturbation with a length scale much larger than a. For all such perturbations the coefficients (48) may be 

calculated in general form. So the result for the Casimir force (45) is [13] 

{ 
a 	 --1- <fi > 	:. 

.4 1 4 ,, 	., 	( Al 
a 2 	 a 

F = Fo  1+10   < f? > (-L ) 2  - 2 < ft f2>  

3 	(Ill 

	

A 	3 
A ? A2 

> —) - 3 <1.  ;9.2> 	+ 3  < f ili? > Al 	A  + 20 < fi  [ 

	

a 	 a3 	 a3  

- <.q> ( la  ) 31 

4 	( A l 1 	 43  A2 	. . 
> 

.42.,.44 
+35 < f 1  > 	) -- 4  < f3 ./.  > . 

fel 
- +f <,fi .f 	' 4 - [ 

	

U 	
1 2 a 

	

3  .4 1
a
:q 	/12) 4 1 1 

- 4 < f 1  f2  > 	+ < fl > (-=- 	-4 a 

As is seen from (49), the mixed terms produce interference. For example, when 12  = 7-fi we have 

= F 0 11 + 1 0 < fi > 
a 	a 

+20 <fr > (= := +35 <11 > 
AI 	4 2 ) 3  
a 	a 

4  

a 	a 
(50) 

We apply these results to the case of two plane plates with an angle n o  between them. This configuration can 
be realized in two different, ways. In the first way the upper plate is not perturbed and deviations of the lower plate 
from the parallel position is described by the function h(x l , = with amplitude A i  = noL. Substituting 
this information into (49) and putting A2 = 0 we obtain: 

F = 	[l 	 + 5 

	

, 	0 ( 	( 1 

3 	a 
001,) 	0 0 1, 

9 
H

T 	

(51) 

In the second way one may imagine the same configuration where both plates are perturbed with the amplitudes 
.4 1  = niL and A2 = a2 L. Here the angle between the plates is ao = CI t + n2  or 00 = - n21. The function II 
is J-1  = 41, in both cases and the function 12  is /2  = Tfi  respectively. 

It is easy to see that calculation of the Casimir force according to (50) repeats result (51). This example is 
interesting because it allows the possibility of observing the presence of the interference terms in (49). These 
cont ributions must. be included in order to obtain correct. results. 

It can he seen that (51) coincides with the result obtained for the same configuration by using the exact expression 
for the Casimir energy density inside a wedge [14). So, at least up t.o fourth order inclusive in the parameter cro/./a, 

(42), (44) yields the same result as the exact calculation. This allows us to estimate the real relative error of (42), 
(44) for configurations which deviate slightly from plane parallel geometry. Taking a realistic value no/. 10 -1  we 
conclude that the relative error of results (42) and (44) is much smaller than 10 -2 %. Applying the described above 
approximate method to the configuration under consideration can therefore be expected to give reliable results up 
to the fourth order inclusive in the parameters .4i/a. 

2 

(49) 
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We now consider the case of large-scale plate in homogeneities described by periodic functions with periods 7' 

and Tv  in the coordinates z and y respectively. Here a/Tri o/Ty  << 1 and the result, (49) is again valid. As an 

example we take longitudinal deviations with amplitudes Ai,2 described by functions: 

	

.1-1(xl,Y1)= sinwxi. 	.1-2(x2, y2) = sin(udx2 + 6). 	 (52) 

Calculating all the coefficients of (49) using the functions (52) we obtain 

{ 

	

F = Po 1 + 5 	l--- 2  - 2 cos b L----1 .`,12  f- L.4?  2  

	

a 	 a- 	a 

+ -7 	- 4 cos° a4 2  +2(2 + cos 26) - 
105 RAI 

a 

	 A 3, 4 , 	 A 2 .4 2  
,4 

-4 cos 6 
A1A'2 

 + (
A1

) 4 11 . 
3 
	

(53) 

We see that the results depend significantly on the value 6. 

For short-scale distortions whose size is smaller than a the general result for the Casimir force (see (45) with 

coefficients (46)-(49)) acquires a simpler form than that presented in (49). If the functions fo are nonperiodic or 

periodic with the different periods (at. last in one coordinate) then (49) takes the form [13] 

{ F= Pi 41 + 10 < f? > (L11 ) 2  + < f :; > Cil 
a 	 a 

+35 [< fi > (=1 ) + 6 <fifi > i=i+ < fll > P 
4  

l 	
a 	 41 	 a 

i 	I 	 12  .1 9 	i   

	

j  ) 	. 	 (54) 

If the periods 'I and Ty  of fi  and f2  are equal in both coordinates respectively and 7',, y  << a then (54) can 
he simplified because 

< f1?>=< ,/7 >< [22 > . 	 (55) 

For particular example (52) we have from (54), (55): 

F0 { 1+5  K

U

L) 2 +  (•42 

	

‘„, 	 ) 

'2 

+— 
1( 5 	A t 	 ; 	12 

8 	
+4 	

+ : 
)4] 	

(56) 

We see that the result. does not. depend on the phasc-shift 6, which is to be expected in this case. 

For the case 71, y 	a we have to calculate the coefficients of (48) according to non-simplified formulas. An 

example of such a calculation can be found in [13]. 

The approximate method which has just been used to calculate corrections- to the Casimir force may also 

be applied to the case of stochastic deviations from plane parallel geometry. This is very interesting from the 

experimental point of view. In this case small deviations are deviations whose dispersions are small in comparison 

with the distance between the plates. The deviations of the surfaces of both plates from the plane geometry are 

described by two stochastic functions Pi f i (x i ,m)), i = 1,2 with dispersions 6; and mean values 

< fi 	> i= O. 	 (57) 

Here, < >4 denotes averaging over ensembles of all particular realizations 6i fi (x i , y i ) of the corresponding 

stochastic functions. The factor 6; is placed in front of fi  to make the dispersion of the functions .{ fi(xi, ye)) 
equal to unity. For the bodies with surfaces bi f t  (x Yi ), :4 °)  = a + eiz/z(x., , P2) the energy UR in (42) has 

to be replaced by << 	>1 >2- The Casimir force is then given by [15] 

	

F 	El <<Un>1>2 
	

(58) 
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instead of (44). 

For stationary stochastic functions (Si =const) it is possible to perform calculations according to (42), (58) 

general form. Using the normal distribution at every point of the surfaces together with expansions with respect to 

the small parameters 6,/a we obtain the result [15] 

2 	 ) 

P = Fo  {1 + 10 RLY + 
	

+ 105 R -6-1) + (L) 2] 
a 	a 	 a 	a 

(59) 

It is seen that the correction to the Casimir force only depends on the sum 6? + 51 and does not depend on the 

correlation radii of the stochastic functions describing the distortions. For a typical value of 81,2/a 0.1 the 
correction given by (59) is 24% to F0 where 4% results from the fourth order. So one has to take it into account 
in experiments on Casimir force measurements. 

4 Configurations used in experiments 

Here we discuss the contribution of small distortions of different types to the Casimir force for the configurations 

of the spherical lense situated at height a above the plate and of two crossed cylinders [16]. These configurations 

are of direct interest for experiments on Casimir force measurements. Let us consider the first of them. As the zero 
approximation for our perturbation theory we will use the Casimir force between the square plane plate Bi with 
the sidelength 2L and the thickness D and the ideal spherical lens B2 with radius r, height h and curvature 
radius R. We suggest in our perturbation expansion that a < h, r, D, L and r < R. Our aim is to calculate the 
Casimir force between a plate arid a lens which surfaces possess some small deviations from the perfect geometry 
with amplitudes A 1 , A2. In all real situations one has afii, a/r, a/D, a/1 < A i /a, so that we are looking for the 
perturbation expansion in the powers of Ada and in the zeroth orders in other parameters. 

Note that it is convenient to use the cylindric coordinate system for integration over the volume V2 of the lens. 
So for configuration under consideration the zero approximation is 

2ir 	r 	a+h 	L 	L 	0 

IOP = — 0E1 , 6 2) d(P f pdp f  dz2 f dr i  dy i  dz 1  
o 	o 	a 	-L 	-L 	-D 

X 1(2; 1 — p . cos (p) 2  + ( Th - P • sin SW + (: 1 - :2) 2 ] -7/2 . 	 (60) 

Upon integrating (60) one has in zeroth order in the above-mentioned parameters 

72R 
U (13)  = -0(Ei iE2) 30a 2 

The corresponding Casimir force is [17] 

, 2 H. 
Fo = -1P(EI,E2) —  15a3 •  

Let us consider now two crossed cylinders with radiuses R1, H2 and lengthen 2L1, 2L2. Let a be a distance 
between their nearest points. In all real situations one has a < RI, B2, L i , L2. In this case the zero approximation 
may be written as 

	

0.3 	ft3 	2: 

r 	) = — 0(€1 . C2) j d22 P2dP2 f 424'(P). 
o 

Here we use the notation 

	

[z? 	(P1  cos ;or ) 2  + (p 	fri. sin ;,..11 ) 2 1 -  

(61) 

(62) 

(63) 

(64) 
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where p = [z; + (Ii1 + R2 + a — p2 sin v.2) 2 ] 1 / 2  is the distance from the points of the second cylinder to the axis of 

the first one. 

So in zeroth orders one has 

(R0)  = — 0(E 1 E 2) 
W 2  RIFTIT:  

30a2 
	 (65) 

The corresponding Casimir force is 
w 2  NI RI R2  

F0 = — 0(e E 2) 	 (66) 
15a• 

For the equal cylinders (R 1  = R2 ) equations (65), (66) give the results (61), (62). 

Our aim is to obtain the corrections to the Casimir forces (62), (66) due to the small deviations the surfaces 

from the ideal configurations. 

The surface of the plate with some small deviations from the plane may be described by the same equation as 

in Sec. 3: = A 1  fi (xi , A) with the condition (43). Let us consider the surface of the lens with small deviations 

from the ideal spherical form. There may he two types of distortions, which are described separately. For the first 

type of distortions the surface of the lens may be described by equation [16] 

=a + R — ✓R2  — P2  + A2.1.2(P, 1P). 

For the other type of distortions equation of the surface is [16] 

(A' )  = V R 2  — ( z2 — 1? — a) 2  A2.r., (z2.50 )• 

The values of amplitudes are choosen u.s specified above. It is suitable also to choose the curvature radius of the 

lens R in (67), (68) so that the corresponding mean values <12 >, < fz > be equal to zero. Then this value of 

radius I? is used for calculation of F0 in accordance with (62). 

As to configuration of two crossed cylinders, their surfaces are most conveniently described in their own cylin-

drical coordinate systems. The corresponding equations are: 

(a) = 	+ Ad+ ((Pi: zi). 
	 (69) 

The quantities Ri and Al in (69) are choosen from the same considerations as R in (67), (68). 

In the paper [16] numerous results for the described configurations are obtained. By way of example let us 

consider the longitudinal periodic distortions of the plate 

	

fi(x) = cos(2-rx/4 + 61) 	 (70) 

and the concentric distortions of the lens of (67) type 

	

12(P) = cos(22rp/1,0  + 62), 	 (71) 

where the quantities Ix , 1p  are the periods of distortions. For long-scale inhomogeneities there are I: 	L, 
to 	r. The parameter 6 2  in (71) defines the type of deviation in the lens center: convex or concave, smooth 

(62 = 0 or 62 = 7r) or sharp. The parameter 6 1  in (70) fixes the position of the lens above the plate. 

Calculating the coefficients of (45) by the formulae obtained in [16] one may write the Casimir force (45) in the 
four-416] 

= Fo  [I - I - 3 cos 6 1  ( A O 
a 

A2) — 3 cos 6 2  (— 
a 

	

2 	( . 2) 2 

+31 
 AO 

 +
3

— 

 

	

k a ) 	a 
12 cos61 ()

i a \ a 
• (72) 

Here the dependence of the Casimir force on parameters 61,62 is given in an explicit form. At the same time 
the Casimir force for the extremely short-scale distortions (70), (71) with 4, I A  «a naturally does not depend on 
parameters 61,62 at all. 

(67)  

(68)  
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For the crossed cylinders, as an example, let us consider distortions (09) of the form 

	

= cos 	+ 6i) . 
/2 0: 

If lz. ; -- Li the first. non-zero coefficients of (45) are [16] 

e io 	12cos61, 	Co 1 = 12 cos 62, 

so that the Casimir force takes the form 

= P0{1 + 12 cos 61 (-1-1-) + 12 cos 62 @::11)1 • 
a 

Let its estimate the relative corrections 151 ,' = 	— Fo)/Fo to the Casimir force Fo  for different configurations. 

These estimations are made using the realistic value (211/n) 	10 -1 . In case of short-scale distortions we have 

for both configurations under consideration SF = 6% [16]. It. is less than the corresponding correction for the 

configuration of two parallel plates. 

llowever the corrections may he very large in the case of long-scale deviations. In such a manner the lens surface 

distortion (71) with /, = r/2 and 62 = 0 gives us 6F = 30%. It is significant that the correction caused by the 

long-scale deviations may be both positive and negative. Such corrections must be taken into account, in the precise 
experiments on Casimir force measurements. 

The detailed discussion of different applications of the Casimir effect, in condenced matter physics, elementary 

particle theory and cosmology may be found in the monograph [17] on which this report is also partly based. 

The author is grateful to Prof., 1)r. C.L. Klinichilskaya for helpful discussions. It is a pleasure also to thank the 

Department of Physics of the Federal University of Paraiba for kind hospitality. 
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1 Introduction 

Recently we investigated the role that some topological features of space-Limes [I, 2] play in the time evolution 

of physical phenomena [3]. More specifically we have studied how the compactness and the topological degree of 

connectedness of Priedmann-Robertsun-Walker (FRW) space-times could have influenced cosmological events. Here 

we apply these ideas to analyze the spectrum of the Cosmic Microwave Background Radiation (CUR.). 

It. has been observed --and carefully measured [4, 5]-that the C.1311., remnant. of the period when matter and 

radiation of our universe were in thermal equilibrium, has a Plzuickian nature. That is the proper energy-density 

of the leftover photons has a spectrum corresponding to radiation of a black-body at the present temperature 

T = 2.7258K. 

The proper energy-density of this photons, with frequency at. the present time / now  between v and v + dv, is given 

by (k = = 	[6] 

P(tnow,v) = 87rv 3  fo 
1  now vA(t„,,,„) 	- t 	dP(tn.  [cxp( 7.--Tirewy ) 1] 

where 	 v) is the probability, taking account of stimulated emission, that a photon of frequency v (A( t„„) )/A(C)) 

present at time 1' will survive until E rio,,, 'I' is the temperature and A is the scale factor of the MN spacetime. 

The (theoretical) criteria usually adopted to integrate the above equation in order to obtain a Planckian spectrum 

are [6]: 

(i) .4 -1 , or 

(ii) the opacity (of the system) drops sharply. 

Regarding hypothesis (1) we observe that it. relates a thermodynamical property of the system (T) with a 

dynamical property of the space-time containing it (A). Recently ii. has been proved that if the CBR is Planckian 

to first order (i.e. considering a perturbation of relation (i)) then the space-time is almost-FRW (sec [7]). 

Hypothesis (ii) instead could be related to global properties of the space-time. In principle it deals with a 

physical property that however, as we shall sec in the next section, could be interpreted as a consequence of a 

topological effect. In fact, the passage from a opaque to a transparent universe could has been generated by the 

developing of a Future Event, Horizon (FEB). In such a case the Topological Degree of Conectedness ('[DC) of the 
space-time goes rapidly from I (representing a connected or opaque universe) to 0 (representing a disconnected or 
transparent universe) in a finite time. 

• internet: bern ► ilanovell.cat.cbpf.br  
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2 Physical Si Topological Analogies 

As we know [3], the TDC of a space-time manifold is a measure of the geodesic-null flux available for emission or 

absorption of photons at each instant. It constraints the mean free-path of the photons. Thus, one can establish 

the following analogies between physical and topological variables. 

P1. P(t,,,,,t; v) is the probability that a photon of frequency v, present at time t, survives until t 	where 

P E [0, 1]. 

Tl. G is the spacetime's degree of connectedness, with G E [0,1]. 

P2. In an opaque universe, when matter & radiation were in thermodynamical equilibrium (P •-•-• 0) the phOton's 

mean free path (i.e. the optical depth) is finite. 

T2. In a spacetime with compact. space slices null geodesics (i.e. light rays) have finite lengths. 

P3. If the opacity drops sharply (I' : 0 — 1): dP/di = b(t — td), i.e. the Universe becomes transparent at t = td. 
T3. If lims—c-of(t) < oo, where f(t) a--  f ds A(s), the spacetime develops a FEII, then G : I — 0. 

3 Results 

Considering that the absortion rare for photons (A, from which the probability P depends) of a matter-radiation 

equilibrium system is driven by the TDC of an expanding FRAY spacetime, we performed numerical integrations 

of the radiation-density relation. For this we have considered relation (i) and perturbations of it, and also relation 

(ii). The corresponding plots of the radiation-density p vs. the frequency of the photons v give, in all the situa-

tions considered, a Planckian black-body radiation spectrum with decreasing temperature and the corresponding 
cosmological redshift. 
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1 Introduction 

General relativity is a purely metrical (local) theory and leaves unsettled the global structure (topology) of the 

space-time. Consider, for example, the Friedmann-Robertson-Walker (FRW) space-times, whose line element can 

be given by 
r2  

ds2 = 	— A2(t) [ 
1 — d isr2 r

2  ( dO2 	silo 0 42 )1 

where A(t) is the scale factor, t is the cosmic time, and the constant spatial curvature IS = 0 ± 1 specifies the type 

of geometry (flat, elliptic or hyperbolic) of the t = const spacelike section M3. Clearly FRW space-time manifolds 

M4 can be splitted into R. x M3. The number of three-dimensional spacelike orientable and compact manifolds 

M3 which can be endowed with these three possible geometries is quite large: for K = 0 there are 6 topologically 

distinct 3-spaces, while for both tc = h1 an infinite number of 3-spaces exist [1, 2]. 

Since physical laws are usually expressed in terms of local differential equations, in order to be confident about 

the physical results one derives it is often necessary to have some degree of control over the topological structure 

of the space-time manifold so as to include constraints imposed by the topology of the space-time [3, 4). One 

is then confronted with the question of what topologies are (or are not) physically acceptable for a given space-

time geometry. In the present work we study the role played by the compactness and the topological degree of 

connectedness of M3 in the time evolution of the energy of a radiating system in the flat FRW space-times, whose 

spacelike t = const sections are endowed with seven different, topologies, namely the simply connected 3-space R. 3 , 
and the six multi-connected orientable compact 3-spaces shown in table 1 [5). For a detailed account of our results 
see ref. [6]. 

2 Physical System and Evolution Equations 

The radiating system we shall be concerned with is represented by a harmonic oscillator (energy source) coupled 
with a relativistic massless scalar field (the energy radiated by the source are scalar waves propagating at speed of 
light) [7, 8]. In our model the gravitational field is treated as external. 

*int ernet: bernuiOnovep.c.at.tbpf.br  
t interne.: reboucasOcat .cbpf.br 
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Topology Type Basic Cell Identifications of Faces 

Ti  cube 3 pairs non rotated 

T2 cube 2 pairs non rotated, 1 pair rotated 90 °  

T3 cube 2 pairs non rotated, 1 pair rotated 180 9  

T4 cube 3 pairs rotated 180° 

W I  hexagonal prism top and bottom rotated 60° 

n2 hexagonal prism top and bottom rotated 120° 

'Fable I: The six compact orientable topologies for flat S'-spaces, according to ref. 151 

The dynamics of our system is described by the action integral (c = I), 

S 	A 
= 

1 
"-X Nr—i  6/ 1"491A 0  014] ± —

1 
I di 	— 4 Q 2  

2 

+ A r d4x Vg p(t , x) Q(t) (45(t , x) , 	 (I) 

where t E [t0,00), x E M3, g,„ is the metric tensor on M4, g E det (g,„) , overdot means derivative with respect 

to 1, and A is the coupling constant. The (normalized) density-function p, which accounts for the coupling between 

the harmonic oscillator and the scalar field, is choosed p(t, x) = 6(31 W/ V --  g(I, x). This type of point-like coupling 

requires a renormalization of the frequencies [8]. 

Varying the action (1) with respect to Q and ck one obtains the coupled evolution equations of the system, 

namely 

41(t,x) = A p(t , .r)Q(t) , 	 (2) 

+ w  Q(i) = A Id3 x  - g p(t, x), ( 3 ) 

where DO E (1=g) -1  a,(1=gyPPO,,q5) is the d'Alembertian operator, hereafter simply called wave-operator. Solving 
first equation (2) as an initial value problem, we write the solution in the form [9] 

c4(t,x) = 	cit i 	,„/=---g G(1' , ;t, x) A 	, x') Q(1'), 	 (4) 

with E KO), E M3 and where the homogeneous part ch(e, x) = 0 if we assume the initial condition 

(01(to,x),a t cb(to,x)) = (0,0). In (4) G(t' , x' ;1, x) is the retarded Green function, often referred to as fundamen-
tal solution of the wave-operator. 

3 The Green Functions 

Now we shall obtain the Green functions for the wave-operator through the study of null geodesics of the space-time 

manifolds for each distinct 3-spaces shown in table 1 [5]. We consider here static space-times, however the Green 

functions can be easily calculated for dynamic space-times if one uses the conformal time r, defined by r E f (i) E 
f de/A(1 1 ), for e E [to, t]. Thus, the metric tensor we shall he concerned is g,„(i, 77) = diag (1, —1, —1, —1 ), where 

(x, y, z) E R. 3 , and where the topological identifications for each 3-space will be suitably considered. 

The manifold 7 1 , best known as the three-torus T 3  [1], is a compact multi-connected manifold obtained by 
identifying the opposite faces of cube of side a (see table 1). A useful way of thinking about T i  in terms of a 
simply connected 3-manifold is to imagine the cube repeated endlessly in a three-dimensional grid (basic cell and its 

images) where each repetition consists of the same physical region of space. To construct the Green function of the 

wave-operator we shall examine the light rays emitted (null geodetic flow) by the point-like energy source located 
at the origin of coordinates r"?' = (0, 0, 0) (the center of the cubic cell). Note that the images of the point-like source 
are located at ta(i, j, k) , for any integers i, j, k. Observe that not all light rays emitted return to the origin: a light 
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ray directed to the point (p i ,p2,p3), where at least one of the ratios pap .?  is an irrational number, never comes 

back. Baking in mind these points one can find that the Green function for the wave-operator in Ti is 

G(1 — I', r) 	
r 

{ 6(t — t' — 	1,7f  2_, (4, [ e(i - r — an ) 6(t — 	r — an) 
1 	 1 

n=1 

CO 

e(t + r — a n ) 5(t — + — a„) ) 	 (I) 

where E [t 0 , t], 	E a ✓ 2  + j 2  k2  for all i , j,k integers. M is the total number of images under consideration, it 

depends upon the time interval under investigation. The above coefficients e n  give the number of the n-th neighbours 

source-images: el = 6, e2 = 12, ca = 8, e4 = 6, c5 = 24, and so forth; whereas the a n  give the discrete set of elapsed 

times (since 1') to reach the corresponding n-th neighbours: a l  = 0,02 = a Nfi, a3 = a 4, 04 = 2a, ao  = a N,/, etc. 

Note that using the first term of G in eq. (2.4) gives rise to the term 2 (A 2 /9 ir) f dx5(x)/x, that formally diverges. 

After a suitable renormalization procedure, for arbitrary initial data (Q(to),Q(to)), we find 

ej(t)+ 2 10(0 + 02 Q(t) = 	t e(t - t o  - an) cn 0( 1  — an ) 
	

(2) 
n=1 

for t E [to, 00) , where IV = ca! 21' f dXPe(X)/X, n 2  E (0, co) and '21' E A 2 /(4z). 

The Green functions for the wave-operator in 7 -2,1-3,T4,/11,112 can be similarly worked out, they has the same 

form except for the values of the constants a n , en  . 
For the simply connected manifold 'R 3  (1 = const section of the Minkowski space-time) the Green function is 

G = 6 (t — I' — r) /47rr. Thus the radiation-reaction equation in this manifold reduces to (2) with right hand side 
equal to zero, for all t E [10,00). 

4 Numerical Analysis and Conclusions 

Now we investigate the time behaviour of the energy-function of the source: E(t) = z[(2 2 (t) +11 2 Q 2(t)], where the 
functions Q = Q(t) are the corresponding solutions of the radiation-reaction equations for each manifold in study. 

For the present numerical analysis we have chosen as initial data (Q(to),(1 0 )) = (kfi/c1, 0), (i.e., E(to) = 1) and 

1' =52=1;a=1. 

In figure 1 we observe the exponential decay of the energy in Minkowski space-time (that is the 3-space is the 
non-compact R 3 ). Figures 2 and 3 show the damping of the energy in FRW space-times with compact T, and Ni 
space slices respectively, for different ratios h/a (h is the height of the basic cells, a is the side of the square basis of 

the or the shortest distance between two opposite sides of the 111-cell ). The fact that the relative maxima 

occur at different times and are of different amplitudes for distinct, tessclations (different ratios h/a) of the covering 

manifold (2], basically reveals the differences in their degree of connectedness (returning light rays take different 
times to return to the source). 

According to the concept. of degree of connectedness one learns from figures 2 and 3 that the greater is the 

topological degree of connectedness the earlier is the occurrence of the first relative maximum in the energy function. 

Note also that these maxima are clue to the retarded terms, present in the right hand sides of the radiation-reaction 

equations, demanded by the compactness and the connectedness, and incorporated in the corresponding Green 

functions. It should be noticed that the extension of the above concept of topological degree of connectedness to 
non-compact 3-manifolds implies that R 3  has a null topological degree of connectedness. This, of course, is indicated 
in figure 1, which shows an exponential decay of the energy with the time, no relative maxima come about, which 
means that no light rays (null geodesics) return to the origin. 

For completeness we show in figure 4 the time evolution of the energy in a FRW space-time with M3 = P 3 
 (the multi-connected real projective 3-space), where we notice the absence of the radiation damping phenomenon 

(a suitable time- average for the energy is constant). This pattern for the energy is typical of the space-times with 
spherical (K. ---- 1) spacelike sections. In fact, in these space-time manifolds all emitted light rays return to the source 

within a finite time (for finite radii of the 3-worlds, of course), then we associate to them the maximum topological 
degree of connectedness, i.e. one. 
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Urn dos metodos propostos para a deteccao de ondas gravitacionais (e o tinico em operacio 
no momento) e o de massas ressonantes, onde o fator de qualidade tern urn ponto decisivo 
na.sensibilividade da antena, assirn comb a largura de banda de deteccao . Para incrementar 
esses dois fatores, foi desenvolvido urn transdutor de dois modos para ser usado em uma 
antena de 3 modos. Nesse transdutor indutivo supercondutor, o ultimo modo do transdutor 
é urn ressonador de niabio que sozinho apresenta urn fator de qualidade de 16 nailhoes (a 4 
Kelvin). 0 segundo modo do transdutor é urn ressonador de aluminio que sozinho apresenta 
um fator de qulidade de 13 milhoes (a 4 Kelvin). Esses dois modos sac) acoplados atraves 
de contraclo termica, pois o aluminio contrai mais do que o nit5bio ao ser resfriado. A 
freqiiencia dos dois ressonadores mio foram perfeitamente sintonizadas para quo o fator 
de qualidade dos dois modos pudessern ser medidos separadarnentc. Os resultados obtidos 
foram de 10 milhOes para o ressonador de aluminio c 15 milhoes para o ressonador de niObio. 
Esses resultados permitern construir antenas ressonantes massivas corn sensibilidade em It 
da ordem do l0 -21 . 

1 Introducao 

A deteccao de ondas gravitacionais e urn dos maiores desafios a quo se prop& a ciencia em nossos dins e corn 

a conquista Besse desafio teremos a abertura de urna nova janela na astronomia: a astronomia gravitational. A 

propria causa das ondas gravitacionais screw Lao dificeis de detector (a sua interacio muito fraca corn a rnateria) 

nos perrnitira sondar o interior de estrelas colapsantes ou eventos quo estcjam escondidos de nos por nuvcns de 

pocira ou gases. Alem disco poderemos ter acesso a alguns dos fenomenos mais espetaculares da natureza como 

a formacao de buracos riegros, coalescencia de binarias cornpostas por buracos negros e/ou estrelas de neutrons e 

outros tantos fenomenos que pernianeccm aid Nora fora de nossa observacio . 

A deteccao de ondas gravitacionais tern trials do 30 anos [1]. Ela comecou corn Joseph Weber que inventou o 

detector de massa rcssonante (urna ends gravitational ao passar por trrn cilindro transfere parte da sua encrgia para 

este, se a frequencia deste for ressonant.e coin a da antena, fazendo este cilindro vibrar, esta vibracii.o pode agora 

ser amplificada por amplificadores mecanicos e/ou cletronicos e finahnente medida). Desde a dpoca de Weber, esses 
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detectores ja tiveram sua sensibilividade muito melhorada, passaram a ter melhor isolamento vibrational (para 

diminuir ruido sismico), passaram a ser csfriados ate temperaturas criogenicas ( exist= tres em operacao resfriados 

a 4 K, e dois que esti() em fase final de montagem e que devem atingir temperaturas da ordern de 50 mK), a eletronica 

de amplificacio passou a ser mais sofisticada ( algumas das antenas usam como amplicadores os chamados SQUIDS: 

"Superconduting Quantum interference Devices") e comecou-se a usar uma amplificacio mecanica (um segundo 

ressonador meanico sintonizado na freqiiencia da antena, acoplado a cla aumenta a amplitude do movimento pela 

rola*, das massa entre os dois ressonadores) a partir da qual a vibracao a transformada em sinal eletrico para ser 

amplificado. 

Esse segundo ressonador constitui-se o segundo modo ressonante da antena c tern como fungi° , alem de arnpli-

ficar a vibracao , tambem aumentar a banda de freqiiencia de deteccao (banda esta dada pela freqiiencia ressonante 

multiplicada pela raiz quadrada da razao entre as massas dos dois rnodos). Para aumentar ainda mais essa banda 

de interacao , urn outro ressonador pode ser introduzido em serie corn os outros dois, o que permite aumentar mais 

ainda a rani o das ma-ssas e por conseguinte a banda de deteccio . 

A transformacao do sinal mecanico em sinal eletrico d feita atraves de urn transdutor eletromecanico, neste 

caso urn transdutor indutivo, onde uma bobina supercondutora plana a colocada paralelamente e muito proxima 

de urna superficie plana do ultimo ressonador feito de material tambem supercondutor (no nosso caso niobio). Os 

movimentos do ultimo ressonador alteram a indutancia da bobina gerando o sinal eletrico que, passando por um 

transformador casador de impedancias, é amplificado no SQUID e ai amplificado pela eletronica conventional. 

0 objetivo deste trabalho e o de se obter altos fatores de qualidade nrecanico nos ressonadores de niobio, e 

ao rnesmo tempo conseguir fazer urn acoplamento entre ressonadores feitos de diferentes materiais (no nosso caso: 

niobio e aluminio 5056) scm que haja uma degradacao no fator de qualidade mecinico. 0 motivo disso é quo 

as antenas geralmente sao feitas de materiais diferentes dos materiais do ultimo ressonador (niobio). 0 metodo 
escolhido. aqui foi o da contracao terrnica diferencial. 0 ressonador de niobio ao ser resfriado contrai menos do que 

urn and da mesma medida usinado no centro do segundo ressonador de alurninio, a pressao desse contato numa area 

de contato suficienternente grande, garante urn acoplarnento forte suficiente quo 'tax) degrade o fator de qualidade 
mecanico. 20 

2 0 ressonador de niobio 

Primeiramente se mediu o fator de qualidade rnecanico (Q) do ressonador de niobio sozinho e como o Q se comportava 

corn a temperatura nas proximidadcs da temperatura de 4 K, e o resultado é apresentaclo na figura I. Podemos 
ver que o major Q se encontra perto de 7,5 K na regiao abaixo de 4K ha urn pico de dissipacao (em ()twos 
experirnentos este pico foi focalizado ao redor de 2K), e a temperatura de 9,2K aparece urn degrau devido 
transicao supercondutora do niobio. 

3 0 ressonador de niobio e a de aluminio 

Para testar como o fator de qualidade se comportava corn a pressao da contracao termica diferencial, primeiro 

testes corn apenas urn anel de aluminio em torno do ressonador foram realizados c os resultados podem ser vistos 

na tabela 1. Note-se que quanto major a pressao, major o fator de qualidade, ou que este fator de qualidade poderia 

ser melhorado se fosse colocada graxa de vacuo de silicone na interface entre os ressonadores. 

Ao se decidir polo melhor acoplamento, optou-se pelo de maior pressao sem a presenca de graxa. 

Finalmente a montagern final dos dois ressonadores foi feita corno aparece na figura 2, e os resultados finals dos 

fatores de qualidade mecanicos aparecem indicados na tabela 2. 

4 ConclusOes 

0 transdutor desenvolvido aqui pode ser usado tanto para antenas cilindricas quanto para antenas esfericas. 
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Figure I.: Grillo) do Q Inverso versus a Temperatura do ressonador de niabio 

Anel 
20 (indice) 

diainetro 
(cm) 

Pressio na 
interface(kgf/cm 2 ) 

Q (V) 
sera graxa 

Q (10b ) 
corn graxa 

56 ressonador 6,985 0 20,7 
1 7,005 80 19.0 20,7 
2 7,003 17() 19,1 20,5 

3 6,995 330 20,7 19,3 

Table 1: Tabela dos fatores de qualidade(*Ne,ste teste foi encontrado urn parafuso solto, podendo ser este o motivo 
do baixo Q) 

0 processo de contracio t•erinica diferencial pode ser usado tambern pares acoplar urn ressonador de aluminio 

corn a masses principal da antena, faz-se urn furo do inesino diametro (corn a menor ovalizacRo possivel) e coloca-se 

urn cilindro de Mohr° nesse furo. 

Pelos resultados aqui mostrados, o motivo da dissipaciio mecanica na interface de contato e a existencia de 

regiOes corn contato fraco, ou seja as superfeies n5.0 estilo regidamerite fixas Irina na outra. 
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ressonador sozinho ressonador acoplado 
ressonador Al 13x106  10x10' 
ressonador NI) 16x10' 15x 106  

Table 2: Tabela dos fatores de qualidade dos dois ressonadores acoplados 
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Carlos Frajuca et al. 

Figure 2.: Desenho da rnontagem final do ressonador de dois iriodos 
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On The Higher Derivative Quantum Gravity 
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We analyze the perturbative implications of the most general high derivative approach to 

quantum gravity based on a diffeomorphism invariant local action. In particular, we con-

sider the super-renornializable case with a large number of metric derivatives in the action. 

The structure of ultraviolet divergences is analyzed and it is shown that the cosmological 
counterterm vanishes under certain parameter conditions. The divergences are gauge fixing 

and parametrization independent. We elaborate on the unitarily problem of high deriva-

tive approaches and the distribution of masses of the unphysical ghosts. We also discuss 

the properties of the low energy regime and explore the possibility of having a multi-scale 

gravity with different scaling regimes compatible with Einstein gravity at low energies. 

The formulation of a consistent theory of Quantum Gravity is still one of the major challenges in theoretical 

physics. One of the main fundamental problems is that there is no experimental evidence of any Quantum Gravity 

effect whereas the classical theory covers from cosmology to current precision tests with great success. Due to 

the lack of any experimental evidence, the models of Quantum Gravity arc necessarily based on purely theoretical 

principles without phenomenological constraints. On spite of this freedom the construction of consistent models for 

Quantum Gravity meets very serious difficulties. In particular, the quantum theory based on the Einstein-Hilbert 

action is non -renormalizable, and thus one has to imply an infinite number of renorrnalization conditions in order 

to extract finite part of the diagrams. 

Recently, it was pointed out [I] that some large distances effects remain, however, independent of the renormal-

ization conditions involving higher order terms of the effective action. In particular this occurs for the quantum 

corrections to the gravitational Newtonian potential. However, the analysis of other effects like the scaling de-

pendence of the cosmological and gravitational constants. requires a concrete formulation of the quantum theory. 

One can always imagine that the extremely high energy UV regime is described by qualitatively different theory 

like string theory, free of renormalizability problems which will provide a natural reduction parameter scheme at 

intermediate scales. In this scheme the field theoretical approaches to quantum gravity should be considered as 
an effective field theories. At the same time, the string effective action is well defined only on shell because of 

the repararneterization invariance. For such a reason, we consider the most general effective action which can be 

generated by string theory [2] in an arbitrary parametrization 

2N+4 

ref/ (gAvi = E on trr 4-n 	d4z,V=i. 0 [ 	)"] 	 (I) 
n=0 

where N 	oo. m 2  is the dimensional parameter of the fundamental theory (in string theory it is the inverse of the 

string tension o'), 0„(0Ag t,,,) denotes the general covariant scalar terms containing n derivatives of the metric g +,„ 
and o n  are dimensionless couplings. Although theories with higher derivatives like (1) are in general non-unitary 

at the quantum level, string theory is both unitary and renormalizable. While studying the effective theory (1) one 

meets massive ghosts. On the other hand time first few ghosts have the masses of the Planck order, and therefore 

the truncated theory has the same status as the well known fourth derivative gravity [3,4] (see [5] for introduction 

and references), it can be used as an effective low energy theory for quantum gravity in the same fashion as the the 

fourth derivative gravity. 



162 	 XVII Encontro Nacional de Particulas e Campos 

One can always choose a special parameterization without unphysical ghosts [6,7], although from a pure string 

point of view there are no means to distinguish this special parameterization of the metric except for the absence 

of unphysical massive ghosts [8]. 

Here we consider a finite value of N without taking the infinite limit N 	oo. If N > 0 the corresponding 

theory contains more that four derivatives of the metric and it becomes super-renormalizable. This provides a 

natural framework to study the possibility of different scaling regimes compatible with Einstein gravity at low 

energies and different scenarios for the ultraviolet behaviour of the cosmological constant. 

The n = 0 term of the action (1) is cosmological term, n = 1 - Einstein term. For n = 2 one meets the fourth 

derivative gravity. In higher orders, when n > 2, the action contains terms which are composed by curvature 

tensor, Ricci tensor, scalar curvature and their covariant derivatives. We suppose that the perturbation theory is 

constructed for the quantum metric /i m p on flat background where g„ = + Then the contributions of the 

n > 2 terms to the propagator are only through the terms of second order in curvature, while others can contribute 

to the vertexes only. because they necessary contain more than two hi,„ fields. Therefore, the terms relevant for 

the propagator have the form 

= I 	{E (a; R„0 1  Rov + R D i  - 	+ 
(.; 	

(2) 
i=o 

If aN 0 0 and aN + 3bN 0 0, the highest order terms are nondegenerate (after introducing the gauge fixing) and 

then, at high momentum k , the propagator behaves like 0 21'44) . The gauge fixing can be introduced within 

the standard Faddev-Popov prescription, but with an additional weight functional [4,5] (see also . [11,12] for the 

recent general discusion of higher derivative theories), and thus provide the ghost propagator to have the same UV 

asymptotics. 

The spin-2 sector of the propagator are gauge-fixing independent, just as in the fourth derivative gravity, and 

if aN 0 0, then Q(2) = 0 (k-(2N+4” .  ) Some comment on the form of the propagator is in order. In the general 

theories like (1), one always meets the following structure of propagator. 

G(k) = 	 + 121V+2 
( 12N+4 k2N+4 	k 2N+2 12N k2N 	1 2 k2) -1 	

(3 ) 

where 1;  are real numbers related with the values of a 1 , b ;  coefficients in (2). The expression (3) can be rewritten 

in the form 

Ao 	Al 	A2 	 Ajv+i 
G(k) = 	+ k2 Tra?  + k2  rn3  + + kz 	mz,v+i 	 (4) 

where ml , depending on the values of 4 (3) can be real or complex. In the last case there are always complex 

conjugate couples of the m 2 's. As one can prove [9], that for real 0 < rn? < mg < mg < < m 2N+i , one has 

sign[Ai] = -1 signki 2+1 1. This shows the structure of massive poles in the higher derivative theory (1). The 

contributions of the massive unphysical particles make the theory superrenormalizable while all the masses are of 

the Planck orders. Consequently the violation of unitarity is not visible while we consider an effective theory valid 

for the energies below the Planck scale. Above this scale all quantum effects should be derived from the string loops 
directly. 

The standard estimate for the superficial degree of divergency for arbitrary p-loop diagram gives 

d„, <4 +2N-2Np ( 5 ) 

where d, r , is the total number of derivatives acting on an external lines. Therefore the theory (1) is superrenor-
malizable. In all the IV > 0 cases the possible divergences have the powers of curvature less than in the starting 
action, and moreover, this power is decreasing with the loop order. 

Since the local covariant counterterms have smaller amount of derivatives than the classical action, the coefficients 

of terms with more derivatives don't need the infinite renormalization. In the framework of the theory (1) these 
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coefficients are arbitrary. In principle their values should be derived from the fundamental theory, or taken from 
experiment. The sector of any theory (1) (with N > 0), which is subject of infinite renormalizationi, has the form 

d4 x,,Fg {a0 R0  R" + bo R 2  — R+ Al + (surface terms) 
	

( 6) 

Now we consider the renormalization group equations in'the theory (1). In fact, since only the parameters of the 
lower derivative part (6) of the action need to be renormalized, the effective theory (1) depends on scale only via the 
beta-functions for these parameters: Pao, A., OG, 13A. Thus it is reasonable to evaluate these beta-functions. Here 
we develop the method [9] which enables one to calculate the above beta-functions in the one-loop approximation 
for general theory (1), and moreover perform an explicit calculation of At. 

Before the discussion of the calculation of the beta-functions, let us show that they do not contain the gauge 
fixing and parametrization arbitrariness. The local counterterms, in principle, can be gauge and parametrization 
dependent, but these dependence has to vanish on the mass-shell. For the one-loop counterterms one can go on 
shell by just substituting the classical equations of motion into the expression for counterterms. For N > 0 these 
equations contain derivatives of the metric of degree higher than four. However, we already know that in the theory 
(I) the counterterms are local expressions with maximum four derivatives of the metric. Therefore the one-loop 
divergences of the theory are invariant and unambiguous. At higher loops one has to take into account quantum 
corrections to the equations of motion, but the above result holds. 

Now we can proceed with the one-loop calculation. Technically it is reduced to the evaluation of the divergent 
part of the Det of the operator 1  (see (9) for details). 

[ a tv 

 4 
6 Po 	aN (aN

16b 

+ 4bN)  gov  gpo {b 	+2 + V 0.8 A1A2- 13N+217 AI V A2  ... V A 7jv 2 + 
Pm. 	 N 

±zpa op  ri r2-•.7-2N+L vri  v r2  ...1772N+1 	upo"ptllVa•- Lowy vvi 	 0(172N-1- I )} 

Unfortunately it is difficult to apply the general algorithm [9] for the real calculations for general N. The only one 
thing which can be traced up to the end in a general form is the calculation of the cosmological counterterm. The 
reason is that this counterterm can be derived for the flat background metric, when only the (2) terms are relevant. 

Let us first consider the case N > 1. One can apply the general formula [9) and find the cosmological counterterm 
in the form 

= 	 [ 	2 

 J 	
u(N,N > 1) + 2 	

1  
VW)] 

a NON + 3bN) 	 N(aN 3b 10 2  

where 
= 6aNaN-7 + 15bNaN-2 + 3bN_2aN, 	v = a 2p1(aN 	3bN -1 ) 2  + 5a 2N _ I (aN  + 3bN) 2  

In the case N = I one meets a different expression for 11 (91. It is important that the obtained result is gauge 
and parametrization independent. In this respect it differs from the counterterms which appears in GR and fourth 
derivative quantum gravities. Thus, taking into account the higher orders in the effective theory (1) we get some 
advantage. With the use of dimensional consideration one can write down the counterterm of the Einstein type 
with accuracy to the numerical coefficients. The same concerns the renormalization of the parameters no, b6. 

Let us now discuss the possible physical applications of the above result. One can fine tune the coefficients 
aN,bN,aN_I,ON-1,aN_2,6N_2 in such a way that the cosmological constant does not need an infinite renormal-
ization. This can give an additional constraint for these coefficients, in fact such a constraints are rather restrictive 
if we require the finiteness for arbitrary N. In this case the zero (or very small) value of A is not in a conflict with 
the renormalization. 

On the other hand we can consider the nonzero beta-function for A. In this case after the renormalization the 
one-loop expression gives the leading logarithmic term in the dependence of the contribution of quantum gravity to 
the cosmological constant. One can start at the Planck scale with the nonzero cosmological constant. This should 

'Here V, Z, U depend on the dimensionful ratios like a  :lir  ; , and also on curvature and on it's covariant derivatives. 

( 7) 
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lead to the cosmological model with the cosmological constant term, which depends on the scale factor a(t) as 

follows 

2 	 1  
A[a(t)] = [ 

an! (aN + 3bN ) 	 aN(aN + 3bN) 2 
 u(N, N > 1) + 	 v(1V)1 In [a(i) MN] 	 (8) 

where we have used the relation p a -3 . Such a consideration can be interesting for the analysis of the quantum 

gravitational effects in the evolution of the bubbles in the Universe, or for the solution of the problem of the age of 

the Universe. 

It is worth to mention that the coupling of the superrenormalizable gravity (1) to the matter fields doesn't 

affect the 0-functions of (gauge, Yukawa and scalar) couplings in the matter fields sector. This follows directly 

from the power counting. In this respect our model differs from both GR. where adding matter fields spoils the 

renormalizability, and from the four derivative gravity where the Yukawa and scalar couplings are affected by 

gravitational corrections [10]. In fact two diargains with external scalar legs can be divergent for N = 1 case, 

but they give contribution only to the beta-function of the scalar mass. One can find this correction to mass' 

beta-function in [9]. 

As it was mentioned above, the masses of ghosts (4) have the same order as the Planck mass. At low energies 

(corresponding to the macroscopic lenth) they all are not propagating, and the only one relevant excitation is that 

related with the massless particle - graviton. To evaluate the quantum corrections to the gravitational potential, one 

has to proceed in the same way as in the recent paper [1]. In the far IR the quantum effects of the higher derivative 

theory (1) are the same as in Einstein gravity By the algebraic reasons they are linked with the UV counterterms 

of the Einstein gravity rather than with the once of the theory we are discussing here. Thus the low energy (long 

distance) effects in the theory (1) are essentially the same as in the Einstein gravity. At the intermediate scales, 

however, quantum gravity effects will he related with the more general theory (1) and one can regard (8) as an 

example of such an effects. 

Authors are grateful to S.Ketov for discussion on string reparameirizations. 1.Sh. is grateful to Depariamenio de 

Fisica Teorica, Universidad de Zaragoza and to Departamento de Fisica - ICE, Universidade Federal de Juiz de 
Fora, MG - Brazil, for kind hospitality. 
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On the conformal transformation in (quantum) gravity 
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We consider several aspects of conformal transformation in second and fourth derivative 
metric-dilaton gravity theories. The local conformal symmetry and conformal duality are 
formulated in n 2 dimensions. In order to use the conformal duality for the study of 
strong gravitational field regim in quantum gravity the first term in the Schwinger-DeWitt 
expansion for the effective action and it's gauge fixing dependence are derived. In n = 4 
we consider the possible form of the one-loop divirgences and obtain an infinite family of 
higher derivative conformal invariant. metric-dilaton actions. Another (inequivalent) family 
of metric-dilaton generalizations of the Weyl gravity conies from the study of the anomaly-
induced effective action of vacuum. 

1. It is well known that the study in the field of quantum gravity meets serious difficulties. On classical level 

General Relativity is in a good accordance with the known tests, but quantum theory based on GR is nonrenor-
malizable. Indeed there were a number of approaches to develop quantum gravity, however the principal problem 

with the lack of quantum gravitational experiments doesn't enable one to choose among the numerous theories and 
therefore the models for quantum gravity arc subjects of wide arbitrariness. This concerns, for instance, the choice 

of the model for the description of low-energy quantum gravitational phenomena, while the string-inspired action 

contains, along with the metric, massless dilaton field. In such a situation a lot of attention has been attracted by 

the models which have more symmetries than GR, and in particular, by the theories with local conformal invariance 

[1]. 

On the other hand, the standard perturbative techniques give the effective action in a form of a power series 

in the curvature tensor and it's derivatives. At the same time one of the most important applications of quantum 

gravity should be the regions of extremely strong gravitational field in the vicinity of cosmological and black hole 
singularities, where this approximation doesn't look efficient. One way to study this strong field limit is to develop 

essentially nonperturbative methods in quantum gravity. Another one is to explore a specific models for quantum 

gravity which have a symmetry linking the regimes of strong and weak gravitational field. Below we consider 

an example of such a symmetry - conformal duality, which has been originally discovered by Bekenstein [2] as a 

property of dynamical equations for the conformal scalar field coupled to gravity. 

2. Consider the action of metric-dilaton theory in n-dimensional space-time. 

S[gp„, 01 = d o 	{ A(0) g" a p 0 0,0 + B(0) R + C(0) } 	 (1) 

This theory possesses general covariance and, for some special choice of the functions A, B, C (otherwise arbitrary), 
an extra conformal symmetry. If one performs an arbitrary reparametrization of the scalar field ch = 0(0), and 
the conformal transformation of the metric gr p, = 	e 2°(')  then the condition of symmetry for the action (1) is 

;b] = S[g„„, 0] . The solution for the last equation has the form 

e0-2).,(0) =  B(0)  
B (0( 5 )) 

n — 1 13 1 2 (¢)  
A(0) = 

n  - 2 13(0) 
C(0) = A B •712.  (0) 	 (2) 

   

'On leave from Tomsk Pedagogical University, 634041. Tomsk, Russia, E-mail; ahapirabfisica.uhf.br  
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where A = cons,. and X; = diX/d0 i  . The equations (2) show the relation between arbitrary reparametrization 

of scalar field and the corresponding conformal transformation for the metric and also give the constraints on 

A(0), C(0) which are caused by the conformal symmetry. 

Following [3] we denote the action (1) which satisfies the conformal constraints (2) as S R ( 0) .A . The particular case 

of SB( 0 ).,,, is GR with B = 7tc -2  . Here the Newton constant is divided into dimensional (K 2 ] and dimensionless 

7 factors for convenience. Another particular case of SB,A is the conventional conformal scalar field, for which 

B(0) = 2(7,--A-0.6 2  where .1,b is some other scalar. 

CR is classically equivalent, to conformal scalar field (l]. To see this one has to perform the conformal transform 

of symmetric model. It turns out that the result also satisfies (2) so that 

	

= Sic(0),Akti, 01 
	

( 3 ) 

,7?-s 
for any given function K(q5) (with only sign restrictions), if only 	Op. = [ I1(-# } BO)gNv . In particular one 

can choose K = coast and demonstrate the conformal equivalence between the models SB( 4,),A with nonconstant 

different B including GR. 

2. The equality (3) can be used as a basis for another interesting symmetry, which holds for some of the 

nonconformal versions of (1) (2, 3, 4]. Let us consider the sum 

	

SB(0),Al§mv,  '01+ sL(0),,[9p.,15] 
	

(4) 

where L(0) is some function and r = constant. One can show that after the conformal transformation (4) becomes 

	

.51,; ( 0), A (g,„, 	+ Sm( o) ,,. [g„„, 0], 	
it1(°)  = 

1-( 
B(0) 

 56)K(0) 	
(5) 

Especially interesting particular case of the above symmetry takes place when one of the components in (4) is GR 

S
= K2 	d";EN 	 g""0,145  ai,(6 + (0 + -I)R+ A45'11-5  + T'y '!7 	 (6) 

For this specific case we face a conformal duality which exchanges 

—1 	 —1 
•-• 	 7 got, 	91.111  = 9 111' (407)-  *- 

The dual symmetry links different metrics, different values of scalar field and different values of coupling constants. 

Let us, for instance, choose weakly changing 0 << 1 and also 7 << 1. Then we arrive at the transformation which 

links the regimes of strong arid weak gravitational field. Thus, countrary to the dual symmetries in string theory 

the conformal duality does not link the regimes of weak and strong coupling. However the conformal duality can 

he important in the study of quantum gravity effects in the regime of strong gravitational field in a given order of 

the loop expansion. Consider the one-loop effective action in the theory of quantum gravity with classical action 

(6). The effective action T can be derived on the basis of the background field method and Schwinger-DeWitt 
expansion. The last gives the local representation of 1' as an infinite power series in the proper time parameter s. 
Since this parameter is dimensional, the local Tr a k(x , z) coefficients have dimensions of (curvature)k , and then 
the conformal duality may help one to extract an information about the opposite strong gravity regime. 

3. Since all the theories with conformal duality (5) differ from the most simple one (6) by the reparametrization 

of the scalar field only, we shall perform tile calculations for this simple case, with an accuracy to the first order 

in curvature and to the corresponding second order in the derivatives of the scalar field. This approximation 
corresponds to the first a l  coefficient of the Schwinger-Dewitt expansion. After some calculations we obtain (4] 

Tr al (x, x) = 	 { A(0) e'0,00,0 + B(Q5) R + C(0) 	 (7) 

where 
	6(0) = 3n-5n 2 -1  

12 	21(n-1) 



XVII Enthntro .Nacional de Particidas e Campos 	 167 

1 { 72 
AO) = 	 — (6n - 4 - 2n 2 ) + -

7 
(16 - 28n + 4n 2  + 12n 3  - 4n 4 ) 

8 (n - 2) (n - 1) (7 + 0)
2 
 0 2  

-26 n + 49 n2  - 30 n3  + 7 n4  + (16 - 28 n + 16 n 2 --2n3 ) } 

A n 0 7A-3 	 r (-7 + 7 n 2  + 0) (A 4 	+ 7 	r)  
C(0) = 	  (n + +7)+ 	 (8 ) 

7 (n 2  - 3 n + 2) 	 2 7 (1 - n) (7 + 

Unfortunately the physical analysis of the expression (8) is difficult because it contains a gauge fixing arbitrariness 

which can be fixed only on shell. In particular, the dependence of 11 1-10°P)  on the gauge fixing parameters is 

proportional to the classical equations of motion. In our case only one combination of the functions A(0),B(0),C(0) 
is gauge independent. 

To go on (classical) mass shell one needs the equations of motion for (6), from which follows 

n T 
R= R(0)= 	7 

2 - n 

12 
,T2  (V0) 2  - 762 (DO) = 	(/' 7 717  - J1 4 717 ) = S(0) 

After some consideration (which we miss for the sake of brevity) one arrives at. the following on-shell expression 

a l (z,x),„ = diz,,/ 	{0-1 / 2  J 4  dcd 0 1 / 2  A(¢) S(0) + B(¢)R(¢)+ C(¢)} 
00 

where the value of 00 is not relevant if 0 and metric satisfy the equations of motion. An explicit form of the last 

expression can be found in 141. 

The first approximation which we have explored here, shows the general structure of quantum corrections, but 

unfortunately it provides too little information because of the strong gauge-fixing arbitrariness. In particular, the 

on-shell result (9) doesn't allow one to restore the effective potential and thus to investigate in which way the 

quantum corrections change the expansion rate of the early Universe, or how they affect the black hole solutions 

in the vicinity of singularity. Indeed it should be interesting to use a more complicated methods of calculations, in 

order to evaluate the nonlocal part of the effective action, which can be free of the above arbitrariness. 

4. 	Let us turn to the n = 4 and consider the possible form of the one-loop divergences in a conformal invariant 

theory (1), (2). The symmetric action Sa(0), A  differs from the action of GR ,5 7/0,,,, in one respect. The first 

one has one more field variable that is compensated by an extra conformal-like symmetry. On classical level both 

theories are equivalent. However on quantum level the equivalence may be broken by anomaly which can violate 

the symmetry. We suppose that the one-loop divergences of SB( 0), A  are not affected by anomaly and hence they 

can be derived in a field variables corresponding to the General Relativity with the cosmological constant. Since 

we suppose that the Jacobian of the corresponding conformal transformation is finite, the one-loop divergences in 

the theory SH( 4,), A  are given by the conformally transformed ones of the GR. The one-loop divergences in the last 

case have the form 

rd1 = 1  f 	falC2  + a2 	3(DB) 3(VB)212 
n 4 

	

	 2B2  J 

R 3(D13)  3(VB)2 1 a4 B2  
7 1 	 2B 2 	j + 	f 7 

Here the dots stand for the terms, proportional to the classical equations of motion, they indicate to the gauge 

fixing dependence of the counterterms. On shell the expressions (11), (10) coincide, and the mentioned dependence 

disappears. 

( 9) 

ryiRt; = 1 	
{a1c2 +a2R2 a3 it a4} 	 (10) 

- 4 

 

where C 2  is the square of the Weyl tensor. The values of a1,2,3,4 depend on the gauge fixing parameters. One can 

easily find the form of the conformal transformation which !inks S. and SBko) , A , and so obtain the expression for 
the divergences of the last 
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(11) gives, as a bye product, the action of higher derivative conformal invariant (in II = 4) metric-dilaton action 

15, 3]. Another generalization of the Weyl gravity has been formulated in [6] in the form, inspired by the anomaly 

induced effective action of gravity [7] (see also 18], [9) and [101). 

= 	d4  x N/ 	{g(so) C 2  + p(co) co so + f (so) (V c,o) 4 	 (12) 

where = ❑2  + 2/ii"V p V„ — IRO + (V. 0 R)V, and (Vw) 2  = Vow Vop. 

Three higher derivative theories (10), (11), (12) have equal number of degrees of freedom, but two last have an 

extra conformal symmetry. At the moment it is unclear whether (11) and (12) can be transformed into each other. 

One can only mention that while the conformal continuation of (11) to n # 4 is straightforward, the same procedure 
for (12) is very difficult and maybe impossible. 

Author is grateful to I.C. A vramidi and M.S. Plyushchay for useful discussions and thanks for the warm hospitality 
the Departamento de Fisica Teorica en Universidad de Zaragoza - and the Departamento de Fisica en Universidadc 
Federal de Juiz de Fora, where this work has been started and completed. 
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The Levi-Civita solution is matched to a cylindrical shell of an anisotropic fluid. The fluid 
satisfies the energy conditions when the mass parameter a is in the range 0 < a < 1. 
The mass per unity length of the shell is given implicitly in terms of a, which has a finite 
maximum. The relevance of the results to the non-existence of horizons in the LC solution 
and to gauge cosmic strings is pointed out. 

1 Introduction 

The Levi-Civita metric for the static vacuum, cylindrically symmetric[1] is characterized by two parameters which we 
will call "cr" and "a". One of them, a-, is generally associated with the energy density per unit length of the cylindrical 

source[2, 3, 5]. The other one, a, is associated with the topological deflect of the cylindrical spacetimes[5, 6]. 
To interprete the parameters of the Levi-Civita metric, and then to comprehend the meaning of the cylindrical 

static vacuum spacetimes, it is useful to know the possible sources of these spacetimes. Some of them may be 

found in the litera.ture[4, 7, 8, 9, 10, 11, 12, 13, 14]. Most of them refer to perfect fluids except one [7] which 
consider a particular case of an anisotropic fluid. To study the junction conditions which are necessary to match 
the matter's solutions to the Levi-Civita solution would give us a good way to interprete the physical meaning of 

these parameters. Some authors [3, 4, 5, 7] interpreted the parameter a- as the linear energy density of the source 
and found that 0 < a < [4] and 0 < a < :11  [3]. Besides this results, Bonnor and Martins (1991) had concluded 
that 0 < a < a based on geodesic arguments. The same conclusion had been found by another author [15]. 

So, until now, there is no any known source which admits the matching with the Levi-Civita spacetime to rr > Z. 
In the present paper we consider a cylindrical shell constituted by a completely anisotropic fluid dividing the 

vacuum spacetime in two regions: the interior, described by the Minkowski metric and the exterior, described by 

the Levi-Civita metric. '['he junction conditions on the shell allow us to And its energy density and its pressure in 
the principal directions. Imposing that the energy conditions must be satisfied by this solution we find 0 < a < 1. 
Thus we obtain the first matter solution which represents a source to Levi-Civita spacetime with o- > z. However 
this result must not to be considered in contradiction with the previous results since these considered particular 

fluids, i. e. perfect fluids. Instead of this, in our present work, we have the most general fluid constituting a shell 
of matter. Besides, we get the energy density per unit, length of the shell and show that it only coincides with the 
parameter a when a < z. 

The paper is organized as follows. In the next, section we present the static cylindrical spacetime, including the 
three regions: the interior (Minkowski), the shell and the exterior spacetime (Levi-Civita). In section three the 
junction conditions are presented and applied on the shell. In section four we find the limits to the parameter a in 
order that our solution satisfied the energy conditions. The energy density per unit length is given in section five. 
In the conclusion we sum up our main results. 

2 The spacetime 

The spacetime is divided into two regions: the interior V — , with 0 < r < R, to a cylindrical 	shell of radius R 
centered along 2; and the exterior V+,with 1-1 < r < oo. The shell is constituted by a static completely anisotropic 
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fluid. 

The interior spacetime is described by the Minkowski metric [161, that is 

ds_ 2 = 0 2 de dr2 _,82 dz 2  — dco2 , 	 (1) 

where a and are are constants and the ranges of the coordinates t, z and y, arc 

oo < < co, 	— ao < z < cc, 	0 < so < 271, 	 (2) 

with the hypersurfaces co = 0 and 'p = 2,r being identified. The coordinates are numbered 

= 1, 	= r, 	x2 = 	X 3 = 
	

(3 ) 

The indexes — and + stand for the interior and exterior spacetimes, respectively, from now on. 

The exterior spacetime is also formed by vacuum but the presence of the static shell suggests us that it should 

be described by the Levi-Civita metric, which is given by 

ds +2  = fo (r)d1 2  dr2  — h(r)dz 2  — f3(r)dco 2 , 	 (4) 

being 

	

fo = [A(r — ar'/A 
	

(5) 

	

= [A(r — awo(2o—tvA 	 (6) 

= 	[A(r a)i2(1 -20)1A 
	

( 7) 

where 

A = 4cr 2  — 2o. + 1. 

The energy momentum tensor Tp, ±  to the interior and exterior regions are 

Tp„ ±  = 0 

We are supposing that the cylindrical shell is filled with a static anisotropic fluid. Hence the energy momentum 
tensor is given by 

Tp „ = pUp U, ps Z,,, + pcptlyh 
	

(8) 

where p is the energy density, p, and p, arc the principal stresses, and U,,, Z,, and (Pi, are four vectors satisfying 

Up UP = 1; 	Z,Z" =-- —1; 	.0P = —1; 

Up ZP =UM W'` = 	= O. 

The previous conditions and the general metric (4) provide 

= (A,0,0,0) 

ZP = (0,0, ‘jrf—;,0) 

.= 	
3
) 
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3 Junction conditions 

The discontinuities surfaces can be characterized by boundary surfaces or by surface layers. In the first case we 

have a jump discontinuity in the energy density. In the second one the energy density becomes infinite, and this is 

the case of a shell. Surface layers are well represented by Dirac delta function. 

The Lichnerowicz's formalism was modified [17], considering the distribution's theory, to obtain a new formalism 

which preserves the Bianchi identities. 
The junction cconditions obtained by Taub, to static metrics, can he summarizes as follows. 

(Opg,+ )E — (gpv - )E = 0, 	 (1) 

(9pv,A + )2:: — (st u w,.), 	= KA7', 	 (2) 

with KA being the normal vector to E surface, and given by 

ar(r) 
= 	 ( 3) 

where F(r) is the function decribing the surface E. 
• The energy momentum tensor of the shell is given by 

Tp „ 	176 ,5 ( 	— Ii„K„)+ (K 	+ li,, -r A  OK A] 

— 2  [K A  KA 	gpm K6 K 711 	 (4) 

From (I) and (2), with the metrics (1) and (4), we can get the tensor -r„,,. Substituting 7„ into (3.5) we are 

able to know the energy momentum tensor and the pressures which must have the shell in order to permit the 

matching with the Minkowski interior spacetime and the Levi-Civita exterior spacetime. This procedure provides 

20(1 — 20)(ro 	4a2 r0  — a 
8rAro(ro — a) 

2a(1 — 2a)(ro — a) + a 

	

— 	
8rAro(ro — a) 

4a 2  

 

Ps,  

  

 

8rA(ro  — a)' 

where 

 

ro  = . 1 [A(ro  

and ro — a > 0 and T o  > 0. 
Here we can see that if a = 0, which should reduce the Levi-Civita metric in 'the string metric, we have the 

string momentum energy tensor as expected, i. e. 

—a 	1 ( 1  
= 

P  = 	ro (ro  — a) 	ro 	C) ' 

Equation (8) shows us still that if we put a = 0, the parameter C have to be equal the unit, meaning that we 
cannot have a string is a = 0. 

4 The energy conditions 

The energy momentum tensor should satisfy certain inequalities which are physically reasonable. They constituted 
the energy conditions (18]. 

The first of them is the weak energy condition. For fields with non-zero rest mass it holds if 

axA 

Ps 

p > 0, 	 (1) 
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p+pi> O. 

with i = 1, 2, 3. 

The second one is the dominant energy condition. For that same fields it imposes that 

p > 0, 

P < Pi < P. 

(2)  

(3) 

(4) 

This condition is the weak energy condition with the additional imposing that the pressure, in any direction, 

should not exceed the energy density. In fact, to limit the sound velocity e a  to be less than or equal to 1 (because 

no signal can propagate faster than light) implies p i  < p. 

Finally we have the strong energy condition. It is satisfied if 

	

p+pi >0, 	 (5) 

3 
p+ 	> 
	

(6) 

'Phis condition is more restrictive than the weak energy condition. 

Using these energy conditions we find that our solution (5)-(7) is physically reasonable only if 0 < v < L 

5 The energy density per unit length 

Here we consider two different definitions of the energy density: the first one by Marder and the second one by 

Israel. The energy density per unit length ki as defined by Marder (1958), is given, in the case of a cylindrical shell, 

by 

tc = 	pb(r — ro)drcfc,o, 
s 

(1) 

because we have r = coiist. = r 0 . The 6(x) is the delta Dirac function. 

	

Using the metric (1) on the surface E, we get 	= R. Substituting this and p given by (6) in the equation 
(1) we have 

N 
20 (1 — 2c)(ro  +  a) + 4cr 2 ro  — a 

= 4A(ro  — a) 	
(2) 

If we consider cr = 0, which transforms the Levi-Civita metric (2) in the string metric, and considering yet 
equation (3.10) we have that the linear energy density is 

	

I 	

4 

 (i 	
( 3 ) 

which represents the linear energy density of the string [6]. In the particular case where a = 0, we have 

2(4cr 2 	2a+ 1) . 
	 (4) 

The energy density defined by Israel (1977) furnishes 

N = (P + Pa + P,p)6(t ro )fidedso 	 (5) 

Clearly, in the present case Marder's definition does not give the correct Newtonian limit, while Israel's does. 
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6 Conclusion 

In this paper, we have shown that the Levi-Civita solution with 0 < a < 1 can be produced by physically realistic 
sources, and the mass per unity length of the cylinder, p, depends on the parameter a, and is given explicitly by 

equations (4) and (5). Equation (4) sows that as CT increases, p is monotonically increasing until a = 1/2, where 

it reaches its maximum p = 1/4. This could explain the fact why in the Levi-Civita solution no horizons exist. 
However, it shows that p az a/2 if 0 < a << I, which is inconsintent with its Newtonian limit. The other definition 

of energy density, equation (5), reproduces the Newtonian limit but, on the other hand, it does not include the 
string solution as a particular case. 
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Neste trabalho nos retornarnos ao problema de buracos negros de Schwarzschild Euclidianos 
em equilibrio corn a radiaiao, sobre as condicoes do ensemble canonico de estatistica. Desta 
vez nos usamos o formalismo do tempo extrinsic°, desenvolvido por K. Kuchat, para selecion-
armos o correto conjunto de variaveis dinamicas. Corn esse conjunto de variaveis cananicas, 
{A, PA, M, e aproposta de J. York, Jr., para os termos de fronteira e `horizonte', nos 
calculamos uma agio total, consistente classicamente, para o buraco negro Euclidiano. Nos 
mostramos explicitamente que a fungi° de particao a zero - loop derivada dessa Elia° total 

identica a uma que ja havia sido calculada na literatura desta area. 

1 Motivacoes. 

Neste trabalho vamos estudar, a nivel quantico, a termodinamica do sistema composto por urn Buraco Negro de 
Schwarzschild Euclidiano (BNSE) e radiagio, sobre as condicoes do ensemble canonico de mecanica estatistica [I]. 

A relevancia do ensemble canonico, para esse sistema, foi demonstrada por J. York, Jr. [2]. Ele mostrou que 
juntamente corn a configuracao instavel, existe uma outra meta ou localmente estivel. 

Estudarenios a termodinamica desse sistema corn a ajuda do Formalismo do Tempo Extrinsico (FTE), para 
sitemas compostos por buracos negros, introduzido por K. Kuchat [3]. 

Essa proposta de Kuchat, tern por objetivo identifies!, dentro do conjunto de variaveis canOnicas da teoria, uma 
variavel temporal apropriada e seu moment° canonicamente conjugado. 

2 Sistema a ser estudado e objetivos. 

Escrcveremos uma agio consistente para a configuracio de equilibrio meta-estavel do sistema composto de urn 
BNSE e radiacio. 

0 sistema se encontra imerso em uma caixa ou cavidade corn somente uma fronteira, a qual tem uma topologia 
S2  x S. De acordo corn as propriedades do ensemble canonico, adaptadas para a presente situacao, o volume da 
fronteira é fixo e a caixa esta em contato corn urn reservatOrio de calor que mantem a temperatura da fronteira fixa. 

Essa agao sera escrita em termos de novas variaveis canonicas 0, PR , M, PM), introduzide_s corn a ajuda do 
FTE. 

A consistencia dessa ma° sera demonstrada, apOs calcularmos a fungio de partici.° a zero - loop, e notarmos 
que esta é identica a. expressao ja conhecida na literatura. 

3 Formalismo canonico em termos das variaveis R, PR, r, Pr. 

Comecemos escrevendo, em termos do formalismo ADM, o ansatz mail geral para o espaco - tempo Euclidiano, es-
fericamente simetrico, sendo folheado pot hipersuperficies tri - dimensionais caracterizadas por valores constantes 
de r: 

'Email: nO4c78cat.cbpf.br  
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ds 2  = EN2 (r,t) + 1 2 (r,t)(N f (r,t)) 2 ]dr2  + 2 F2 (r,t) Ar t (r,t)drdt + 

C 2 (7-;i)di. 2  + R2 (r, 0412 	 (1) 

onde 
0 < r < re 	; 	0 < t < p; 	 (2) 

nos estamos usando urn sistema de unidades em que Codas as constantes fisicas sgio feitas iguais a identidade ; e 
612  é o elemento de linha da superffcie esferjca, bi-dimensional, de raio unitirio. 

0 valor do parirnetro r, r = re , localiza a fronteira da caixa e o valor, r = 0, a uma superticie esferica 
bi-dimensional e uma singularidade do sistema de coordenadas. 

A dependencia nos parimetros (r, t), di uma liberdade major na descrisio do sistema e e uma exigancia do FTE 

[3]. 
A partir do ansatz (I), podemos escrever, seguindo as instrugaes do formalismo ADM [1], a mac) das hipersu- 

percies /E , em sua forma Hamiltoniana: 

2ar 

h[r, R, Pr, PR, N, N t ] = r di j dr (Prr + PRR' – NH – N' 111) 
ID 	0 

onde: ' e a derivada em relacao a r, e o ponto e a derivada ein relacio a t; 

–N  ( – Ark); 

PR = — 
1

{I' (R' – N'R) + R[rs — (I'N'1)); 

H = 

H, = 

rp,3 PRPr Rk Rid 
2R2  R – 1' + r2 
PRA — rk r . 

.14.2 	r  
2 ;  

O funcional H é a superhamiltoniana e H, é o supermomentum. 
Uma vez que temos uma fronteira, devemos incluir urn termo, que no havia sido considerado no formalismo 

ADM [4], do tipo [5]: 

– —1 I Ko VT1 d3x, 	 (8) 
fir E rb  

onde Ko é a curvatura extrinseca para o espaco Euclidiano piano, calculada na fronteira. 
Uma vez que r = 0 nao é uma fronteira, devemos retirar urn termo, que ji havia sido considerado no formalismo 

ADM [4], do tipo: 

– 	K 	d3 x. 
Eq. 

Desta forma, a acao total I, em sua forma Hamiltoniana, fica dada por: 

22. 	if% 

I = I di 1 	dr ( Prr + PRR' – NH N g  He) a 

riz + rotb  ). 

Pr = 

(9) 

(10) 

Pode-se mostrar que essa acio (10) é consistente, no sentido que variacifies de I em religio as variiveis canonicas 
{R, PR, I', Pr} e (N, N'), levarn as equacoes de movimento e vinculos, nada mais. 



= R 
1 	

2 

1 	• 
- 

2  P
2  - -RR 2 1-2  + 2R 

R-1  F-I rPr 
1 	 1 

PR — —
2 

.1?-1 1'Pr - 2R-1 1-1 1Tr 

R - 'F- 'r-2 1(rPoRA — rPr(iiii)1 

M = 
Pbf = 

Pit  = 
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4 Formalismo canonico em termos das variaveis R , PR,M,Pm. 

Baseados no tra.balho de Kuchar, nos aplicamos as seguintes transformacaes nas variaveis canonicas: 

(14) 

(15)  

(16) 

(17) 

onde 
Pr  = ()2 (_A ) 2. 

r 
Usando as tranformacoes (11) - (15), podemos reescrever a acito total (10), da seguinte forma: 

2r 	f 	
111 

rb 

	

= I di 	dr 	' + Pk& - IV 11 — N 1 1-1,) 
0 	0 

p_2 	LI 	0
- + 

D, 	 5, 
— 	 rmbro 

/ 2 	
-r 

2 

onde 

P(fe) = 1 — 2M 

A 

= liPAt  + MPm, 	 (18) 

P- i Poi — frpm  pit  
H = 	 (19) 

V •2 	 
F-1 R R + 

Pode-se mostrar a consistencia de (16), no memo sentido do caso anterior (10), desta vez em termos de 
, PA, M; Pm} e (N ,  N1 ). 

5 Funcao de particao a 'zero-loop'. 

Varnos escrever abaixo quais sac) as condicoes necessarias para ohterrnos a funcito de partici° a zero - loop e os 
resultados dessas condivies, para o nosso modelo, ate o nosso resultado final. 

Restricao ao caso em que ilao ha dependencia em t. 
(ii) Imposicio dos vinculos (18) e (19), levando aos resultados: 

	

r(r) = 	 Pm = — 1; M = constante. 	 (20) 

(iii) Substituicao dos resultados obtidos ate agora na acao (16) e obtencio da aciio reduzida 

	

I .  = 131?6(1 — 	ko/kb) — %rig 	 (21) 

onde 	é o inverso da temperature (T) na fronteira rb, e e dado por: 

	

fl = 	= 27r1`b 
1 

(22) 

(iv) Determinacao do valor do raio do ihorizontei 	quc extremiza a acio reduzida I• (21). Substituicao desse 
valor Rai  em I", levando a nova acio que chamamos de 1. 
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(v) Com 1, escrevemos a funcii° de particao a zero - loop Zo: 

Zo = exp{ — fik b ( 
— J 1 — 	 Ab)/ il b ) + 7rRO (a,  k b)) 	 (23) 

E essa quantidade (23), a identica a funglio de partici° a zero - loop dada em [61. 

6 Conclusoes e Perspectivas. 

0 nosso resultado principal é a acao total (16). 
Demonstramos a consitencia dessa ace") ao calcularmos a funcao de partici.° a zero - loop Zo (23), e verificarmos 

que o valor encontrado, esti de acordo corn o valor ji obtido por outros metodos. 
Podemos usar essa acao para calcular Z em ordens superiores. Em particular, pode-se verificar se a previsa° 

qualitativa de S. W. Hawking para Z a urn - loop (Z 1 ), a correta: 

log Z1 = (24) 
135/33  

lima outra aplicacao deste formalismo, se daria ao estudarmos o sistema composto por buracos negros Euclidi-
anos de Reissner - Nordstrom e radiacao sobre as condicOes do ensemble canonic° de mecanica estatistica. 
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Comparative Study Between the Thermodynamics 
of the 2-Dimensional Black Hole in the 

Teitelboim-Jackiw Theory and the 
4-Dimensional Schwarzschild 

Black Hole 

Jose P. S. Lemos 
Departarnento de Astrofisica, Observatorio Nacional-GNPq, 

Rua General Jose Crislino 77, 20921 Rio de Janeiro, Brasil 

Hawking's and York's prescriptions for finding the temperature and other thermodynamic 
quantities of .a static black hole are briefly reviewed and applied to the Schwarzschild black 
hole. Then, we exploit York's formalism to study the thermodynamics of the black hole in 
the two-dimensional Teitelboim-Jackiw theory. 

1. Thermodynamics of the Schwarzschild black hole 

Analysis of the behavior of quantum fields in a black hole (BH) background has shown that BHs steadily emit 

thermal radiation at a given temperature T [1). Although physically sounding, the original calculation was untidy, 

and other cleaner ways to obtain and interpret this temperature were devised by Hawking himself [2]. Hawking's 
prescription for the computation of the temperature T of a static 13!l, consists essentially of four steps, (i) write 

the BH metric in static (Schwarzschildean) coordinates, (ii) Euclideanize the time t it and periodically identify 

t, (iii) adjust the period of t, 2ra say, to remove conical singularities, and (iv) find the temperature by puling the 

inverse temperature # precisely equal to this period at infinity, # = 2va and then T 
This prescrition comes from a formal calculation of the partition function Z(13) as a functional integral over 

all Euclidean geometries g with period (3 and Euclidean action /H. In more detail: the probability that a ther-

modynamic system is in a state of energy E r, is proportional to e - P E^. The partition function is then defined as 
Z(13) = Ey, e - P E., and for a quantum mechanical system this can be written as zp). Ey, < gn ie -OHIgn  > where 
H is the Hamiltonian and < g„le'5  Ign  > gives the expectation value of e - sir on a state gm  of the field g. Now, 
from the work of Feynmann [3) one can also write Z as Z = f D[g]e -1191, a functional integral over all fields g. In 
the Lorentzian formulation the integral is a propagator, but Feynmann understood that by Euclideanizing the time, 
t 	= it, one could have a well defined statistical mechanics formalism. Hawking extended this idea to include 
the gravitational field itself. By starting with a 	geometry g, such as the Euclidean-Schwarzschild metric, one 
obtains through the partition function, an appropriate thermodynamics for the BH. 

How does this prescription work for the Schwarzschild BH with mass M? First one writes the metric in the 
Euctideanized form ds2 = idr2 N 2 (1)di 2  + 	r2df2 2  with 0 < t < 27r and 2M < r < oo. Then, one insures that the 

metric has no conical singularities in the (r, 0 plane, i.e, near r 2M one imposes 2rN(r) 87r 1 - 	Then, 
by fixing the period at infinity to the inverse temperature, i.e., equating 27N(oo) = /3 , one finds T = 8:4,1  . 

Now, the Euclidean action is ' E  = ft, 	 11; fay (13z%fil(K K°), where g is the determinant 
of the metric, R is the Ricci scalar, h is the induced metric on the boundary, K is the extrinsic curvature and 
K° is a term necessary to choose the background (the zero point energy). Puting in the appropriate quantities 
from the Schwarzschild metric into this action (recalling that R = 0 and thus the integral over the volume does 
not contribute) one obtains 1(M) = M - 4rM 2 , yielding in turn Z = f cllife - '(M). The extremum of the 
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action satisfies 01/OM = 0, which gives -4 = M, i.e., T = 1/8a-M as required. Then the partition function is 

classically approximated by Z(#) = = `4 ) . Since Z and the Helmoltz free energy F are related, 

- In Z = I = 13F, one can obtain other physical quantities. The expectation value of the energy of the system is 

< E >> es = = M, and the entropy is S E Pe - I = Or M 2  = (where A is the area of the BH), closing the 

scheme. However, there is a problem. Indeed, r < 0 at the extremum M = IT , and therefore the Euclidean BH 

does not dominate the integral. The calculations, although giving the write results are physically incorrect. This 
BH, in fact, makes an imaginary contribution to the partition function and should be interpreted as an instanton 

that may govern black hole nucleation [4], i.e., it gives the probability of a spontaneus transition through a quantum 

fluctuation from hot flat space (space filled with gravitons and other massless fields) to a BH. 

In order to circumvent these problems York 15) defined a canonical ensemble for the BH and hot gravity in 

equilibrium. The ensemble is defined by a heat reservoir with radius Ft where a temperature T(R) is kept fixed. 

York's prescription for the computation of the temperature says that steps (iii)and (iv) above should be replaced 

by (iii') adjust the mass M to remove conical singularities, and (iv') fix the proper period at R, to )6. Then, one 

finds two values for the mass M. The larger Al is the mass of the stable BH. The smaller M gives the mass of 

the instanton, i.e., of the unstable BH that can be created through quantum tunneling and subsequently decay 

thermodynamically to the stable BII. Let us see, how it works. Since the boundary is at R the range of the radial 

coordinate is 2M < r < R. Then by (iv') the inverse temperature is fixed to 27N(r) = f3 yielding (after removing 

the conical singularities) T =  •. Now, putting the appropriate quantitites into the Euclidean action, 

one gets the following reduced action I(M) = R13 (1 - \11- 

are given by /3 = 87rMV1 - 21-11 . There are two solutions M 1  and M2, with M 1  < M2. But now, ar < 0 at 

the extremum 	(M 1 	as R -, co), and liccic > 0 at M2 (M2 	12i — O.) asR-. co). Thus, M2 can be 

( 24af  used to approximate the partition function, Z(P) = e -/(m2) . Then one obtains, < E >= R 1 - V1 - 	and 

S = 47rM 2  = 4. In this approach, one sees that the temperature of the Bil is Hawking's temperature T = sTim 
 multiplied by Tolman's redshift factor 1 1  and  . One can ask in what sense is the temperature of the BH equal to 

8irM 1 as yielded by the original approach which made use of quantum field theory in a BH geometry. The idea [6] 

is that Hawking's temperature corresponds to drilling a small hole in the reservoir at R and letting some radiation 

escape to infinity. In this case, the Tolman redshift factor goes to unity yielding the Hawking temperature. If the 

hole is large enough, so that its thermodynamic equilibrium changes very slowly, one can imagine the complete 

withdrawal of the reservoir, and identify the BH temperature at infinity as T = 8: . 

2. 	 Thermodynamics 	of 	the 	two-dimensional 	black 	hole 	in 	the 
Teitelboim-Jackiw theory 

The analysis of thermodynamic processes involving BBs has first appeared in four dimensional (4D) general 

relativity. It was then extended to lower dimensions and other theories, following indications that these arc important 

and useful to study. Two dimensions (2D) has been of particular interest after a black hole in string theory has 

appeared [7, 8]. Hawking radiation and thermodynamics of this black hole has been analysed by several authors 

(e.g., [9]). Another 2D theory which has been studied in some detail is the Teitelboirri-Jackiw theory [10, 11]. 

Although in this theory the curvature is constant and negative, it has a black hole solution [12, 13, ?, 15, 16, 17]. 

The existence of a black hole implies a non-trivial causal strucuture which in turn generates interesting non-trivial 
thermodynamics. Hawking radiation of this black hole has been analysed in [15], and thermodynamics of a black 

hole in versions of the theory with electromagnetic and scalar fields have been studied [18, 19]. Here we study the 
black hole of the original Teitelboim-Jackiw theory using York's formalism [5, 20]. For an extended detailed study 
see [21]. 

In the Teitelboim-Jackiw 2D theory the action is I = 	f dz x  ge`D(R- 2A) + In, where g is the determinant 
of the metric, R is the curvature scalar, A is the cosmological constant (sometimes written as A = although 
here we put eg 2  a--  -A), and in is a boundary term to specify later. This action has got a black hole solution given 

214 - 47rM 2 . The extrema of this action, Iff  = 0, 
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by ds 2  = _(a2 r2 _odi 2 +  a  4_5fr1H2 , e g.  = car where b and c are positive constants. The maximal analytical extension 

of this solution is given in figure 1.. 

The curvature scalar of the solution is R = —0 2  which is a constant. Therefore, spacetime has constant negative 

curvature and, in principle, is isomorphic to the anti-de Sitter (ADS) spacetime. However, one can indeed interpret 

this solution as a BH solution by truncating spacetime at r = 0. The reason for this cut off comes from the 

interpretation of this 2D theory either as a theory derived from dimensional reduction of (a) a low energy 4D 

action of heterotic string theory, with e •  representing the string coupling [14], or (b) 3D general relativity with e . 

 representing the circumference radius [13). In either case e. = car has to be positive, and the Penrose diagram 

is simply the r 7 0 square of figure 1.. Thus, the dilaton sets new boundary conditions, making two locally 

indistinguishable solutions, namely the BH and ADS spacetimes, topologically and globally different. Yet another 

interpretation can be given. One can notice that the BH metric represents a portion of the 2D anti-de Sitter 

spacetime in accelerated coordinates. Indeed, a stationary observer with r =constant has four acceleration ao with 

magnitude a = Va71/7, = :;_ b  with b > 0. The radius r = where the acceleration is infinite, corresponds to 

the trajectory of a light ray. Thus, observers held at r =constant see this light ray as a horizon, they will never see 

events beyond this ray. They are accelerated observers and can see only a portion of anti-de Sitter spacetime. In 

this sense, region II in figure 1, can be considered a black hole for region I accelerated observers. The mass of the 

black hole can be calculated by the standard procedures [17) and is given by, M = yb. M = 0 gives the extrema! 

black hole. 

The Euclidean action of the theory is /E = 	d2x,fies(R + a 2 ) — fav  dp/rie . (K K °), where the 

surface term is required to make the variational procedure self-consistent, which is important in analysing the 

thermodynamics, and the other quantities have been defined previously. The equations of motion are, e •Tab 

IDADet •}D. /31,4) — ig,013,DcS+ DAD`,  Igaba 2  = 0. Then the T00 constraint, T00 = 0, gives upon 

integration, c1/41V 2  — a2  = —a 2be -2 )̀ , where we have chosen the constant of integration as —al b appropriately. 

Then, integrating the action and using the constraints and boundary conditions we find, 

I(h -1 ) = —(G -1 )fle .4 	— e 2(.14 -6 9) (11 -1 )21re sm + (G -1 )fleBa, 

where (Dr/ is the value of cl) at the horizon and le E fle.n a was chosen appropriately. We have put back Newton's 
constant G and Planck's constant /a (still puting Boltzmann's constant and the velocity of the light equal to one). 

Note that in 2D we use the following units for the constants: [G] = LM -1 7-1  and [h] = MT -1 . As in 4D [20], 
one sees that a quantum term has appeared in the action, namely the term 27re°, which is associated with the 

entropy of the system. The above equation is thus the reduced action I = /(/3, (1)B; $id which yields the important 
thermodynamic quantities. 

To find the temperature we have to obtain the stationary point of the reduced action with respect to OH. This 
gives, VA = a 2 rli  = 

14-
`--1243., where 13 = 4r . Thus as T 0 we have M 	0. As T 	oo we have a maximum ac 	 7T:2-" 

mass Mma„ = la3 cr B 2  for the BH in the thermal bath. That is, for a given rB the mass of the hole cannot be 
larger than the one which gives a horizon radius equal to rB. There is nothing like the instanton solution of the 
Schwarzschild bath in 4D. 

The entropy is given by SH = (A) 	— 1 = 27resH = 2ir 2 1.1 . It is interesting to note that this functional ac 
dependence on the dilaton is the same for all black holes having a simple 2D Brans-Dicke action [22). This is 
analogous to the 4D case, where the entropy is equal to If Note also that the extreme case (M = 0) has zero 
entropy. 

The thermodynamic E is defined by E 	 0/ energy 	 ca2 rB (1— 
") 41:',3 

— Ei4). We see here that the zero point was chosen so that when there is no mass (nu = 0) the thermal re 

energy is zero. Since r H 2  = 	we can invert expression for the energy to yield a*.M = E — 	which relates c 2rg  
the ADM mass and the thermal energy. The ADM mass (the mass at infinity) is equal to the termal energy times 

the length (in intrinsic units) of the reservoir minus a self-energy thermal term. This expression is the closest one 
can get to the Schwarzschild expression found in [5] for the Schwarzschild mass, i.e., M = E — z EH 
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Figure 1.: The Penrose diagram for the non-singular black hole. 
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Now, the Euler relation for this thermodynamic system can be found to be E = TS — prB, where p is the linear 

pressure defined by p = Upon scaling, r B  Irs and rif IrH or (S IS) one has E 1E, showing 

that E is homogeneous of degree 1 in S and rB . This is in contrast with the Schwarzschild solution where E is 

homogeneous of degree one-half in S and the A. 
To analyse thermodynamic stability we find the heat capacity, C ri, T (g) rB  .2,e.sti(rv2— rH 2 ). Thus 

the heat capacity is positive always, implying thermal stability always. For the Schwarzschild BH thermal stability 

exist only within a limited range of the reservoir radius. 
One can now compare the free energies of the 20 1311 and hot ADS (BADS) space, in order to know the ground 

state of the system. One state cannot jump to another classically, but of course, quantum mechanically the topologies 

can change. The free energy of the BH can be taken from the relation /Hit = PFBH = —fle *Bcc+21re .5 .V1 + `41.j. 

The free energy for HADS in 2D can be found to be —!HADS = j-kgTarctan(arH) [21), where g is the number 

of massless spin sates. The ground state is the state of least free energy. Thus, we find that HADS dominates 

whenever !HADS < IBH, i.e., 

r> a 
 12c 	ars  
	 1 	

g arctan(arB) 

	

g arctan(arB) tiyl 	12wc 	or!)  

Whenever the number of particle species is relatively large then HADS is favored for sufficiently small rB. Indeed, 

if g > 127c, then the quantity inside square brackets is negative up to some boundary radius given implicitly by 

arcjic 	= 122-9". This means that up to this radius HADS dominates and for larger r B  HADS dominates if T 

obeys the above inequality. A detailed analysis is found in [21). Note that when the boundary r B 	oo one obtains 

that for finite temperature, the black hole is the ground state. A similar analysis, albeit more complex, can be 

done for the Schwarzschild BH [5]. 

In conclusion we can say that the Teitelboim-Jackiw theory has, in absence of matter, constant curvature 

spacetime solutions. Therefore the black hole solution of the theory has no singularities. In the first studies 

exploring this theory it was thought that such a black hole did not exist. However, solutions containing point 
particles and horizons were found [23] which also had some interesting thermodynamic properties. To establish 

the existence of the black hole in this theory one has to invoke topological arguments, which appear through the 

addition of boundary conditions. We have then showed that this black hole yields non-trivial thermodynamics in 

York's scheme, with some of its properties being analogous to the Schwarzschild BR. Through an analysis of the 

free energies of both the black hole solution and hot anti-de Sitter spacetime it was possible to infer that for small 
enough ambient temperature the black hole is the ground state. 
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Bundles in a Supersymmetric Yang-Mills Theory 
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The notion of a fibre bundle is appropriate for solving local problems of differential geom-
etry, field theory, gauge transformations and general relativity. In this letter motivated by 

Trautman [2] and in recent results given in [1], a fibre bundle structure is suggested as a 
consequence of the integrability conditions, as the Bianchi identities, of a supersymmetric 
Yang-Mills theory. 

In general relativity there is no natural isomorfism of (F(M), M, 7r) onto a product M x F but it is possible to 

show that the bundle (F(F(M)), 1, (111),r) is a product bundle. In this way, as Ivanenko suggest [2], generalizations 

of general relativity are admited. He call it as the "second relativization". From this motivation a fibre bundles 

approach to an extended Einstein-Cartan theory recently obtained [1] is briefly proposed as it follows. In super-

gravity N=2, d=5 theory [3] the curvature does not have componentes along 4.1"  and B (co" = Cartan connection 

and B=eletromagnetic field). It is then said that theory is factorized respect to the group H'=S0(1,4)0U(1). The 

supergravity theory being gauge invariant under H', the group SU(2,2/1) acquires a bundle structure with fibre 

H', represented by SO(1,4)0U(1) and bais space the quotient 777 , identifiable with the superspace. In the other 

words, the first condition implies wab is a connection on a principal bundle with basis given by SU(2,2/1)/SO(1,4), 

with gauge group H=S0(1,4) as the fibre. The second condition implies that also B is a connection on a principal 

bundle. The basis in this case is SU(2,2/1)/U(1) with gauge group U(1) as the fibre. The extended Eisntein-Cartan 

gravity theory proposed in [1] has the same structure of the coupled supergravity, enriched with the general gauge 

group G. That is asserted by its gauge invariance with respect to GOS0(1,4)0U(1), whit is a consequence of the 

integrability conditions of the Yang-Mills exterior covariant derivetives fields presents in the group G. For the men-

tioned proposed theory those conditions are satisfied throughout the solution of the Bianchi identities for the fields 

AA (spinorial field, rerlated to the Dirac Equation, r-A,, A  = 0), A (gauge fields, related to Yang-Mills Potential) 

and a (scalar field), that means: 

DDA = DM A  = DDo = 	 (I) 

The system 1 provides a compatible set of equation for the free parameters appearing in the exterior covariant, 

derivatives, and is usually called the Bianchi identities. 

By solving the system of equations for the free parameters after solving the Bianchi identities, we will find that: 

1 	1 n = 1;k= 1 ;p= d = 1;1= i ;t = = — i ;g = h = 1 
2 (2) 

That will mean that 	= gosoomou(i) is the fibre of the proposed theory [1], and A is its basis spaces. 
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Conclusion 

Fibre bundles play a fundamental role in theoretical physics, to clarify both what symmetry groups are present 

in a theory and the way they may bring new developments towards unifying process of physical forces. 
• 
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The Causal Interpretation of Quantum Mechanics and 
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In this paper we will close our attention to the interpretation and time issues of quantum cosmology in order to 

study the problem of appearance of singularities in the early Universe. The difficult technical problems coming from 

the quantization of the full gravitational field will be circumvented by taking advantage of minisuperspace models. 

In these models, all but a finite number of degrees of freedom are frozen out alleviating considerably the technical 

problems. In the framework of these minisuperspace models, a number of papers have been writen showing how 

the issue of time is important for the singularity problem: different choices of time imply different quantum gravity 

theories, some of them still presenting singulariti es, others not (11. The interpretation adopted is the conventional 

probabilistic one. Here, we will adopt a non-probabilistic interpretation to quantum cosmology which circumvents 
the measurement problem because it is an ontological interpretation of quantum mechanics: it is not necessary to 

have a measuring apparatus or a classical domain in order to bring home physical reality; it is there "ab initio". 

It is the causal interpretation of quantum mechanics [2, 31. We will apply this interpretation to a minisuperspace 

model and show that the question about the persistency of the singularities at the quantum level does not depend 

on the choice of time but only on the quantum state of the system. 

Let us review the ontological interpretation of quantum mechanics, and then apply it to quantum cosmology. 

Take the Schrodinger equation, in the coordinate representation, for a non-relativistic particle with the hamil-

tonian H = 	V(x): 

,d4r(x,t) 	2  i,  
	= [— 

—2m
V2  + V(x)]d'(x,i) 

Writing 111 = R exp(iS/ h), and substituting it into (1), we obtain the following equations: 

OS (VS) 2 	h2  V2R n  
+ 2m + V  2m R v  

49R2  
+ V .(R 2 	) = 0 	 (3) 

The usual probabilistic interpretation takes Eq. (3) and understands it as a continuity equation for the prob-
ability density R2  for finding the particle at position x and time I. All physical information about the system is 
contained in R2 , and the total phase S of the wave function is completely irrelevant. In this interpretation, nothing 
is said about S and its evolution equation (2). However, examining Eq. (3), we can see that VS/m may be inter-
preted as a velocity field, suggesting the identification p = VS. Hence, we can look to Eq (2) as a Hamilton-Jacobi 
equation for the particle with the extra potencial term —k2n  v;H . 

After this preliminary, let us then introduce the ontological interpretation of quantum mechanics, which is based 
on the two equations (2) and (3), arid not only in the last one as it is the Copenhaguen interpretation: 

i) The quantum particles follow trajectories x(t), independent of observations. Hence, in this interpretation, we 
can talk about trajectories of quantum particles, contrary to the Copenhaguen interpretation where only positions 
at one instant of time have a physical meaning. 

ii) The particles are never separated from a quantum field xlr which acts on them, and satisfies the Schrodinger 
equation (1). 

(1)  

(2) 
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iii) The momentum of the particle is p = VS. 
iv) Equation (2) is a Hamilton-Jacobi type equation for a particle submited to an external potential which is 

the classical potential plus a new quantum potential 

h2 v2R 
Q— 2r-ri R 

Hence, the particle trajectory x(t) satisfies the equation of motion 

d2 x 
VV VQ 

v) For a statistical ensemble of particles in the same quantum •field 41, the probability density is P = R 2 . 

Equation (3) guarantees its conservation in time. 

Let us make some comments: 

a) The quantum potential is non-local and responsible for the quantum effects. 

b) This interpretation can be applied to a single particle. In this case, R is not interpreted as a probability 

density and hence needs not be normalized. 

c) The classical limit is very simple: we only have to find the conditions for having Q = 0. 

d) There is no need to have a classical domain because this interpretation is ontological. 

As the causal interpretation does not require a classical domain, and can be applied to a single system, we think 

that it should be relevant to examine what it can say about quantum cosmology. In fact, we will see that quantum 

cosmology becomes very simple to interpret in the light of this interpretation. 

The fundamental equation in canonical quantum gravity is: 

	

(court 6 	45  + hIl2 R( 3))4(b 13)= 0. 	 (6) 
ohii bhki 

(we have set h = 1), which is called the Wheeler-DeWitt equation. The tensor. hii represents the metric of the 

spacelike hypersurfaces which foliate the spacetime. The Wheeler-DeWitt equation should determine the evolution of 

the wave function. However, time has disappeared from it. This fact makes people advocates another quantization 
scheme, the ADM approach, where time is chosen before quantization by a gauge fixing procedure. However, 

different choices of time lead to inequivalent quantum theories and there is no criteriurn to choose one of them. 

Others say that the fact which makes not easy to find what should play the role of time in the Wheeler-DeWitt 

equation simply means that there is no time at all in quantum gravity [4, 5). We should consider the Wheeler-

DeWitt equation as a time-independent SchrOdinger equation with zero energy. This is consistent with the fact 

that a closed Universe has, by definition, a null total energy. 

Using a non-ontological interpretation, we can understand this fact in another way. Space geometry is like 

position in ordinary particle mechanics while spacetime geometry is like a trajectory. As trajectories have no 

sense in the quantum mechanics of particles following a non-epistemological interpretation, we can conclude that 
spacetime has no meaning in quantum gravity. 

However, if we apply the ontological interpretation to quantum cosmology, we should expect. that the notion of 

a spacetime would have a meaning exactly like the notion of trajectories have in the quantum mechanics of non-

relativistic particles. Indeed, if we substitute ‘11 = Rexp(iS/h) into the Wheeler-DeWitt eqUation (6), we obtain 
the two equations: 

1 
	

45.5 SS 
2 Gijkl 

bhijhki 	
.11/2 R(3) (hq)+ 11 112Q04) = 0 	 (7) 

rn  di 2  = 

(4) 

(5) 

where the quantum potential is given by: 

bS 
Guk,

8h 1.11 	Mkt
) = 0 

Q= 	Gi.kl 
Pri  

R j  6/14.0514i 

(8) 

(9) 
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As before, we postulate Lhat h ii(x,t) is meaningful even at the Planck length and set: 

[Li  = 	_ hij K) = ohii  bs 	
(10) 

recalling that 

Ki 
- 2A '

(achy - 	- ViNi) 

Hence, as K is essentially the time derivative of kJ, equation (10) gives the time evolution of kJ, which will 

be different from the time evolution of classical general relativity due to the presence of the quantum potential in 

equation (7). As we see, there is no issue of time. The notion of spacetime is meaningful in this interpretation, 

exactly like the notion of trajectory is meaningful in particle quantum mechanics following this interpretation. 

However, the dynamics will be modified by the presence of the quantum potential which can, among other things, 

prevents the formation of the singularities predicted by the classical theory. . 

The question about the persistency of classical cosmological singularities at the quantum level has been studied 

extensively in the literature. In a first approach, the dynamical evolution of the quantum states is obtained by 

fixing the time gauge before quantization [lb As we mentioned above, different choices of time gauge imply different 

quantum theories with different answers to the question we are addressing. 

Let us show with a simple mini-superspace example that the existence of cosmological singularities at the 

quantum level does not depend on . the choice of the time-gauge, if we assume the causal interpretation of quantum 

mechanics. This minisuperspace is the•Bianchi I model. 

The mini-superspace metric is given by: 

ds  2 = N 2 ( ) fie e(2/50(i)+24(1)+2450-(0)dx2 e (2050(0+2,4(1)-2./3/3_0”dy2 e(2pow-44(t)jdz2 	(12) 

The gravitational hamiltonian for this minisuperspace model is: 

— 24 exp 3/30 (14 - P2+ - P2)- 
	 (13) 

where the p's are the canonical momenta of the 13's. 
The classical equations of motion arc: 

2 	2 	2 	n 
P0 - P+ - P- = R-1 	 (14) 

OH 
Po 	=  	 (15) 

Op° 	12 exp 3/30 P° ' 

„- 	ON N 
P+ = 	-  	 (16) 

8P+ 	12 exp 3/30 P+ 

_ax =  

- Op_ 	12 exp 3/30 P-  
(17) 

and all momenta are constants of motion. 

To discuss the appearance of singularities, we need the Weyl square tensor. In the gauge N = 12 exp 3,613 and 
using the fact that the p's are constants, the %Veyl square tensor is proportional to exp (-34). Solving Eq. (15), 

we can see that f3  = pot, and the singularity is at t = -oo. It is a fast time gauge in the terminology of Ref. [1). 
If we choose N = 1, then )90  = In(E451-t) and the singularity appears at t = 0. It is a slow time gauge. 

The classical singularity can be avoided only if we set p0 = 0. But then, due to Eq. (14), we would also have 

p± = 0, implying that the Weyl square tensor be identically zero, corresponding to the trivial case of Minkowski 
spacetime. 

The Dirac quantization scheme yields the following Wheeler-DeWitt equation: 

( 82 	82 	02 \ 

871. W,T) = 0. (18)  
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In Ref. [6], a consistent inner product is constructed, and gauge invariant observables which dependes on a 

parameter, which is nothing but N, are constructed. In this way, the Weyl square observable is built, exhibiting a 

singularity at 00  = -oo, as in the classical case. As 00  plays the role of time, this is equivalent to a quantization in 

the fast-time gauge. 

Let us now make use of the causal interpretation. Take the following solution to the Wheeler-DeWitt equation 

(18): 

(20) 

_ 	, OS 	I 
P+ = 	= 	- Tr + 	 (21) 

	

as 	11, 
P- - — = - 	 (22) 
' = 013_ 	2 	2 - 

It is easy to see in the above equations that is possible to have Po = 0 and p± # 0. We can also understand 

it by the fact that Eq. (14) is no longer valid at the quantum level; the quantum potential must be added to it 
and thus po  = 0 does not imply 14 = 0. Hence, it is possible to find a curved spacetirne without singularities, i.e., 

a spaceti ► e with a Weyl square tensor which is neither null nor infinite, for the quantized Bianchi 1 model. Note 

that this result is independent of the value chosen for A'. In particular, we could have chosen the fast time gauge 

mentioned previously and still have a non-singular quantum spacetime. Hence, using the ontological interpretation, 

we have presented a simple example where the appearance of singularities in the quantum regime depends only on 

the state of the system, and not on the time-gauge choice we make. 
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%1$ = exp i( \ikT + k! 13,,+ k+  fl+  + k_ 	+ exp-i(-01. +1 2_ 13„ I+  13+  + I_ P_) 	(19) 

where the k's and l's are constants. 

Note that this function is not normalizable, but this is not important for the ontological interpretation. 

Calculating ilk, 	and 6s-, where S is the phase of the wave function (19), we obtain: 

	

OS 1 42 	+k2  1 	 

	

Pc) E  ado =  5 V + 	- 2 V ; 
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We do a critical review of the Faraday-Maxwell concept of classical field and of its quanti-
zation process. With the hindsight knowledge of the essentially quantum character of the 
interactions, we use a naive classical model of field, based on exchange of classical massless 
particles, for a comparative and qualitative analysis of the physical content of the Coulomb's 
and Gauss's laws, It enlightens the physical meaning of a field singularity and of a static 
field. One can understand the problems on quantizing a classical field but not the hope of 
quantizing the gravitational field right from General Relativity. 

1 Introduction 

The concept of interacting field introduced by Faraday-Maxwell is on the basis of Field Theory and of Quantum 

Mechanics. It is necessary for a relativistic description of the wave-particle duality of the quantum theories. The 

idea of a classical interaction as a wave, continuous and distributed over the whole space, is put against the modern 

idea of a quantum interaction, discrete and localized in "corpuscles" or interaction quanta. The passage from the 

first to the second idea requires a so called quantization process, and this passage, it is well known, in the best of 
the cases (QED) has deep problems, and in the worst case (QC) it has proved to be not viable. In the search of 

solutions to this problem of quantizing the gravitational field the observed tendency is the one of replacing complex 

models and formalisms for others of increasing complexity. On the other hand, the Classical Electrodynamics, the 

best known and "well succeeded" paradigm of all subsequent field theory, has old and well known problems of 

inconsistency with the description of fields in the neighborhood of their sources. In a recent work (hep-th/9610028) 

we show that taking the correct zero distance limit to the charge solves these problems and shows unequivocal clues 

of quantum features in Classical Electrodynamics: the flux of field from a charge is discontinuous in time. The 

problems of CED in its zero distance limit, which are erroneously attributed to the working hypothesis of a pointlike 

electron, are rather unequivocal signs that our concepts of fields are unappropriate for describing interactions. The 

idea of a continuous classical field is misleading; it is valid only for large distances and large number of photons. 

Out of this limit this discontinuity is masqueraded by the field spacetime-average character. 
We want to make a critical review of the Faraday-Maxwell concept of classical field under the perspective of modern 

physics that understands it as being of a fundamentally quantum nature. It is well known that the pioneers of 

classical field theory worked with a model for the electromagnetic phenomena based on an analogy with the fluid 

mechanics. The electromagnetic effects would be propagated through an all-pervading fluid, the ether. This, at 
the time, new vision of field-mediated interactions between distant charges was an advance with respect to the 

Newtonian concept of action at a distance. The fluid analogy implies on a field distributed all over the space around 

its source, like it happens with the sound waves, for example. This image was certainly reinforced by what at 

that time seemed to be an apparently definitive victory of the concept of light as a wave phenomena against the 

Newtonian model of light as a stream of corpuscles. The phenomena of interference, diffraction and polarization of 
light had been decisive for this conviction. Only much later the first clues of a discreteness, like the photoelectric 

and the Compton effects, would be discovered. But even Quantum Mechanics that was created from the necessity 
of explaining these new effects received also the influence of this fluid-mechanics concept of field: the wave function 

is a space-distributed field representing a fluid of amplitude of probabilities. In this qualitative analysis we want to 
oppose this historical vision of classical fields as some waves, continuous and distributed all over the space, against 

the vision of interactions mediated by localized point-like objects, their quanta, discretely emitted, propagated 
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and absorbed. Iii the modern perspective all the four fundamental interactions of nature are mediated by their 

respective quanta. We will try to obtain a qualitative view on how a classical field theory could be formulated if the 

interaction were seen as mediated by massless point-like objects propagating on straight-line trajectories between 

their emitters and their absorbers. 

2 The Gauss's law and the singularity problem 

The Coulomb's law (or in the case of gravitation, the Newton's law) describes the effectively observed 

interaction between two static electric charges in terms of forces acting on the charges along the straight-line 

defined by the charges positions and with a magnitude that is directly proportional to the product of the two 

charges and to the inverse of the square of the distance between them. The observed spherical symmetry around 

a point charge is the assurance that nothing changes in the above description if the second point charge is moved 

to any other point of a spherical surface centered at the first charge. The forces acting on the charges are what is 

actually observed and they require the presence of the two charges and they are observed only, at the charges sites. 

The concept of a field existing everywhere around a single charge, regardless the presence of any other charge i s 
an extrapolation of what is effectively observed. There is, therefore, a very deep distinction between the physical 

content of the Coulomb's and of the Gauss's laws. This last one describes the inferred electric field as existing 

around a single charge, independent of the presence of the other charge. The electric field, as it is well known, is 

extracted from the Gauss's law through the integration of its flux across a surface, having the appropriate symmetry, 

enclosing the charge, 

rr  Iv 
= 	, 

	

fov  dS ' 	 (I) 

where c is the unit vector normal to the closed surface DV. ( I) puts in evidence the effective or average character of 

the Faraday-Maxwell's concept of field; it gives also a hint on the meaning and origin of the field singularity. If the 

electric field can he visualized in terms of exchanged photons, then according to (1), the frequency or the number 

of these exchanged photons must be proportional to the enclosed net charge. And if we take E, as suggested by 

the Gauss's law, as a measure of the flux of photons emitted/absorbed by a point charge, we can schematically 

write, E 	4 r* , where n is the number of photon per unit of tittle crossing an spherical surface of radius r and 

centered on the charge. Then, the divergence of E in the limit, when r 	0 does not represent a physical fact like 

an increasing number of photons, but just an increasing average number of photons per unit area, as the number 

of photons remains constant but the area tends to zero. So, a field singularity would have no physical meaning, 

because it would just be a consequence of this average nature of the Faraday-Maxwell's field, and contrary to what 

is usually thought, it would not be a consequence of the electron point-like nature. 

Taken the exchange of "quanta" (here in the sense of discrete and localized chunks of energy and momenta, like 

in a classical particle) as a model for a classical interaction one must conclude that the Faraday-Maxwell concept 

of field, which lies behind the justification of the use of the Gauss's law, must be seen as the smearing of the effect 

of the "quantum" exchanging on the whole space around a charge, and during a time interval larger than the time 

(period) between two consecutive exchange of a "quantum". Under this perspective, the Faraday-Maxwell concept 

of a classical field corresponds in fact to an average in space and in time of the actual quantum interaction. It re-

places something discrete in space and in time and localized on the straight-line between the two interacting charges 

by something isotropically spread in space around each charge and in time. The quantization process is a tentative 

of reversing this operation. Does it. make sense, in this new perspective? Is •  it the more appropriate approach? 

The answer to both questions, in this context, seems to he no. It seems to be more appropriate to reformulate the 

description of classical .physics in terms of discrete interactions before trying to quantizing it. The two concepts 

(classical and quantum) of interaction are associated to domains with distinct topologies: the light-cone and the 

straight-line, respectively. The quantization process does not account for this difference. The classical field, as a 

massless wave, propagates on the light-cone, which is not a manifold because of the singularity on its vertex. The 

quantum interaction, on the contrary, is defined on a light-cone generator, a straight-line, and therefore, has no 

singularity. • 
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3 Quantum Gravity and General Relativity 

The problems with the description of fields in a close vicinity of their sources seem to be that we are taking 

the fields by their averages. This seems to be true for the electromagnetic field and it may also be true for the 

other known classical interaction, the gravitation. For the gravitational field there is a further complication given 

by the General Theory of Relativity which replaces the description of a gravitational force by the picture of a 

curved (Riemannian) spacetime. In the context of discrete interactions, this geometrization is an added averaging 

process as it changes a polygonal trajectory of an interacting test mass smoothing it into a geodesic. With discrete 
interactions, the events of emission and absorption of a gravitational quantum by a mass form the vertices of 

a polygonal trajectory; they are connected by straight-line segments that correspond to the, in between, mass's 

free motion. This geometrization not only hides the interaction discreteness as it also makes more difficult any 

tentative of retrieving it by quantization, since it mixes the geometry of the background Minkowski spacetime (its 

metric) with the actual physical effect (the exchange of quanta) incorporating them into the metric tensor of a 

Riemannian manifold. To quantize this metric tensor would be, therefore, tantamount to a discretization not only 

of the gravitational interaction but also of the spacetime. The physicists who see this picture of a curved spacetime 

not as an approximation but as a fundamental aspect of nature does not, of course, agree with this; but in this 

context of discrete interactions any whole-metric quantization does not make sense. 
The Einstein field equations, like the Maxwell's equations, deal with spacetime-average fields. The General Theory 

of Relativity has a solid basis of experimental confirmation, but like Classical Electrodynamics, only for situations 

where the classical approximation of the field as an spacetime average is a good description: far from their sources 

and involving a large number of quanta. In this perspective of discrete classical interactions, one can understand 

the nature of the problems that show up in the quantization of the classical fields but it seems then that there is no 

justification for a hope that the gravitation field may be quantized starting from the General Theory of Relativity. 

This is more than just an academic discussion. If such observations are correct and if the above considerations 

about the physical meaning of the classical field singularities are valid also for the gravitational field of Einstein, 

described by a metric tensor, one must worry about the enormous intellectual efforts that are being devoted to a 

detailed comprehension of black-hole physics. It is opportune to remember that all known indirect evidences of 

black-holes are just indications of possibly very intense gravitational fields produced by very compact objects but 

not necessarily black-holes. 

4 The Coulomb's law and the meaning of static field 

The Gauss's law, in a picture of continuous interaction, has a natural explanation for the dependence of the 

interaction with the inverse of the squared distance as a consequence of the 3-dimensionality of the space. The origin 

of this 3-dependence must be entirely distinct if the interactions are seen as the result of exchange of particles. 

This is a nagging problem in this picture of a classical field in terms of discrete interactions, which is also related, 

in the context of an actual quantum field theory, to the conceptual meaning of a static field. The r-dependence of 
the static force between two point charges (or masses) is an experimental fact as stated in the Coulomb's law (or 

Newton's law). In the context of the present analysis the question now is how to understand this A-dependence 

as well as the•meaning of a static field in terms of a discrete exchange of particles. In QFT theory one deals with 

quantum fluctuation and virtual-particle exchange. Here, in a classical context, there is no virtual particle and no 
quantum fluctuation. All particles are real with positive and definite energy and mass (which may be null). Strict 

conservation laws for energy and (angular and linear) momentum must be always observed. 

But before proceeding further on this, we must remind some well-known experimental facts: 

I. Only an accelerated charge can radiate. A non - accelerated charge never radiates. 
On the other hand, as a consequence of the energy-momentum conservation, the act of emitting or absorbing 
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radiation by a charge necessarily results on its acceleration. So, for a charge, we can put it this way: 

RADIATION p ACCELERATION 

2. A charge under an external periodic stimulation (force) emits radiation with the same frequency of the external 

stimulus. Or: 

FREQUENCY OF THE EMITTED RADIATION = FREQUENCY OF THE EXTERNAL FORCE 

Accepting the above empirical fact. 1 as being also valid in a fundamental level has some immediate logical impli-

cations: 

• An isolated charge will never radiate, will never emit a single photon, will never be accelerated or will never 

accelerate itself (by emitting/absorbing a photon, as it is isolated). 

• So, it does not make sense talking of the electric field of a single isolated charge (taken as in the elementary 

pedagogical hypothesis of the only existing charge in the world and not under any external force). 

• This is contrary to the ideas of quantum fluctuations (in QFT) and of self-interactions. 

• The fundamental (in the sense of irreducible) electromagnetic interaction does not correspond to a 3-legs 

Feynmann diagram (which does not obey the conservation laws, anyway) but to a connected set of two of 

them, accounting for the fact that an electron must be stimulated (accelerated by the absorption of a photon) 

to irradiate (emit a photon). See the figure 1. 

For both pictures of interaction, mediated by a continuous and distributed field or discretely produced by the 

exchange of particles, some external forces must be provided to assure that the charges remain in a static equilibrium. 

The first immediate distinction is that in the continuous case the force must act continuously at both charges while 

in the particle-exchange picture the forces act. only in the brief instant of emission and absorption of a quantum, 

as a kind of elastic reaction force. See figure 2, where we are neglecting a possible time delay, bt, between the 

absorption and the consequent re-emission of a photon. 

Each charge then emits a photon after being stimulated (accelerated) by the absorption of a photon emitted by the 

other charge. There is a much diffused false premise that the wave concept of field, in classical field theories, or of 

the emission followed by the reabsorption of virtual quanta, in quantum field theory, are necessary for explaining the 

interaction between two separated charges, otherwise, it is argued, how could the charges know the presence of each 

other? But this is indeed a not well posed question. What we really know from experiment (and confirmed by our 

best theories) is that interactions and the emission and absorption process are closely interdependent concepts: an 

electric charge does not radiate unless it is under the action of an external force (interaction) and, according to our 

modern understanding, any change in the state of motion of the charges is a consequence of the exchange (emission 

or absorption) of quanta. It is not a question of what comes first, the emission or the interaction: they are just two 

aspects of a same thing. A complete understanding of this may be a subject of scientific investigation in the future; 

today this question still belongs to the domain of plain philosophy. All we can say now, as physicists, is that a 

charge is accelerated with the emission and absorption of radiation and that it radiates only when accelerated. In 
quantum mechanics the condition that a charge be accelerated without emitting electromagnetic radiation leads to 
stationary states or the quantization of its energy. 

Let us consider an imaginary Coulomb's experiment for measuring the repulsive force between two electrons. 

Let r be the separation between the two point electric charges, fixed in their positions, each one, by a dynamometer 

on which one can read the value of the applied force on each electron. There is a force acting on a charge just in 

the instants when it receives a photon (emitted by the other electron) and emits also (as a reaction) a photon in 
the direction of the other electron. So, each dynamometer indicates 8, discrete, instantaneous force, discontinuous 
but periodical, with a period T, 

2 
T r 

c ' 
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where c is the speed of light. According to our listed experimental fact number 2, each electron, stimulated by this 

periodical force, emits photons with this same frequency, f = Zr . This seems to introduce a non-locality in the 

electrostatic interaction because the emitted photon depends on the distance between the interacting charges. But 

this is just apparent because this dependence on r comes from the photon's (two-ways) travelling time between the 

charges. Using the quantum information (the de Broglie's relation:E = h f = h IT), we have for the change in the 

momentum of an electron, Ap, during a time interval At, 

2h f 	2h f 2At  
AP = ( -- )(fAt) = 

Ap he 
F =  = -- • 

At 	2r2  

Then, with a = e7  • = a: , in rationalized Gaussian units, we have 

1 2 
F = do r 2 ' 

Or 
1 Grn 2  

F = 
40 9  r2  

with op  = Z14,. (4) and (5) are, respectively, the Coulomb's law and the Newton's gravitation law, up to a 

multiplicative constant. It is amazing that all of their qualitative aspects can be so easily obtained from such a 

simple and naive model of interaction. The two laws describe interactions between two static sources, but while 

the Coulomb's law gives an exact description, the Newton's law is just a weak field approximation. This difference 

may he explained by the mixing of the Minkowski metric with the graviton-exchange effects in the Einstein's field 

and by its space average nature. The attractive or repulsive character of the electrostatic force requires the use 

of angular momentum conservation in which an essential role (like in QFT) belongs to the photon's spin. For 

simplicity, as this is not the point on the present focus, we will neglect the particles' spins. They will be treated 

as scalar objects. Only linear momentum conservation is involved and this only leads to repulsive force. The point 
here is to understand the-]s-dependence of the force. 

The spin of the exchanged quantum inakes the differences among distinct kind of interactions (scalar, vectorial and 

tensorial). For the validity of (4), At >> T >> bi, must be satisfied. As the distance between the two interacting 
charges in any Coulomb's experiment is of the order of centimeters, the lapse of time (T) between two consecutive 
emissions is about 10 -10  s. So, At >> 10-10  s. This is in the reach of an experimental detection, and so, it would 

be possible, at least in principle, to observe discrete interactions with a carefully done Coulomb's experiment. 

In summary, according to this view of interactions as exchanges of quanta both statements, the Gauss's law 
and the Coulomb's law, correspond to smoothing approximative averages hiding the process natural discreteneSs: 

the Gauss's law is an average in space and time while the Coulomb's law is an average in time. But they are not 

equivalent as they produce distinct consequences. The space average causes a topological change as it replaces the 
action of a single quantum, which propagates along a light-cone generator by a continuous field or wave propagating 
on the light-cone. It replaces, therefore, the simple topology of a straight-line (the light-cone generator, domain of 

the quantum) by the topology of the light-cone (domain of the wave). The light-cone is not a manifold because of 

its singularity on its vertex which is a reflection of the wave singularity. 
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e 

Figure 1.: Classical pictufre of the fundamental quantum process: an electron must be stimulated (accelerated) by 
the absorption of a photon in order to emit a photon. 

F 

<- 	F 

F 

< 	 
Q Q 

Figure 2.: The Coulomb's experiment or the static field seen as the exchange of real photons between two fixed 
charges. 
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1. lutroduc t ion 

The concept of a multidimensional spacetime picture has been around in theoretical physics long since 1926, 
when Kaluza and Klein (KK) published their version of a theory of everything that lived in five dimensions. Since 
then this idea has been brought a mixture of reactions from the scientific community. It was only in seventies that a 
really new and improved framework for this idea emerged in the physical scenario, when the Grand Unified Theories 
(G UT's) and supergravity begun to take shape and force via the always dreamed final theory of nature. However, 
these tentatives always breaked in one or another point. The common point in these two rather distinct theories 
is that, like the KK theory, both live in D > 4 dimensions. The last atempt to create a final theory has been the 
superstring theory (in its heterotic form). In this theory, the nature's basic building blocks live in 10 dimensions, 
in the realms of the Planck scale. 

So we might wonder what is the natural extension of the General Theory of Relativity (OR) to spacetimes whose 
dimension is greater than four. Although GR. can be formulated in these spacetimes, in its usual formulation the 
theory in no more unique, and we must seek for a mathematical formulation that maintains the same degrees of 
freedom from the original theory. It turns out that the natural extension is given by the so called Lovelock theory 
[I], which albeit nonlinear in the curvature, gives second-order field equations for any spacetime dimension. This 
theory has many constant arbitrary coefficients. However, it is possible in a natural way to parametrize these set 
in terms of only two constants, the Newton's and the cosmological constants. in this process one separates theories 
in even and odd dimensions. It was found that these theories have static black hole solutions. In general relativity, 
black holes appear as a final state of a gravitational collapse process. In this work, we are seeking for the formation 
of black holes in this more general context for even dimensions [2). For odd dimensions, see [3]. In particular, we 
are using the Oppenheimer-Snyder model, in which a dust hyperball collapses towards a final black hole state. 

2 Lovelock theory 

The most general action in 1") > 3 spacetime dimensions that yields the same degrees of freedom of Einstein 
theory is the so called Lovelock action, which is given by [I] 

S .. E ap J E a , 	Ra ' a2  A ... A R°7'- "a3P A e°"' ' A • • • A e" S172 1 

RD-1)/2 1  
p=0 	Af 
	 (1) 

where Rab = &j°" + ac  to A w eb  is the curvature two-form, e° is the local frame one-form, and tv° 1' is the spin 
connection, with a;  = 0, 1, ...,D —1. The symbol over the summation symbol means one should take the integer 
part of (V — 1)/2. S r„ is a phenomenological action with describes the macroscopic matter sources. 

In general, the constant coefficients ap  arc arbitrary. However, it is shown in [4, 5] that taking certain special 
choices one is able to get simple meaningful solutions. Following [5] one first considers embedding the Lorentz group 
SO(1, — 1,1) into de anti-de Sitter group SO(D — 1,2), and then separates into two distinct classes of Lagrangians: 
Lagrangians for even dimensions arid Lagrangians for odd dimensions. 

For even dimensions, 7, = 2n, (n = 2,3, ...), the set of coefficients are given by 

ap  = f n 	1 -D+ 2P 
	

(2) 
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where, for convenience one can choose K as 
1V-2 

= 	 ( 3) 
32 r G n 

Given the action (1), the field equations are obtained by the variation with respect to the one-forms e°. Under 

the assumption of zero torsion, the variation with respect to the spin connection wa b  vanishes identically. Although 
the equations have powers in the curvatures, they remain by construction second order in the metric. The field 
equations are given by 

—K 

WD-2)/2] 
E an (i)  — 2P) fa, 	R aid ' A • • A R a2 P -I",  

p=0 

ea2p+1 A • • • A 

A ea p- ' = Q at, , 	 (4) 

where Qao  is a (7, 1)-form associated with the energy momentum tensor Tb through the following expression 

	

= (D - 1)1 aTi  ca l -a v  ca2  A • • • A e a p . 	 ( 5) 

3 Exterior Vacuum Solutions 

In the vacuum all components of the energy-momentum tensor vanish, so that we will have Qa  = 0 in the field 
equations (4). In order to solve these equations, we consider a static spherically symmetric spacetime, given by 

	

ds2 	-9(r.f.)dt 2 	g .4 (r+ )dr +2 	r+2  digv2  _ 2 , 

	

+ 	2 	 - 	 ( 6 ) 

where t and r arc the time and radial coordinates and dcti,_ 2  is the arc-element of a unit. (D - 2)-sphere. The 
subscript reminds that (6) is to be viewed as an exterior spacetime. With metric (6) and the equation (4) , 
Banaclos, Teitelboim and Zanelli were able to find the following exact solution for D = 2n gib 

- [1 - (2A4/r.f ); 	(r+ //) 21 dt 2+ 	
- (2M/r + )•-i + (r+/1) 2  

..2 ,10 2 	
( 7 ) 

These solutions describe black holes. We will show that they also represent the exterior vacuum solution to a 
collapsing (or expanding) dust cloud in Lovelock's theory. 

4 Interior Matter Solutions 

The interior spacetime is modeled by a homogeneous colapsing (or expanding) dust cloud, whose metric is 
described by the Friedmann-Robertson-Walker in V dimensions 

ds2  = -dt2  a2  (t) 
[  dr2  

1 - k r2 	
r .3 	. 	 (8 ) 

The coordinates t and r are comoving coordinates (we omit throughout the subscript - to indicate an interior 
solution). The constant k can take the values k = 0, ±1. From (8), Lovelock equations (4) and the energy-
momentum tensor for a perfect fluid we obtain the following first. integral for the scale factor a(t), 

6 2  = —k Cy (a) 2  [16 7r  Gt2 p0  too  \ v- 1 1 2/(7, - .2 ) 

- 1)1 	\a /f 	 (9) 

where Po  and ao arc constants. There is a conservation law relating the cloud density p(t) and a(t), which is given 
by 

+ (V - I )(P P) a = 0  • 	 (10) 

where p is the pressure of the cloud. We now assume a dust fluid, p = 0. For such an equation of state we can 
integrate (10) to give 

610) 1)-1  
P Po 
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where Po and ao are the constants defined above. 
In general it is not possible to obtain an exact analytical solution of (9) for k = ±1. However, restricting to 

= 4, one of course obtains the Lernaitre models, of which lie closed and open Friedmann universes are the 
particular cases found for I 	co- The marginally bound case, k = 0, allows a second integral of (9) given by 

a = 00 (1)16_7r1)!  G pol2  Ship-2 (I) (12) 

where 
– I (t – t o \ 

(13) 
D – 2 	I 

Here to gives the time for which a = 0, and without loss of generality, one can put t o  = 0. We take —7 < t < 0. 
For < –7/2 the cloud is expanding. For –7/2 < I < 0 the cloud is collapsing. And t = 7/2 is a moment of 
time-symmetry. Inserting (12) in (11) we obtain the evolution of the density in the k = 0 dust model, 

2 

p(t) = (1) 	1)1 	1'\  5i/1 -(D-2) 	, 
167G 

(14) 

which blow up at t = –7 (representing the appcarence of a singularity), and t = 0 (representing the formation of a 
singularity). This can also be viewed by the curvature scalars, the Ricci scalar 

R"  R ab = — — 
2 

(—
a 
a
) + (V – 1) [– + (V – 2) f.—.12  

	

a 	 a2 

and the Kretschmann scalar 	
Rabcd Robed  = (z)  I) 

k j 
[( \2 (a2 

a2 	

k)  2 ] 	

(16) 

both of which diverge when a = 0 at I = 0. 

5 Junction Conditions 

Now we match the exterior and interior spacetimes found in sections 3 and 4, respectively, across an interface 
of separation E. The junctions conditions arc [6] 

	

ds2+ ] r  = ds 2 	 (17) 

	

A ] 
E  = Kn-)9 1 	 (18) 

where K cio is the extrinsic curvature. The subscripts ± represent the quantities taken in the exterior and interior 
spacetimes. Both the metrics and the extrinsic curvatures in (17)-(18) are evaluated at E. The metric intrinsic to 
E is written as 

d4 = –dr2  + R2 (r)dS-4,_, . 	 (19) 

Where r is the proper time on E and dfil,_ 2  denotes the line clement on a (V – 2)-dimensional sphere. The 
equations (17) and (18) establish constraints on the interior and exterior spacetimes geometries, so that we could 
make a smooth transition between these two spacetimes. For example, using the junction condition (17), metric 
(19) and the exterior metric (7) we obtain 

	

r+  = R(r) , 	 (20) 

– (2/if/R.) —'-r + (T1/1) 21 + fi.2  

1 1 – (2/1//1-/) ---h-- + (R/0 2 1 
where E dT , and both equations are evaluated at E. Although we started back with two different. spacetimes (the 
interior and exterior geometries), equations like (20) and (21) will garantee to us a unique physical picture from the 

(15)  

and 

di +  
dr (21) 



{2m 	[ 
2 	/ 

V — 1 (iAlly"-I)  (27) 
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problem. From now on, we will usually omit the subscript E to denote evaluation at the interface. Using now the 
junction conditions (18), metric (20) and the interior metric (8), we get 

/e 	n) 2 + k (rE) 2 = (2M) 2/M-2) 

1 ) 	 R ) 
	 (22) 

The only component K.b needed for use in with work is Kee. Multiplying equation (9) by (rE) 2 , and then comparing 

it with equation (22), we have 
( 1 )D-4 8  w 

M = 7 	(7) 
 — 

 1)!  pri C; R.,1,2- i , 	 (23) 

which is the mass of the cloud expressed in terms of the constants given in the problem. This expression is valid 
for any value of k, k = 0, ±1. 

6 Black Hole Formation 

In order to study black hole formation in this theory we work with the k= 0 model solution found in (12). The 
interior metric is then the equation (8) with k set to zero. The exterior .  metric is given in (7) and as we have shown 
in section 5, it is possible to make a smooth junction between both spacetiines. 

To know whether a black hole as formed or not, one IRIS to search for the appearance of an apparent horizon 
and an event horizon. The apparent horizon is defined in to be the boundary of the region of trapped two-spheres 
in spacetime. To find this boundary on the interior spacetirne one looks for two spheres Y E- a(t)r =constant whose 

outward normals are null [7]. Using the metric (24) we obtain 

da(t)) 2 	I 

dt ) 
	 (24) 

Using (12) in (24) gives the evolution of the apparent horizon in comoving coordinates, 

( 1 ) 1/7)-1 s i n I1D-1 (1) 

cos 	
(25) — rE 	

10 

where m 	111-. For 7) = 4 and I 	coo this expression reduces to the usual expression for the apparent horizon in 
the Friedmann metric (7]. 

Now, the apparent horizon first fortns at the surface rE. Then, for r = rE, equation (25) gives the time I at 
which the apparent horizon first forms. On the other hand, one should also be able to find the formation time of 
the apparent horizon on the surface E. through an equation on E, equation (22). Indeed, at the junction one has 
R = a(t)rE. Then from junction condition (22) and equation (24) we have that the apparent horizon first forms 
when 

x + JI
(D-2)/2 = 2m (26) 

where x E R/I. For Friedmann (1 	03 and 1) = 4) the above expression reduces to R = 2M, as expected. Now, 
the time of formation of the apparent horizon can be found through equation 

xnu = a(t All) zE 

Given a dimension D and an m one can obtain x through equation (26). Then equation (27) gives implicitly /Ali, 
the time of the formation of the apparent horizon on the surface E. For instance, for 7, = 6 and m = 1 we find 
tA El = —0.531. Putting this value back in equation (25) we verify that everything checks. 

The event horizon, being a null spherical surface, is determined through the null outgoing lines of metric (8), 
i.e., dt/dr = a(t). This equation can he put in the following integral form, 

= D-2( 1 \ 1"- " r i 	 du 
rE 	— 	2T n ) 	Ju. sinm-2)/(D-1)(u) 	

(28) 

D-1 I — 	and rn has been defined above. Now, the time iti is precisely equal to the formation time of the 
apparent horizon, since in vacuum both horizons coincide [8]. One has then to integrate (28) to find the time 
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Figure I.: Penrose diagram for the collapse of a dust cloud in anti-de Sitter spacetiine. Each point in the diagram 
represents a V — 2 sphere. (eh = event horizon), ah = apparent horizon). 

uo at which the event horizon first forms, at r = 0. This can be done numerically. For V = 6 and m = I we 
obtain 1 0  = = —1.571. A plot in comoving coordinates (/, r) shows the evolution of the apparent and event 
horizons. See [2] for plots for V = 4,6,10,26. Making a matching to the vacuum exterior spacetime one finds the 
usual Penrose diagram for gravitational collapse and formation of a black hole in an anti-de Sitter background, see 
figure below. 

7 Conclusions 

We have analysed gravitational collapse in Lovelock gravity which is a natural extension of Einstein's general 
relativity to higher dimensions. It was shown that within a restricted set of Lovelock coefficients, gravitational 
collapse of a regular initial non-rotating dust cloud proceeds, to form event and apparent horizons, arid terminates 
at a spacelike curvature singularity, in much the same way as the Oppenheimer-Snyder collapse. As in the case of 
the wormhole solutions found in [9] and the black bole solutions found in [5] the collapsing solutions studied here 
show that some important features of classical general relativity are preserved and carried into Lovelock gravit.3'. 
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We present a geometric and pictorial method that relates the data from fourth generation 
resonant-mass gravitational wave detectors to the different metric theories of gravitation. 
Such detectors use spherical antennas and allow for the determination of five out of the 
six independent "electrical" components of the Riemman tensor. These components can be 
written in terms of the Newmann-Penrose parameters, which allow for the discrimination 
among the different metric theories of gravitation. We present how the experimental results 
may be used to discriminate among these theories. 

1 Introduction 

Gravitational waves are a phenomenon predicted by several theories of gravitation. In this paper we will focus our 

attention on metric theories of gravitation, which have more experimental support than the non-metric ones. Also, 

metric theories can be conveniently classified according to its spin content that is responsible for the generation of 

the gravitational wave. Therefore, by detecting a gravitational wave and determining its spin it is possible to obtain 

information about the metric theories that may describe it. 

The detection of gravitational waves is a field more than thirty years old[1]. It begun with the research by Joseph 

Weber in the 60's using a massive aluminum cylinder at room temperature. In the 70's and 80's such detectors 

were improved: the cylinders (also known as antennas for gravitational waves) got bigger, better isolated from 

mechanical noises and were cooled down to 4K. Also, in those decades other kinds of detectors were introduced, 

like the interferometric ones. 

Nowadays, the best cylindrical antennas are cooled down to temperatures less than 1K and they are protected 

against cosmic rays. Also, full-scale interferometric detectors are being built to operate in cooperation with the 

massive ones, and experiments are being designed to be performed in space. And the last, fourth generation 

of massive antennas is about to be built, using large, spherical masses. Such spherical antennas have several 

improvements over the cylindrical ones: they are expected to be omnidirectional and to detect five out of the six 

components of h (the dimensionless amplitude of the wave.) Because of this feature, for instance, a single spherical 

antenna could inform the direction of astrophysical sources of gravitational waves described by general relativity[2]. 

The resonant-mass detectors that use spherical antennas are those we will be interested on in this work. We 

will show how their data can be used to discriminate among the different metric theories of gravitation. 
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2 The Newmann-Penrose parameters 

The Newmann-Penrose parameters (NPP) allow the identification of the spin content of a metric theory responsible 
for the generation of a gravitational wave[3]. For instance, general relativity (g.r.) (spin 2) has .the following values 
for the NPP: 9 4  0 0 and W2 = Ws = '22 = 0; on the other hand, Kaluza-Klein theories (spin 2, 1 and 0) have 
IN 0 0, 4'3 $ 0, 022 0 0 and W2 = 0. Such differences appear in the corresponding six independent "electric" 
componentes of the Riemann tensor, Rao', which, to lowest non-trivial order in the perturbative expansion, 
May be expressed in terms of the NPP as 

—Re.4 —.22 

	

(E11 ) = 	117141 4 	ReW 4  
( /mtlf 4  

—2 4 Rei s  2 ii /rnk1/3 	—6 W2 

—2 4 Re Wa 
— 41  2 2 2 ii Imps  . (1) 

The six NPP can also be associated to 3 x 3 linearly independent matricesK forming a complete basis that 
describes any 3 x 3 matrix. These six matrices are also known as "basis polarization matrices" and each of them 
can be associated to one of the six polarization modes of a weak, plane, null gravitational wave permitted in the 
generic metric theory of gravity (these modes are illustrated in Ref.[4].) For instance, comparing the NPP of Kaluza 
Klein theories to those of g.r. we see that those theories allow three more polarization modes for a gravitational 
wave than g.r. does because 413 0 0 and CD22 $ 0 for them. Differences in polarizations are the ones we expect to 
detect with a spherical antenna, which responds differently to different polarizations, as we present below... 

3 The antenna's response 

A gravitational wave is commonly described in terms of its dimensionless amplitude h, which is basically a pertur-
bation on the Minkowskian metric[5]. This amplitude can be written in terms of a 3 x 3, symmetric matrix, and in 
general it has six independent terms. The observable h is the one that gravitational wave detectors are intended to 
detect. 

The first quadrupole modes of a spherical antenna sensitive to gravitational waves are five-fold degenerate[6]. 
Such degeneracy allows the determination of five out of the six independent components of h. As we mentioned 
before, because of the use of the TT gauge in g.r. the number of independent components of h is reduced to five in 
this theory, and in principle only one spherical detector should suffice to inform the direction of the wave's source. 
But in practice at least two detectors should work in coincidence so that the detected signal is reliable. 

The response of a spherical antenna to a g.r. gravitational wave was presented in another paper[7]: the antenna's 
shape is distorted to that of an ellipsoid. This geometric figure is described by an equation of the form 

x2 	y2 	z 2  
— + — + a 2 	62 	c2 	1, 	 (2)  

which can also be put in a convenient matrix form so that a 3 x 3, real, symmetric matrix can characterize the 
figure: 

(a 0 0 	
x ;) (0 6 0 ) ( y 	L ) = 	 (3) 

z 	0 0 c 	z 

Because in general h is also described by this kind of matrix, not only g.r. but any metric theory of graVitation 
is expected to distort the spherical antenna into an ellipsoid. But since each theory allows different polarizations 
for a wave the antenna's distortion should follow distinct patterns for each theory, basically the ones presented in 
Figure 1 of Ref.[4]. 

A prototype of a spherical antenna is already being tested[8] and its data can be organized so that h can be given 
in matrix form. From this the ellipsoidal picture follows naturally. With enough sensitivity, therefore, a spherical 
detector should to give important information on the polarization of the wave, among other things. This should be 
of major importance in confirming metric theories of gravitation. 
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4 Concluding Remarks 

The first five quadrupole modes of a spherical antenna are five-fold degenerate and thus are adequate to inform 

about h described by traceless matrices. However, monopole modes are predicted by several metric theories and are 

not described by this kind of matrices. In order to detect the monopole and the quadrupole modes of a gravitational 

wave two spherical detectors should work in coincidence, one bigger than the other and adequately tuned, so that 

the smaller one is sensitive to the quadrupole modes and the bigger one is sensitive to the monopole mode. 

The construction of an array of spherical detectors is now under study by an international collaboration named 

OMEGA[9], which includes a Brazilian group[10]. It is expected that spherical detectors of gravitational waves will 

be in operation in the beggining of the next century. 

A more complete and detailed version of this work will be presented in a forthcoming paper. 
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In this work, two different classes of planar solutions for cold dust are analysed within the 
Newtonian framework. The first class contains planar collapsing solutions for a general 
set of self-similar initial conditions extending, in this way, Pension's original results. The 
second class consists of solutions without prescribing any initial conditions. In both classes, 
the solutions exhibit shell-crossing outside the plane of symmetry. The range of validity for 
both classes of solutions is then presented. 

1 Introduction 

Planar symmetry occurs as the limiting case in a number of geometrical configurations. For instance, (i) the central 

region of a disc whose edge is at a very large distance from the center, can be considered a region•with planar 

symmetry, (ii) a spherical surface with radius incomparably larger than typical distances of interest within the 
surface, can also be locally aproxitnated by planes. In these examples the planar approximation in the geometry 

can also be extended to symmetry in the dynamical laws. Indeed, it is well know that the gravitational potential 

generated by discs and spheres approach in the above well-defined limits the gravitational potential of a plane. 

On the other hand, self-similar solutions are expected whenever the system under analysis does not have a 

characteristc scale, e. g., the basic constants and boundary conditions of the problem are insufficient to build up a 

scale. This may happen if the system looses at an intermediate stage of its evolution the memory of the intitial or 

boundary conditions (see e. g. Zeldovich and Raiser 1991 or Lynden-Bell 1986). 

Self-similar collapsing solutions, heve been widely studied. Self-similar spherically symmetric solutions for cold 

dust have been anlysed by Penston (1969), Dyer (1979), Lynden-Bell and Lemos (1989), Lemos and Lynden-Bell 

(1989), as well as for other types of fluid, Fillmore and Goldreich (1984) and, in general relativity, by Cahill and 

Taub (1971) among others. Self-similar collapse of flat cold axisymmetric Newtonian discs has been studied by 
Roily and Lynden-Bell (1993). 

Self-similar gravitational collapse with planar symmetry, whitin the context of Newton's gravitational theory, 

has been mainly studied to understand the formation of structures, like stars, galaxies and clusters of galaxies 

(Penston 1969, Fillmore and Goldreich 1984). In particular, Penston (1969) has presented a study of the self-

similar Newtonian collapse for cold dust. This work considered a quadratic profile in the density and included 
the spherical, cylindrical and planar symmetries. It was shown that the spherical collapse of nearby shells is well 

described by a planar equation for those shells. It was also shown that thermal forces start to be important earlier 

for planar collapse than for spherical collapse. Therefore, the plane flatten instability, which drives spheres into 

flatten systens (Lynden-Bell 1964, Lin, Mestel and Shu 1965), is opposite to the thermal pressure gradient appearing 
in these nearly planar regions. That phenomenon obstructs the formation of a plane with infinite density. 

In the case of large scale structure formation, Fillmore and Goldreich (1984) investigated self-similar planar 
solutions. It was given time a prescription to continue the solutions past the shell-crossing singularities, confirming 
earlier numerical simulation results (Mellot 1980). 
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Planar collapse has also been studied in General Relativity within the context of singularities and black holes. 

Thorne (1972) has argued that the relativistic collapse of oblate spheroids of mass m with size bigger than 

(where G is the gravitational constant and c is the light velocity) is well approximated by Newtonians gravitation 
until the final stage when a singular disk forms. The collapse of the inner regions of these oblate spheroids can be 

approximated by collapse of planes. In the Newtonian framework the collapse to a disk was earlier analysed by Lin, 

Mestel and Shu (1965), whereas a full relativistic numerical analysis was done by Shapiro and Teukolsky (1991). 

In this work we investigate two distinct cases. In section 2, we study self-similar planar systems that collapse 

from rest. In this case, we obtain a general class of self-similar initial conditions for the collapsing system. In section 

3, we analyse self-similar planar systems that do not remember the initial conditions. 

2 Dust self-similar solutions with self-similar initial conditions 

In this section, we consider self-similar cold dust solutions in collapse with planar symmetry. This configuration 

was also treated in the Appendix 1 of Penston's paper. Here, we generalize Penston's solutions finding a general 

class of initial conditions for a self-similar collapse. 

2.1 The solutions 

Self-similar solutions, in this case, are such that the form of the density's profile distribuition remains unchanged 

with time. Consider a cold plane of gas with mean volumetric density A (z) at a distance z from the plane of 

symmetry. Then its interior effective mass cr(z) (i. e., the mass per unit area within distance z) is given by 

cr (z) = 2z io (z) . The equation of motion for such a plane is 

02 z  

	

= —27rGa (z) , 	 (1) 

We may analyse only the case z > 0. The z < 0 case has an analogous treatment. 
Self-similarity requires z = zo (t) z (a.) , where a. = or/a °  (t) is a time independent variable (see e. g. Lynden-

Bell and Lernos 1989 for the spherical symmetric analogue). Let us go on now analysing one class of solutions for 
the plane distribuition of cold dust. 

A solution of (1) is 

	

z = z i  (a) — rrGcri 2  , 	 (2) 

v = —27rGcrt, 	 (3) 

where zi (a) is an integration function. We have set the initial velocity of the planes equal to zero (we prove in the 
Appendix that the condition vi # 0 is irrelevant). In order to obtain the functional dependence of zi, we introduce 
the self-similar condition in equation (2). Then, 

F (a.) = f (1) 

where 

(t) 

F (a.) 

Differentiating (4) with respect to a., we obtain 

F' (cr.) = crof 

Its 	
z,

(aoa4 1 
(4) 

(5) 

(6) 

(7) 

ll 	TGGro Cr. 

xGcro  
= 

zo 
z. 

= v. 

-; 
(aGa•) 2 	crocr, 

where the dash denotes a derivative with respect to its own argument. Next, we take logarithms in (7), differentiate 
the resulting equation with respect to a o , and multiply by cro to obtain 

f  cr2  d 	1 	
d log [ a z 	 (8 ) ° &re kcrof 	
d

6 	cr 
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Since the functional dependence in both sides of (8) is different, we have that each side of this equation is a constant 
b, say. Therefore, integrating the right hand side of (8) we have 

dz i z i  
— = irG B l a b  , 

da 

where B 1  is also a constant. The general solution of (9), for b 0, is 

zi  = irGa (Ba b  +1,20 ) 

with B = bB 1  and t c20  a new integration constant. When b 	0 we have z i 	rGa (B 1 loga c1) , where c 1  is a 

new constant. These results give the general class of self-similar initial conditions for planar collapse. 
If we now put 

z = rGcr tee  (cr) — t 2 1 , 	 (11) 

we may identify t! (a) = ri (a) /irGu. So, 

	

i c7  (0) = Bob tL. 	 (12) 

We see that 4 (0) = to which is the time the central plane collapses to the origin.With (12) and (11), we obtain: 

z = wGa (Ba b  i2 ) (13) 

We impose b > 0 to avoid initial shell-crossing in order that planes with larger interior masses start the collapse at 

greater distances. 

Shell-crossing happens when two nearly planes with densities a and a + da pile up into the same distance z, i. 

e., dz = 0 for these two planes. In this case the volumetric density diverges, p = co. The solution is no more 

valid when plane-crossing starts. To find a full solution one has to give a precise prescription for the continuation 

of the solution after the shell-crossing. Indeed, when t = 4 0 , we have from equation (14) 2- L oy  oo. For later 

times there will be shell-crossings in the region z > 0. - 

The density profile 519,- is given by 

rrGp [B (b 	a b 	01- 1  

From (14) we see that there is shell-crossing for distances z > z 1  where, 

wGb g 2  
Zi 

Bilb b +1 j 

Thus, the region with plane-crossing increases with time. 

From equation (13), we can see that it is possible to choose the scale ao (t) as 

I i70 	t 

I 

21/b 

a° 	B 	' 

yielding then the other sides, 

r. = a. (a l; ± 1) , 

ro _ wG 113 	tgi  
Bi/b Ito — I 

where ±, in (17) is the signal of t c20  — t 2 . Immediately, we have the profile of p.(a.), po(t) , v. (a.) and vo  (I), given 
by: 

p„ = t(b + 1)a; 	, 	 (19) 

wGp o  = ItLT — C' , 	 (20) 

1 
v. = --

2
a., 	 (21) 

(9) 

(10)  

(14)  

(15)  

(16)  

(17)  

(18)  
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t2 	t2 II/ 6  
Vo 4wGt `0

B 	
(22) 

Therefore, we have two distincts forms for p.. When the signal is positive, a, takes any value greater or equal 

to zero (being zero only in the centre of symmetry). When the signal is negative, i. e., t 2  > Oa , than we have the 

condition o. > 1 . However, the no-shell crossing condition imposes a stronger requirement: 

b 
z., 

(b + 1) (b+1)/ 6  

Note that the self-similar profiles are always valid in the z. > 1 regions. 

2.2 Illustration of the solutions 

(23) 

From equations (17), (19) and (21), one can check that before the central shell collapses, the z. 	1 region can be 

described by the approximation 
p 	1 - (6 + 1) z! , 	 (24) 

1 
= 	 (25) 

On the other hand, the region with z. > 1 can be approximated by 

P ' 
-4 	I 	_—b/(b+1) 

r  • 	 (b +1)- 	
(26) 

ii(b+i) 
V. 	

2 	
(27) 

Using the time-scales 0 (t) and :0 (0 given in equations (16) and (18) respectively, one can verify that the regions at 
large z have identical density and velocity profiles for all times, taking the following asymptotic forms: p cc z- °,and 

v oc z 13 , where a = (b + 1) and i3 = 1/ (b + 1) . Using (24) and (25), we have that, fort < tco, the regions with 
relatively small values of z have density and velocity profiles given by 

and 

P 
1 B (d + 1) 

1 	 b  (28) 

(29 ) 

7G(IL t 2 ) 

v 

OrG) 6 (4:, 

2t 
z. 

„,_ 	zi 
t 2)' 1  

(IL - t 2 ) 
The value of the constant b is constrained by the chosen density initial profile. Firstly, we analyse Penston's 
particular solution with is characterized by b = 2. His results are linked to the initial condition 

22 
P (0, z) = pi (1 - —) 

A 2  
(30)  

where p' and A are constants. In this case we see that, when z 	oo, p 	z_ 2/3  and v 	z 1 /3 . In the other limit 
(z 	0), p presents a quadratic top. For t 2  > i c20 , there is plane-crossing but, the asymptotic dependence of p and 
v is invariant. 

Penston's (b = 2) case separates two types of solutions. For b > 2, the solutions present a smooth flat top in the 
z 4 0 regions while for b < 2 the solutions have a cusp in the same small z region. 	• 

Another case of analytical interest is given by b = 1. This solution has the property of being invertible. Then, 
the density and velocity profiles can be described as explicit functions of z and t. This solution has the form: 

2 
2 9B 

=  	11( t 2 i z) 4. _2  
2B 	2B 	a' 

(31) 

(rG) 312  
P= 

\ING 	- t 2 ) 2  + 4B z 
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and 
7rGt = _ 	/2 t2 	 in2 + 4B 

B  • 	co+ 	, 
(32) 

It is straightforward to note that when z. — 0, the profile does present a cusp at z = 0. 

A case of physical importance is 6 = 0.2. This exponent, has been studied by Fillmore and Goldreich (1989) and 

illustrates qualitatively Mellot's numerical results (Mellot 1980). This numerical calculations simulates the large 

scale planar collapse of massive neutrinos,which can be considered candidates to generate condensations for the 

formation of the large scale structures. The asymptotic forms of the p and v given by p z-116  and v Z 5 / 6 . 

3 Solutions for self-similar dust without initial conditions 

In the previous section, we obtained and illustrated one class of self-similar solutions with initial conditions. Now, 

we shall find another self-similar class of solutions for cold dust planar distribuition of matter. Here, we do not 

impose any initial conditions. 

3.1 The solutions 

First, we note that the equation of motion (1) has a first integral given by 

1 	2 
E (Q) = -2  z +27rGaz. 	 (33) 

Now, to obtain self-similar solutions without memory of initial conditions we first use the self-similar requiriment 

and put Eq. (1) in the form: 
2  

[Zo (f) z. (v)11 = — 271- Ger 0 (Off. . 	 (34) 

writing 

atl a s atl a. -  
cr. as 

vo 

a 

ac. t i 

eq. (34) may be rewritten as 

[ 2 	 dl. 	dl. ) 2 	d2 l. 
[2It 	

dL. 	 = JJ 	 \dL. 	dL? 

27rGero ar• = - 	 (35) 
zo  L 2  " 

where L = In cro, 1 = In zo, L. = In v. and 1. = In z.. The dash denotes derivation with respect to L and the dot 
with respect to time. Without gravitation (i. e., G = 0), the right hand side of (35) is zero. in this zero gravity case, 

the left hand side of (35) can be used without distinction for the three most used symmetries, planar, cylindrical 
and spherical. 

One can find which constraints self-similarity imposes on the energy per unit mass E (a) and on the time function 
t, (cr). Noting that the difference to the spherically symmetric case is in the RHS of (35), one can follow closely the 

work of I,emos and Lynden-Bell 1989b, and without repeating here the whole calculation, we find (Ventura, 1992). 

E = Ac' 	 . (36) 

t, (cr) = Bab  + to 

where A, B, b are constants of integration and a = 2 (6 + 1) . There is a special case, when 	0, given by 

t, (a) = Bk log (--) + 
a i  

(37)  

(38)  
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where B i , cr i  and ti are constants. The equations (36), (37) and (38) give then a set of self-similar solutions without 

initial conditions. 

One can write the distance z of the planes in the form 

z = —w-Ga(t+ Ra 6)[t — (— 
TGB 

 1) Bab]. v-2-71 	 (39) 

3.2 Illustration of the solutions 

We will present now a study of the solutions obtained in the previous sub-section. Unlike the spherical case, such 

solutions always have positive total energy, which follows a power-law in the interior effective mass, E = Acra. The 

other integration function is t c  (a) = Baa, where, without loss of generality, we have set to = 0. This, leads us to 

write the self-similar solutions as a = (ro e!. and z = zoz,,, where now 

lib 

0.0 -1-- 113- 1 
zo  = TGB 2 4,6+ ' 

and 
V571 z. = 0.. (01 ± i) [(— — 	1 . 
TGB 

Here the sign ± is the same as the one of t.We analyse the expansion and recollapse of the shells. To avoid initial 

plane-crossing, we impose b > 0. We also see that equation (42) represents a physical solution if A > 1. 

Let us verify if these self-similar solutions have subsequent plane-crossing. From the equations (39), we have 
p= 5.(77  given by 

[ VDT 

irGP  = 	
irGB 1 (2b +1) B 2a2b + 

+ 
 (

.1-271 2) 0  ÷ 0 Bat, t  _ or 
IrGB 

Then, there is shell-crossing for distances z < zt, where 

1 I 
= rGB (1 + g±){1 	irG B 

27 
 i d Bi3±11 

and 

a 	) [2A (b + 1) 2  
Q# •= 2[(Y+ 1)  (irGB 2  ± T 2 G 2  

(41 
'"•4

n 2 
	 1)} 

1/2

] 
A   

irGB 

The validity of this solution is restricted to the regions with IzI > Izil We analyse only the regions where there is 
no shell-crossing. 

For large negative times the planes are expanding and the plane-crossing region decreases with time. For 

large positive times the planes arc colapsing and the plane-crossing regime increases with time. At t = 0 there 

is a plane expanding and recollapsing instantaneously. Since the planes reach their maximum distances when 
Bab 

2A  > 2 have their maximum for t > 0 , while solutions with = 	— 2), solutions with 2 wGB 	 TGB 	 ,G2  BA  < 2 reach 

their maximum for t < 0. The marginal case ( * GB = 2) gives us that all the planes have their maximal expansion 
point at t = 0. 

(40) 

(41)  

(42) 

(43) 

(44) 

(45) 
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The sellf-similar form of the profile's density is given by: 

P  = rGB 2 cr?,6  
N571 	2 1) [(21) + 1) W 1) a. 

(
irGB 

2) (b + 1) cr; - I 
	

(46) 

and the velocity's profile by 
	

v = irC Bar I  cr. [(_TCB 2) a. 2 . 	 (47) 

In the limit z 	oo, the density has the form p 	z-26/(26+1), while the velocity goes as v 	z(141)/(26+1) For 

large or intermediate z, such that Bab ( 3R3  - 2) •:< 2 (see equation (47)), the velocity's profile is v 	z 1/(26-1- 1) .  

When 01  = 2, we have that this intermediate region is pushed to infinity. 

For t = 0, the time-scale of the density, p o  (t), diverges. The profiles of the density and velocity take the same 

form of the limiting z 	oo case, given by: 

,-214(26+1) 
P = 	 1/( 26+1) - 	 1 

(2b + 1) [irGB 2  A - 1)] 

(*GB 3 )31147  (-2) 25.tiik p  if  a  # 2  
B ( -Ig• - 1) 24411  

V = 	 (49) 
2(iG8 2 ) 51217  	1/(26., 

' 1) , if * CB  - 2. 
B'( ;  _0 141  

The solution with b = 0 and B = 0 is described by z = xGcr [,,'A  t - t 2 ] , v = irGa [ .54  - 2t] and irGp = 

1  [ NG  .'i t. - t 2 1 - where 0 < t < rG  A  . We verify that, in spite of the motion of planes, the volumetric density does not 

exhibit functional dependence on a. This solution seem to have no direct physical interpretation. 

4 Appendix 

In Section 2 we analysed collapsing solutions for systems initialy at rest. Now, we will show that the dynamical 

description of the self-similar system is invariant when the initial velocity of the shells is non-vanishing. The general 
solution for such cases is: 

= z i  (a) + v i  (cr) t - vCcrt 2  

and 

v = (a) - 2irCat. 

We impose the self-similarity condition, v = v o  (t) v. (a.) and z = zo (t)z. (a.). From (A2), we have 

F1 (a.) = f1 (i)[ki (croln) 

where 
v. (a.) 

= 
cr. 

27rGcro  (g) - 
	vo (t) 

vi  ((r oc.) 
ki 

2irCcr o a.' 

(48) 

(Al) 

(A2)  

(A3)  

(A4)  

(AS) 

(A6) 
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Differentiating (A3) with respect to o., and taking the logarithm of the resulting equation, we are lead to 

log = log (cr o  f) (A7) 

where the dash denotes derivation with respect to its own argument. Differentiating (A7) with respeCt to cr o , and 

multiplying afterwards by ao , we have 

d 
-cro— 

do's 
 log (aof) = —

da 
log k: = 6-1= constant. 	 (A8) 

For b 0, the equation (A8) has the solution 

, 

It; = 	kB147
b 
	ti2) (A9) 

where B 1  and B2 are constants. With (A6) and (A9), we have 

	

= 7rGa (Blo b  + B2). 	 (A10) 

Then (A10) and (Al) yield 

	

F2 (a.) = f2 (1) [11 (crocr.) + (Bic o6 a,, + B2) t - t 21 , 	 (All) 

where, 
zi 

H = 
TGa' 

F2 = z.— 
cr.  

and 
7rGao 

f2 = 
z 	

(A14) 
o 

Differentiating (A11) with respect to a., dividing by cr!) -1  and differentiating again with respect to a., we obtain: 

d [ F; 	b  d [ 

a 

H 

	

b 	

i 

- = CrO2 —  

	

do. 0.„ 	f d er 	b-1 

Taking the logarithm of the equation (A 15), differentiating with respect to cro  and multiplying by a„, gives 

d {11 1  g 8+1 g 
cro —  tap 125 Cr — 	=0. 

dal] 	 do. 0.6- I 

Since the two terms of the equation (A16) are functions of different variables, each side must be a constant. In this 
case, the general solution for H (a) is 

H (a) = B3 ah  + B4 + al (a) , 

where B3. B4 and a are constants and I (a) is given by 

f cr b  (log cr - 1] , for b # 1; 
1(a)— 	(log cr) 2 	for b = 1. 

Introducing (A10), (Al2) and (A17) in (Al), we have 

z = 7Ger {(83 + B 1  00.6  ± al + B4 + B2  

	

-1 	B2 ) 2] 
4  

When we take v i  = 0, i. e., B 1  = B2 = 0, the solutions obtained in Section 3 should be reproduced. But this occurs 
only if a = 0. Therefore, (A19) is written as 

(1- 4) 2  - (B4+ 1) 
z = rGa ( 1 + L91, t)[B3ab 	+ 	  

(Al2) 

(A13) 

(A15)  

(A16)  

(A17)

 (18) 

(A20) 

I + (A20) 
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From (A20), we see that the general form of the time scale for the surface density is 

B2 )2 	( 	) 1/6 
DA 4r 4  

I + Ift t 

where -y is a constant which we set to one, without loss of generality, 7 = 1. Then from (A20) and (A21) we have 

zo = rG (1 	t)cro  . 
HI 	b  
03 

	 (A22) 

We know that vo (t) = 	From (A21), (A22), (A2) and (A 10) we have: 

	

v. (cr.) = ba.J (t, o,) 	 (A23) 

with 

B2  )2 
B 	

cr 
1 

J = [(B2  – 21)(1 + t) + B i  (t – —t 	.1 x 
D3 	 2 

x [(b+ 1)(82 – 21) ( 	
) 	B 1  

1 + —t 
B3 	B3 

	

- (B4 	)1] -1 
	

(A24) 

From (A23) one finds that J (t,er.) cannot depend on t. Then, we impose that the equation (A24) has dependence 
only on cr.. In such case, we have only one possibility: B 1  = 0 and J = 	This condition, along with a time 
translation (t 	t 	142') , allows us to write (A20) as 

= reicr [ B3ab 	_ t 21 	 (A25) 

Similarly 

v = –2rGcrt. 	 (A26) 

The demonstration for the logarithmic (b = 0) case goes along the same steps. 
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We present an impact parameter analysis of pp elastic scattering between Nrs=13.8 GeV 
and V7s=62.5 GeV. Parametrizing the scattering .amplitude by a sum of exponentials with' 
complex parameters, we fit the differential cross section data through the CERN program 
MINUIT. From the analysis of 7 sets of experimental data we compute the Profile and 
Inelastic Overlap Functions. We have improved a previous analysis taking into account 

• the error propagation and achieving better confidence intervals in the statistical analysis 
(x 2/d.o.f.). We conclude that the central opacity is nearly constant at 20 60 GeV (92% 

93%) and that the peripheral opacity (b=1 fin) increases with the energy at 20 60 GeV 
(34% 	38%). We calculate the cikonal in the transferred momentum space and the results 
suggest the existence of a zero at q 2 	10 •-•-• 11 GeV 2 . 

1 Introduction 

In the absence of a pure QCD description for elastic hadron scattering, model-independent analyses play an impor-

tant role in the search for connections between experimental data and gauge field theories. To this end the impact 

parameter formalism and eikonal approach have been presently used. 

In the impact parameter representation the elastic scattering amplitude, F, is given by the Fourier-Bessel 

transform of the Profile Function [1], 

	

F(q,$) = i 	bdb.10 (qb)r(b, s) 	i(r(b, s)), 	 (1) 

where b is the impact parameter, q 2  the transferred momentum, fi the center-of-mass energy, 1 0  the Besse! 

Function and r(b, s) the Profile Function. The s-channel unitarity in the impact parameter space connects r(b,$) 

with the Inelastic Overlap Function, G,,,(1), s), by [1), 

211egb, s) 	r(b, s) 12 +Cin(b, 	 (2) 

In the optical analogy (Fraunhofer diffraction), Re f(b, s) represents the degree of absorption of an incident wave 

caused by the obstacle and so, may be seen as describing the hadronic opacity as a function of b and s. The Gin (b,$) 
represents the absorption into open inelastic channels and its integration over the impact parameter plane leads to 
the total inelastic cross section: 

	

crin(s) = 2a r bdbCin (b, s). 	 ( 3 ) 

The 1'(b, s) is connected to the eikonal, 12(b, s), by 

	

1'(b, s) = l — 	 rt(b,$) = (11(q, s)). 	 (4) 

'Financial Support: FAPESP, CNPri 
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Extraction of ['(b, s) and Gi n (b, s) from experimental data is usually performed by suitable parametrizations for 

the scattering amplitude F(q,$) and fits to experimental differential cross section and p-parameter data: 

_.7da = 71. F(q, s)  1 2 , 	Re F(0, s)  
P(s) dql 	 ImF(0,$) 

2 Fits to the Experimental Data 

We introduce the following model-independent parametrization for the scattering amplitude 

2 

F(q,$)= iEaj(1.  + iA)e719192  iEctie —flie , 
;=, 	 l=3  

with the constraint 

z n. _ ,  cri  
413 ) = —P(S) 	 

al +a2 

where 	i=1,2,...,n are real free parameters and p(s) is the experimental p-value at each energy. 

Figure L Fit to pp differential cross section data: (a) complet region in transferred momentum with available data; (b) 
diffraction peak; (c) contribution of the real and imaginary part of the scattering amplitude at the energy of 52.8 GeV. 
Experimental data are from references [3,4). 

Making use of the CERN-minuit routine [2] we fit seven sets of pp differential cross section data above fs = 10 
GeV. These sets may he classified into two groups: Cl: Vi=13.8 arid 19.4 GeV [3], 02: Nrs=23.5, 30.7, 44.7, 52.8 
and 62.5 GeV [4]. The group 02 was critically analysed by Amaldi and Schubert [4] and corresponds to a coherently 

normalized data set. This is not true for the group Cl. The fits were performed with n=4 at 23.5 and 62.5 GeV, 
n=3 at. 30.7 and n=5 at the other energies'. The results are shown in figure I and table 1 (numerical values of the 
free parameters are available from the authors). 

'The determination of n was based on the analysis of x 2/d.o.f. and confidence levels 

(5) 

(6) 

(7) 
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AGc1/) • N x2  id.o.f 
13.8 100 .2.08 
19.4 124 2.88 
23.5 134 1.14 
30.7 173 1.01 
44.7 207 2.14 
52.8 206 1.65 
62.5 124 1.17 

Table 1 Number of experimental data points and chi square per degree of fredom at each energy. 

From table 1, our fits present x 2 /d.o.f.=1-4 for group G2 and x 2 /d.o.f.=2-4 for group G 1, which is statistically 

satisfactory(figure la, lb). In figure lc we observe that the real part of the scattering amplitude changes sign at 
high energies, as predicted from dispersion relations analysis [5]. Also, we see that the contribution of the real part 

is important only in the dip region. From this result, in what follows, we will only take into account the imaginary 

part of the scattering amplitude. 

3 Profile and Inelastic Overlap Functions 

Substitution of parametrization (6)-(7) into equation (1) reads, 

- 

Iter 	
1 

(6, s) =  E a Y e -b
2 
 j  

2 	p• 
5=1 3 

(8) 

Then, through equation (2) we obtain Gin (b, s).' Error propagation from the fits parameters has been taken into 

account analitically [6]. The results for iter and C1,, at N5 = 23.5 and 62.5 GeV are displayed in figure 2, as 

function of the impact parameter. Conversely, for G in , figure 3 shows the energy dependece of G1 0  for two different 

values of the impact parameter. 

td 

10' 

Is' 

104  

I0  0.0 1.0 
	

2.0 
	

30 

Figure 2. Real part of r and Gin  as function of the impact parameter in the ISR energy region. 
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Figure 3. Extracted values of Gi„ as function of the energy at two fixed parameters. 

From figure 2 we conclude that hadrons become blacker and larger as the energy increases in the TSR region 

(group G2) and that at fixed energies, G;,,(6) is nearly exponential above b-1.0 fin. From figure 3 the central 

opacity, Gi n (0, s), is nearly constant at 23-62 GeV. However in the peripheral region (b-1.0 fm) it increases at 
23-62 GeV. Similar results were obtained by Amaldi and Schubert [4]. 

4 The Eikonal in the Transferred Momentum Space 

From equation (4), the eikonal in the transferred momentum space is given by 

fl(q , s) = —(1141 — 	s)]). 	 (9) 

Following [7] we evaluate this quantity by making use of the expansion, 

f2(q, s) = (Rcr(b, s)) (ORRer) 21) 	 (10) 

where (ReF(b, s)) = ImF(q,$), and fitting (0[(Re1')l) by a sum of gaussians using CER.N-minuit. The results for 
= 23.5 and 62.5 are shown in Figure 4, in a suitable form. We observe a change of signs, indicating the existence 

of zeros at finite values of the transferred momentum. 

Similar results were obtained by Buenerd, Furget and Valin [8] through a parametrization for F(q, h) introduced 
by Amaldi and Schubert [4]. However, as in our case, the error propagation to the eikonal in the transferred 
momentum space was not taken into account. We are presently investigating this subject. 
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Figure 4. Eikonal in transferred momentum space multiplied by t 4 , q2  = 
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We consider a monopole detector interacting with a massive scalar field. We analyse radiative 
processes for the monopole detector travelling in a world line that is inertial in the infinite 
past and has a constant proper acceleration in the infinite future. 

1 Introduction 

It has been known that an uniformly accelerated detector interacting with a massless scalar field in the Minkowski 

vacuum behaves like an inertial detector in equilibrium with a thermal bath at temperature /3-1  = aka , where a -1 

 is the proper acceleration of the detector[l]. 

In a recent paper, Svaiter and Svaiter [2], studied the spontaneous and induced emission problem, using a 

very simple model of an atom consisting of a pointlike object with an• internal structure defining two energy levels 

introduced by DeWitt [3]. Assuming that the atom (detector) interacts with a real massless scalar field, and it is 

travelling in inertial or non inertial world lines, the authors obtained the probability of transition per unit proper 
time as  gis_A/2 (normalized by the selectivity of the detector) between different eigenstates of the detector and eo r 
also presented the rate of spontaneous excitation after a finite observation or switching time AT. The extension 

of these calculations for the detector in the presence of paralel plates at zero and finite temperature was given by 

Ford, Svaiter and Lyra [4]. A more mathematically involved case of the monopole detector in the presence of cosmic 

strings was discussed more recently by Svaiter and Svaiter[5]. 

The purpose of this paper is to discuss the radiative processes for the asymptotic accelerated detector. 

The main difference among our approach and all the previous papers is that we use the rotating wave approxima-

tion. In a real quantum detector prepared in the ground state, the detector goes to an excited state by an absorption 

process. Of course we are assuming asymptoticaly measurements, i.e., the observation time is large when compared 

with times on the order E -1 , where E is the energy gap between the excited and the ground state of the detector. 

Consequently it is possible to assume the normally ordered field correlation function in the probability of transition, 

i.e., the rotating wave approximation. 

The paper is prepared as follows. In section II , the asymptotic accelerated detector is discussed. Conclusions 
are given in section III. In this paper we use h = c = . 1. 

2 The asymptotic accelerated detector 

The aim of this section is to discuss the following physical situation. How the monopole detector behaves if is 

traveling along a world line in such a way that the detector is inertial in the infinite past and has a constant proper 

acceleration in the infinite future. 
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Let us consider the folowing transformation of coordinates between the inertial (i,z) and non-inertial coordinates 

( 7/.4), 

+ x = 2 -sinha(n +fl 
a 
	 ( 1 ) 

- z --
1
e°("E ) 	 (2) 

a 

This coordinate system was investigated by Kalnins and Miller(6), and for this reason we will call it the Kainins-
Miller coordinate system. 

The line element in this coordinate system can be written as: 

ds 2 = (e 2af e -2cm)(42 de) 	
(3) 

In this coordinate system the curves 4' = cte are the world lines for asymptotic accelerated observers (see (71 

for a more complete discussion regarding this coordinate system). Note that the hypersurface rt = rio is a Cauchy 

surface for the region t z < 0. 

The massive Klein-Gordon equation in the Kalnins-Miller manifold reads 

02 	82 
_ 	m 2 (e -2an e zoc kpo,  e) 	

(4) 
0.  

Since the coordinate system (rb() allows the separation of variables, writing (p(r1,4") = F(rl)G(t), the Klein-
Gordon equation separates in the following equations: 

+ m a e -2ari av )F(n ) = 0 	 (5) ( d2dr12 
and 

d2  
( d2 - m2e 24f + ati)G(t) = 0. 	 (6) 

Equations(?) and (8) are Bessel equations with imaginary order. A straightforward calculation reveals that 
there are two well behaved complete sets (0,,(x),0 4,- (z)) and (yo„(x),i,o,;(z)), basis in the space of the solutions of 
the massive Klein-Gordon equation in the Kalnins-Miller manifold. These two complete sets are given by 

and 

	

O„(//,0 = ( 1/(1 e2") ) 2  14,! ) ( 11 e - a")Ki„(-T-e° ( ) 	 ( 7) a 	a 

:( 17,0 = 1  (41 	)) 	
M  

Ira 	/1,, --e 	)Kii,( eq) 	 (8) 2 	 a 	a 

= ( 7-rTiv  ) Ji.( a 	a
2c")Ki.( 12-l eaf) 	 (9 ) 

50;(11,0 = ( -71.1:1 ) 1 J-iy( 171- e -arlKip( 2a  e°( )• 	 (10) a  
Since the line element is time dependent, there is no simple way to define positive and negative frequency modes. 

Different solutions for the problem were presented by di Sessa (8) and Somnierfield [9]. Combining both criteria 

(which we do not discuss here), we have that the modes given by eqs.(9) and (10) are the positive and negative 

frequency modes in the infinite past, and the modes given by eqs.(11) and (12) are those for the infinite future. By 
this reason we will call them "inertial" and "accelerated" modes respectively. 

The Bogoliubov coefficients between the Minkowski modes and the inertial and accelerated modes are given 
respectively by : 
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and 

113.01 	
1 

- - 2.71.2vesinlirp
(Re)2(-1012a(c p)Ii" 

1 	1 
1/31, Al 2., = ?area e x*"_ 1 

(12) 

where c is the energy of the Minkowski modes. Using eq.(13) and (19) it is possible to obtain the transition rate 

of the detector. The problem is that it is not possible to make asymptotic measurements, but only for finite time 

AT = rif — in. For small AT it is possible to assume that the metric is static and we have two different outcomes 

if the measurement is made in the infinite past or in the infinite future. The calculation of the response function 

in the infinite past is very difficult to evaluate exactly. Nevertheless the response function in the infinite future 

can be evaluated. To obtain this result we have to substitute eqs.(11) and (12) in the response function and use 

the expression of the Bogoliubov coefficient between the Minkowski modes and the accelerated modes. Thus if we 

prepare the detector in the ground state and the field in the di Sessa vacuum the rate of spontaneous excitation is 

raT 	 rn 

 LaT 
drew' f dr, Or 	(02 (L.; P ( a e-").1;,(—

a 

til 
e -a71 ) 

+ Liu( (7e -al")./i p ( —
n

e - "))1ii i,(--rn eg)Kip(—m eae). 
a 

771 

Substituting the asymptotic expression for the Bessel function of first kind given by 

lim,04,(x) 
2"r(1 + 

we have 

AT r 
ri R(E,AT,e,e) = 	 pf (p, E. AT)Kignik)Ki p (me 

IF 	0
), 

We obtain that if a measurement is made in the asymptotic future we have a similar result as Rindler's (the 

case in which the detector has constant proper acceleration during all time). Nevertheless if the measurement is 

made in the infinite past we obtain a non-expected result, i.e, the rate is not zero although the detector is inertial 

in this region. This result can be understood since although the detector is travelling in an inertial world line the 

coordinate system is non-cartesian. 

3 Conclusions 

In this paper we discussed radiative processes of a monopole detector interacting with a massive scalar field. The 

probability of transition per unit proper time of the asymptotic accelerated detector is obtained. 

We used the RWA in order to simplify the calculations of a detector with nonconstant proper acceleration. We 

want to remark that the standard "photodetection" scheme is based on absorption of quantum of the field by the 

detector. Using first order perturbation theory the rate of excitation is proportional to the Fourier transform of a 

normal ordered product of the negative and positive parts of the field operator. Nevertheless, normal ordering with 

respect to the asymptotic accelerated time is not normal ordered with respect to the Minkowski time. This explains 

the non-zero probability of excitation of the detector. 
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It is shown that the generalized Regge law allows to explain the origin and magnitude of 
angular momenta of cosmic bodies — planets, stars, galaxies , clusters of galaxies and the 

Universe itself. 

1 Introduction 

The R.eg,ge-Chew-Frautschi spin-mass relation J 	m 2  for usual string-like hadrons is generalized for hadronic 
objects having geometrical shape of disc and ball. The galaxies, their clusters, superclusters and Universe itself 

are described by R.egge trajectory for disc-like two-dimensional objects with spin-mass dependence J2  — m3 , and 

planets and stars corresponds to trajectory with dependence j3 - no , chatacteristic for three-dimensional spherical 
hadrons. 

The Chew—nautschi plot for cosmic objects is constructed, and two important. cosmological points are revealed 
on it. These points are named as Eddington and Chandrasekhar points and their coordinates are expressed via 
definite combinations of the classical and quantum-mechanical fundamental constants: 

pi 
4 	

MI), 
6 

Eddingion point 	inuniverse ^ nip (
1711

p --m ) 	JUniperae = n (— 
rn 

:1 	 4 

Chandrasekhar point 	rn,iar mp 	 JJ I at = 	
Tnpi 

Trip 	 rilp 

h 	1/2. 
where rnpi is the Planck mass: Myr = (- e ) . 

It is shown that the spin of the Universe has interesting property: the density of spin in the proton and in the 
Universe are equal 

h JUniverse  

r = T3  p 	Universe 

2 
where rp  = 	— proton radius, nd runiver.e = rp 	— radius of the Universe. 

For the first time in the history of astronomy and physics the angular momentum .1 of astronomical objects 
are described using only fundamental constants . The successful application of Regge-Chew-Frautschi concept in 
astrophysics witnessed on unity and simplicity of Nature in the range from elementary particles up to Universe 
and opens the new way towards complete solution of the great mystery of the origin and magnitude of the angular 
momentum of cosmic bodies. 

'Electronic address: muradianaufba.br 
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2 Regge Law for n-Dimensional Objects 
The Regge - Chew - Frautschi spin-mass relation for one-dimensional string-like hadrons [1], [2] can be generalized 
for n- dimensional hadrons and represented at large rn in the form, containing only fundamental constants ni p  = 
1.673. 10 -27  kg — proton mass and t = 1.055 . 10 -34  J • s — Planck's constant ( see [3] - [10] and [11],[12]): 

) 1+1/n 
PI  ) = h ( 171 	 ( 1 ) 

{\\ r Tip 

The number n = 1,2,3 characterizes the geometrical shape of the hadron: 

: J (1)  = h ( 21) 2  n = 1, string 
RI P  

n = 2, disc : 
Jo) = ( 
	)3/2 

n = 3, ball : J (3) 	h ("1  
111P 

 
4/3 

The R.egge trajectories are linear for string in the plane (J, m2 ), for disc in the plane (J 2 , m3 ), and for bull in 
the the plane (J 3 , m4 ). 

2.1 Leading (Yrast) Regge Trajectory 

In fact, the general formula (I) can he understood from simple dimensional considerations and requirement of 
similarity. Since m rn, for nklirnensional object. and consequently r , it follows from classical angular 
momentum relation J = rn v r that. J •-•-• .rri 171 1 /n — mil- lin at constant velocity. 
• ' In the following we shall show that formula (1) corresponds to the leading• (yr t.) acme trajectory, i. e. 
trajectory with maximal angular momentum for fixed mass (see, also, [12]). 

The total mass m of the spinning n-dimensional object with radius r, angular velocity 4", = and density p is: 

in  = p 	rnrot 
J 

p r -  + 
2 c2
J  =p r   " - 

2 c r 
The leading trajectory corresponds to maximal J at minimal Fn. Minirnalizing rn with respect to 7' 

(Ur = 	cr2 	n  P  rn-1  
we find 

\ 
r 	1( 271p  

This gives from (5): 

( n 	01+1/n 

This is well-known formula (1), if we take the following value for n-dimensidnal density P: 

( A " (n 1)" 1  
c C) 

As noticed by V.A.Matveev the same result follows from mininializig the sernirelativistic expression 

) 2  
ni = (p r") 2  + (- 

2 c r 

II am indebted to Prof. V.A.Matveev for this remark 

ntp 	(2n)" 	777 
P 

2 71 	i"  C = 

)13. 

i s  

( 5 ) 

(10) 
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2.2 The Kerr gravitational angular momentum 

The horizon for rotating black hole meets requirement y  
r = rg  .111 - (— 	 (11) 

me 

where rg  = g•Fis a half of the Shwarzshield radius and the gravitational spin-mass relation for maximally rotating 

black hole follows 	
j(K err) 

= 171 C TR 	or 	
j(K crr) = G 7712 	 (12) 

where G = 6.673 x 10 -11  m3  • kg -1  • S -2  — Newton gravitational constant and c = 2.998 x 10 8  m • 5 -1  - speed of 

light. The Kerr relation can also be expressed in Regge-string form, by means of Planck's mass 

	

J(Kerr) = h 	n i 
) 2 	

(13) 

We see that (2) and (13) are interconnected by substitution T/Ip 	alp/. Let us notice the identity 

j(K err) G mp 2  Jo) 

h c 
	 (14) 

The gravitational angular momentum for n-dimensional object follows from (1) by substitution m 	Trlpt: 

	

1-1-11n 	(c; rn 2 ) 	+ 1 /n) 

J (n)  = h 	171 
	

(15) h  grail 	 tI c 

By definition J (K err )  = 41. 
It is interesting to note that since the sixties it has been known that hadrons exhibit features resembling gravity. 

The relation (14) can be viewed as a new example. Recently Y. Ne'eman and Dj. gijaeki suggested that this 
feature can be explained by component of QCI) due to exchange of zero-color two-gluon effective graviton-like spin 
2 combination G„ R 1.4  v,z,= - ab — p a  — 	where B u a(x) is the gluon field [131. 

2.3 Disc: .1 rr Tri3/2  

For practical applications different expressions for J (2) can he used: 

3/2 

J(2) = h (— ) 
 

Trip 

= h N3/ 2  

= 1.542 x 10 6  tn3/ 2  (in SI units) 

= 4.324 x 10 61  (—rn 	J• s 
mo IJ 

where N is the number of nucleons Pi = IL' and mo = 1.98892(25) x 1030  kg is the solar mass. 

The ./( 2) trajectory describes sufficiently well the angular momentum of galaxies. 

2.4 Ball: J 	rrt4 /3  

The relation (4) describes the spin-mass connection for planets and stars. We display for practical purposes different 
forms of J(3) : 

J(3) = h (--rn  
mP  

= h N4 / 3  

= 53.114 x m113  (in SI units) 
4/3 

= 1.329 x 1012 	J • s 
?no  

3/2 

) 9/3 
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3 Cosmic Chew—Frautschi Plot 

The main objective of our approach is the construction of generalized Chew—Frautschi plot [2) for cosmic objects 

in double logarithmic log 10 (m) — 1og 10 (J) plane. 

3.1 Observational data 

Below in Tables 1 & 2 the observational data on masses and spins of celestial bodies are presented and graphically 

reproduced on Fig.1. (see also [8] & [10]). 
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Figure 1. Observational data from Tables 1 and 2. 
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Table 1 

Clusters of galaxies, spiral galaxies and globular clusters 3 . 

Object Mass Spin(observ.) Spin(theor.) 
Clusters of galaxies 
Local Supercluster 5 x 1043  6 x 1074  5.45 x 1074  
A 1656 (Coma) 4 x 3044  0.9 x ion 1.23 x 1073  
A 2199 	' 2 x 10" 2.2 x 1072  4.36 x 1072  
Virgo 4 X 1043  2.6 x 1071  3.90 x 1071  
Shakhbazian I 2.4 x 1043  1.8 x 1071  1.81 x lel 

Spiral galasica 
Andromeda (M31) 6.78 x 1041  2.36 x 1068  8.61 x 1068  
Our Galaxy .3.38 x 1041  1.92 x 1068  3.03 x 1068  
NGC 3031 (M81) 2.78 x 1041  1.30 x 1068  2.26 x 1068  

5005 1.98 x 1041  6.82 x 10" 1.36 x 1068  
7331 1.88 x 1041  6.82 x 10" 1.24 x 1068  
5055 (M63) 1.31 x 1041  2.91 x 1067 	. 7.31 x 1067  
1832 1.11 x 1041  2.85 x 10" 5.70 x 1067  

. 	1808 9.55 x 1049  2.11 x 10" 4.55 x 1067  
5194 (M51) 9.64 x 1049  2.48 x 1087.  4.54 x 1067 . 
0681  7.76 x 104°  1.67 x 10" 3.33 x 1067  
6574 	. 8.15 x 1040  1.18 x 1067  3.59 x 1067  
1084 4.97 x 104°  7.44 x 1066  1.71 x 107  
3504 2.19 x 1040  1.61 x 1066  5.00 X 1066  

Globular clusters 	. 
. NGC 104 (47 Mic) 2.1 x 1036  1.3 x 1038  4.69 x leo 

362 	• 3.6 x 1033  2.4 x1037  3.33 x 1039 	. 

Table 

Stars and planets 4  

Object Mass Spin(observ.) Spin(the0T) 
Main sequence - 
stars • 
05 7.92 x 1031  7.07 x 1046  1.81 x 1044  
BO 3.54 x 1031  1.46 x 1046  6.17 x 1043  
135 1.28 x 1031  3.12 X 10" 1.59 x 1043  
AO 6.44 x 103°  8.56 x 10" 6.36 x 1043  
A5 4:16 x 1039  3.01 x 1044 3.55 x 1042  
PO 3.38 x 1030  1.27 X 1044  • 2.69 x 1042  
P5 2.56 x 10313  2.57 x 1043  1.86 x 1042  
GO 2.18 x 1039  2.54 x 1042  1.50 x 1042  
Solar System 1.99 x 1039  3.15 x 1043  1.33 x 1042  
The Sun (G2) 1.99 x 10313  1.63 x 1041  1.33 x 1042  
KO 1.54 x 1029  < 3.65 x 1041  4.38 x 1049  
MO' 9.31 x 1026  < 1.63 x 1041  2.24 x 10413  

Planets 
Jupiter 1.90 x 1027  4.32 x 1038  1.25 x 1038  
Saturn 5.68 x 1030  7.68 x 10" 2.50 X 10" 
Uranus 8.72 x 1023  2.09 x 1036  2.05 x 1036  
Neptune 1.02 x 1026  2.10 x 1036  2.53 x 10313  
Earth/Moon 5.97 x 1024  2.81 x 1034  5.75 x 1034  
Earth 5.97 x 1024  5.91 x 1033  5.75 x 1034  
Pluto 6.6 x 1023  2.3 x 1031  3.05 x 1033  
Venus 4.87 x 1024  1.8 x 1031  4.38 x 10$4  
Mercury 	' 3.33 x 1023  6.5 x 1029 	. 1.23 X 1033  

2 For clusters of galaxies and globular clusters observed spins arc estimated from data on velocity dispersion and linear sizes.For 
clusters of galaxies the results of [14] are used. The masses and spins of spiral galaxies are taken from [15]. The SI units are used, where 
kg is the unit of mass, nd spins are measured in 

3 0baervational data are taken from [16] [17]. The total angular momennun of satellites in the systems of of Upiter, Saturn and 
Uranus is much smaller than the spin momentum of the central planet. In the Jupiter system the total orbital moment of satellites is 
4.24 x 1036 , of Saturn - 9.6 x 1035  , and of Uranus - 0.7 X 10 34  J • a. 
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3.2 Eddington and Chandrasekhar points 

Fig.2 presents three straight lines, corresponding to the two Regge relations - J (z)  for disc and J (3)  for ball, 

intersected by Kerr trajectory J(K. '") The two important points appear in this plot: 

• Eddingtan point at the crossover of Regge trajectory for disc ;1 (2 ) with Kerr angular momentum(j kerr) . The 
 ) 

coordinates of crossing points can be readily found by solving equation JP ) = j(IC err)) 	 or h tri 	

/3 	
G m 2 

 • C 

• Chandrasekhar point corresponds to the crossover of Regge trajectory for ball J (3)  with Kerr trajectory j(K err) ,  

J 	
) 4/3 - O )  =: ,](Kerr) or 	 f713 

f71, 	 C 

The Chew-Frautschi plot for cosmic objects reveals two important cosmological points on it. These points are 
named as Eddington and Chandrasekhar points and their coordinates are expressed via definite combinations of 

the classical and quantum fundamental constants G, c, h, m p . Using the Plank mass 

/ 	 ) h c 	 tic 	
112  

171pi = (—) 
G rit p  2  

our main result reads 

muniver,e = mr  ( InP1 ) , Junive, c  	C"Pi) 6  
771p 	 Mp 

171p/ 
Chandrasekhar point => { 171star = 	(—rn 	a/slew = n (--) 

P 	

4 

TrI P 

3 
Mpi 

 

4 Conclusion: 
Origin of the Universe from Primeval Hadron 

The arguments presented here and in [3]-[I0] make probable the possibility of the cosmic objects origin due to the 
decay of macroscopic superhadrons with Regge-like spin. Sometime in the past the Universe have had an extremely 
anisotropic planar disc-like configuration, and the observed astronomical objects are products of the hierarchical 
fragmentation and evolution of this Primeval Iladron. Our scenario according to the Peebles [18] classification 
corresponds top down , in contrast to the more accepted bottom — up scenario. (CII&.3y BRepx). 

Using the numerical value for angular momentum of the Primeval Iladron it is possible to estimate the angular 
velocity of the Universe as ceu 	10-13 radian   The period of rotation 10 13  year is larger than the age of the year 

Universe 1000 times , in agreement with Birch [19], [20] result. The angular velocity 

 

u = 10-311  
radian 

(18) 

The spin of the Universe 

aye of Universe 

h c  y 

has interesting interpretation, that the the density of spin in proton and in the Universe are equal 

h 	kniverie 

3  r 	r3  
UP111)CrIC 

where F.!, = 	— proton radius, rid ru ni. er , e  = 

Eddington point (16)  

(17)  

JUniverse = h C; 	2  
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Anomalous Higgs Boson Contribution to 
e+ 	gry at LEP2. 

S. M. Lietti, S. F. Novaes and R. Rosenfeld 
Instiluio de Fisica Tedrica, Universidade Esladual Paulista, 

Run Pamplona 145, CEP 01405-900 Silo Paulo, Brazil 

We study the effect of anomalous 1177 and H27 couplings, described by a general effec-
tive Lagrangian, on the process e+e -  bbl at LEP2 energies. We include the relevant 
irreducible standard model background to this process, and from the photon energy spec-
trum, we determine the reach of LEP2 to unravel the anomalous couplings by analyzing the 
significance of the signal for Higgs boson with mass up to 150 GeV. 

The Standard Model (SM) has been tested to an unprecedent degree of accuracy of 0.1% in some of the physical 
observables at LEP1, with many implications to physics beyond the SM [1]. However, the Z-pole experiments 
are able to probe with great precision just the fermionic couplings to the vector bosons while furnishing very little 
information about the interaction between the gauge bosons and the Higgs sector of the SM. In principle, it is 
conceivable that the interactions of the Higgs boson, which is responsible for the spontaneous breaking of the 
electroweak symmetry and for generating fermion masses, are different from those prescribed by the SM. In this 
case, an effective Lagrangian formalism can he used to describe possible anomalous interactions between the Higgs 
boson and the vector bosons. 

The effective Lagrangian approach is a convenient model-indepent parametrization of the low-energy effects of 
new physics beyond the SM that may show up at higher energies [2]. Effective Lagrangians, employed to study 
processes at a typical energy scale E, can be written as a power series in 1/A, where the scale A is associated with 
the new particle masses belonging to the underlying theory. The coefficients of the different terms in the effective 
Lagrangian arise from integrating out the heavy degrees of freedom that are characteristic of a particular model for 
new physics. Invariant amplitudes, generated by such Lagrangians, will be an expansion in E/A, and in practice one 
can only consider the first few terms of the effective Lagrangian, e.g. dimension six operators, which are dominant 
for E < A. 

In order to define an effective I,agrangian, it is necessary to specify the symmetry and the particle content of 
the low-energy theory. In our case, we require the effective Lagrangian to be CP-conserving, invariant under the 
SM symmetry SU(2)L, x U(1)}' and to have as fundamental fields the same ones appearing in the SM spectrum. 
In particular, the Higgs field will be manifest and the symmetry is realized linearly. There are eleven independent 
dimension-six operators [3] of which only five are relevant for our discussions. Following the notation of reference 
[4], we can write, 

[fRw t Ep„ W""z3  fw M p g:1W W" (D„.) fB(D,4)) 1  b” (MI) 

+iww + Jenne tip.h" v 4b1 	 (1) 

where 41  is the Higgs field doublet, and 	= 	 = 	with 	and W;,, being the field strength 
tensors of the respective U(1) and SU(2) gauge fields. 

This Lagrangian gives rise to the following anomalous If 77 and 7,7 couplings, in the unitary gauge [5], 

.C 117'Hz" = 	11 A"A" + g (gyl,,Ze 	g(Pz7 11 Am,/ Z"  

where A(Z) p „ = 0,A(Z)„ 0„21(Z) ;„ and the coupling constants gH 77 , and g(/. 11 are related to the coefficients of 
the operators appearing in (1) through, 

(gmwych3B+ fww faw)  

1 
= 

gll-r7 	 A 2 	 2 
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uHZ7 
n( 1 ) 
	

( gMw)s(fw  - fa) 
Al 	2c 

gMw ) s(2s2 fBB -2c2 fww + (c 2  -52 )Thw)  (2) 
gHZ-r 	A 2  ) 	 2c 

with g being the electroweak coupling constant, and s(c) = sin(cos)Bw 

The coefficients fB and fw can be related to triple vector boson anomalous couplings and arc bounded, for 
instance, by the direct measurement of WW7 vertex at hadron colliders. however, more stringent bounds on the 
coefficients of the effective Lagrangian (1) come from the precision measurements of the electroweak parameters 

obtained at LEP1 [4). Typically one has that Ifw,B,ww,BB/A 2 1 can be as large as 100 TeV -2 , whereas Ifilw/A 2 1 

should be at most 1 TeV -2 . The anomalous Hyy and HZy couplings have already been considered in Z and 

Higgs decays [5], in e+e -  collisions [5, 6) and at 77 colliders [7]. 

An interesting option to test the couplings described by (2) at LEP2 is via the reaction e+e - 	117, with the 

subsequent decay of the Higgs boson into a 1;6 pair. A SM Higgs boson contribution to this process appears only at 

one-loop level, and is extremely small, and the observation of any Hry event at LEP2 will be a clear signal of new 

physics. In this way, we neglect this loop contribution in our calculation. 
In the SM, at tree-level, there are eight Feynman diagrams that contribute to the process e+e - 	ary (see 

Fig:1(a) - (d)). The bulk of the SM cross section comes from the Z boson contribution to the diagrams (a) - (b) 

when the Z boson is on-mass-shell, and the process is effectively a 2-body one. This implies that:the majority of 

the photons emitted are monochromatic, with energy given by E. = (s - Mi)/(21:0 

When we take into account the anomalous Higgs boson couplings described above, two additional diagrams 

should be considered (see Fig.1(e)). Their contributions are dominated by the on-mass-shell 117 production, with 

bb. Therefore, we can anticipate the existence of a a secondary peak in the photon energy spectrum, generated 

at an energy 

E m - s Mir 	 (4) 

which would be a very clear signal for the Higgs boson. 
In order to evaluate the total cross section and kinematical distributions for the process e+e- 	bbl, we have 

used the package MadGraph [8) coupled to DfIELAS, the double precision version of HELAS [9], for generating 
the tree-level SM amplitudes. We have. written the relevant subroutines for the Biggs anomalous couplings, and 
included in the MadGraph generated file the two additional anomalous amplitudes. In this way, all interference 
effects between the SM and the anomalous amplitudes were taken into account. We checked for electromagnetic 
gauge invariance of the whole invariant amplitude, and incorporated a three-body phase space code, based on [14 
Since the Higgs boson resonance is very narrow, MI bb) 5 McV, for MU 100 GeV, we make sure to use 

appropriate variables to take care of the Higgs events close to the resonance peak. Finally, we used VEGAS [11] to 
perform the phase space integration. 

In our analyses we have assumed a center-of-mass energy of 	= 175 GeV for the 1,172 collider, with a 

lumninosity of 0.5 fly - t. Our results were obtained using the energy cut E. > 20 GeV, and the following angular 
cuts, cos0,-( c +)7 1 < 0.87 and I cosObayd < 0.94. The photon energy is intended to reject the background from 
unresolved pair of photons from ir° decays and assures, in principle, a sensitivity to M11 up to 150 GeV. The cuts 
in cos 0,- ( .+), and cosO bath  were introduced to reduce initial and final state radiation, respectively. 

Our purpose is to determine time range of anomalous 1177 and 117,7 couplings that could be probed at LEP2 
by searching for a. signal of the Higgs boson in the process e+e-  -• bin, . We assume that the Higgs couplings to 
fermnions are the standard ones, which makes the I3R(H — bii) dominant in the range 70 < MH < 150 GeV, for 
IL/A 2 1- TeV -2  [5]. 

Figure 2 shows our typical results for the photon energy distribution presented as a 1 GeV bin histogram. We 
have taken gfr 7y  = 10-3  GeV -1 , = 0 and varied the Higgs mass between 70 and 120 GeV. We should point 
out that the general behavior of the energy distribution remains the same when we consider the other couplings, 

different from zero. We can identify the Z-boson peak around E7  = 64 GeV and also the various secondary 
peaks due to the Biggs boson at the energies given by (4). We can notice that the smaller the Higgs mass, the larger 
is its effect in the E7  distribution. Its detectability should rely on a careful analyses of the tail (in the case where 
MH Mz) of the SM contribution to the photon energy spectrum in the process e+e -  -+ bb-y. It is important to 
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note that, for the sake of comparison between the signal (H) and background (Z) behavior, one can analyse the 

normalized angular distributions for SM and anomalous contributions [12]. 
In order to estimate the reach of LEP2 to disentangle the anomalous Higgs boson couplings, we have evaluated 

the significance (S = Signal//Background) of the signal based on the Higgs boson peaks in the E", distribution, 

assuming a Poisson distribution for both signal and background. We have scanned the parameter space for the 
three anomalous couplings keeping only one non-Zero coupling in each run, for different values of the Higgs boson 

mass. We took the coupling constants glly„, a in the range 10 -4  - 10 -2  GeV -1 , and we assumed a b-tagging 

efficiency of 68% [13]. In Table 1, we show the values of the coupling constants g11 77 ,
(1,2)  that corresponds to a 

5 o effect in the 1 GeV bin of the E, distribution around the Higgs peaks, for different Higgs boson masses. We 
also present the total number of signal and background events in these bins. For MH = 90 GeV, a large numbers of 

events is needed due to the Z boson peak. Since the signal increases with the square of the anomalous couplings, 
for some values of the coupling constants, we could expect to have a reliable signal for the anomalous Higgs boson 

in less than one year of LEP2 run. 
In this study, we have not taken into account initial state radiation, which would result in an energy degradation 

of the original c+ e-  beams, and we have not included a realistic simulation of the electromagnetic energy resolution. 
It is important to notice that an increase in the b-tagging efficiency, and a good resolution of the electromagnetic 
calorimeter can help to select. the bb events, increasing the signal over background ratio and improving the resolution 
of the Higgs boson peak in the photon energy distribution. 

In conclusion, searching for the anomalous Higgs at LEP2 provides a complementary way to the indirect precision 
measurements at LEP1 in probing effective Lagrangians that are the low-energy limit of physics beyond the SM. 
We have shown that the study of the process e+e- 	bbry can be a very important tool in the search of these 

particles at LEP2. We found that anomalous couplings gH,,, g(1.; 7', 7) 	10 -2  GeV -I  are necessary for identifying 
an anomalous Higgs of 150 GeV. However, for a lighter Higgs boson, couplings as small as 4 x 10 -4  GeV - I  should 
suffice. 
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1 Introduction 

The aim of this paper is to exhibit some scenarios where classically forbidden changes of topology in the Universe 

arc indeed possible in the quantum domain. 

Our model is based on the following minisuperspace metric: 

2 
( k(t 	2  

dS2  = —N 2 (t)dt 2  + 2(0 dX", 
	sin 

 + [ \A0-1 
)x)   

i (III 3 (° 0) 1 	1 • 
where d112 (0,0) is the usual line clement of a two-sphere. For k(t) > 0, the domain of variation of x is 0 < x < 

2rMk(t)), in order to avoid conical singularities. We are assuming a S 3  topology for these values of k(t). For 

k(i) < 0, the domain of variation of x is 0 < x < x0(0, so), where the function x0(0,(p) will depend on the topology 

of the particular closed space that we choose. We use the terminology closed spaces for a compact space without 

boundary. We consider only closed spaces in order to avoid surface terms in the Hamiltonian formalism. 

The metric (1) is a Friednia,n-Lemaitre-Robertson-Walker (FLRW) like metric with a time dependent k(t). It 

is clear from Eq. (I) that, when k(t) passes through zero, there is a change of topology. For instance, when k(t) 
changes from a positive number to zero, the topology of the three-dimensional space V 3  changes because the S3 

 topology cannot be realized in spaces with k = 0. 
However, things are not so simple. It is not possible to construct a minisuperspace hamiltonian from the metric 

(1) because, as far as k depends on time, this metric does not represent a spatially homogeneous spacetime, in the 
sense that the components of the 4 - dimensional curvature tensor in a local frame are functions of l and x . The 
existence of the non-null component of the Einstein tensor R1 = xk(l)/a(t)N(t) 0 0 is a consequence of this fact. 
Hence we are forced to introduce a midisuperspace model having a shift function Nx (x,t). The midisuperspace 
metric, which was already proposed in Ref. [I] to study different problems, and also in Refs. [2, 3] to study the 
quantum black hole, will then be: 

[N
s,2 (x, t) 	, 

ds2  = —N 2 (x,t) -I-   	di' + 2Nx (x,t)dxdt + a2 (x,t)frix 2  + cr2  (x, OdS1 2  (0 , O)]. (12 (X, i) 
(2) 

(1) 
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Our new idea is then to quantize this midisuperspace model, and after impose to the quantum solutions the 

restrictions on the configuration variables from which we can obtain the metric (1). We will have to treat the 

midisuperspace•problem to come back to the minisuperspace one, in order to be consistent, and in order to have 

a single Wheeler-DeWitt equation which can be applied to the different topologies mentioned above. Adopting a 

suitable interpretation, we want to know if any of the wave functions found exhibits a change of topology. 

2 The Hamiltonian Formalism for the Classical Model 

The total Hamiltonian density is given by: 

= NH°  + 

where H° and 7-lx are the super-Hamiltonian and super-momentum 

2 37,2 	7ra7r, 	7r; H0 

constraints, 

+ cr 2 a3V + (— 2a2 +,1) 17 E, 

(3) 

(4) 

(5) 

(6) 

= [ 	

+ 2  
Baa2 	8a3 	2a2aci3 cr2  

1 

	

7(x 2  (- air. -+ a Ira 	̀2Qr 
a 

where V is defined by 
,;2 

V = — 	+ 	+ 	(46) 22 

7r o  + ¢ it o +.; 7re) 

+ V(0 . 

Before proceeding in the quantization of the above system, it will be useful to perform a change to new variables 

a(x, t) and 0(x, t) defined by 

a = In a, 	3  = -21n(cra). 

The momenta r a  and Ira are related to the old momenta 7r,, and 7r, by 

Ira = e - `' (Ira  - 27r/3), 

7r, = -2c"+;71-p. 

In the new variables a and /3, the super-Hamiltonian and super-momentum constraints can be expressed as 

7-1° 	= 	e - a+fl 

71X 	= 

where the functions V and 3R in the a, 

3R 

For further reference we introduce 

u = 

2 	 „2 
[ + e°- .61 V + (e -  2at '  2 

+ q5  7ro + 	- 

the form: 

I-  U(0) + V(e), 

+213" + 2e2"13 1 

u(x,t) and v(x,t) given 

v = In(a3 cr 2 ) = 	- fi. 

+ 1 

-^; 

by 

) I.  7r(  2-... 0, 

0 , 

(9) 

(10) 

( II) 

(12) 

(13) 

ir 	7 `1127°  ; + 

C -2a  

/./ variables 

V = — 3R+ 

= e -2* 

the two 

ln = 

+ -i 

[cr a n  + 7rp 

have 

C -2* -!---  

- 

variables 

A - 
2 

(7)  

(8)  
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3 Quantization 

The space of wave functionals must be endowed with the structure of a Hilbert space in order to associate operators 

with observables. Also, the super-Hamiltonian and super-momentum constraints, turn into a restriction on the 

Hilbert space of wave functionals, namely 

7{° 4r [a,cr, 	1 = 0, (14)  

iixAlqa,a,475,4] = 0. (15)  

Eq. (14) is the well-known Wheeler-DeWitt equation, and Eq. (15) is the so-called momentum constraint equation, 

the solutions of which will be the main interest in the remainder of this paper. Note that equations (14) and (15) 

arc valid for all possible domains of variation of x, and thus applicable to all possible topologies we arc considering. 

We obtain the following expression for 11 ° : 

ioc -" 13  fro 	1  1 	--a +0 - -c14-0 
+ 4 Ukcie  ..] 

	

+ e" -13 1) + (c -2'
• 

+ I) fr 	 (16) 

The equation 7-01P = 0 is a Schrondiger like functional equation with playing the role of time, because 7 71°  is linear 

in the momentum operator Ir e . 

The general wave functionals can always be put under the following form 

41 1a, 	= eqh 	 (17) 

where the complex functional S must satisfy the equations 

$n+A ri PS 	1 62 b 	1 PS (1 68 	1 458) , f. n d 

602 + T?, 6 or 613 + 502  + 	6a - 6/3) 6kv ' .1 

+c_„ 443  [1 (68 ) 2  1 65 08 	I 68\ 2 	c,_,51)  

6c1,) 	

(\ 	\ 	( 
50 )1 +  e  

(c -N 2  + 1) 1  68  = 0 
/ 4 

0
, 

	

68 	, 6S 	68 	68 n  (458 
C .--  iv — 	— 9' — 	 u 	 0 . 

	

ba 
+ p 

SO  + 60 	54. 	x  on 

At order h°  E. (18) reduces to the Hamilton-Jacobi (11-J) functional equation, whose solution is the face of 

the leVKli wave functional. The momentum constraint equation (19) remains unchanged. 

It's clear that Eqs. (18) and (19) are very complicated and we were not able to find solutions valid in the 

full rnidisuperspace. The solutions we obtained arc only valid in the minisuperspacc, ie., they are solutions in the 

subdomain M of the midisuperspace defined by 

a' = 0, O = 0, 	= 0, 	 ' (20) 

sin (11- x) 

F.(7).  

For U((6) = 0 = V(C), we display the following solutions to the 11-J and momentum constraint functional 
equations 

tl'i = e is'i h  = exp { _
i j (104 sin  0  Ca sin(2A 0 )e 	,/,:z-,;(;5n 2  siii 2  .A 0  

	

47Th 	 1E 	 k 	4-  
a2  

.-.AZ-:— 
k 
 (sin2  Ao in ( a  sin  AI) )  + cos 2  A o  In (cos A o ))] , 

	

- 	 2fc 
(22) 

(18)  

(19)  

cr (21) 
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[Ca sin(Diog 	 sin2  .A0  

eis2114= exP 
 {4777 dOdcosin 0 k 

k 
sin (. 2 1 )]) (23) 

where A i) =1./Exi)(0,92). 

The above wave functions W1 and tIo2 arc the main result of this section. 

4 The Conditional Probability Interpretation 

The conditional probability, for fixed a and 0, of having k equal to -1, 0 or +I knowing that k E {- I, 0, +1} is 

defined by: 

(k)1 2  Pc ( k) 	 (24) 

Ek=0,±I NOV 

The constraint Ek=0.±1  Pc(k) = I can be immediately checked. Let us compute and discuss 13,(k) for the wave 

function t112. At this stage, boundary conditions on t112 should be chosen. In the present context, this amounts to 

fix the value of the constant C. Many proposals have been made to answer this question [16, 17). In this article, 

we will just consider two different possible values for C in order to illustrate that different choices actually lead to 

different predictions. 

As a first example, let us assume that C = -i. The term multiplying e in the exponential of Eq. (23) becomes: 

2  

	

F1  a —a  1 w  j w  dOd0 sin Osin 124V, 0 )1 	 (25) 
47n o 	o 

for k = 1, where x o  
(1) _ 	 (1 	 3 

- 2n for S3  and x.,(1 ,,c = Maacx 1  0  (9, co) 	0.163 for Poiricare's dodecaliedrarspace (D ); 

E 
2x fra 

- 	d04.10 sin 0 24°)  ; 4)) 
4rh a 	0  

for k = 0, where x24., = 11.1axx (: ) (0, so) is arbitrary for T 3  (arid for any other closed topology in k=0); and, 

a 
F_ 	d0d0sinOsinh [2x (0-1) (0,0)] 	 (27) 

for k = -1,. where 	= Maxx (0-11 (0, co) 	1.3824 and 	= Minx(0-1) (0,V) ti 0.8683. 

As the integrands in F... ) , Po , F1  arc equal or greater than zero in all cases, we have: Pi = 0 for S 3  space, 

F1 < a sin(0.326)/h for D3  space, and a sinh(2x1nic )/ h < F_ 1 < a sinh(2x cir,)/h. for / 3  space. The integral Po  will 

be as big as the volume of 'I'', which is arbitraty because x2ras  is not fixed. Note that F_ 1 > F1  for all cases in 

considerations. 

Using the definition (24) and Eq. (23), we obtain, for the conditional probabilities: 

A(a, ¢)c"-' t 

c(a, 0,) e.Fie + 	oc aFoc + 	40, eaP.-1t.  ' 

B(ni0) e P° 
C(0,0)eaPiE + 11(a, 0)e° ro.0 	A(a,0)eaF-if 

C(a, 0)era 

C(a,0)0Fof + B(a, 0)e" vof .4(a,  0)ear- Le ' 

where the positive functions A(a, 0), B(a, 0) and C(a, 0) can he obtained by substituting k = -1, 0, +1 in Eq. (23), 

respectively. These functions are not, relevant for what follows because they do not depend on e. 

Let us study 13,(k) at the boundaries of the ininisuperspace in e, for fixed values of the scale factor and the 

scalar field. For clarity .we will distinguish the two set of closed spaces: (i) (.5 3 , T3 , 1 3 }, and (ii) {D3,7'3,13}. 

(26) 

Pc (k = -1) = 

Pc (k = 0) = 

13,(k = I) = 

(28)  

(29)  

(30)  
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i) In this case F1  = 0 and we have two possibilities: Fo > 	or Fe < F_1. From , the previous expressions, we 

get: 
Jim Pc (k = -1) = bin Pc (k = 0) = 0, 

f--00 	 (--co 

and, 
lira Pc (k = +1) = 1. 	 (32) 

t-- 

On the other hand, if we compute the same probabilities but this time when the dust field goes to +co, we obtain: 

lira Pc (k = +1) = 0, 	 (33) 

0, .F0 > 

	

lira P,(k = -1 ) =1 	Po< F-11 	
(39) 

(--F00 

and, 

+ OD 

	0, 	> F0 	 (35) lira Pc(k = 0) = 1 1, F-1 < Fo. 

Therefore, in this cage, definite predictions can he made since conditional probabilities are either equal to 0 or 1. 

There is a change of topology from k = 1 to k = 0 when in the minisuperspace we go from C =,-co to C = +oo 

and F0 > F_ i ; an the other hand, if F0 < /.1_ 1  there is a change of topology from k = 1 to k = -1 when in the 

minisuperspace we go from C = -oo to C = +oo. 

It is clear that this is a quantum mechanical effect since it is not possible that a classical path could connect 

the two regions. A similar result would have been obtained if we had used Ili' instead of *2. 

If we choose C = i we will obtain the results of C = -i with C — -C. This shows the importance of the choice 

of boundary conditions. 
ii) For the set {D3 , T3 , /3 }, we have 0 < Fl  < F-1 and three possibilities: 

a) le < F1. The conditional probabilities (28 - 30) gives for Ciao° Pc (k = +1) = 1 and for f 	-oo Pc (k = -1) = 1; 
b) < Fo < F_1. For 	-co we have Pc (k = +1) = 1 and for C ---. co, Pe (k = 	= I.; 
c) F1 < 	< F0. For C — -co we have Pc(k = +1) = 1 and for C -. co, Pc(k = 0) = I. 

A most important remark must be made here. Although the dimension and volume of the fundamental cube 
(k = 0) is arbitrary, its relation to the dimensions of the fundamental dodecahedron (k = 1) and the fundamental 
icosahedron (k = -1) is crucial to fix what will be the allowable transitions of topology, according to the condi-

tional probability interpretation. For example, for the VIIKB wave function (23) with C = -I, the transition of a 

dodecahedral closed space (k = 1) to an icosahedral closed space (k = -1) is permited if and only if the dimension 

of the cube is such that F1 < Fo < F-1. It seems that the change of topology depends crucially on the volume of 
the k = 0 space. For c = -i, for instance, topology tends to change in the direction of the space of bigger volume 

between T3  and /3. 

Let us conclude this section by emphasizing that different interpretations actually lead to very different results. 

For instance, the "selection rule" established previously is violated in the conditional probability interpretation. 

This shows how crucial the problem of the interpretation of Quantum Gravity is. 

It should be also clear that the two wave functions 1  and 111 2  do not represent automatically states of cosmo-
logical interest. Our aim was jut to exhibit at lemt one state for which the change of topology considered in this 
article is indeed possible. 

5 Conclusion 

In this paper we tried to settle down in a proper way an interesting and simple physical question: in a Friedman-

Lernaitre-Robertson-Walker Universe with a scalar field, is it possible to have a quantum change of topology of the 
spacelike hypersurfaces of homogeneity by changing the sign of their intrinsic curvatures? As we have shown in 
section 2, a consistent hamiltonian treatment to this problem involves an enlargement of the minisuperspace to a 

ntidisuperspace model. This enlarged configuration space is, per se, very interesting to analyze because it has an 

(31) 
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infinity number of degrees of freedom: it is a quantum field theory and it is closer to the full quantum gravity then 

the usual minisuperspaces models. New problems arise, like anomalies and regularization, and the Wheeler-DeWitt 

equation becomes a functional differential equation. 
We have Been how the physical predictions we can obtain from the quantum solutions depends crucially on • 

the interpretation we adopt. For our class of solutions and choice of topology, in the probabilistic interpretation, 

the requirement of normalizability implies that only wave functions which vanishes for k = 1 and S3 'topology are 

possible. Hence, topology change from k = 1 with S3  topology to some other value of k is impossible. However, 

if we adopt the conditional probability interpretation, where there is no requirement of norrnalizability, we have 

shown a wave function exhibiting a quantum change of topology from k = I with S3  topology to k = 0 or k = —1, 
with a preference to the space of bigger volume. 

It is also evident the importance of imposing boundary conditions in order to obtain definite predictions. We 

have shown that, adopting the conditional probability interpretation, different quantum solutions exhibit different 

types of topology change or even no change of topology at all if we choose, e.g., C real in Eq. (23). 
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Vacuum Quantum Effects of Nonconformal 
Scalar Field in the Friedmann Cosmology 

V. B. Bezerra, V. M. Mostepanenko" C. Romero 
Departamcnlo de Fisica - Universidade Federal da Paraiba -Joao Pessoo 

A. Friedmann 
Laboratory for Theoretical Physics (Russia) 

Particle creation and vacuum polarization are considered for the quantized scalar field of mass rn with arbitrary 

coupling in isotropic cosmology. The conformal case was investigated in the latter half of the seventies [I]. As to 

the nonconformal one the mention may be made only of the paper [2] where the anomalous trace was derived and 

of the paper [3] where the total vacuum stress-energy tensor (SET) was obtained for the de Sitter space-time. 

The case of the scalar field with nonconfornial coupling is important as such a field drives the inflation process. 

It may contribute also to solve the cosmological constant problem. Here we calculate the total vacuum SET of the 

quantized scalar field with arbitrary coupling in the radiation dominated Friedmann Universe. The wave equation 

for the field so(x) is [1,4] 

( ViV" +1;1 +m 2 )co(x ) = 0, 
	

( 1 ) 

where I. is the scalar curvature of space-time, rn is the field mass (units in which ri = c = 1 are used throughout). 

For = 1/6 (in four-dimensional space-time), and m = 0 the Eq.(1) is conformally invariant [1,4]. 

We will consider the quasi-Euclidean space-time with the metric 

(15 2  = d12  — a 2 (t)-yodedzi 3  

de — n 2 (t)[(dx 1 ) 2  + (dr2 ) 2  + (dx3) 2 J , 	 (2) 

where dt = a(Odri and 11 is the so called "conformal" Lime. 

The variables separation procedure in Eq. (1) leads to the oscillatory equation 

YAM + [Cd2(q) q(n)19,),(R) = 0 	 (3) 

with 

Ca 2 (ri) E A 2  + rit 2 a 2 (17), 

gA( 7/0) 	w -1/2 (ri0)1 

I 	a"(0) 
90) 	— 

g:1(ri0) = icv(rie)g.k(rio), 

(4) 

where rio is some initial moment arid derivative with respect to ri  is denoted by a prime. 

Field quantization is carried out. in the usual way after which we get the total renormnalized expectation values 

of the metrical SET operator in initial vacuum state (for details sec [1]) 

CO 

Ton >ren= 
1 	

r dA A 2 {(4.1(S — 52 — 84) 

" 
—2 2 

J 0  
"On leave from St.Yetersburg State Technological Institute (Technical University) 



V. B. Bezerra et al. 	 243 

	

1 	C2 	1 
+ 3( —6  	$2 ± —

2
(u u2)I 

▪ 3(-
1

6 
 - C)c(v - - v3)), 

< Tegi9 >ren =  

co 
1 

r 2 a 2 	'IA A21-3,0 ( 8  s2 - s4) 
0 

rn2a 2  
( u — 	u4 ) + 

1 	 1 
3(-6-- - C)(c 2  - 4C(c' 	

, 	
- s2 	

1
(/4 -  u2)) 

- 2(
6
- - C)w(u - u2 - u4) + 3( 6

1 
-
1 

- C)c(v - 	va)}70 • 
1 

Here c = a'/a and the bilinear quantities s, u,v are defined as follows 

(1412 + w210,12) _1 
▪ 4w 

1 	 1 d u  = -2 1412 I 1 2  )) 	V  = - i tTi lqAl 2 • w 

The subtractions of the quantities v 1 , v3, s2, 84 , u2, u4  in (5), where 

52  = 17314,-2, 	54 = - 
2

WD2 1,V + —LOW1 2  ± 
64 

1 

,, j_ q2  j_ I Lt, ni 	1  
- +vy 4  . — , —..'w....,± .,, - '- 

256 	164.4) 4 	16 	3 	16w2 
DW.., 

u2 = 4 	- -,2-4 .,7 , 	u4 = -73 D
3 
 W + , 2 1V 2 DW + 

1 	q 	 1  

1 	 n2 
+ —DwD() - 	W 2  — I DW + -... 

8 	w 3 	16w2 	80,2 	444,4 ' 
r 	 1 	,3 	L.) 	q 

v i  = 2 44, 	1/3  = - gi  D2  W + 14/ + T  L1( 7)..., 

(D -a-  w - l(dIdri), W E w'/w 2 ) remove the divergencies in the cut-off momentum proportional to A 4 , A 2  and 

In A. They arc equivalent to renorrnalization of the cosmological constant, gravitational constant and constants 
near quadratic in curvature terms .  in the bare gravitational Lagrangian [11. 

The scale factor of the radiation dominated Friedmann Universe vanishes by the linear law 

u(n) = al q, 
	

( 8 ) 

where really the condition ma )  >> 1 is fulfilled with great supply. 
The oscillatory equation (3) takes here the simplified form with q(r1) = 0: 

+ 	+ m24 ,12) gA 	= 0 , 	
(9 ) 

i.e., the same as for the conformal scalar field. Nevertheless the contributions proportional to (i - C) are contained 

in the Eq.(5) for the total renormalized SET, thus distinguishing the cases of conformal field and of field with 
arbitrary coupling. 

Using (9) we get the following system of equations for the quantities defined in (6): 

1 w' 
s' = ---u 	= 2wu, 

2 w 

▪ —(1 + 2s) - 2wv 
w' 	

(10) 

(5) 

(6) 

(7) 

with the initial conditions 



2 
M  ai- 2 
2T4 sin Al/ ' 

= 
tn3a3

2A3  [.1  
„ 	

2A  sin 2Ag]  . = (14) 
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s(90) = t,(770) = v(q0) .= 0, 

which are equivalent to (4). Below we will put q o  = 0. Both the Eq.(9) or the equivalent to it system of equations 

(10) with the scale factor (8), cannot he solved exactly. But it is possible to do the analytic calculations for the 

epoch t << rn- I near the cosmological singularity which just corresponds to the radiation dominated equation of 

state of the background matter. With this in mind let us find the asymptotics of s, u and v for the regions A << 

and A >> ma which overlap each other due to the relation 

Ma(q)Ti M a( rndq' = nit << 1. 	 (12) 

In the region A >> ma it is convenient to use the Volterra equations [1] which are equivalent to the system (10) 

with the initial conditions (11). The first iteration of these equations gives 

to 1 (71')

J 
 u + iv 	

w 	
exp [2iA(71 - 

( 7/1 

S J 
GAT/I) 

4 	
e-xp(2sAri )(hi' 1 4  

0 	r) 
(13) 

Substituting the scale factor (8) into (13), we arrive to the result 

m4 ai  1 	. 
$ = 

1 GA6 	

2 	
sin 2An + —A2 sin -  A77

J
, 

In the region A << 77 -1  the results may be easily obtained using the method of sudden perturbations. They are 

given by 

_ 	 m2 a 2 
s = 	

4GJA 	 24tA 
= 	V = 0. 	 (15) 

'  

It is a matter of direct verification to prove the joining of the asymptotics (14), (15) for the value of Ao satisfying 

the inequallities ma << Ao << 'Pr 1  • 
Now it is possible to find the total rcnormalizcd SET of nonconforiiial field in the radiation dominated Friedmann 

Universe. Let us calculate the integrals from (5) using Eqs.(7) for the counter-terms, asymptotics (14) in the interval 

(Aoso) and asymptotics (15) in the interval (0, A0). Upon integration A o  is absent from the results and all the 

divergencies arc cancelled. 

The end effect of long but elementary calculations of the total vacuum energy density and pressure of noncon-

formal field 

e =<T: 	P = - <Tg >ren 	 (16) 

(the summation in a is absent) expressed in terms of the proper synchronous time t is: 

n  3 	rn2  
6  = 167r2  "n  mt - 2  C 	192r 3t 2  

3 m2  1 	1 	 1  
167c2 	- 0(In nit  — In 2 - C- 1) + 

7680;00 

m4 	I 	 5 	m2 
= - 

167
2(111  —

mt 
- In 2 - C -) 

6 	5761.3 /. 2  
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1 2  

16r2  t2 
( 16 — )(In 

mt 	 46087r2 t 4 
 — In 2 — C + 1) + 	

1  
(17) 

The first two terms of both c and P coincide with the known results for the energy density and pressure of 

conformal quasiparticles created from vacuum by the gravitational field. The fourth terms of c and P which do 

not depend on mass describe the vacuum polarization and also are the same as for the scalar field with conformal 

coupling. This contribution to SET may be expressed in a generally covariant form 

— < 
1 	

(18) r-rik >(::°)= 	 (t 3)ffik 
14407r 2    

where ( 1)Ifik, (3),Iiik are the quadratic in curvature tensors [I, 4]. 

The third terms of (17) represent the nonlocal contributions due to nonconformal coupling of the scalar field 

under consideration. These contributions disappear in conformal limit — 1/6. 

It is evident from the foregoing that the vacuum polarization for the scalar field in a radiation dominated 

Friedmann model does not depend on the value of the coupling constant e. At the same time the depending on 

mass contribution to the SET of nonconformal field is different for different values of 4. Due to mt << 1, it is 

seen from (17) that the term proportional to (e — dominates the other mass dependent terms (if the value of e 

is not too near 1/6). It is interesting also to investigate the role of vacuum quantum effects.of nonconformal fields 

in the formation of self-conistent cosmological models [5], in multi-dimensional gravity (see, e.g.,[6]) and in the 

applications of topological defects [7]. 

Two of the authors (V.I3.B. and C.R.) were partially supported by CNN. 
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Computer-aided classification of the Segre 
types [11(1,1)] and [(11)1,1] 

'Vladimir Seixas and Manoel F. Borges, 
DCCE - Mace - Unesp 

Campus de Sio Jose do Rio Preto - SP 

The computer implementation of the Segre classification given by Joly and MacCallum [1] 
and its extended version given by Seixas [3] lacks test(s) to decide between the Segre types 
[11(1,1)] and [(11)1,1]. In their paper, Joly and MacCallum suggested an improvement in 
order to decide between these two cases. This consists of using the fact that being Plebanski-
Petrov type D, it is possible to find a transformation for the four null basis vectors such that 
the Plebanski tensor will be in a canonical form. The new spinor components GAB'  must be 
in a form where the 2-planes are aligned with the principal 2-planes of the Pcblanski-Petrov 
tensor since they must be invariant under the same isotropy group. if not, to decide between 
the two cases it is necessary to find the eigenvalues and eigenvectors. In this work we intend 
to present some ideas for a possible approach in the direction of solving this specific problem 
in the classification algorithm. First we verify that if a standard form was found for the 
Plebanski spinor, it implies that 4)AB, is in canonical form. In this way, the additional 
information about the transformations to bring a general form of the .PP type D metric into 
a canonical form should be useful. We give some idea by considering two possibilities of the 
Plebanski-Petrov type D ti show how this information can be used in terms of simplifying 
the tests (e.g. a fourth degree test involving 'AB'  is the highest order quantity). 

The Plebanski-Petrov type D possibilities are [2]: 

1. 00100 X A  is in canonical form; 

2. 00111 — 11100 with 1)9 = 2X3 2  — 3x2r4 = 0; 

3. 10101 with 135 = 9X2 2  — x0x4 = 0; 

4. 11011 with Bl2 = X0X4 2X1 X3 = 0 and G = 2x33  — x1x4 2  = 0; 

5. 11111 with G = 2x33 3X2X3X4 + XLX4 2  = 0 and C3 = X0X4 2  9X22 X4 + 2X i.X3X4 + 6X2x3 2  = 0. 

We are now going to consider in detail the two first possibilities. 

00100: x A  is in canonical fortn, i.e. X2  is the only non-zero component. Then, by looking at the definitions of xA, 

(DAB' satisfies the following conditions: 

43 00'002' - W01 ,2  = 0 

413004'12' + 43 10' 4302' - 24)01' 43 11 1  = 0 
413 22410' + 012'020' - 21) 21 1 43 11" = 0 

(13 22' 41) 20' - 41 21' 2  = 0 

Let us start by assuming that F.• 0 0. From the condition (la) we have, 

4,01 ,2 

4'02' = 
(NW 

(1) 

(2) 
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Claim: ch i t = 0. In fact, if Ow # 0, then there exists a null rotation of class I such that, 

(DOo' = 'Pow 

Slop = 	ad:13.00 ,  = 0 

and xic, = Xi = 0 with ,e2 , x3 and x4 different from zero (i.e. we have lost the canonical form). Since, 

4' 1o0 ,  

it will imply that Vol , = $102 , = 0. By the condition xc = 0 (lb), it follows that <D 100,c1V12 , = 0 and then V1 2, = 0. 

In this way, x#3  = x'4  = 0 which is a contradiction. Therefore, 4)01 ,  = 0 must be zero. 

We have only to take into account the cases where 4)11 ,  and 41)2 21 are zero or non-zero. The case where both are 

zero does not make sense since this will give all the Plebanski tensor components null. 

1. 4>i i ,  # 0 and 4)22 ,  = 0. Following the tests in PP type f) metrics, we have for this case that 16 # 0 and 

Q = 	= 0, i = 1,2.3 with S4 0 0. Therefore, the Segre type is [(11)2). 

2. = 0 and c1) 22 f 0 0. 16 and Q arc different from zero. The sign of 

57 = -4"00‘ 311) 22' 3  576 

will be given by the product of ono, and 022/. If cboar(11 22 ,  < 0 then the Segre type is [(11)7,2]. On the other 

hand if 000, 4)22 ,  > 0 although this is true for two possible Segre types, only the Segre type [(I1)1,1] will occur 

since we are in its canonical form. 

3. Ow # 0 and $22' 0 0. We have that, 

1 
X2 = 12 	

4011,3) 

with 4,00 , 022, 	44)11 ,2 . If (Dow 	±4) 22 ,  then there exists a transformation in class III where, 

$100 ,  
= m2 m•2.00,  

11:1101' = 0 

4)102' = 0 

012,  = 0 

0122,  
m  -2 Ar -2 4,22, 

where M is such that (N o, = 422, and the standard form of xA is preserved. The canonical form for 	will will 

depend on the sign of the product 4)004 22'. In this way,  if  l'oo,022,  < U (he Segre type is [(11)Z2] otherwise, 

[(11)1,1). 

Now assume that (1)00 ,  = 0. From (1a), 4' o ,. = O. If 4.22 ,  0 0 we are in the case of (Do w  0 by swapping the index 

0 2. So, we can assume with no loss of generality that 0 22, = 0. Then, by (Id) we obtain that (Div = 0. Again, 

the subcases to be considered are 

'Vol ' 

2 
4)02' = 
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1. 002 ,  0 0 and (Dip = 0. The tests will imply, since /6 0 0 and Q =, I7 = 0 with 82 0 0 that the Segre type is 

[(11)2]. 

2. (DOT = 0 and (Div 0 0. We have, /6 0 0 and Q = 	= 0 for all i = 1,...,6. In this case, the Segre type is 

[( 11 )( 1 ,I)]. 

3. (1)02. 0 0 and (D i p 0 0. We have that, 

1 
X2 = 12 ('02'42n' — 44'11 12 ) 

with 51)02 , 020 , 	44) ) i' 2 . 
The non-zero quantities are, 

16  = 7.,,:(wovF2o ,  + 24'11 ,2 ) 

S2  = --(1>oz ,  chcv 

17 = 484'11' 4'02' 4'20' 

Q = -- 
16 

 (P02'w2Cr(iv02'120' 84) 1 l' 2 ) 

S7 	
576

4. 4102 1 w201  + 84) 11' 2 )( 4)02420' 	21) 11' 2 ) 2  

The Segre type will be [11(1,1)]. 

00111 — (11100). This case is characterized by xo = xi = 0 (conditions (la) and (lb)) and B9 = 2X3 2  —3X2x4 = 0. 

If (1)00 ,  = 0 from (la) we have (1)01 ,  = 0. Then, 

1 
X2 	= 	-- 1,002' 4'20‘ — 44) 11' 2 ) 

12 
1 

X3 	= 	
4

(do, 	(10. -12' 	20' — 2V21' 4) 11' ) 

A,  
X4 	

2 
- (W22"V2C1' - 4121' 2 ) 

89 = 76= 20( 19-X24)22' + 4X34) 12' 4 X3 .4)21') 

Since Bo is equal to zero we can assume two different subcases. Firstly, if 4102 ,  = 0 we obtain, 

X2 = 
3 

Xo = 
2 
1 4. 2 

X4 = 
, 	2 

X A in a canonical form, we have to apply a null rotation of class I with 

43 2.1 , ,; 
a= 

2 

(D A B, will transform as follows 

'Vow = 0  

= 

and consequently, to write 
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.102 ,  = 0 

(1)111' 
	= 	4511 ,  

4112" = 
I fa. 4.  

($22' 1 11' — 412' 4)20 
4'11' 

= 0) then the Segre type is [(1 1)(1,1)]. Otherwise, the Segre type is [(1 1)2]. Now 

12x24522,  + 4X3 4) 12 ,  +4x3 . 4021J = 0 

(1'20 , 4' 12,2  + 4'02' X6 21' 2  — 4 4,1'12 , 43 21 , (1)11 ,  

(1302420,  — 4 4'11 ,2  

The null rotation in class I will bring the xA in canonical form with, 

4512 , 4520 ,  — 24'21 ,41 11 ,  
a= 	 AA„, 2 

45 20402' 1 "v11" 

After a straightforward calculation the Segre type will be {(11)2] if 4' 	= 0. If CI ,  0 0 then the Segre type is 

[1 1(1,I)]. 

Let us assume now that Soo ,  0 0. Prom the conditions (la) and (lb) we have, 

.01
,2 

• .00,  

( 2 .11400' — 45 10' 4500  
— 	

.00'
2 

and, 

4%0' 24 '01'(245 11' 45 00' — 45 10,4'01')X3  
89 = 

.00
,a 

Looking for the cases where /39 = 0 one would obtain that (1)0 1 , = 0. However, it does not happen since it would 

imply that x3 and x4  are equal to zero. In this way, Hg is equal to zero if and only if 

24)31.000 , 	= 0 

Then, 

= 	 
24loor 

The Plebanski spinor will be given by, 

Xo = 0 

= 0 
1 

X2 = — wn0 ,4"22 ,  12 
1 	. 

X3 - 
4

4'224 10' 

4)2 ,41.0,2  
X4 24)00,  

ir 43 22411' — 45 12' 121' = 0  ( 41122' 

by assuming that 'Dor  0 0 then 

Since X2 0 0, 

4'22' 

4302" 

4) 12' 
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The null rotation in class I to write XA  in canonical form is given by 

10' 
a = 

(Poo ,  

4) A B ,  will transform as, 

(1)100, 	= 	(Dow 

(Vol' 	= 	0  

4)'02, 	0 

cDaiorDio ,  
(1)111, 	= 	24,01. 

(P12, 	= 	0  

41122, 	= 	
(D10.24)01,2 	(1)00,34/22, 

..0013 

if 010 ,2 4,01 ,2 Therefore, 	 + 4300' 3 4)22' = 0 then the Segre type is [( 11)2]. If 4)10 ,241 o1 ,2 + (Doo ,3 4'22' > 0 then [(11)1,1]. 

Otherwise, the Segrc type is [(11)Z2]. 

As we could' verify - from the two examples above, a significant improvement. was obtained. In addition, the 

conjecture raised in the beginning of this section has proved to be true. The standard form for the Plebanski 

spinor defined a form for the Ricci spinor where its Segre type can be decided directly. The case 0011] gave some 

idea about how the information on the .PP type and the rotations to be performed are very useful in terms of 

simplifying the tests (e.g. a fourth degree test involving 4)AB, is the highest order quantity). The other cases are 

not straightforward to solve because of the complexity of the expressions obtained after the transformation which 

brings x A  into a canonical form is applied. However; it is very worth while pursuing a solution for the remaining 

cases and this should be done elsewhere. The results in this section were obtained by utilizing the computer algebra 

system MAPLE. 
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Chao's in Gravitational Core-Halo Systems 

Werner M. Vieira and Patricio S. Lather 
Depariamento de Materndlica Aplicada - lAfECC 

Universidade. Estadual de Carnpina. 

13081-970 Campinas, SP, Brazil 

e-mail: viciraaime.unicamp.br  

We analyse the motion of test particles in the intermediate vacuum of a system consisting of a massive monopolar 
core and a far distant halo of dust in both General Relativity and Newtonian Gravity. To this end, we extend an exact 
relativistic core-halo model recently proposed to take account of halo dipole, quadrupole and octopole components. 
We compare the orbit dynamics in the relativistic and Newtonian theories and find chaotic behavior in both when 

either quadrupoles or octopoles are considered, with the chaotic layers extending over larger regions of phase space 

in the relativistic case. If only halo dipoles are taken into account, we find that the Newtonian model is integrable 
while the relativistic one presents chaoticity. 

'['he authors thank CNN! and FAPESP for financial support. 
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Formacao de Defeitos TopolOgicos 
no Universo Primordial 

Sergio E. Joras c C.A.A. de Carvalho 
Dept°. Fisica Morita - Instiiuto de Fisica - UFRrt 

1 Introducio 

As transicoes de fase pelas quais o universo passou, e que foram usadas nos modelos inflacionarios, podem dar origem 

a outras estruturas corn importantes efeitos cosmoldgicos: os defeitos topologicos. Os defeitos sio, basicamente, 

configuracoes de campo estiveis que apresentam energia potencial confinada; fiesta forma :  contribuem para a 

formacao de estruturas de larga escala [1]. AI6rn disto, podem ter grande importancia na assimetria bariOnica do 

universo. A abordagem para o estudo dos defeitos (basicamente a mesrna da infiacao) concentra-se no estudo da 

estrutura de dominios que regiOes de vicuos verdadeiros formarn na transicao de fase. Esta estrutura definira a 

distribuicao espacial dos defeitos, quc determinara seus efeitos. 

Se lembrarmos a definicao do potencial efetivo para o campo ¢ inflacionario, verificaremos quc scu argumento 

6, na verdade, ulna media espacial do valor esperado do campo em equilibrio t6rmico. Ou seja, ern altar 

ternperaturas, ¢ = 0 corresponde a urn estado altamente desordenado, corn o campo 4) cm cada ponto raramente se 

aproximando do zero. Por isso, enquanto a temperatura decresce, o campo tera acesso aos minimos do potencial 

efetivo antes que des surjam, definindo seus dozninios antes da temperatura critica [3]. Por outro lado, rnesmo que 

o campo scja levado ao equilibrio atraves da interacao corn urn outro campo, por exernplo, c necessario mostrar 

quc este equilibrio sera em = 0 c nrio em ID 0, para que o quadro inflacionario seja gerado. uma outra falba 

da abordagem padrao envolvendo a inflacio é nao dizer quanto tempo o carnpo ¢ permanece na origem, antes de 

comecar a descer o potencial. Note que into define a duragao do period() inflacionario e determina se urn dado 

modelo gera inflaca.o suficiente ou nao. 

Em outras palavras, 6 importante estudar a dinionica do resfriamento do campo, tanto para verificar se urn 

cenario inflacionario c efetivamente gerado, quanto para verificar os defeitos topblogicos rernauescentes. Tal estudo 

da transicao pode impor novos lirnitey ao tamanho minimo necessario para se obter uma regiao de homogeneidade 
do campo $, ou eventualmente mostrar que esta nao precisa ser imposta como condicao initial para a inflacao. 

Pode ainda mostrar se cordas cosmicas — ou outros defeitos sax) responsiveis pela atual distribuicao de materia 
no universo. 

2 Metodo Perturbativo 

A lagrangiana de evolucao do campo 0 6 

laj oaPo —v(0,0 
2 

onde 

V(0, t) = 
2
1 m2(i)02  + 74.3'04  

(1) 

*jorasCif.ufrj.br, aragao@if.ufrj.br  
t Este trabalho foi cm parte financiado pela FUJII/LIFRJ. 
'Para que o campo A ae cncontre cm equilibria series necessario que a > 0.01 [2] 
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e 371 2 (i) E rilg( :41  - 1). 
Quer-se calcular a. probabilidade de lima dada configuracio ¢0(x, I') — a principio nao-uniforme — evolnir para 

a configuracao 6k(x, t"), que descreve urn defeito (kink). Tratando o ultimo termo do potential acirna como uma 
perturback, escrevemos 

< 15k(x, 	Utor(dk, 00)100(T, 	>= 

Aqui concentramo-nos no calculo de < 6k1W1 (6k, On)lcSo > como Luria perturbacio ao oscilador harmOnico 
invertido em presenca de urna forca externa. Mantendo apenas termos de primeira ordem em a, obtemos 

< ¢kI 01(45 k, d)o)10o >= 

= Deti (ar am - mg )  {1 + fdx A3(0, 0)+ 

+ 	7,74 dx dy T2 (yo)[A 2 (x, x)11(x, y) + 2z1 2 (x, x)A(y, y) + 

+ 36(x, x)A 2 (x, y)] 

onde /1(x, y) a dado pela equacio 

02  
O 	

InDI. 

	

xPay,, 	
(X , y) = b(x - y) 	 (4) 

0 tratamento perturbativo para o termo depentende do tempo, poritn, nao 6 indicado, uma vez que s6 
poderiamos nos restringir aos prirneiros termos se rrigT 2 (f)/7? < 1. Esta condicio a satisfeita quando a temepratura 
6 bem menor qu 

3 Metodos Nao-perturbativos 

Comecamos corn a inesma lagrangiana, ou seja, de urn oscilador harmonic° de massa variavel e termo 6 4 : 

	

= 	aA ¢au a - V (4) , i) 

V (4 , 	= 	2 (T( 1 ) 2 	1) A2 	A4 - — yil ± 
2 °  

Dcfinirnos cntio um novo campo 

e lima nova lagrangiana 

C16, E 1  0,60P6 - 1 ../Tyr62  + 12  - 1 74( 7-2(1)  1)62  • 	4 	2 	I? 

de tal forma que C = 	substituirinos 
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A nova lagrangiana, porem, pode ser escrita sob a forma 

11 	. 
C =

1 (.9„0aP 	
4 

o + -(7 2  - -(rn 2(1) + V-5:cr)O 2  

Da mesma forma que antes, queremos calcular a prohahilidade de formagao de urn kink Ok, 

configuracao 45o. Entao, devemos calcular 

(9 ) 

partindo de uma 

< Oki U1¢0 >= 

 = 	Du 	exp[if Gai, thatio + 	- 5.(rii- (t) +1./.71(7)46 2 ) dx] 

A integral funcional em DO, acima, é exatarnente a integral de urn oscilador harmonic° forcado corn massy 

dependente do tempo, cuja solusao e Det -1 / 2 (81,8P + in2 (t) + 

Deste modo, 

< Ok1U100 >= f Dcr { exp 
I t 4

-1 cr 2dx DeL -112 [81,0" + 	+ V.Ticr] 
	

(10) 

Os prOximos passos incluern completar o calculo nao-perturbativo acinia usando a abordagern de Hartree-Fock. 

Urna abordagem totalmente nao-perturbativa node ser feita atraves de instantons, solucOes dependentes do 

tempo que tunclant de urn vacua a outro. No entanto, a dependoncia temporal do tcrmo de massy torna bastante 
dificii a resolticao analitica das equaciies em questa°. Esta linha de trabalho esti em andamento. Acreditamos quc 

a resposta possa ser encontrada pelts abordagem de catistrofes no ponto onde a solucao bifurca entre uma 

solucao onde todo o sistema esti em urn vicuo e outra onde a configiiracao do campo d de urn kink. 
0 objetivo final do trabalho e aplicar GS formalismos aqui apresentados em cordas cOsmicas e outros defeitos. 

Neste caso, algumas quantidades de interesse seriam a proporcao nunierica entre cordas fechadas e cordas infinitas 2 , 

a taxa de probabilidade de formacao dc cada typo de corda, a distancia media entre dual cordon e a distribuicao 
cspacial de cordas. 
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0 Detector de Chuveiros Atmosfericos EASCAMP-II 

A.R. Biral, 3.A. Chinellato, A.C. Paull, E. Kemp, E.G.S. Luna, H. Nogima 
M.A.L. de Oliveira, L.G. dos Santos, M.C. Souza Jr., F. Tessari, A. Turtelli Jr. 

Depurtamento de Bolos Cdsmicos c Cronologin 

Institute de Fisica 'Gleb Wataghin' 

Universidade Estadual de Campinus Unicamp 

Campinas, Sao Paulo, Brasil. 

Sao apresentados o novo lay-out e a nova eletronica do detector de chuvciros atmosfericos 
EASCAMP-II, instalado no campus da UNICAMP (22°54'S-47°05'W) em Campinas-SP. 
A ampliacio em numero de modulos a cintilacio (de 4 para 12) c de tracejamento (2 m 2 

 para 16 m2 ), e a nova arquitetura da eletronica de aquisicao, resulta em sensivel melhoria 
na resoluck angular de todo o aparato, alem de possibilitar escudos sobre a energia das 
particula.s primarias. A integracao no experimento de modulos de tracejamento viabiliza a 
reconstrucao de evcntos ampliando o intervalo de cnergia dos primazios quo pode 
ser investigado. 

1 Introducao 

No inicio de 1996, foi concluida a expansio fisica do detector de chuveiros atmosfericos (rnantido polo grupo de 
Leptons do DR.CC-IFGW) localizado na UNICANIPP 1 , quc por Nora sera denominado EASCAMP-lI. A expansio 

resultado da incorporacao ao detector de 8 novas modulos baseados em cintiladores plisticos (NE-102/NE-110) 

e fotomultiplicadoras (Philips/XP-2040), e urn modulo de tracejamento de 16 rn 2  composto por tubas streamer. A 

cxpansao ampliou a area nominal coberta polo experimento de — 160 m 2  para 710 m 2 , que resuitara diretarnente 

no aumento da frequencia de cventos. 

Urna caracteristica peculiar do experimento é a combinacio de duas tdcnicas para deteccao de chuveiros corn 

vantagens complementares. A tecnica de tempo de woo, corn o sistema de cintiladores, tern seu rnelhor desempenho 

para eventos cujo cixo do chuveiro atinja a regiao prOxima aos modulos detectores, ondc a espessura da frente 

de particulas 6 menor e o erro causado na determinacio da direcao de incidencia (ae) devido aos efeitos da sua 

curvatura sacs minimizados. Por outro lado, nessa condi*, os modulos de tracejamento nao consegucrn reconstruir 

as direcOes das particula.s, porque quando urn grande ntimero dcstas atingem o detector, sae introduzidas arnbigu-

idades irremoviveis na tecnica de reconstrucao dos tracos. 0 outro caso, ondc o centro do chuveiro atinge regiOes 

distantes dos modulos detectores, o erro na determinacao da direcao de chegada fornecida pela tecnica de tempo 
do voo cresce (grande ae). Nessa condicao os modulos de tracejamento recontroem melhor a direcio de chegada do 
evento. 

Outra importante modificacao, e a nova arquitetura da eletranica de aquisicao de dados. Tal modificacao 

tambem 6 decorrencia direta do aurnento do ntimero de modulos dctectores do expe-rimento, pois outras condicoes 

de disparo devem ser estahelecidas. Essa nova arquitetura minimizaefeitos provocados por jitter na anilise do sinal 
vindo das fotomultiplicadoras, tambem contribuindo para a melhoria de ae. 

Nas sec5es seguintes discutiremos detalhes desks aspectos apresentados sobre a nova configuracao do experi-
mento. 

2 0 novo sistema de cintiladores plasticos 

A disposicao dos modulos detectores a cintilacio quo apes a expansSo compoe o experimento, a mostrada na Figura 

1. Na mesma figura, para efeito de comparacao, podem ser vistos os modulos operantes da antiga configurac5.0 
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(denominados P1, P2, P3 c P4). 

Alern do aumento na area nominal coberta pelo experimento, deve-se salientar que a area efetiva (regiao onde 

ea= chuveiros observaveis) tambem foi aumentada em 2,3 vezes, atingindo 2,8x 10 5  m2 . Essa area efetiva foi 

obtida por simulacao( 21 onde foram levados em conta a nova condicao de disparo (coincidencia quadrupla de sinal em 

quaisquer dos 12 cintiladores), a geometria corn que os mOdulos estao dispostos e o limiar em numero de particulas 
(— 1 partictila/m 2) no experimento. Uma consequencia direta do aumento da area efetiva sera a melhor estatistica 

que deve ser alcancada na analise de dados. 

O aumento no numero de cintiladores tambem faz corn que as  obtido corn o tempo de you diminua ern 50%, au 

seja, ganha-se em urn fator 2 na resoluck angular, para eventos incidentes na faixa de ate 45° em relacio ao zenite. 

Esse dado tambem a resultante de simulacoes numericas [3)  e espera-se alcaricar ere 	2° corn a nova configuracio, 
usando a selecao de eventos ocorriclos nas proximidades do aparato. A Figura 2 mostra urn grafico corn o resultado 

da simulacao, comparando o comportamento de as para os casos de 4 e 12 cintiladores. 

O estudo do espectro de energia dos primarios (Eo) da radiacao cesmica tambem passa a fazer parte do escopo 

do experimento apes a expansao. Puncionando corn 12 cintiladores, porie,-se tornar uma amostragem da densidade 

de particulas na frente do chuveiro que possibilite a obtencao (dc forma indireta) de Eo. Na configuracao anterior, 
corn apenas 4 pontos de amostragem, esse estudo Ilk era possivel por criterios meramente estatisticos. 

3 0 detector central e o trigger de multi-p 

Na regiao interna aos cintiladores foi posicionado o Detector Centralf 41 , composto por 4 pianos de tubos streamer 
corn 16 m 2 , superpostos corn 1,1 in de separacao. A seccao de cada cclula sensivel e de 3,0x3,0 cm 2 . Essa geometria 
resulta em as 0,5° na reconstrucao do traco da particula. Essa boa resolucao angular deve scr explorada na 
reconstrucao da direcao dc cliegada dos chuveiros, via o tracejamento da componente carregada (cm sua maioria 
e± e pt). Esse estudo ja era leito corn os medulos MA c MH da Figura 1, que tern — 1 m 2  de area sensivel cada, 
on seja, aumentou-se a a area sensivel de tracejamento cm — 9 vezes. 

Alem do funcionamento integrado ao sistema de cintiladores (ver item 1), est.a em fase de projeto o trigger de 
para esse detector. Esse trigger permitira a deteccao de grupos dc p± que fazem parte de chuveiros cuja 

componente eletromagnetica ja foi absorvida na atmosfera acima do detector, e consequeritemente nao dispararn 
o sistema de cintiladores. Em geral, os p± tern distribuicao angular estreita em relacao ao eixo do chuveiro( 51  e 
prescrvam essa direcao, assim a detecca.o classes eventos multi-ti possibilita o estudo de anisotropias e fontes pontuais 
cm urn interval° de E 0  abaixo daquele em que sac) gerados chuveiros observaveis pelos cintiladores, sendo estimado 
10 12  < Eo  < 10 14  eV para este tipo de evento. 

4 A nova arquitetura da eletronica 

A Figura 3 mostra o diagrama da eletronica de aquisica.o de dados. As linhas para o processamento de sinal nessa 

arcpritctura sao duns. Uma para o grupo dc 4 cintiladores da antiga configuragao e a (Nara para os 8 novos. Esse 
criterio é por razOes puramentc teciricas. A diferenca basica entre esses iinl1es , esta no primeiro modulo quo recebe 
o sinal analogico dos cintiladores. Na prirneira linha, usa-se urn gerador de gate da LeCroy mod. 4222, e na segunda 
o mod. 2323A. Apes esses medulos todo o processaniento do sinal nas duas linhas é identico. Estes dois modulos 
(4222 e 2323A), alem de cumprirern sua funcao basica na geracao de gates, cumprern as funcoes de discriminador e 
Fanln/FanOut, que eram anteriormente relizadas por medulos especificos para tais tarefas. Corn a substituicao do 
discriminador, reduz-se a a flutilacao temporal para a digitalizacao do sinal (jitter) cm ate 10 vezcs, quo corresponde 
a tuna reducao cm cre  dc ate 1,5°. 0 modulo FanIn/FanOut, era utilizado para derivacao do sinal analogico dos 
cintiladores enviado aos ADC's para medidas de densidade de particulas. Esse modulo apresentava problema de 

saturacio, quo limitava o numero maxim° de particulas medido ern cada cintilador. Valendo-nos da entrada de alta 
impedancia desscs dois geradores de gate, é possivel utilizar o inesmo sinal, Canto no ingresso da parte logica da 
eletrOnica, quanto no ingresso dos ADC's. 
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Uma importante modificacio na arquitetura de aquisicao, foi a introducao da tecnica de duplo-limiar. Quando 

o sinal anal6gico ingressa nos mOdulos 4222 e 2323A, o limiar de discriminagao esta ajustado para urn valor minim° 

(-20 mV) quc climine apenas o ruido da linha de sinal. Superado esse limiar, urn pulso N1M 6 enviado aos ingressos 

dos TDC's, para medidas de tempo de v6o, minimizando a flutuacao temporal relativa. Uma outra saida NIM dos 

geradores de gate 6 conectada a urn discriminador corn limiar ajustado em -50 mV, que uniforrniza a largura dos 

pulsos (cm 70 ns) utilizados no ingresso da unidade 16gica (LcCroy 380A) que imtabelece a condicao de disparo (ver 

item 2). Mesmo que o primeiro limiar esteja ajustado em urn valor pequeno, propiciando a passagem de pulsos 

espOrios, estima-se quc a probabilidade de disparo por coincidencia casual seja da ordem de 10'. 

A leitura de tempo absoluto (UT) deve ser feita por urn CPS, corn precisao da ordem de 10 -3s, conectaclo 

diretarnente ao barramento ISA do micro-computador (PC) que controla a aquisiciio. 

5 Conclusao 

0 detector de chuveiros atmosfericos EASCAMP-I1, decorrente da expansao do antigo array localizado no campus 

da UNICAMP, apresenta grande melhoria cm termos de resolucio angular e area cfctiva de deteccao. Espera-se 

atingir as — 2,0°. U aumento na area efetiva corn a inclusio de 8 uovos cintiladores reduzira o tempo de coleta de 

dados para obtencao de uma boa estatistica na sua analise, c ainda, passa a ser possivel a amostragem de densidade 

de particulas na frente dos chuveiros, necessaria para escudos do espcctro de primarios. A utilizacio do modulo 

central de traccjamento para a deteccao de eventos possibilitara cstirclos de anisotropias e busca de fontes, 

corn a inclusao de duas decadas de magnitude na encrgia dos primarios observados (agora E0 > 10 12  eV) e uma 

melhor estabilidade na aquisicao de dados. 
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Figura 2: Dilerenca ente o linguio zenital reconstroido (open flutuasdes nos tempos de disparo dos 
cintiladores) c o Angulo zenital original gerado pela simolacao, pars diversas faizas de angulo zenitaL 

Figura 3: Diagrams da eletranica de aquisicao de dados do EASCAMP-IL 
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Performance of Resistive Plate Counters with 
Ar/Bu/CC12F2 and Ar/Iso/CBrF3 

A. Campos Fauth, A. Guidi' 
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The performance of a glass electrode resistive plate counter (RPC) has been studied as a 
function of high voltage and two gas mixtures. We present the time and charge results 
obtained with: Ar/Bu/CCl2F3 and Ar/lso/CBrF3. The detector demonstrated adequate 
to be used in extensive air shower experiments to measure the arrival time and particle 
tracking. 

1 Introduction 

Particle detectors with a time resolution smaller than 1 ns and that allow tracking measurements are often required 

in high energy physics. 

The RPC (Resistive Plate Counter) is a gaseous detector which enables tracking measurements and can achieve 

a time resolution of 25 ps under some special conditions[1]. To obtain this performance the gas is maintained at 

high pressure and the gap between the electrodes is very small (< 1 min). 

We study the performance of a simple version of these detectors, made of commercially available materials and 
maintained at atmospheric pressure. We expect to achieve a time resolution of 1 ns. 

The uncritical working conditions and low cost of this detector are interesting in apparatus for extensive air 

showers, where large detection areas are involved. 

2 The Resistive Plate Counter 

Figure 1 shows a. scheme of a resistive plate counter studied. It is constituted of two parallel plane electrodes made 

of glass with volume resistivity p = 10" ft.crn. These electrodes are 2 mm thick and the 2 min gap between them 

is ensured by PVC spacers. A water based graphite painting is applied in the external surface of each electrode, in 

order to provide electrical connection. In usual working conditions a high voltage between 5 and 8 kV is applied. 
The electrodes are enclosed in a PVC box, which interior is filled with a gaseous mixture. We studied the detector 

performance using two different mixtures, Ar/Bu/CC1 2 F2 - 68,7/29,3/2 and Ar/Iso/CBrF3 - 60,8/34,1/5,1 [2]. 

When a charged particle crosses the active region of the detector, the ionization of a gas molecule will occur. 
An electron resulting of this process may cause the ionization of another molecule and so on, in such - a way that an 
avalanche of ions and electrons is formed between the electrodes[3). Because of their high resistivity, this discharge 
'does not propagate throughout. the whole detector, being limited to an area smaller than 10 mni 2 . 

The transparency of the electrodes to transient signals[4] allows the avalanche to induce a pulse on an external 

pick up pad. These pads are made of copper and arc 100 cm long, 8 cm wide. They are placed on each side of the 

PVC box so that both the positive and negative signals can be read. If orthogonal strips are used instead of pads, 
a good spatial resolution is achieved. 
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3 Experimental Setup 

Two resistive plate counters were assembled and placed one 3,5 cm above the other. Their electrodes were connected 

to two IIV sources (0-6kV) with inverted polarities. In this way it is possible to obtain up to 12 kV of potential 

difference in the gap. 

The readout electronics scheme is shown in Figure 2. The analog induced signal from each detector goes first 
to a Dual Gate Generator Le Croy 2323A. The input threshold is set at 20 mV. The logic unit CAEN N18A 

was programmed to produce three output signals: two for each single detector signal and one for the temporal 

coincidence (10Ons) between them. This last signal goes to the start of the TDC 2228A Le Croy, used to measure 

the time difference between the two detectors. The resulting curve is a distribution centered at the time spent from 
a relativistic particle to cross the separation distance of the two RPCs. An ADC Le Croy 2249A is used to study 

the charge spectrum of each RPC. A Scaler 2551 Le Croy is used to make the singles counting rate curve of the 

detectors and also the counting rate curve of the coincidence. 

4 Results 

The data acquisition trigger selects principally cosmic ray moons with angles from 0 to 88 degrees. This muons 

are minimum ionization particles crossing different points on the two li.PCs, so the time distribution of the signal 

from RPCs is a sum of the detector time resolution, pad fluctuations due the interaction position, and electronic 

(discriminator, TDC) jitters. Figure 3 shows this total time resolution as function of the high voltage. The singles 

counting rate curve for the mixture Ar/Bu/CCl2F2 has a plateau 700 V wide (see Figure 4). The counting rate 

starts increasing due to the transition from the avalanche to the spark mode. The plateau is reached when this 

transition is completed. At this region .  the detector is working at the spark mode and every signal is related to 

the passage of an ionizing particle. After this, the rate starts increasing again because of the presence of spurious 

signals. It is important to notice that the rate of 40 Hz where the singles counting rate plateau lies is the one 

estimated for a detector of this size at an ordinary cosmic ray flux, so that its efficiency must be near 100%. A 

total time resolution smaller than 6 us was obtained, for an applied voltage of 6500 V. 

The singles counting rate curve presented no plateau for the Ar/lso/CBrF3 gas mixture. The reason may be 

the high percentage of Freon131-11 of this mixture, since this gas is very electronegative. The total time resolution 
is lying around 9 ass. 

The charge spectrum is similar for both mixtures showing some after pulses due to secondary avalanches induced 
by the primary discharge. 

5 Conclusions 

Two resistive plate counters were assembled with transparent electrodes. The data acquisition system was mounted 

and tasted. We studied the performance of the RPCs for two gas mixtures Ar/Bu/CCl2 P2 and Ar/Iso/CBrF3  as a 
function of high voltage. The first one is good for time of flight measurements on extensive air shower experiments. 

The other one is too unstable. Both mixtures are improper for calorimetric inea.surements because of the afterpulses 
their charge spectrums . present. 

A time resolution smaller than 6 ns was obtained for the first mixture. We used 100 x 8 cin 2  pa;c1s as readout 
electrodes. If the pads arc replaced by strips and with selection of vertical muons we expect the time resolution 
drops dawn to 1 ns. We arc now taking the first data with 2,5 cm wide strips instead of the pads. The detector 

is well suited for large area underground experiments, where a time-of-flight system can be used to discriminate 
upward, or downward going inuons. The presence of afterpulses in both mixtures requires a careful analysis if an 
analog measurement is desired. Its design and the materials used permit a large production at low cost. 



XVII Encontro Nacional de Partfci]Jas e Campos 	 261 

Acknowledgments - We are grateful to G.Bencivenni, F.Tessari, H. Nogiina and J. Botasso for their collaboration 

on prototype realization. The authors are also grateful to FAPESP, CNPq and FAEP for support this research 

laboratory. 

References 

1. - Yu. N. Pcstov, Nucl. Iustr. and Meth. 265 (1988) 150-156. 

2. - Produced by White-Martins Brazil, calibration standard. 

3. - F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers, CERN 77-09, May 1977. 

4. - G. Battistoni et al., Nucl. lnstr. and Meth. 202 (1982) 459-464. 

Figure 1: Sketch of a ltPC module. 
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Figure 4. Single counting rate for Ar/13u/CCl2F2 and cosmic ray expected counting rate. 
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The intention of this work is to obtain an estimate of the incidence directions of primary 
particles inducing air showers, from the relative differences in arrival times of their sec-

ondaries registered by a detector array. In particular, the algebraic procedure developed 
here is destined to reconstruct the direction of showers detected by the top cluster in the 
KASCADE experiment [Rai]. 
In order to verify the goodness of the reconstruction, the method is applied to simulated 
events incident on the top cluster and the directions so obtained are compared with the 
known directions of incidence of the Primary particle inducing each shower. The analysis of 
the relative angles between primary incidence, directions'arid reconstructed directions shows 
that the procedure is perfectly adequate for a good reconstruction of events detected by the 
top cluster. 
The method of reconstruction has also been applied to events measured by the same detector 
array, and the results compared to those obtained by a least-square fit of a plane to the shower 
front. With only a few exceptions, the directions obtained by algebraic reconstruction and 
by least- square fit agree within approximately 1°, on the average. 

Proposition ' 

The cosmic ray experiment KASCADE (KArlsruhe Shower Core and Array DEtector) consists of an ex-

tensive air shower detector built in the Forschungszentrum Karlsruhe, Germany, 110 m above sea level [Ref.!]. Its 

main proposition is to measure various observable quantities for high-energy showeri in the atmosphere, induced by 
cosmic-ray particles, in order to determine the chemical composition of primary cosmic radiation at energies above . 

 1014  eV. On the top of the KASCADE central detector a small array consisting of 32 scintillation counters (0.45 

m2  each) has been installed [Ref.2]. This top cluster is able to measure the energy deposit of the electromagnetic 

component in the detectors and also the arrival times of secondary shower particles at the detectors, improving the 

reconstruction of high-energy showers, particularly in those cases when the shower center hits the central detector 

area. For lower energy showers, the reconstruction must be based only on measurements.from the top cluster, due 

to the low density of particles in the KASCADE array. 
From the arrival times of the particles impinging on the detectors, an estimate of the shower front can be 

obtained, and the incidence direction of the shower (assumed coincident with that from the primary particle) can 

be evaluated (Figure 1). Admitting that the shower front can be considered approximately plane, which is certainly 
a fairly good hypothesis for those showers detected by the top cluster because of its reduced dimensions, an algebraic 

algorithm can be used to obtain from the arrival times the estimated primary direction. 

• • E-mail : carolaitifi.unicamp.br  
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Method 

Starting from the assumption of having an air shower incident on a detector array consisting of N detector 
stations, with known coordinates ri = z i ) and known arrival times of the first particle at each station, ti, we 
look for the director cosines n = (n 7., ny , n,) of the vector normal to the plane passing through the Ncoin  responding 
detectors at corresponding times: 

ri k = 	with n • n = 1 andn, > 0 	 ( 1 ) 

where c is the assumed incidence velocity of the shower front, equal to the velocity of light (• 30 cm/ns). This 

procedure is analogous to that applied in [Ref.3] for a small array of four detectors. 
In principle, all station coordinates and corresponding registered times should satisfy Eq.(1). This situation 

corresponds to a system of N, Qi n  linear equations involving four unknown variables, n z , ny , n, and k, but not all 
independent, since n n = 1. The minimum N„i n  for which a unique solution of this system is possible is, therefore, 

three, and for greater values the system is overdeterminated. In the latter cases a solution is still possible, imposing 

Gauss's condition of minimum total distance from all points to the plane: • 

E (n - r i  + k — ch) 2  = Q = ininimurn 	 (2) 

Differentiating partially Eq. (2) relative to the unknowns n r , n y , n, and k, and using the additional normalization 

condition for n, a system of four linear equations is obtained, which can be solved in the usual way. In the particular 

case of the top cluster array in the experiment KASCA DE, all detector stations have the same zi, which may be 

arbitrarily set as zero. In this way the system can be reduced to the trivial case of three unknown quantities and 
the fourth one, n z  , may be then obtained from the normalization condition of xi. 

Since we are also interested in obtaining information about the goodness-of-fit, it is possible to evaluate Q from 
Lq.(2), obtaining an estimate for the )( 2  for each event and the corresponding confidence level. In the present case 
this means: 

Pic. rb 

= E (n•ri + k — ci i ) 2  /c2 a;2.  
1=1 

where each er g;  describes the dispersion in the value of the arrival time ti. As dispersion we must include the exper-

imental error in time measurements and that derived from the natural thickness of the shower front (approximately 
1m measured on the shower axis), also r esponsible for spreading arrival times. 

The associated number of degrees of freedom is naturally N eoi n  - 3, since we have only three independent unknown 
quantities between n z , n y , n„ 'arid k. 

From the considerations above and the usual assumptions [Ref.5], the confidence level can he obtained for each 
event, knowing )( 2  and the number of degrees of freedom. In all cases with > 3 the confidence level can be 
used as an indicator in the case of having no possible' solution for the direction. Since its value varies between 0 
and 1, having no solution can be made to correspond to a confidence level outside this interval, say -2. Also in the 

case = 3, for which the number of degrees of freedom is zero and the confidence level is not even defined, this 
trick can be applied, attributing another value outside the interval mentioned for the case with a solution, let us 
say, -1. 

Results 

The algebraic procedure exposed above was applied to reconstruct the direction of the axis of 31900 simulated 
showers and also to 12219 real showers detected by the top cluster. 

1) Simulated showers 

The showers were supposed to be initiated by a proton, whose energy was sampled from a power spectrum, in 
the range between 5.10 12  and 10 14 , and whose angles were sampled from an isotropic distribution. The CORSIKA 
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code [Ref.61 was used, including VENUS as the model for high-energy proton-air interactions, GEISHA for those 

interactions at energies below, and EGS for the simulation of the resulting electromagnetic cascades. The shower 

axis is located inside a square 30 m on the side around the top cluster. In order to imitate the effect of experimental 

errors in time measurements, simulated times were folded with a Gaussian distribution (cr en, ss Ins) and the 

resulting arrival times were used for reconstruction. 

An important aspect for the correct interpretation of the measured arrival times must be kept in mind. For 

calculations of x 2 's, the actual dispersion in arrival times cr, has to be known. This al, here assumed the same for 

each station, includes, on the one hand, the natural dispersion at hi ck 2.Gns in the shower front (its thickness) 

and, on the other, the experimental error mentioned above. In this way the total dispersion can be estimated to 

be cr t  2.8ns. This assumed value is crucial, not only for the :1( 2  values here obtained, but also for the resulting 

confidence levels. 

The simulated air showers were analyzed and all events with the minimum of three detectors responding were 

reconstructed applying the algebraic procedure exposed above. In this 'first" attempt of reconstruction all times 

of the responding stations were considered. As already mentioned, there are cases for which no reconstruction is 
possible, simply because no direction can be found that reproduces the arrival times of those events. For each event 

the procedure is repeated excluding one or two stations whenever possible and the combination with best confidence 

level is chosen as the 'best" estimated direction. All possible combinations of minus-one-station and minus-two-

stations are compared. In this way, it is practically always possible to obtain an estimate of the direction, since 

there is only one five-station event impossible to be reconstructed after excluding one station. 

In the analysis of the reconstructed directions it is necessary to distinguish between showers in which only a 
small number of stations was hit and those with a large number of stations responding, typically more than ten. 

When only three or four stations were hit, no station can be excluded. The mean angles between reconstructed 

and primary direction for the events effectively reconstructed is rather large, 15° and 11°, respectively. 

In the cases of five to seven stations hit, it is possible to exclude one (five stations) and one or two stations 

(six/seven stations), but doing so does not improve for sure the resolution. In these cases an advantage of excluding 
one or two stations is the possibility to obtain an estimate for the direction in those cases for which no first solution 

was initially possible. 

When comparing the angular resolution obtained in those cases where eight to eleven stations were hit, it 

is interesting to observe that, as expected, excluding stations results in greatest improvement for those showers 
which initially presented a lower confidence level, say with their first confidence level between 0 and 0.7. Generally 
speaking, those events with first confidence level greater than 0.7 obviously are the cases for which an already 

good resolution is attained ab inifiu, and to exclude a station only makes things worse. Table 1 below resumes the 
mean angular resolutions obtained for those cases, separated by intervals of first confidence levels. From Tab.1 it 

is possible to deduce that resolution can be improved by approximately 2° when excluding one or two stations, for 
those showers with 9 < N1sa: < 11 and first confidence level below 0.7. III the same interval of confidence level, 
exclusion makes angular resolution better by ca. 1.4°, even when only eight 'stations were hit. As in the previous 

case, to exclude one/two stations also opens the possibility to estimate directions of those showers that previously 
did not admit any solution. 

For those showers in which 12 or more stations were hit, it is practically always an advantage to try a better 
resolution through the exclusion of one or two stations. It is easy to observe that, for those events that already had 
a high first confidence level, the exclusion brings an improvement of 0.1° 0.3°. Again for those showers with first 
confidence level below 0.7 or without any first solution, the exclusion of one or two stations improves the resolution 
in circa 2.3° to 3°. As an example, Figures 2a and 2b show the angular resolutions for showers with 16 stations 
hit and with the first confidence level below 0.7, before and after excluding one or more stations, respectively. The 
improvement in the angular resolution by 2 , on the average, is easily seen, as in Figures 3a and 3b, which include 

the 7640 showers were more than 8 stations were hit and considering the same interval for the first confidence level. 
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Number 
of 

stations 

Number 
of 

events 

Mean angles 
(degrees) 

(conf.lev.>-2) 

Number 
of 

events 

Mean angles 
(degrees) 

(-2<conflev<0.7) 

Number 
of 

events 

Mean angles 
(degrees) 

(connev.>0.7) 

Nom, it a
ftng 

a best 
# a fint 

abeg # a fro a best 

8 . 3518 _ 5.3 4.9 1767 7.1 5.7 1751 3.4 _ 	4.1 

9 3554 4.9 4.2 1753 6.7 4.7 1801 3.2 3.9 

10 3355 4.4 _ 3.5 1624 6.0 3.9 1731 3.0 3.1 	- 

11 2929 4.1 3.2 1352 5.6 3.5 1577 2.8 2.9 

12 2451 3.9 - 	 2.8 1062 5.5 3.1 - 1389 2.7 2.6 

13 1978 - 	3.7 2.6 827 5.2 2.9 1151 2.7 2.4 

14 _ 1471 3.3 2.4 519 4.8 2.6 952 2.5 	..._ 2.3 

15 1080 3.1 2.2  334 4.9 - 	2.4 746 2.3 2.1 

16 874 2.6 1.9 169 5.2 2.2 705 2.0 . 	' 	1.8 	, 

2) Measured showers 

The algebraic procedure developed above was also applied to 12219 showers measured at the top cluster, were 

at least one particle was detected by one edge station. 

These showers were measured and analyzed in [Ref.2]. Therein the reconstructed shower directions were obtained 

by another procedure iRef.7], involving a numerical least-square fit, making possible a comparison between the 

results of both methods. For this reason all criteria used here are coincident with those in [Ref.2]. As in the case 

of simulated events, it, is necessary to estimate the actual dispersion in the arrival times 0 i , in order to estimate 

the confidence levels. Following the same procedure as before, a rough estimate for or , results to be ns. For 

those events with more than six stations responding, the comparison between the directions here obtained (without 

excluding any station) and those in [Ref.2] revealed a mean relative angle of 1.4°. Since our procedure gives the 

possibility to distinguish those cases without solution, these showers can be excluded from the previous comparison, 

decreasing the relative angle to 1.1°, as shown in Fig. 4. 

Conclusions 

As a rule of thumb, if up to seven stations respond, no exclusion is recommended, except in those cases were 

no direction can be estimated all initio. If more than seven stations were hit, there is an advantage to exclude 

detectors if the first confidence level is lower than 0.7 or in the cases were no algebraic estimate was possible. But 

it must be kept in mind that this interval of confidence level is strongly dependent of the value of cr t  2.8ns taken 
for calculating the X 2  , and therefore, the confidence level. The complete analysis and results can be seen in (Ref.8]. 
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Figure 1. Schematic representation of a shower front [ReL2] 
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Teste e Calibracao de Componentes para a Torre de 
Destilagao do detetor Barrel RICH do DELPHI 

Danielle Magalhaes Moares 
Institute de Fisica, Universidade Federal do Rio de Janeiro 

0 DELPHI (DEtector with Lepton, Photon and Iladron Identification) a urn dos quatro dote-
tores presentee no colisor de e -  e+ LEP, do CERN. Ele a compost° por diversos subdetetore. 
classificados como: detetores de tra 
co, contadores de luz .Cercnkov, calorimotros, camaras de muons e cintiladores. 

1 0 Detetor de Luz Cerenkov 

0 RICH (Ring Imaging Cerenkov) c urn detetor de luz Cerenkov optimizado para a identificacao do ir\KV numa 
faixa de momentos abaixo de 40GeV/c, que cobra quase todo o Angulo solido. 

Este sistema a proporcionado por dois detetores, urn localizado na regiao da tampa, referido corno Forward 
RICH (FRICII), e outro de geometria cilindrica situado na regiao do barril. Este (Minn) d designado Barrel RICH 

(BRICH). 0 BRICH abrange urn angulo polar do 40° < e < 140° e o FR.ICII de 15° < O < 35° c 145° < 0 < 165°. 

1.1 Descricao Teenica do Barrel RICH 

0 Barrel RICH (BRICH) consiste cle um cilindro oco de 3,50 m de comprimento corn urn ¢int e rno = 246 cm e 

Oczierno = 394 cm , dividido cm duos metades por uma parade central (Z>0, Z<O). 
Cada metade (Figura 1) d composta por 24 setores contendo urn radiador liquid° (GRAD) c tuna camara de 

deriva seguida de urn radiador gasoso (GRAD) e urn conjunto de espclhos. Num total de 48 radiadores liquidos de 

volume igual it 240 1, urn radiador gasoso de 24 m 3, 288 espelhos e 48 detetores de fotons de UV de 1200 I, corn 

12288 canais de aquisicao eletrOnica. As MWPC sao forrnadas por 128 fins ancidico de 20p, separados de 2.62 mm 
e 16 tiras catodicas de 5 mm. Estas camaras operant num ganho de 2x10 5  para cada elatron e conteem parades de 

blindagem (corn campos acelerativos) entre os fios, afim de reduzir o ponto de detecSo da carga (Figura 2). Este 
detetor opera it temperatura de 40°C e a pressao constante de 1030 liPa. 

1.2 Principios Gerais de Operagao 

o A identificack de particulas a baseada na detecao de cones de luz Cerenkov produzidos nos dois meios. 

o 0 gas Cerenkov preenche todo o espaco disponivel no detetor. Espelhos focalizadores, localizados na parte rnais 
e.xterna do detetor, refletern os fotons na direcio da camara de projecao temporal (Figura 1). 

o Os radiadores liquidos cousistern ern urna camada de 1 cm de perfluorhexano (C 6 F14 ) de baixo indite de refracao 

(1,273) e o lado oposto it regiao dc intcracao , é composto por uma janela de quartz() corn uma transparacia 
no UV . Estes radiadores sao utilizados para separacao de 7r\ I{ \p acim de Pr.: 4,5 GeV c para separagao de 
K\p acima de 6 GeV. 

o As particulas mais rapidas sao identificadas pela ernissao de luz uos radiadores gasosos, que sac) preenchidos por 
perfiuorpentano (C5F1 2). 

o Perfluorcarbonetos foram escolhidos coma mei° radiador, pais combinam urn indite de refracao apropriado corn 
uma boa transparancia para comPrimentos de onda abaixo de 165 mm. E ainda sao rri=io inflamaveis c nao 
toxicos. Algumas das propriedades destes fluidos estao descritas na Tabefa 1. 
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Ponta de Ebulicao 

( ° C) 

Km ,/ 
(g) 

p a 25°C 
(g/cm 3 ) 

n a 7 eV emus 
(mrad) 

C4 F112 -2 238 1.594 1.00153 55.6 

C5 F12 28 288 1.604 1.00178 59.1 

C6F14 57 338 1.682 1.283 677.1 

Table 1: Propriedades Fisicas,dos fluorcarbonos. 0 valor da densidade do C4 F10 corresponds ao ponto de ebulicao 

2 Torre de Destilacao .  

Durante o periodo de run de 1994, a presenca de vazamentos dentro do BRICH Ievou a mistura entre os fluorcarbonos 

usados como meio radiador. Juntarnente coin isto, aumentou o risco de condensacao ou aquecimento, bem coma, a 

variacao do indite de refraciio . Por isto, as sistemas de radiadores do BRIM] requerem urna separacao online dos 

dois liquidos C5F12 e C6 Pm utilizados como meld radiador. 
A Torre de Destilacao foi conectada nos dois sistemas de radiadores de mancira Lai que o liquido contaminado 

que retorna dos radiadores seja coletado 1111171 tanque misturador e injetado na coluna. A capacidade da Torre 6 de 

150 - 200 Kg/h c espera-se urna pureza na separacao dos produtos melhor que 95%. 

2.1 Descricao Geral 

A Torre tern urn comprirnento total de 7,7m e esti localizada entre o nivel 2 e nivel 4 do aparato DELPHI. Os 

cotnponentes principals sao : urna coluna de 5.5m de comprirnento c 100mm de diametro, urn boiler corn potencia 

de aquecimento de 12KW c um condensador corn potencia de resfriamento estimada ern 6.8KW a 28°C (ponto de 

ebulicio do C5 F12). 

2.2 Operagio 

. t> A coluna tern apenas urna entrada a opera a pressao absoluta constante. 

D 0 C5F12  e extraido do condensador a urna temperatura de aproximadamente 25°C e bombeado para o tanque 

principal do GRAD (Figura 3). 

D 0 CaFli é removido do boiler a temperatura de aproximadamente 55°C, resfriado ate 20°C e entao inserido no 

tanque principal do LRAD (Figura 3). 

D A Torre e alimentada por urna mistura nutria taxa c composicao estiveis. Para que a pureza exigida seja 

atingida, aim) necessirios 14 estigios te6ricos de separacio (rnaodo McCabe-Thiele 1 ). 

D Os gases nao condensiveis (principalmente N2), que sao diliiidos nos fluorcarbonos, estao saturaclos de C5F12 
e C6F1 4 a temperatura do condensador. Para recuperar estes fluorcarbonos o vapor de pressio a transferido 

para a bomba do GRAD fazendo corn que o gis passe pelo separador criogenico do sistema do GRAD. 

2.3 Monitoragao 

Todas as quantidades importantes da Torre sao monitoradas por um sisterna de processamento de controle Siemens 
Simatic. As seguintes quantidades tern que ser monitoradas: 

• fluxo e temperatura da igua fria; 

• temperatura da torre de destilacao , incluindo o boiler e o condensador (aproximadamente 10 sensores); 

• pressao absoluta do boiler, do topo da coluna a ao longo da coluna (aka precisao ); 

• nivel de liquid° no boiler e no tanque misturador; 

McCAbe and Thiele, Ind. Eng. Chem., 17, 605 (1925). 
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• fluxo e temperatura de entrada c saida da coluna. 

O trabaiho resultante da preparacao e calibra.cao de todas as pecas utilizadas neste monitoramento segue adiante. 

2.3.1 Medidores de Fluxo 

Para inonitorar o balanco de massa ao longo da torre, 3 medidores de fluxo foram instalados. Estes medidores 

precisam ser calibrados ji que uma mcdida muito precisa do fluxo a requerida. Elcs silo conhecidos como rotameter 

e consistem em urn tuba graduado corn diametro interno crescente e uma boia no interior. Inicialmente os medidores 

existentes rnediarn urn fluxo de ate 90 1/h, o que era insuficiente. As especificacaes do projeto exigiam dois medidores 

dc 120 1/h e urn de 25 l/h. Para que isto fosse atingido foi nccessario estudar as faros atuantes na baia tais como, 

o empuxo ( 1), a forca de friccao ( 2) e a gravidade ( 3), para quo novas boias fossem construidas. 

E'=VLXTiX+] Ltore (1) 

F = mb x g — v b  x (2) 

G = mt, x g (3) 

onde vb Evelocidade da bOia, VL Evelocidade do liquido, p Edensidade especifica, q Eviscosidade e Auvre Earea 
iivre. 

Utilizando urn esquema experimental que representa as ramificadies da torre de destilacao , e conhecendo 

dependencia da vclocidade do liquido corn a area !lyre (4), foi possivel redimensionar as boias e obter a calibracao 

rcquerida para os medidores do fluxo. 

vL = 	 r(re2 — rb2) (4) 

2.3.2 Soudas de Temperatura 

Outros parantetros importantes a serem inonitorados sic) a temperatura ao longo da coluna, incluindo o boiler e o 

condensador. Este objetivo sera alcancado atraves de sondas conhecidas como PT100. 

0 PT100 consiste em uma resistencia de platina de 1000 a 0°C e corn ig 0.451/1i. 

Apesar de estarem conectados de maneira a compcnsar a resitencia dos cahos, des precisam ser calibrados pots 

possucm uma incerteza de ±0.5°C. Para esta calibracao , foram comparados corn um termornetro de merctirio num 

banho a temperatura entre 25°C c 41°C. 

2.3.3 Sistema de Regulagem de Pressao 

A Torre de Destilacho tern que ser equipada corn urn sistema de rcgulagem de pressao passivo que opera independente 

do sistema de controle, assim como, independente de forca eletrica. Este aparato a constituido de duas valvulas de 
regulagem de pressio mecanicas 2 , uma quo injeta nitrogenio na coluna se a pressao for menor que urn limiar (tipo 

FRS) e a outra que abre (tipo FRU), permitindo a retirada do liquido da coluna, se a pressao excedcr o limite. 

Estas valvulas podern ser reguladas de maneira a estabelecer a pressao exata de abertura ou vedacao . Isto foi 

obtido estudando-se todo o mecanismo destas valvulas c das suns coneccoes . As valvulas foram reguladas para 

uma pressao relativa minima de 130 mbar e maxima de 180 mbar (Figura 4). 

2 DUNGS technic - Druckregelgeriit typ FRS, typ FRU Korrespondenwischrift - Karl things GmbH lk Cu. Postfach 12 29 D-73602 
Schorndorf 
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2.4 Performance 

Os testes dos componentes para a Torre de Destilaciio foram realizados durante os meses de janeiro e fcvereio de 
1996 no CERN. A torre foi conectada no sistema do Barrel RICH em maio de 1996 e esti em pleno funcionamento, 
coin° a seguinte performance: 

• A taxa de extracio do boiler (Cs F14) c igual a 40 ± 10 1/h. 

• A taxa de extracio do condensador (C5 F12) (3 igual a 10 f 5 l/h. 

• A mistura enviada para a torre c composta por 24,4% de C5F12 e 75,25% de C6F14. 

• 0 fluorcarbono extraido do boiler c enviado para o LRAD contem 96,68% de C6 Fla e 3,23% de C5F12. 

• A pressao ao longo da torre 6 mantida constante utilizando-se as vilvulas de regulagern de pressio , como 
demonstra a Figura 5. 

• 0 fluorcarbono extraido do condensador c enviado para o GRAD a formado por 0,05% de C51.)4 c 98,39% 

de C5F12. 

Figure 1: Sega() longitudinal do detetor Barrel RICH. 

Figure 2: Detalhamento da MWPC do detetor Barrel RICH. 
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Figure 4: Calibraciso das valvulas de regulagem de pressio mecanicas. 

eLO 

Figure 5: Pressio da coluna medida no condensador em relacrao a pressAo 
atmosferica (escala em mbar). 
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Cascatas Hadreinicas Iniciadas Por Um Unico Nticleo 

H.M.Portella, A.S.Gomcs, R..H.C.Maldonado, 	 A.M.M.Lima, E.M.Fernades 
Institute de Fisica/UFF - Nitertii - RJ 

Neusa Arnato 
Centro Brasileiro de Pesquisas Fisicas-CDPF/CNPq - Rio de Janeiro - Rs, 

As equacoes de difusao dos hadrons 96.0 resolvidas analiticamente considerando que esses 
chuveiros atmosf6ricos sfio originados por urn imico nixie° (p, cr, CNO, Ca., Mn e Fe). As 
distribuic8es de elasticidade dos hadrons na atrnosfera foram consideradas uniformes. 

1 Cascata iniciada por urn nucleon 

1.1 Equagfio de difusao dos nucleons na atmosfera 

A difusao dos nucleons na atmosfcra 6 descrita pcla seguinte equacio: 

49FN(x,x0, E,  4) FN(s,zo, E, E0) 
 + 	F  11  v 	 , ,d77 

ax 	 AN 	 o 
N( X  )X01E/ Y11 Bo) fNN m— 

Que esti sujeita a seguinte condiciio de contorno: 

FN (z = xo , E, El)) = 6(E - Eo) 

onde: 

fiviv(n) = distribuictio de clasticidade dos nucleons na atmosfera, 

AN = Iivre percurso mei:1i° dos nucleons na atmosfera, 

xo = ponto de origem da cascata, 

E0 = energia do nucleon incidente. 

Usando uma distribuicao uniforme para fNN(q) e AN = cte. solucao da equack acima é [1): 

x - 
FN(x,x0, E, Eo) = e-(x-'01AN[b(E 	

2(  
Eo ) + 

ZA 
zo)  Ii (Z)) 

N 
coin: 

(x 
, 	

xo)
Irt(E0/E) Z = 2 Li/  

e / 1 (Z) = funcao de Bessel modificada de primeira especie 

1.2 Equagao de difusho dos pions na atmosfera 

A difusio dos pions na atmosfera a descrita pela equacao diferencial: 

OF, (x xo, E El]) 	Ft  (x, xo, E,  Eo)  11  Fir(x , 	E 	130) 
 f.(70—

dri
+ ex 	 Arr. 
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LE° 	A 
 flvs 	 Eo)  FN  (x, xo, , E 0 )c164  

corn: 

Fi (x = xo, E , Eo) = 0 

onde: 

= livre percurso medio dos pions na atmosfera, 

fN1(E', E0) = distribuicio de energia dos pions secundarios originados na interacao nucleon-nucleo do ar. 

Usando uma distribuic5.o de elmticidade uniforme para os pions nos obtivemos a solucao [2]: 

F, 	
I —

1
(x,xo, E, Eo) = 	A fi,v(E, Eo)(c-(z-z0)1A. _ e -(1- -x.)1 A NH_ 

ax 

rr  T(I) e -T(') 1E0 	- 2 

E0  AN 
dt 	 E0)—

UT  1
1 (u.)dE l  

onde: 

u, = 2 VT(i)in(E0/E9 

T(i) = ).t. t AN 

1.3 Fluxo integral de hadrons 

Corn o objetivo de compararmos nossos resultados corn o espectro integral de hadrons de algurnas superfamilias 

(EE > 1000 TeV) detetadas em Chacaltaya devemos somar os fluxos dos nucleons obtidos na secao 1.1 corn os dos 

pions da se*, 1.2 e integrarmos desde Ernin (EZ) at6 Ea. 

Ea  

	

Fh(> E, Eo, x, an) = f 	(Fp, p, (x, xo,  E', En) + 	 En)) 

2 Cascata iniciada por um tinico nticleo 

2.1 Equacao de difusio dos nucleons na atmosfera 

A difusao dos nucleons na atmosfera provenientes de uma cascata iniciada por urn nude° a descrita pela seguinte 
equacao: 

FN(x xo, E, Eo) 	FN(z 	Eo)  11  FrAziro, E, Eo) 
 fNN(71)-

1111 
AN 	 + 

0 	 AN 	 '1 

+Ef,
F.,(0  , Echx,xo) f 	EWE' 

undo: 

fii(E' , E) = probabilidade de urn ;pick° j se fragmentar no nucleon, 

= livre percurso medio do nude() j na atmosfera. 
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Considerando uma distribuicito de elasticidade dos nucleons na atmosfera uniforme e urn Iivre prccurso media 

dos diferentes nticleos, constantes, nos obtivemos a seguinte solucao: 

	

Fiv(z,zo, E, E0) E 1  A  . 	EN)(e-(r---GYAN _ e-(-00.0+ 
3)1 1- -2- 

AN 

	

ir 	T(w) e - T(w) dw  iirE0 	E)  2z 
I1 (Z5 ) 

	

A. 	 E

J  ho 	 E 	 0 

ondc: 

Zj = 2VT(w)in(130/E 1 ) 

T(w) = 	+ w"--e-fa 

Os nucleus da radiacio eosmica primaria sic) agrupados de acordo corn a tabela acima: 

2.2 Equagao de difusao dos pions na atmosfera 

A difusio dos pions na atmosfcra segue a seguinte equacao diferencial: 

	

Fr (x, zo, E, Eo) 	Ft (x,  0,  E, E0)  + 11  Pw(z , 	E hi En)  cwo) ti +  
Ox 	 A, 	 j  

+ 
3 	Fi(z)zo, , El)) 

 fi„(E E')dE' 
i=l E  

Cuja solucao é a seguinte: 

3 

 jFr(Z, X0, E I  E0) 	 f r(E,E0)(C -(2-zp)1A.  7 e-('' ) / A-0+ 
. 	1 - .y=1 	,t. 

r(1)e-Tr(I) dt [E° 	E)- 
EoZ„  2 

 11 (2,) 
1.1 "0 	1 A- 

onde: 

= 2VT 1 (1)1n(EVE) 	e 	r(1) = 	+ t=-47'' 

Referencias 
[11 - N. Arata e F. M. Oliveira Castro, Revista Brasileira dc Fisica, 18 (1988) 261 
121- J. Bellandi it et al., Phys. Rev. D 50 (1994) 6836 
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Production of Sinner Layer of Si-Tracker 1996 
DELPHI 96-38 MVX 12 

E. Polycarpo* 
UFRJ, Institute de Fisica, Rio de Janeiro. Brasil 

I. Stavitski 
Dipartiniento di Fisica .. Universita di Padova and !AWN, Padova, Italy 

1 Introduction 

The DELPHI silicon microvertex detector is being upgraded for 1996. To improve the forward coverage there will 
be two layers of pixel detectors and two planes of ministrips detectors [1] on each side of it. In the barrel region 
the Outer and Inner layers will have their lengths increased and the Closer, which was already a longer layer, will 
remain unchanged. To avoid confusion with the old detector, the layers of the new Si-tracker are called Scloser, 
Souter and Sinner. The aim of this note is to fully describe the process of production of Sinner modules. In the 
second section the layer itself is described, the third gives an overview of the assembly 'and the fourth explains the 
test procedures. Finally, the fifth section makes a summary of the results obtained. 

2 The Sinner Layer 

The intermediate layer of 1996 Delphi Si-tracker lies at a radius of between 89.5 and 93.5 mm and covers the 0 
angle from approximately 21 to 159 degrees. It is composed of twenty overlapping modules, each one 55.47 cm long 
and made of four single sided and four double sided plaquettes of microstrip detectors, making a total of 160 silicon 
detectors for the whole layer. The double sided plaquettes, which are taken in pairs from the previous VD'94-95 , 
have on the p-side 1280 diodes with 25 pin pitch and a readout pitch of 50 prri , providing R-0 coordinate in DELPHI. 
On the n-side the strips are read out with a second metal layer, providing R-z coordinate in DELPHI. The plaquette 
closest to the hybrid has a readout pitch of 84 pm with no multiplexing, while the furthest is multiplexed into two 
compartments with a readout pitch of 42 pm. A full description-of them can be found in [2]. The single sided 
plaquettes are the same as those used in the new Souter layer [4] and have only p-side R-phi readout strips, similar 
to the one described above. 

3 Assembly 

The first step of module construction consists of separating an Outer'95 module, taking it apart into two Sinner 
quarter modules, each with one hybrid and two flipped double sided plaquettes of silicon. The hybrid provides all 
the necessary voltages and supports 10 MX6 readout chips with 1280 channels in total. The flipped module design 
is.well detailed in [2], while the features of the MX6 can be found in [3]. A preliminary test is done and if it is 
necessary the module is repaired. For the second step a pair of single sided detectors, previously glued and bonded 
together, is glued to the quarter module and has the readout lines bonded. Two half modules are tested once more 
and glued together by means of a composed kevlar-carbon-fiber rail, which provides mechanical firmness. So the 
assembling of the full Sinner module is done . Then it is surveyed on a special optico-mechanical setup 1  to prepare 
a 3-dimensional data base for each plaquettes with precision of 2pm in the strips plane and 15pm in the direction 
orthogonal to this plane. An automatic search for dead strips is done and they are ready to be mounted. Figure ?? 

This work was partially supported by the European community, contract number CD-C194-0118. 
I POLL S.p.a., Varallo Sessia, Italy and Mondo Machine Development Ltd., Leicester, UK 
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gives a global idea of the whole process. The steps described are carried out at CERN, apart from the gluing and 
bonding of the single sided pair, which is carried out at Padova and Cracow. The final product consists of two 
electrically isolated half modules. The differents sides of the module arc named top (corresponding to the first 640 
channels) and bottom (corresponding the last 640 channels) (fig.I). Top channels are connected to two plaquettes 
with p-l-n strips in chain and bottom channels to four plaquettes with n+p+p-l-p strips in chain. 

4 Test Procedure 

The test setup consists of a black box where the detector, which is sensitive to light, will be housed and connected 
by means of a motherboard to the supply voltages, timing signals and to the data acquisition system based on 
CAMAC standard (see diagram 2). The readout is done using a flash ADC S1R.00CO connected to an oscilloscope 
and a Macintosh. At each stage two kinds of analysis are done. A preliminary inspection with the oscilloscope can 
quickly reveal noisy regions associated to defects (locally in the working group nicknamed pinholes and Fujis) which 
need to be treated. After this a more quantitative evaluation is performed on the Macintosh. 

4.1 Pinholes and Fujis 

Figure 3 shows a schematic illustration of a readout line connected to four plaquettes. In the first plaquette there 
is a n-strip connected to 60 V and on the other side a p-strip is around 3 V. The second plaquette is flipped and 
the biasing voltages are opposite to the first. The two last detectors arc single sided. All the metal readout lines 
lie at approximately 3 V. A pinhole is a breakdown in the coupling capacitance between the diode and the metal 
line. If it. is created on the p-side it is possible to regulate the p-bias voltage in order to minimize the potential 
difference between the readout line and the strip. On the other hand, if it is created on the n-side the potential 
difference of about 60 V will produce a current flow to the electronics and usually this current will be spread 
over the neighbouring strips. To prevent current inside electronics this strip must have its bond wire removed. A 
similar problem that can be solved by removing the bond wire of the affected channel is called Fuji. In this case, 
a short is created through the bulk of the silicon between the n-side and a p-side diode, connecting the p-strip 
to 60 V and producing a potential difference that cannot be regulated. The coupling capacitor on the p-diode 
quickly breaks down, causing a current flow into the readout chips. This can occur in both single or double sided 
detectors. It creates in the pedestal distributions a region with volcanic shape, the origin of its name, affecting up 
to 40 neighbouring channels. Fujis and n-side pinholes are sonic of the major sources of noise. The presence of 
these defects also corresponds to unbalanced currents on the sides of the plaquettes. Figure 4 shows the shape of 
Fuji on the fourth chip of a half module. 
Removing the bond wire from the affected channel normally reduces the current unbalance and avoids both noise 
or pedestals saturation. Actually this strip becomes dead, but not really invisible because the charge from a m.i.p. 
will not he lost but distributed over neighbours due to the interstrip capacitance. 

4.2 Qualitative Test - Oscilloscope 

This test is done looking at the pedestal distributions on the scope for all 1280 channels. At this time the state of 
the module is qualitatively evaluated. It's possible to check if there is any short on it, if the chips are working well 
and to look for pinholes and Fujis. Very noisy regions are at this point repaired (if it is possible), often removing 
n-pinholes and p-side Fujis. 

4.3 Quantitative Test - Macintosh/HP 

After being qualitatively evaluated and accepted the module has the signal over noise ratio (S/N) calculated and 
an analysis of bad strips made. The test consists of measuring pedestals and noise with a FORTRAN program 
that reads the data file from the computer. The program makes the pedestals and noise plots for each side of the 
module. To be accepted as a good strip the channel must satisfy the following criteria : 

• Pedestals: The channel must lie within the dynamic range of the ADC. Those with too high or too low 
pedestals are rejected. 

• Noise: The noise of the channel must be such that the S/N for a mil). does not fall bellow 3. This value 
provides a cut. in the specification of levels used in the data acquisition and cluster reconstruction algorithm 
(reference [2]). Channels with too high noise after common mode subtraction are rejected. Also channels 
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with too low noise, either before or after common mode subtraction, are rejected because this indicates a dead 
channel. This test serves as an estimation of the quality of the module. 

The total number of bad strips is the sum of the strips that are rejected at least in one of the categories above. 
Figure 5 shows the plots mentioned for the module which had the Fuji repaired. It is possible to see a difference 
between the mean values of the noise on different sides of the detector, coming from the extra capacitive load of 
the readout lines of the extra plaquettes connected on the bottom side. Also the percentage of channels failing each 
cut is shown. 

4.4 Dead Strips Search 

To have more reliable information about the percentage of dead channels a special test was performed on this final 
step. This is done by placing the module in a setup with red LEDs illuminating separately each plaquette. Every 
normal strip saturates, but the dead strips do not. Thus dead channels can easily be found. In the first plaquette 
strips saturate up on the top side.and down on the bottom side. In the next plaquette they saturate down on the 
top side and up on the other. The two last only saturate up on the bottom side. The visual check of interrupted 
channels was in precise agreement with this test. The existence of a dead strip in the center of a cluster of strips 
responding to the passage of a m.i.p. can result in the reconstruction of two separate clusters at the wrong positions. 
Using a database of dead strips it is possible to repair these clusters, and recuperate the correct cluster position. 

For the 95 detector the dead strips were found by directly searching in the data, but for runs after 1996 we don't 
expect enough tracks to extract this information more clear. 

5 Results of the tests 

The results obtained for Sinner layer modules arc summarized in figures 6 to 8. The first plot (figure 6) gives 
the percentage of channels outside the limits imposed by the pedestals and noise cuts for each module. Figure 7 
gives the percentage of dead channels in each plaquette, according to the test with the LEDs. Each point in the 
vertical line is related to a different module and each vertical line corresponds to a different plaquette. The first line 
corresponds to the plaquette closest to the hybrid. To measure the signal over noise ratio for the final modules, an 
Am24I source, which deposits 60 keV in the silicon, was used. The signal and the noise for each side of the detector 
are illustrated on figure 8. The source was placed on the first plaquette, hence the signals are positive on the top 
side and negative on the bottom side. This represents a S/N for a minimum ionizing particle, that deposits 84 keV 
in the silicon, of 14. arid 13.3 for the top and bottom sides, respectively. 

6 Conclusions 

Twenty sinner modules have been fully tested up to now. The addition of the pair of single sided detectors on the 
bottom side has not brought a significant increase of noise. This could - be expected because the noise is dominated 
by the it-side of the detectors and due to the second metal layer that produces a more significant capacitive load in 
the input amplifiers. The average percentage of bad channels is 5 % and of dead channels is 4 %. These numbers 
are comparable to the last year and show that the complex assembly of this layer has not had a detrimental effect. 
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Figure 1: Assembly steps for Sinner module production. The Outer 95 module (1) is first separated to make two Sinner 
quarter modules (2). A half module (3) is made by gluing and bonding them to a pair of single sided plaquettes. 
Finally the half modules are Joined to make a full Sinner module (4) consisting of two electrically isolated halves. 

Figure 2: An schematic illustration of the test setup. 
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Figure 3: Schematic view of the connection read-out lines and the detector regarding only two strips on the top and 
bottom sides. A top read-out connects to two plaquettes while bottom one connects to all four plaquettes. 

Noise iiistraxmou 

Figure 4: The volcanic shape of a Fuji. The symmetry makes it possible to find the strip that must be disconnected 
to the readout. A very noisy region associated to the region of saturated pedestals can be seen. 
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Figure 5: The pedestal (upper plot) and noise (lower plot) distributions of a completed full module after removal of 
the Fuji shown in figure 4. The plots show the noise for each side of the detector. There is an increase of 10 % for 
the noise on the bottom side. The percentage of channels falling outside the pedestals and noise cuts are shown. The 
total percentage of bad channels is 3.8 . 
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Figure 6: The percentage of bad strips for each full module, including the number of channels outside the dynamic 
range of the SIROCCO, the noisy and the dead channels. 
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Figure 7: • The percentage of dead channels of Sinner final modules. Each vertical line corresponds to a different 
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mean signal should be multiplied by 1.4 in order to represent the signal of a rn.i.p. . 



284 
XVII Encontro Nacional de Particulas e Campos 

Pro jeto Microsul: 
Urn TelescOpio de Mtions COsmicos Horizontais 

E. W. Hamburger, 0. Dictzsch, N. Canzian da Silva, A. Bonini, 
E. M. Kubo, F. B. M. Salernme, L. M. R. Falco de Franca, 

S. A. Pereira, M. A. Schimclt, L. Galhardo* 

Institute de Fisica da Universidade de Sdo Paulo, Dept°. de Fisica Experimental 

• 

 

Institute Astronomic° e Geofisico du Universidade de Sao Paulo 

1 Experimento Microsul 

Motivacao: inexistencia de um mapearnento, no hemisferio sul, da distribuicao de fontes de raios cOsmicos em 

medias energias. E baseado no experiment° MICR.O [1], realizado ern 1987, em Frascati, Italia. 

Objetivo: o telescOpio procurara anisotropias largas e estreitas na distribuicao dos moons cosmicos horizontals. 
Localizacilo: Capula de amigo observatorio optico no Institute Astronomic° e C-Ieofisico da USP, Sao Paulo. 

o Experimento Microsul (Figura 2) comporta 6 pianos verticals, distribuidos 3 a 3 ern faces paralelas de urn 

cubo, e separados por uma distancia de 1 m. Cada piano é constituido por 12 mOdulos de 8 tubos de larocci [2,3] 

de 100 x 1 x 1 cm3  (Figura 3). Os tubos funcionam corn mistura de gas carbonic°, argemio e isobutano em regime 

"streamer" limitado, corn descargas localizadas [4]. Os tubos estao colocados entre dois pianos de faixas metalicas, 

urn na direcao X (paralela ao eixo dos tubos), e o outro na direcao Y, c sao responsiveis pela obtencao dos sinais 

induzidos devido a ionizaglo (Figura 4). This sinais fornecem as coordenadas (xi, yi) do ration em cada urn dos 6 

pianos. Isso perinite reconstruir a trajetoria da particuia e determiner a dire*, de incidencia. 

A condicao de pianos verticals garante que apenas particulas praticamente horizontals, geradas corn energia 

acima de 10 GeV na alta atmosfera, serao detetadas. 
A resolucio angular, de aproximadamente 1°, d determinada atraves das dimensoes de cada tubo detetor, 1 x I 

cm 2 , a resolucao ao longo do anodo e a distancia entre os pianos. 

2 Telescopio Didatico 

Motivacieo: divulgacao e ensino de Fisica Moderna, particularmente de Raios Cosmicos, para public° geml e 

escolas de lo. e 2o. graus. 

InstalagOes: foram construidos dois exernplares, um corn 4 pianos detetores, ern exposicao permanente na 

Estacao Ciencia, Lapa, Sao Paulo, operand° continuarnente desde o inicio de 1995, e outro em exposicaes itinerantes 
(Casa das R.osas, Sao Paulo, SP, abril-maio de 1996 e Metro Ana Rosa, julho de 1996). 

0 telescopic didatico da Estacao Ciencia cousiste de 4 pianos corn 1 modulo de detetores de larocci cada. Sao 

dispostos horizontalmente e, por isso, detetarn anions verticals. INliza ern sua eletranica cartes LeCroy 4200 

e circuitos de coincidencias e aquisicio de dados projetados e construidos por A. Bonini (IFUSP). No telescopio 
diclatico itinerante ha 3 pianos horizontals e os cartoes LeCroy foram substituidos por novos SGS (Figura 9). 

Os telescopios didaticos tem servido para ensaios da eletronica a dos tubos detetores. Foram elaborados progra-

mas de aquisicao e analise de dados para os telescopios didaticos [5], que posteriormente foram adaptados para o 
Experimento Microsul, e realizado urn escudo sistematico das caracteristicas do detector [6}. Estudou-se os padroes 

de disparos e a distribuicao angular dos moons. Resultados preliminares sao apresentados e discutidos nas Figuras 

10 a 13. Os resultados experimentais concordam barn corn os obtidos a partir de uma sinaulacio do experiment° 
utilizando metodo de Monte Carlo. 
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(End 

Figura I. Representagiu3 esquernatica de urn chuveiro (vase horizontal provocado por urn raio cosmic° primirio durante 
penetracio na alta atmosfera. Os unions produzidos sera° detectados pelo Experirnento Microsul 
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Figura 2. Principals componentes do Experimento Microsul: ocupando a regiao central esti° os seis pianos de ruodnios de 

tubes de larocci, agrupados tra a tres e 36 cartOes de aquisicito GeCroy 9200. ego redor, a fonte de alimentacio, o sistema 

misturador de gases, o circuito de coincidencias e o microcomputador tipo IBM-PC utilizado para aquisigio de dados. 

Figura 3. Modulo de 8 tubos de larocci. Cada plane do telescOpio possui 12 mdclulos. 0 telescopio didatico possui apenas 
urn modulo por piano. 
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Figura 4. Estrutura dos tubos de Iarocci e os pianos de faixas metilicas responsiveis pela obtencio das coordenadas (x„ yi) 

a partir das quail c determinada a trajetdria dos moons. 
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Figura 5. Estrutura em madeira (pie acornoda os pianos verticais do telesceipio do Projeto l4ficrosul, e o diagraina de blocos 

da eletronica atualtnente utilizada. 
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Figura 6. Foto dos tres pianos de detecio em posicao horizontal. Ve-se os cartoes do aquisicio de sinais (LcCroy 4200) e os 
distribuidores de alta tensio para os tubos larocci. Em posicio de testes, deteta as indons que incident verticalmente. 
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Figura 7. Circuito de coincidencia atualmente utilizado, e que devera ser substituido por urn circuit° de coincidencias 
majoritirio. 
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Figura 8. 0 telescapio de tnuons em sua configuracio clefinitiva de pianos verticals e Kane a mesa girateiria para orientacrio 

astronomica. No prinieiro plann de detetorwi ve-se, em carte, n conjunto de moclulos de lasocci ens faixas metalicas ("strips") 

T C if. 
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Figura 11. Distribuicoes medidas e simuladas das posit es de incidencia this particulas nos trial primeiros pianos do telescopio, 

ao long() da direr io x, para urn conjunto de aproxirnadamente 20000 eventos. Cada barra representa quantas yeses a.queIe 

canal foi ativado. A area preenchida ao fundo 6 a distribuicao prcvista por uma simulagao do detector pelo metodo de Monte 

Carlo. Nos dados, muitos canals esti.° ausentes por defeitos .  eletranicos. Em particular, hi ausencia total de clisparos em 

canals correspondentes a x > 33 cm no priuleiro piano, ocasionando uma dra.stica reducio das contagens nos respectivos 

canals dos outros Bois pianos devido a coincidimcia requerida para a aquisicao do evento ("trigger"). 
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Figura 12. Distribuicoes medidas e simuladas das posiciies de inciancia das pa.rticulas nos tres primeiros pianos do telescopio, 
no longo da dirccao y, para o mesmo conjunto de dados da Figura 2. Os canals de cada extremidade nao apresentarn atividade 
por encontrarem-se fora da regiio sensivel dos contadores. Os 'vales" prciximos a ±15 cm tambem correspondem a regiOes 
insensiveiq dcvido a cavaletes plisticos que servem de suportes nos fins de anodo. Na extremidadc direita do terceiro piano 
observa-se not elevadn minter° de canals inativos c ruidosos. 
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Figure 13. Distribuicoes dos coeficicutes angularcs das trajetorias das particulas, obtidas a partir do ajuste de x = a.. • a + bx  

c y = a, • z b y , onde u=  e ay  sac) os coeficienteg angu !arcs e b x  c b y  coeficientes fineares, aos darks. A area preenchida ao 

fundo e a distribiliOn prevista pela. simulacao. Ha born acordo entre as distribuicaes inedidas e slrrulstias, corn pequenas 

discrepancias que podem ser eliminadas corn refina.mentos no equiparnento e on simulacao. A utilizacio de varios pianos 

proximos e em coincidencia fornecc uma redundincia de mcdidas quo minimiza o efeito dos canais inativos ou ruidosos 

observados nas Figuras 2 e 3. As diferencas entre as distribuicoes mcdida.s c simuladas podern ser utilizadas para•detertninar, 

a partir dos dados, certos parirnetros nao mensuraveis dirctamente, bem como verificar o alinhamento entre diferentes partes 

do sistema. 
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T Polarisation from thE T —> pv, Channel in Delphi 

.1. H.. P. Mahon; M. E. Poll and it. C. SheHardt 

1 Introduction 

Studing the reaction e4- 	•-• Z ° 	1- + 	we determine the r polarisation from the decay r 	pv, at the 

DELPHI experiment at LEP, using data taken in 1993. 

For the reaction e+e- 	Z° 	both the Z° and the r lepton are polarised due to parity violation in the 

weak neutral current. The LEP beams are unpolarised and the inequality of the Z° couplings to left-handed and 
right-handed leptons induces a polarisation of the Z° as well as a polarisation of the taus. The polarisation of the 
r can be measured from the r decay products, assuming the V-A structure of the weak charged current, and has, 
due to the Z° polarisation, a dependence on the production angle. 

2 p selection 

The DELPHI detector [1] and the rr selection [21 have already been described. 
In order to reconstruct the p, we selected r decays containing one charged particle, 7r± and a ir °  through its 

decays seen as two (one) photons in the electromagnetic calorimeter. We then required that the angle between 
the reconstructed track and the r° was less than 20° and that the effective mass of these two particles lies in the 
interval 0.48< M,r ,r o <1.2 GeV/c 2 . 

2.1 Track selection 

The charged 14 was selected as a single 'good' track in the hemisphere of the decay considered, registered by 
the tracking detectors within the central region 45° < 0 < 135°, being 0 the polar angle with the beam axis, having 
a momentum greater than 0.5 GeV/c, track length greater than 30 cm, impact parameter in 7-0 less than 2.5 cui 
and in z less than 5 cm consistent with origin at the collision point. and vetoed with DELPHI particle identification 
programs as not being an electron or muon. 

2.2 r° selection 

The 7° reconstruction, which is the most delicate point of the analysis, was done with the following three 
different criteria: 

2.2.1 2 photons 

Photons were selected if they were reconstructed in the fiducial region of the barrel electromagnetic calorimeter 
(IIPC), which corresponds to 45° < 0 < 135°. It was also required that their energy was greater than 0.5 GeV and 
that the longitudinal and transverse profiles of the showers in the calorimeter were compatible with the structure 
of a photon. Photons that converted in the tracking detectors were also accepted when the effective mass of the 
e+e -  pair allowed to reconstruct unambiguously the original photon. 

• Inst. de Fisica, Univ. Estadual do Rio de Janeim, Rio de Janeiro, Brasil 
'Centro FJrasileiro de Peaquisas Fisicas, Rio 4 le Janeiro, Brasil 
ICBPF, Rio de Janeiro, Brasil and Pontificia Universidade CatOfica, Rio de Janeiro, Brasil 
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Pairs of photons were combined and considered as a r° candidate when their effective mass was 0.04 < 	< 0.3 

Gev/c 2  and the angle between them was less than 10°. This last cut was done in order to minimise the combinatorial 

background, as the typical angle between two photons coming from r° at LEP energies is of the order of 2.5°-3.0°. 

2.2.2 1 photon 

We also considered the case where only one of the two photons' is seen in the detector. This may be due to 

losses in the cracks of the calorimeter or, in the case of a very energetic r°, the angle between the photons is so 

small that the two photons are reconstructed as one. 

In order to accept one photon as a '77 1 ', we required that its energy was greater than 2.5 GeV. 

2.2.3 Merged 7r 1:1  

This category corresponds to the last case of the previous selection, in the special situation where the profile of 

the shower in the calorimeter is such that clearly there arc indeed two 'merged' photons. 

3 Data analysis and results 

Background and efficiencies were estimated using simulated events, which were generated with KORALZ [3], 

fully simulated through the detector with DELSIM [4] and reconstructed with the same algorithm as the real data. 

The data colected in 1993 corresponds to 15.7 pb -1 	= 91.2 GeV, 9A pb -1  at 	= 89.2 and 4.5 pb -1  

at GeV Ecm  = 93.2 GeV. We selected 18371 Tr pairs and 4933 r 	pt', decays, with an efficiency of 23% in 47r 

and a background of 15%. 	 • 

The method used in this analysis takes into account the kinematic distributions of single r decays. The r 

polarisation is reflected in the angular distributions of its decay products in the r rest frame. The angular distri-

bution affects the momenta of the final state particle in the laboratory frame, which can thus be used to infer the 

r polarisation. Due to the fact that the p is a spin-1 particle, the possibility of several polarisation states reduces 

the sensitivity of the measurement. liVe increased this sensitivity using also information front the decay of the p. 

Therefore, the extraction of the r polarisation involves a multidimensional 6, distribution [5], in terms of functions 

of the angles of the final state particles and momenta. 

The usual distribution was made for the real data taken at the Z°  peak, together with the lielicity ± 1 from 

the simulated Monte Carlo events .;  all of them passing the above cuts for p selection. To obtain the polarisation, 

the data was fitted using a maximum likelihood method including Monte Carlo statistics [6], to a function: 

I + 	1 — 1 3 	P x iv( 	N .,- _} 
1 + Po 	 1 - Po 

where Ni and 	arc the distributions of the set of variables for positive. and negative r helicities respectively. We 

also considered the six slices in cosh (cos e = -Qcos 0, where Q is the r charge) to fit the distribution [7]. Table 1 

shows the P, for the six slices, which gives a weighted mean average: 

< P, >= -0.208 ± 0.045 

Table I 
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3.1 Systematic error 

In order to evaluate the systematic error we calculated the polarisation varying the selection cuts one at the 
time. For r selection we considered just one variation: 
a) relax the requirement of total reconstructed energy and momentum. 

We introduced an error from Monte Carlo Statistics 
For the p analysis itself, we took the following variations: 

1) energy of '1 photon' ir° > 5. GeV. 
2) energy of '1 photon' w 0  > 0. GeV. 
3) energy of photons (for pairs) > 1. GeV 
4) r° mass < 0.5 GeV/c 2  
5) 0.3 < mp  < 1.35 GeV/c 2  
6) track momentum > 1.0 GeV/c 
7) accept standard identification for electron and muon 
8) just one track in the hemisphere 
9) angle between pair of photons < 20° 
10) angle between photons and charged track < 60° 

In order to estimate the systematic error, we took into account the fact that some of the variations are indepen-
dent of the internal background, and also their correlations: The p selection variations 1 and 2 are not independent, 
we take the average of their contribution to AP. The variation due to p selection 4 (7r° mass) is included in 5 (p 
mass). Finally contributions due to p selection variables 8 and 10 are negligible. 

Table 2 shows the individual contributions to the systematic error. 

Contributions A P 
r selection a) 0.005 

MONTE CA RLO 0.008 
p selection 1) and 2) 0.018 

p selection 3) 0.022 
p selection 4) and 5) 0.017 

p selection 6) 0.010 
p selection 7) 
p selection 8) 
p selection 9) 

p selection 10) 

0.005 

0.008 

Total 0.037 
Table 2 

Our final result is: 
P„, = —0.208 ± 0.045 ± 0.037 

The distribution summed over all bins in rose is shown in the figure, with the simulated data distribution 
using the fitted value of < Pi. > superimposed. 

From our result for the r polarisation, which agrees with other LEP measurements, the r and c asymmetries can 
be obtained, giving A r  = —0.199 ± 0.046 and A e  = —0.192 ± 0.071, which show that these values are compatible 
with universality. 
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Based on DELPHI data from 1991 and 1992 , and , preliminarily, from 1994 and 1995, a 
search for pair-produced neutral heavy Higgs bosons decaying into bb has been carried out 
using hadronic decays of the Z boson into four jet final states. The two production mech-
anisms present in the two Higgs doublet scheme, bremsstrahlung hZ* and pair production 

may lead to four beauty jets well recognizable using the precise inicrovertex detector 
measurements. Limits on Bli.(Z—• hA 4b) from 3 to 5 x 10 -4  arc obtained; the prelimi-
nary analysis of the 94 and 95 data decreases this limit to 1 x 10 -4 . When combined with 
the recent DELPHI standard Higgs search, this result allows to reach the kinematical limit. 
for the masses of h and A in the MSSM scheme. Results are also given in the general two 
doublet scheme. 

1 Introduction 

In MSSM, the Higgs sector has a two doublet structure, and two of the predicted Higgs particles, the neutral scalar 

h, and the neutral pseudo-scalar A, can he light.. Bence the possibility for the decay 7.—.1.1. The presently best 
limits are obtained using h (or A) , yielding a rather weak limit (10 -3) due to the low branching ratio and 
detection efficiency of this channel. 

In this paper, a search for events with four jets containing beauty particles is presented. This is done by selecting 
events with at least four well separated jets, combined with an efficient b-tagging method. 

In the two doublet Higgs scheme, the doublets mix with angles a and 13. These angles enters into the branching 
ratios of Z° to hA and hZ*, and these two processes are complementary. The mixing effects are also present in the 
decays : For tan[3> I , A decays dominantly into b quarks[1], while h may or may not do so, depending on a; for 
a=0, II completely decouples from bi. Because of the complementarity of the two channels, constraining both is 

necessary to exclude regions in the mh-mA plane. The hZ* channel is the one studied in SM-Higgs searches, with 
two important differences: The expected branching-ratio is reduced by a factor sin 2 (a — 13), and if a = 0, h will 
not decay to WI The observed branching ratio limit at some rni, sets limits on a, if [1 is limited. Front this one can 
deduce if the hA channel can produce a bEcE, or if bSbfi will dominate, and therefore which branching ratio limit 
to apply to find allowed rnA values for the given mh. To constrain the hZ* channel, the results of the SM Higgs 
search of reference 2 were used. For the above reasons, we supplemented this analysis with one not using b-tagging. 
This analysis is relevant for m h  above 45 (37) GeV/c 2  (tan(f3) > 1 (0.5)); at lower masses a=0 is excluded. 

In the MSSM Higgs sector, which is a special case of the two doublet scheme, the allowed parameter domain 

for mh, rnA, a, and # is restricted, and in particular one does not expect. a to vanish. The relations between the 
parameters depend on the top and squark masses through radiative corrections [3] [4]. 

2 Data analysis 

The analysis presented. is mainly based on the events collected by DELPHI in '91-'92, and was published in [5). 
A preliminary analysis of data recorded in '94 and '95 is also presented here. A description of the detector can 

'Representing the DELPHI'Collaboration. 
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he found in reference [6]. The standard DELPHI selection of Z —+ hadrons [71 was applied to the data and MC 

samples. 96 % of the events in the data (in total 950 000) and the background QCD MC sample passed this cut; all 

simulated signal events also did. To select events with at least four well separated reconstructed jets[8], we retained 

only those four-jet events in which the sum of the two lowest, even Fox-Wolfram moments[9] greater than 0.6. In the 

92-93 data and in the corresponding QCD-MC, 8.2 % of the events fulfilled this, while 88 (67) % in the signal-MC 

remained, if the lightest of the two Higgs bosons has a mass of 40 (15) GeV/c 2 . In the data from 94-95 (in total 2 

100 000 events), 7.0 % passed the cuts, while 6.8 % in the corresponding QCD-MC did. In the signal-MC for the 

later period, 86 % passed, for a Higgs mass of 45 GeV/c 2 . 

The b-tagging was done using the three-layer silicon microvertex detector (VD): A track with well-associated 

hits in the VD, p > 0.5 GeV/c, and a impact parameter [10] w.r.t. the fitted main vertex < 2 mm and > 2.5 (Yi p 

 was regarded to have an offset. In order to define the sign of the impact-parameter, the directions of the b quarks 

were estimated by clustering the particles into jets using the JADE algorithm[8] with the parameter Yet set to 0.01. 

The sign was taken to be positive if the projected track intersected the jet axis after the point of closest approach 

( in the direction of the momentum ) and negative otherwise. 

The impact parameter resolution in the simulation was increased by approximately 10% to match that observed 

in data. This correction was calculated on generic liadronic events and mostly affects the central part of the impact 

parameter distribution. Figure 1. a shows a comparison between simulation and data for the impact parameter 

distribution after this correction. 

The main experimental difference in the later and earlier periods concerns the impart-parameters. As of 1994, 

the DELPHI VD also measured the track coordinate along the beam- direction (the z-direction), as well as in re , . 

Hence, for the later period the b-tagging procedure was modified: also offsets in the z-direction were counted. Since 

the measurements in the two projections are independent, the offset-counting was done independently in the two 

directions, i.e. a single track could have zero, one or two offsets. The same criteria as for the offsets in the r¢ 

projection was used to select tracks with valid offsets in z; the only difference was that the cut on absolute size was 
at 5 mm (rather than 2 rum). 

DELPHI 

• -07 	 -0 05."-.--0 	00 
Cm 

10 1  

ID 

Number 01 Dositiue °Neale 

Figure 1.: The top figure shows the distribution of the impact parameter of accepted tracks in a sample of hadronic 
events. The solid line is the Monte Carlo prediction and the crosses represent the data. The lower figure shows the 
distribution of the number of positively signed impact parameters for the same sample with the same convention. 
While the general agreement. is good a certain difference arises for big number of offsets. 

Because of the long lifetime and high mass of beauty particles, their decays produce many secondaries with 
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offsets. This method is well known to provide a robust selection of beauty particles which is not very sensitive to 

various backgrounds such as wrong associations, strange particle decays, or photon conversions [10]. 

Good agreement was observed in the distribution of the number of offsets between data and simulation, as shown 

in fig lb. 

3 The data samples 

The data was classified in three samples, reflecting the different relevant channels, and the difference of the experi-

mental setup. Sample I and 11 both concerns data from the earlier period; while sample III takes into account the 

increase in sensitivity gained by the two-coordinate read-oud in the VD. 

Sample I , aimed at constraining the 131:KZ channel, contained events with more than four offsets in total. This 

sample consisted of 1899 events in the data, 1956±38±140 in the QCD-MC. The efficiency for the relevant signal-MC 

was (8.0 ± 0.5) %. 

Sample II, aimed at the bbbb channel, contained events having either three jets with at least two offsets each. 
or having two jets with at least two offsets and two other jets with one offset each. Here, the sample consisted of 

105 events in the data, 97±9±10 in the QCD-MC. For the signal-MC, the efficiency was between (8.0 ± 0.5) and 

(5.0 ± 0.5) % , depending on the mass of the lightest Higgs boson. Among the selected candidates, one had four 

jets tagged, i.e. with at. least 2 offsets in each jet. This event is shown in figure 2. 

Sample III, also aimed at the bbbb channel, but takes advantage of the new VD in the later period. It contained 
events having either three jets with at least four offsets each, or having two jets with at least four offsets and 

two other jets with at least two offsets each. Here, the sample consisted of 116 events in the data. 110±8 in the 

QCD-MC. For the signal-MG, the efficiency was between (8.0 ± 0.5) and (5.0 ± 0.5) % , depending on the mass of 
the lightest Higgs boson. 

The most important background was bb events with two additional gluon jets. The probability to mistake a 

gluon jet for a b jet is small, but, the cross section is quite large. A second background source is the pure QCD 

production of 4 h quarks (or 2 h and 2 c quarks), which occurs at a low rate: From standard QCD processes, events 

with 4 b quarks arc expected to be produced in about 0.03 % of the hadronic Z° decays ( this figure was extracted 

with the Jorstirr[il] event generator, using the Parton Shower model ). Events with two b quarks and two c 

quarks are seven times more abundant . This latter source of background constitutes 28 % of the total background 
in sample II , while it represents 10 (15) % in sample 1(111). 

The uncertainties of the size of these sources was taken into account in the systematic errors stated. Other 

sources of systematic uncertainty arrises from the slight discrepancy between the simulation of the VD and the 
observed data (the fraction of events (with any number of jets) with more than four offsets was 10% higher in the 

simulated events than in the data), and a likewise small discrepancy on the efficiency to select four jets (the number 

of events classified as four jets after the event preselection was 10% larger in the data than in the simulation, an 
effect uncorrelated with the b-tagging cuts). 

The background extracted from simulation was accordingly corrected and systematic errors of half the size of 
the corrections was assigned to it. 

Other possible systematic effects such as those due to variation of the beauty lifetime and the effects of the cuts 
were found to he negligible. 

All systematic errors were added in quadrature, giving a total contribution of 7% for Sample I and 10% for the 
Sample IL 

4 Results and Conclusions 

The number of events in all samples are clearly compatible with the expected numbers. Sample I therefore yields 
that BR(Z. hA bbcZ) < 3x 10 -3 , and sample 11 that BR(Z—, hA bbbb) < 3 (5) x 10 -4  for the lightest 
Higgs at 40 (15) GeV/c2. 
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Figure 2.: Display of a 4b candidate showing the microvertex information. In the left-hand figure, dotted tracks 
were not within the acceptance of the micro-vertex detector. Circles (squares) represent VD hits associated to tracks 
in the half detector with z>0 ( z<0 ) and crosses hits which were not. associated to tracks. The right hand figure 
displays the same candidate on an expanded scale. Only tracks measured by the micro-vertex detector and with 
momenta above 0.5 GeV/c are displayed. The central ellipse indicates the beam position. Three displaced vertices 
have been reconstructed; the ellipses define the four-standard-deviation contours around them. A K.1 candidate is 
reconstructed on the right. 

The preliminary analysis of sample Ill yields that BR(Z— hA 	bl.th6) < 1 x 10' for the lightest Higgs at 45 

GeV/c 2 . Note, however, that the systematic uncertainties have not yet been evaluated for this sample. 

In the region bellow the limit in m h  where h decouples from bb, sample LI can be used, above it sample I must 

be used. Figures 3a and 3b show the exclusion regions in the mA-mh plane. In the region where h must couple to 

bb, the process hA is excluded; if 11th is higher, it might possibly occur. 

In MSSM, samples II or III applies everywhere. Figure 3c shows that the decay of the Z° to hA excluded. Note 
that the published results [5] left a small window open for this process. The reason we can now exclude this is purely 
theoretical: since the publication of [5], two-loop calculations of the radiative corrections have been performed [4], 
and the corrections to the one-loop calculations sufficiently modified the cross-sections to exclude this possibility. 

The only dependence on parameters of the MSSM is the tn A  limit, which depends on the 'quark mass between 

500 and 800 GeV/c2 ; it, is 39 (45) GeV/c 2  at ru sq  = 1 (0.5)TeV/c2 . In the unlikely case[13] that 0.5<tanf3 <I, 

(tanf3 <0.5 is theoretically excluded [14]). we constrain mh to be above 55 GeV/c 2 . There is, however, no lower 

limit on inA when mh >60 GeV/c 2 . 

We conclude that, within IVISSM !  mh>44 GeV/c 2  for any tang and mA >39 GeV/c 2  for tanf3>1 ( at 95 % CL 
with m,=170 GeV/c2  and 61, 9 = I TeV/c2 ). 

In figure 4, the exclusion region in the tang-mA plane is shown for different values of the top quark mass. Note 

that tan8=1 is excluded if rn t=150 GeV/c 2  (one standard-deviation bellow the central value stated in ref [12]). 

The preliminary analysis of the most recent data excludes mA<45 GeV/c 2 , for in t.=170 GeV/c 2  and in„ q= I 
TeV/c2 ) and with little dependence on these masses. 

Beyond this result, some further increase in the excluded region might be attained by more stringent limits on 
hZ production. However, no further progress on the mass limits (ie. the edge of the allowed region at the lowest 
masses) can be expected from studies of Z° decays. To extend the limits further, and hence to perform a crucial 
test of MSSM, data from LE1 3 200 will be needed. 
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Figure 3.: mn-mh limit contour (at 95 % CL) obtained from searches for 11A and hZ* for : a. The two doublet case 
with tang> I, b. The two doublet case with tang >0.5, and c. The MSSM case with tanii>1 , assuming m t=I70 

GeV/c 2  and m,/=/ TeV/c 2 . 
In c, the dash-dotted line indicates the preliminary result using the data from 94 and 95. 

References 

[1) See J.F. Gunion, H.E. Haber, G. Kane and S. Dawson, The Higgs Hunters Guide (Addison-Wesley, Reading, MA, 
1990) and references therein. 

[2] P. Abreu et al., DELPHI Coll., CERN - PPE 94-46-REV. 

[3] Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. Lett. 85 (1991) 1. 
J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257 (1991) 83. 
II.E. Haber and R. Hempfling, Phys. Rev. Lett. 66 (1991) 1815. 

[4) J. Itiodaira, Y. Yasui and K. Sasaki, Phys. Rev. D50 (1994) 7035. 
R. llempfling and A. H. Iloang, Phys. Lett. 0331 (1994) 99; 

Cagan, J.R. Espinosa, M. Quids and A. Riotto, Nuct. Phys. 0429 (1995) 966 and Nucl. Phys. 0436 
(1995) 3. 

[5] P. Abreu et al., DELPHI Coll., Z. Phys. C67 (1995) 69. 

[6) P. Aarnio et al.,DELPHI Coll., NIA! A303 (1991) 233. 

[7] P. Abreu et al., DELPHI Coll., CERN - PPE 94-08. 

[8) S. Bethke et al., Phys. Lett. 8213 (1988) 235. 

[9) G.C. Fox and S. Wolfram, Phys. Lett. 082 (1979) 134. 

[10) R. G. Jacobsen, SLAC 381 (July 1991). 

[11] T.Skastrand, Comp. Phys. Comm. 39 (1986) 347. 

[12) F. Abe et al., Phys. Rev. Lett. 73 (1999) 225. 

[13] See e.g. A.B. Lahanas and D.V. Nanopoulos, Phys. Rep. 145 (1987), I. 

[14] J. Bagger, S. Dimopoulos and E. Masso, Phys. Lett 0158 (1985) 357. 



14 
3 

12 

10 

8 

6 

4 

2 

12 

10 

8 

6 

4 

2 

303 

DELPHI 
	

DELPHI 

0 	20 	40 	60 	80 	100 	120 	140 2  
M A  [GeVie J 

0 	20 	40 	60 	80 	100 	120 	140, 
MA  (GcV/c1 

Figure 4.: tanii/mA limit contour (at 95 % confidence level) obtained from searches for hA and hZ* channels in 

the MSSM case with m, 4 =1 TeV/e 2  The two figures correspond to : a. m,=150 GeV/c 2  and b. m,=170 GeV/c2 . 

in a, the dash-dotted line indicates the preliminary result using the data from 94 and 95. 
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A Medida de Rb no DELPHI/LEP 

Miriam Gandelman e Ronald Shellard 

0 Modelo Padrao tern sido testado exaustivamente pelas experiencias do LEP 1 corn precisio sensivel as correcoes 
quanticas do modelo. Essa.grande precisao permitiu prever a massa do quark top, por exempla, e pode ainda ser 
sensivel para o escudo dessa posstvel discrepancia ji que nesse ano foram coletados urn ntimero dc eventos igual 
a soma dos eventos coletados em todos os outros anos e portanto podemos dobrar a estatistica existente. Alem 
disso a muito importante do DELPHI (2], o ano de 1994 a ainda mais especial pois nesse ano foi instalado urn novo 
detetor vertices tri-dimensional fundamental para essa rnedida, como explicado a seguir. 

Uma vez que a identificaeao de urn cvento onde ha producao de quark b se de pela evidencia do decaimento 
de urn meson 11 , o detetor rnais importante para a identificaeao. desses eventos é o detetor de vertices que tern 
resoluciio suficiente para separar os vertices de producao e decaimento desses mesons. Os primeiros detetores desse 
tipo u Corn o intuito do melhorar ainda mais a. identificacao do quarks b, foi desenvolvida uma primeira geracio de 
detetores tridimensionais, constituidos por duas placas de detetores corn apenas urn lado sensivel, coladas ulna de 
encontro a outra, o que dohra a quantidade de material a ser atravessada pelas particulas detetadas. Recentemente 
foi desenvolvida uma nova tecnologia que permite construir detetores tridimensionais corn a mesma quantidade 
de material que os bidimensionais [4]. Esses novos detetores tern duas carnadas de strips perpendiculares entre si 
implantadas na mesma placa de silicio e tambem duas camadas metalicas, o que permite que a leitura seja feita na 
mesma extremidade do detetor. A colaboracao DELPHI foi a primeira a construir c instalar urn detetor que usa 
essa tecnologia, em 1994. 

Nesse trabalho foram apresentados os resultados da analise de dados feita no DELPHI utilizando corn° metodo 
para a identificacao de eventos onde houve a produeaa de urn par bb o metodo do pararnetro de impacto [51. Corn 
esse metodo obtivemos uma pureza de selecao de 95% para uma eficiencia de 17%. Para urn mesmo valor de pureza 
esse resultado 6 70% mais eficientc que o obtido corn os dados do 1993 quando tinhamos urn detetor bi-dimensional. 
A curva de cficiencia versus pureza para os anos de 1993 c 1994 pode ser visto na figura [1]. 

Os resultados obtidos nessa analise podem ser vistas na figura[2], onde os erros na figura sija a soma em 
quadratura dos erros estatistico e sistematico. Fazeudo a rnedida para 95% de pureza, o quo nesse grafico significa 
ler o valor para log io(prob) = 4.4, o valor obtido 

Rb = 0, 2164 f 0, 0019(estat) f 0, 0020(sist) ± 0, 0017(R, sist) 	 (1) 

Onde o erro relativo a variacao de R 	colocado explicitamente, ja que a medida depende diretamente dessc 
valor que pode ser a media dos valores medidos ou o valor previsto pelo Modelo Padrio. 0 resultado obtido 
compatIvel corn as previsoes do Modelo padrao e corn as demais medidas feitas em 1994 no LEP. 
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Figura 1. Eficiencia versus pureza. A curva superior representa os dados de 1994 e a inferior, os de 1993. 
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Figura 2. Rb como funcio do torte na probabilidade. 0 erro nesse ca.so é a soma em quadratura do erro estatistico e da 
estimativa do erro sistematico. 
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Synchrotron Radiation Monitoring for LEP2 using the 
DELPHI-TPC Silicon Detector 
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J. P. Passerieux, F. Pierre, J. Poiusignon, D. Vilanova 

(CEN-Saclay, France) 

E. Merle, J. Renaud 
(CERN, Geneva) 

Partially supported by EC (ContractCI1*-CT94-0118) 

1- Motivation 
The Time Projection Chamber/TPC (fig.1) of the DELPHI detector suffers contamination due to Synchrotron 

Radiation (small ionized cloud with slow drift velocity which causes a magnetic field pertubation), specially during 

the new phase of operation of the LEP2. Therefore one needs to monitor this radiation by means of an independent 

detector. This detector, which has been developped during the last 20 months, uses the silicon technique and allows 

precise measurements of both the energy and time of flight of the photons, either direct, or back-scattered by the 

quadrupoles, masks or collimators in front of the TPC (see fig. 2). Typical time delay and energy range are of 
the order of 50 na and 100 to 400 Key, respectively. The detector being independent of the DELPHI acquisition 

system, it allows a good monitoring task that can give some clue on the state of the beams and non-stop trace plot. 

In addition, MIP's monitoring ( e+ and c -  that escape from the beam pipe) can be done. 

2- First tests (1995): Design and Results 
During the year 1995 two prototypes have being installed on side C of the TPC (one between the collimators, 

1.9 m from the Intersection Point, and the other outside, 6.3 m from this IP - see fig. 2). The design of the detectors 
was: 

* One plate/prototype 

* 24 strips/plate (either single or double-sided) 
* Plate surface and thickness: 40r50rnm 2  and 300pm 
* Strip surface: 2r40mm 2  

The acquisition system (fig. 3) consisted of 2 Amplifiers, 2 Constant Fraction Discriminators ;  ADC (12 channels) 
and TDC modules, CAMAC electronics and a. VME computer (0S9 system). The time and energy resolutions have 
been found to be 3.4 ns and 6.4 KeV and the peak energies about 90 KeV for MIPs and 56 KeV for photons, the 
LEP being running at 130 GeV. The counting rate was about 0.5 Hz during the physics regime. Prior to any beam 
measurements, the dectectors were energy calibrated using an Am 241  source. Using double-sided strips, it has been 
prooved that MIP's and photon separation was possible. 

3- Set- up and results during 1996 
The final set-tip for normal operation was defined as shown in fig. 4, the Camilla monitor consisting now of: 
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* 4 modules on each side of the TPC 
* 1.9 m from the Intersection Point (close to the TPC laser box) 
* 24 strips/module 
* 12 channels/module (double strips!) - 96 total 

The acquisition system is using the DELPHI Standard Fasibus, 96-channel ADC-1885F and TDC-1877 LeCroy 

modules, crates CA MAC for the discriminators and the shapers and the 0S9 system. Figs. 5 and 6 show the results 

of energy calibration with an Am' source and the time and energy spectra obtained, the LEP being running at 

160 GeV center of mass energy. Separation of photons coming up from e+ and e — synchrotron radiations is shown 

in fig. 7. As may be observed in fig. 8 , the synchrotron radiation, important during the squeezing regime, appears 

also from time to time during the physics (normal data taking) regime. 

4- Present status and Conclusions 
The gamma monitor is now installed and ready for normal operation, sending a signal to Background-1 (Syn-

chrotron+MIP's) trace-plot at control room, being so able to give information on beam state. Some problems 

concerning the discrimination between photons and MIP's above 60 KeV are still to be solved. With higher rates, 

and so with higher statistics, one expects to be able to identify the synchrotron sources (Qpoles, collimators, 
tungsten mask). 
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TPC 

Fig. 1: Schematic view of the DELPHI Time Projection Chamber 

Fig. 2: Localization of the TPC silicon detectors 

Fig. 3: Principle of the acquisition system for the Gamma momitor 
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Fig. 4: Spatial distribution of the 8 modules of the Gamma monitor 

Fig. 5:Energy calibration of the silicon strips using Am241 
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Fig. 6: Energy and time resolutions of the Gamma monitor 

Fig. 7: Photons peaks for two successive bunch trains. 
While the higher peaks are due to direct photons produced by the electron beam, 

the small ones are back-scaterred photons associated to the positron beam. 
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Fig. 8: Time distribution of the radiation synchrotron during a typical LEP operation. 
A clear difference can be noted between squeezing and physics regime. 



312 
	

XVII Encontro National de Particulas e Campos 

DELPHI Event Server 

L. M. Mundim 
CBPF/LAFEX 

R. Xavier Sigaud, 150 - 22290- 180 Rio de Janeiro 

A World-Wide Web - WWW - e o ramo das telecomunicacoes que sofreu urn dos maiores 
saltos tecnolegicos ja visto na atualidade. Em pouco mais de 3 anos, ela saiu dos laboratdrios 
e passou a atender as necessidades de pessoas comuns (atcndendo a ulna variada gama de 
aplicagoes como acesso a jornais, publicidade, jogos, etc...) ate as de grandes instituieoes 
como o CERN, onde foi criada e desempenha urn papal fundamental, mesmo no controle de 
experiencias, como no sistema Online do DELPHI [1) 

1 Introducho 

Em urn grande experimento como o DELPHI, apesar de se obtcr eventos aos milhares por dia, existem certas tarefas 

que silo executadas na base de urn enico evento, como por exemplo cstudo de subdetectores, debug e desenvolvimento 

de software de reconstrueio, alem da visualizasio grifica de eventos de interessc especial. 

A fim de suprir essa necessidade no ambito da Colaboracao DELPHI, foi desenvolvido o DELPHI Event Server 
(DES), partindo de alguns requisitos bisicos, tais como rodar em sistema operational Unix, usar uma interface 

padronizada c ser facilmente acessivel dentro e fora do CERN. 0 rcsultado foi um pacote de programas modular 
que utiliza como interface entre o usuario e os programas do DELPHI os navegadores da WWW. 

A escolha do WWW foi fundamental para se cumprir corn os requisitos de padronizacio e acessibilidade, pois 

assim o DES pode ser acessadb de qualquer computador no mundo qrie esteja ligado a internet (desde que seja 

autorizado a acessar os dados do DELPHI), utilizando urn terminal grifico ou simplesmente urn terminal texto 
normal. 

2 Estrutura do DES 

0 DES fornece ao fisico tree opeOes: 

1. LIST - verifica em qual fita se encontra urn dado evento; 

2. PICK - copra urn dado evcnto, enviando-o no formato raw data' ; 

3. DELANA - reconstroi o evento usando o programa DELANA [2]. 

0 DES é composto de dois modulos principais, urn para receber e processar uma determinada tarefa requerida 
pelo usuario, chamada SUBMIT 2  e outro responsive! em fornecer informaeoes sobre o estado dos pedidos que 
tenham sido feitos, chamado QUERY. 

Estes modulos•eonistem por sua vez de outros modulos menores que podem ser divididos em dois 

primeiro nivel, constituido de uma interface CGI [3], a responsavel pela interpretacio dos dados enviados pelo 

navegador da WWW (netscape, mosaic, etc.) e o segundo nivel, constituido de todos os programas necessirios a 
execucio da tarefa requerida pelo usuario, de acordo corn as informaciics processadas no primeiro nivel. 

1 0 evento como foi originalrnente medido pelo detector, sem reconstructs°. 
2  Alguns termos em ingles vao ser mantidos neste artigo. 
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Figura 1. Fluxo de dados do modulo SUBMIT, responsive' pelo processamento das opcoes Delana, List, Pick. 

A CGI do modulo SUBMIT e.  compostas de um analisador de URL (Uniform Resource Locator [4]), o URL 

Analyser e dos sub-nnOdulos Delany, List e Pick ( veja fig. 1), enquanto que a CG1 do modulo QUERY e 

constituida dos sub-m6dulos URL Analyser, Get Status, DiscardFile e SendFile(veja fig. 2). 

Figura 2. Fluxo de dados do modulo QUERY, que verificar e informar o usuirio a respeito do estado em que se encontra 
lima tarefa submetida. 

O URL Analyser checa a consistencia do pedido IITTP (HyperText Transfer Protocol [4]) e o envia aos sub-

modulos correspondentes a °pica° escolhida, quo se cncarregam de executar os programai oficiais do DELPHI. A 

fungi() dos outros mtidulos é explicada a seguir. 

2.1 Fluxo de dados do modulo SUBMIT 

0 sub-mOdulo List fornece a informacao ao usuario imediatamente, pois nao necessita de nenhurn processamento 

complexo. Ele se comunica corn o banco de dados FATMEN [5], formats a informando obtida em linguagem 

HTML [4, 3] e a envia usuario. 

Os sub-mOdulos Delana c Pick, como dcmandam operacOes mais complexas, corno copia de fita em disco (cerca 

de 200 Mbytes), necessita de urn esquema de filas de execkao. 0 usuirio recebcra ao final do processo de submissao 

urn documento HTML informando se o DES recebeu corretamcnte o pedido c nesse caso, a identificacio do mesmo 

tambern é fornecida. Essa identificacao corresponde a urn ntimero Jinja), que em caso de erro posterior, servira para 

que o gerenciador do DES possa verificar as causas do problema. 

O sub-modulo Pick recebe as informkoes do URI. Analyser, atualiza o banco de dados e envia o pedido para 

tuna Ma de execusao. A posicio deste pedido na fila dependera do mimero de pedidos a serem executados c de 

quantos pedidos do usuario em questa° estao esperando pars serem processados. 

O sub-modulo Delana é urn caso especial e exige dois passos para completar a submissfio de urn pedido, como 

abaixo: 

1. ao receber o pedido initial do usuario, o sub-modulo Delana envia de volta urn formulario HTML [3] corn as 

opc6es adicionais pars o programa DELANA [2], que permitira so usuario alterar a configurkao do mesmo; 
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2. o formulario criado no passo anterior é submetido novarnente ao DES, repetindo o item anterior, porem ao 

checar que as informacoes necessarias ao DELANA estao completes, o sub-modulo Delana rernete o pedido 

fila para execuyao. 

2.2 0 fluxo de dados do modulo QUERY. 

Este modulo tambern funciona em dois passos (veja a fig. 2), fornecendo a informacao requerida imediatamente. 

No passo 1 o URL Analyser envia o pedido ao sub-modulo GetStatus, o qual se comunica corn o banco de dados 

do DES, verificando se exist .e algum pedido submetido pelo usuario em questa° e o cstado dos eventuais pedidos. 

A informasio a enviada cm dual; formas, dependendo deste estado: 

• ucuhum pedido recebido ou pedido na fila de execuctio: uma simples mensagem informando que nao 

houve non hum pedido deste usuario ou a posit' ao do(s) pedido(s) na fila, respectivamente; 

• pelo menos um pedido conclufdo: um formulkio 11TML clue possibilitari o usuario copiar os arquivos 

corn as mensagens do programa executado ou o evento em si ( raw dais ou o resultado da reconstrucao) ou 

ainda apagar do banco de dados o presente pedido, caso o rnesmo nao interesse mais ao usuario. E tambeem 

incluido a posicao de pedidos que estejam esperando para serem processados, se existirem. 

0 segundo passo 56 a executado caso a resposta enviada ao usuario no primeiro passo seja urn formulario 

(item 2 acirria). Neste caso, o URL Analyzer envia as informacoes para os sub-Inodulos DiscardFile ou SendFile 

dependendo da acao requerida pelo usuario. No prirneiro caso, este sub-modulo se cornunica corn o hanco de dados 

do DES, atiralizando-o e executa o sub-modulo GetStatus, voltando ao passo 1, conforme ji explicado acima. No 

segundo caso, o sub-modulo SendFile simplesmente envia o arqiiivo para o usuario a atualiza o banco de dados. 

3 Conclusoes 

Apesar de esta ter sido tuna versao de teste e desenvolvimento do DES atual, ela realizou todas as tarefas para a 

qual tinha sido planejada corn uma performance alem da esperada, pois rnanteve-se em operacao durance 11 mews 

processando dezenas de pedidos por dia c coin uma taxa de erros muito baixa. 

Este periodo coincidiu corn a fase LEP1.5 (o LEP operando corn energia no centro de massa de 140 GeV) c 

inicio do LEP2 (200 GeV), justamente o periodo onde a necessidade de se estudar eventos individualmente foi major, 

devido aos testes dc novas versoes de sofiwares e procures por eventos exoticos. 

0 DES veio provar mais uma vez os heneficios da WWW em urn amhiente caracteristico da riisica de Altas En-

ergias, ou seja, grander colaboracOes onde é fundamental propagar informacOe.s para centenas de pessoas cspalhadas 

en, varias partes do mundo. 
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December 2, 1996 

A CBJ-Colaboracia Brasil Japao de Raios Cdsrnicos observou alguns eventos (Interacoes 
HadrOrticas) corn caracteristicas inusitadas, denominados CENTAURO. Entre estas carac-
teristicas podemos citar a significativarnente alta rnultiplicidade de hadrons e a significa-
tivamente baixa multiplicidade de ratans produzidos na Interacao, quando comparadas as 
respectivas multiplicidades dos eventos normais. Outra destes caracteristicas é o alto mo-
menta transversal medico dos secundarios, novamente quando comparado aos eventos nor-
mais. Sera° apresentadas neste trabalho caracteristicas como distribuicOes de energia fra-
cionaria, angular e de momenta tranversal de dois destes eventos (detectados pela CBJ), 
selecionados devido a determinacio direta de seas pontos de interacao (vertices). Ambos 
apresentam caracteristicas de decimento isotrOpico e momenta transversal medio da ordem 
de 1 GeV/c. A interpreta.cao dada c de que se trata de eventos indicadores de Produck 
Whipla de Barions e Anti-Barions. 

I Breve descrigao do detector 

0 detector a constituido de duas etzmaras. Cada Camara C composta por urn arranjo de blocos. Os blocos esti.° 

arrumados como azulejos em urn . piso. Cada azulejo seria urn bloco, e o piso seria a camara, sendo que nada ha 
espaco entre as hlocos adjacentes de uma mesma camara. Urn bloco consiste de uma pilha de envelopes contendo 
material fotossensivel, corn placas de chumbo intercalaclas entre os envelopes. Cada envelope content em geral dois 
filmes de Raio-X c uma placa de EmuIsio Nuclear. As duas camaras estao separadas por urn alvo de material rico 
ern carbono e por urn vac) livre de cerca de 1,7 m. Cada bloco merle cerca de 40 cm x 50 cm. 0 inimero de blocos por 
camara e o ntirnero de envelopes por bloco varia de acordo corn a camara. 0 detector é capaz de registrar os fatons 
(mais especificamente, a parte carregada das caseates eletromagneticas produzidos por estes fotons 1 ) produzidos 
direta ou indiretamente pela Interacao Hadranica. Basicamente, ele fornece a energia (ver [2], [3] e [4]), os ingulos 
zenital e azimutal, e a posicao de cada fOton detectado. Para rnaiores &tallies ver [1]. 

II Mkodos de analise 

0 conjunto de fatons povenientes de uma mesma Interacao Hadronica é denominado familia: De acordo corn a 
regiao do detector onde ocorreu a Interacilo Hadremica (III), seus secundarios o detector), C-Jatos (IH no alvo 
de carbono) ou Pb-Jatos (IH nutria placa de chumbo). A altura do panto onde ocorreu a IH, ou simplesmente a 
altura de interacao, é tambern determinada. No caso destes dois eventos (ou familias), a altura foi determinada 
por triangulacao, que consiste basicamente em determinar-se a separacio entre os varios chuveiros da familia em 
diversas camadas. 

Identificadas as familias, verifica-se cntao so cada uma delas é rcalmente resultante de uma (mica III corn 
proclucao isotrdpica de secundarios. Isto a feito usando-se urna relacao, chamada de 72, dada por: 

	

E 	E E7.07 . 

	

Ren  = i=i 	iol  

	

4 	9 

	

( 	E 7. 7.) 

97, < 67,4.1 (1) 

I Chtunada eimpleemente de chuveiro. 
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onde: 

• 9„,. ;  é o angulo de incidencia do i-esimo -y, 

• E. é a energia do i-esimo 7. 

Supondo decaimento isotropic° no referencial de repot's° do Estado Intermediario, obtem-se, para a expressao 
analitica de 1Z: 

(2) 

onde: 

• o fator do Lorentz do Estado Interrnediario. 

A qualidade do ajuste da expressito 2 aos pontos experimentais obtidos usando-se a expressao I, permite avaliar se 
a familia é resultante de uma Unica IH isotrOpica. Os dados que atendern a tal criterio sao entao submctidos it urn 
segundo algoritimo, chamado de mDW, em referencia a sua sentelhanca coin o algoritimo de Duller-Walker{5). A 
express -alp do mDW a dada por: 

n
n 	

n 
1  

mDialiv. = 
4Mi' 

E E-,., + E f'7,  x07;  + E E-,, 
i=i 	71.  i=i 	i=i 

4- 	EliWO." ) 3  , 
3r 

Nota-se entao quo o conjunto de dados se divide em grupos. A cada grupo associa-se urn Estado Intermediario 
Discreto2  diferente, batizados de Mirim, Asti , Guactl e Centauro. 

III Conclusoes 

Na figura 1 nota-se como as 111 parccem se dividir cm alguns tipos diferentes. Na figura 2 vcmos a distribuicao de 
energia fracionaria dos dois Centauros (neste grafico os fotons nao foram diferenciados dos hadrons). Nota-se como 
as distribuicOes dos dois sao semelhantes, indicacao de quo sit) eventos do mesmo tipo. Na tabela 1 sao mostradas 
algumas grandezas caracteristicas de cada urn destes tipos. 

Uma das caracteristicas dos Centauros que mais se destaca é a baixa multiplicidade de chuveiros iniciados por 
futons. Neste ponto cahe tima pequena explicacao sobrc os criterios usados para se identificar uma cascata iniciada 
por urn fOton e uma iniciada por um hadron. Nas IH's comuns (Mirini e AO) ocorre o fenomeno conhecido corno 
Producio MUltipla de Mesons (PMM). Dentre estes, o it (carregado ou neutro) e o rnais abundante. A maioria dos 
chuveiros detectados, neste caso, d provenicnte dos fOtons (produzidos aos pares) no decaimento do r° (r° 7+y), 
cuja vida mediae rnuito manor que a dos sous "irmaos" carregados. Os chuveiros destes futons (que sao identificados 
corno i's) comecani, na grande maioria das vezes, nas prirneiras caniadas da camara. Os pions carregados, por sua 
vez, podem interagir hadronicamente corn as placas de chumbo do detector (Pb-Jato), na malaria dos casos em 
profundidades bem maiores (nas ultimas camadas do detector). Esta segunda IH ira resultar em uma segunda PM M, 
e consequenternente em mais r°'s, que por.sua yes vao produzir mais futons cujos chuveiros seri° detectados. Este 
tipo de chuveiro sera identificado corno hadron. Desta definicao surge o primeiro criterio para se identificar um 
chuveiro como ou hadron, a profundidade em quc o rnesmo comeca. Chuveiros "rasos" sao -y's, chuveiros profundos 
silo hadrons. 0 segundo criterio esta relacionado corn a variacho do tamanho da cascata (nilmero de particulas 3 ) 
em fun*, da profundidade na carnara. Urn hadron secundario pock sobreviver a primeira IH e interagir novamente 
iiroduzindo urn segundo Pb-Jato. Analisando critio a curva nUmero de particulas x profundidade deste chuveiro 
(que na realidade sao dois), observar-se-ao dois picos. A chance de urn chuveiro iniciado por futon apresentar urn 
comportamento deste tipo a muito baixa 4 . 0 terceiro criterio esta associado a diferenca de rcsolucao dos materias 
fotossensiveis utilizados. Os chuveiros sao observados como manchas nos filmes de R.aios-X, e tracos (dos e+ - ) nas 

2  Em vririos modelos para IH's, costuma-se supor a formacio de urn Estado lntermeeliitrio entre a colisito e o decaimento. Em geral 
este Estado Intermediario (El) é um objeto terrnodinimico que decal ao atingir equilibrio t6rmico. Este tipos de El's sao corthecidos 
na literatura como bolas de logo. 

3  Estas particulas sit* de fato cletrons c positrons, produzidos pelos virios fenOmenos eletromagnaticos envolvidos no desenvol vimento 
do chuveiro. 

4 Na realidade a chance e nula, trims casos extremos (laths no material fotossensivel, por exemplo) de faihas experirnentais podem 
levar a picos falsos na curva. 

2 	(1' 202  + 2)006  
72.(0,1') — 

(2) RI 	1-' 202 ) 2  arctan(P0) — (1 — 1' 2 82 )1'01 2  
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Placas de EmuIsao Nuclear. No caso de urn chuveiro iniciado por hadron, a niancha do filme de Raios-X pode 
aparecer corn varios nucleos de tracos de e+ -  na Placa de EmuIa.°, devido aos varios pions produzidos nas 111 
dos Pb-Jatos. Novamente, a chance de urn chuveiro iniciado por f6ton apresentar urn comportamento como este 
(principalmente se o ntimero de nticleos for major que dois) d muito baixa. 

Assim, a maioria dos cornponentes dos dois eventos do tipo Centauro foram identificados como hadrons e a sua 
rnultiplicidadee bent major que a dos eventos normais. Isto podcria ser explicado supondo que, por algum motivo, 
ir°'s nao foram produzidos na IH do prirnario. Entrctanto corrigindo-se o momento transversal medio de flatirons 

cm forma de futons (PV), usando-se uma multiplicidade media de 0.3 e levando cm conta que s6 a detectada a 
parte eletromagnetica da 111, obtem-se (P1 „) da ordern de I GeV/c para os Centauros 5 . Como as familias Centauro 
analisadas foram produzidas isotropicamente (segundo o algoritimo usado para verificar isotropia, figuras 1 e 5, 
podemos descreve-las straw% de modelos termodinamicos para III. 'Pais modelos 'nostrum que ha uma relacao entre 
(Pt ) do Estado Intermediario e a(s) massa(s) da(s) particula(s) produzida(s). Seguindo esta linha de raciocinio, o 
valor de 1 GeV/c para o (P s ) do Centauro pode ser visto corno sinal da producao de particulas mais pesadas que 
aquelas produzidas nos eventos normais (Mirim e Act* Assim, o valor relativamente alto de (Ps ) dos Centauros, 

associado a esta singular multiplicidade de flatirons e futons, sugere que as Centauros sejam resultantes nao do 
fenOmeno de Producdo Mtiltipla de Mesons corn supressao de w c"s, mas sim de uma Productioltipla de Rations 
e Anti-Bdrions. 

f6tons ir° hadrons 
(N.,)  (P,) 

(MeV/c) 
(N.0) (A) 

(MeV/c) 
(N,,) (4: 3 ) 

(MeV/c) 
Mirim A-Jatos 7 ± 0.4 168 ± 13 2.5 ± 0.3 280 ± 17 - - 

C-Jatos 7 ± 0.5 125 ± 11 2.5 ± 0.4 192 ± 14 - - 
Asti A-Jatos 15 ± 0.4 385 ± 20 4.6 ± 0.3 547 ± 23 - - 

-Jatus 17 f 0.6 258 f 16 6.4 f 0.6 387 ± 20 - - 
Centauro 1 A-Jatos - - - - 42 * 2 366 ± 56 

Centauro 5 A-3atos - - - - 39 1 4 267 * 43 

Table 1: ReSUMO dos resultados obtidos. (N.,) , (N7 0) e (Nra ) sac), respectivamente, as multiplicidades medias por 
Ill de futons, 7rG's c hadrons. 
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sEsta correcao f necessaria, porcine (4:0 ) nit) 5 o (Pt ) das primeiras particulas produzidas pcla III, enquanto que (P,,) dos eventos 
normais 5. 
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Figura 1. Grafico do mDW para os Centauro 1 e 5, Guacli e as familias A-Jaws. Notar a separack entre as quatro 
tipos de Estado Intermediirio identificados. 
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Figura 2. Abaixo: distribuicao de energia fracionaria para o Centauro 1. Aciina: A inesma para o Centauro 5 
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Figura 3. Figura simplicada dos diferencas entre urea interacao Centauro e uma comum. 
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Figura 4. Grafico do ajuste da funcao R usada para teste de isotropia para o Centauro 1. Notar que a qualidade 
do ajuste c boa, indicando que a familia Centauro 1 atende o criterio do isotropia. 
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Figura 5. Grafico do ajiiste da fungi() R usada para tcstc de isotropia para o Centauro V. Notar novamente a 
qualidade do ajiiste d boa, indicando quo a familia Centauro V tambem atende o criterio de isotropia. 
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Figura 6. Pistribuic.io  integral de momento transversal dos hadrons detectados (em forma de grupos de Centauro 
l. 
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A Medida da Polarizacito do T no DELPHI/LEP 

Sandra Amato e Leandro de Paula 
Institute de Fisica, Universidade Federal do Rio de Janeiro 

A medida da polarizacao do r, produzido no decaimento do Z°. 4i uma das maneiras mais precisas de se ter 

acesso as constantes de acoplamento axial e vetorial e. consequentemente. ao  fingulo de Weinberg urn vez que 

< PT >= AT rti 
2vi 
 = 2(1 4Sen 2 01.11) 
.ai 

Quando o 2° a produzido por colisoes de feixes nao polarizadth de eletrons e positrons a polarizacao do lepton 

produzido, em funcio de sua distribuicao angular, é dada por: 

PT
(cos0) = < P, > (1 + cos 20)+ 2 < P, > cos0 

. 	(1 +cos 2 9)+ 2<I'T ><Pr >cos0 

onde < Pt  > é a polarizacao do eletron e nao foi levada em coma a universalidade leptonica[1]. 

No DELPHI[2], de 90 a 95, foram observados da ordem de 3,6 mill -16es de decaimentos do Z.  Ja foi publicado o 

resultado da anidise da medida da polarizacio do r relativo aos 3 primeiros anos[1], que correspondern a um pouco 

menos de 1/4 do total de dados. No presente trabalho estamos analisando aproximadamenteos 2 milhOes de eventos 

coletados em 93 e 94. .• 

Dentre os varios modos de decaimento aquele que propicia uma medida mais direta e o canal r — + i por se 

tratar da producao de uma particula de spin nub. 

A selecio de eventos tern uma eficiencia de 57% quando trabalhamos na regiio central do detetor e o background 

é de 10.2%, sendo que 9.9% sao devidos a outros decaimentos do r. 

Selecionamos 4360 candidates produzidos corn uma energia do feixe igual a 92 GeV. Da observacao da figura 1 

observa-se que ha urn born acordo entre a simulacao, histograma, e os dados, pontos. A medida da polarizacao se 

faz atraves do ajuste da distribuicoes de moment° dos dados corn as esperadas pira eventos corn polarizacao +I e 

-1, figura 2. 

Identificamos as principals causes de erros sistematicos e relizamos uma primeira avaliacao visando a determinar 

um limite superior para este erro. Nosso resultado foi combinado corn o obtido para os 2956 candidatos selecionados 

no trabalho anterior. 

Na figura 3 é mostrada a polarizacio em fungi() de 0 e o valor medio c calculado atraves do ajuste da funcao 

apresentada anteriormente. Constata-se que a universalidade leptOnica a respeitada pois os valores de < PT  > e 

< Pe  > sao praticamente os mesmos. 

Os resultados preliminares, para a analise do canal do IT, sao: 

B.R.(r 	ir(h) + v)= (12.18 ± 0.21 ± 0.4)% 

< PT  >= —0.169 ± 0.028 ± 0.050 
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Combinando-se corn es resultados, tambem provisorios, obtidos por analises de outros canais de decaimento 

temos 

< Pr  >= -0.139 ± 0.007 ± 0.005 

Este trabalho foi parcialmente financiado pelo CNPq e pela C.E. contrato C11-CT94-0118. 
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[1] Measurements of the r Polarization in Z °  Decays, Z. Phys. C67: 183-202. 1995. 

(21 Delphi Collaboration, Nucl. lustr. and Meth. A303: 103, 1991. 

(3] Particle Data Group. 

Figure 1: Comparagio entre dados, pontos, e simulacio, histograma. Da es-
querda para a direita e de cima para baixo siva apresentadas as distribuicoes 
de momenta da amostra para a seguintes situagoes: eventos corn ate 6 
particulas produzidas; selegio de decaimentos leptonicos do Z°; selecio de 
eventos onde ha producio de r; selegio final. 
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947 --> Tv+v 

PT,/ Pbewn 

Figure 2: Distribuicao de momento dos dados, pontos, e simulage.o: em cinza 
é apresentado o background, os dois histogramas a meia altura representam 
as distribuicties para as polarizacoes -1 e +1 e a curva superior é a soma. 
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Figure 3: Polarizacito do r em funcio de 0 para dados de 91 a 94. As duas cur-
vas ajustadas, supondo-se ou nio a universalidade leptemica, se superpoem. 
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Teste do Prototipo do Novo Anel Cintilador do 
STIC e Testes das Fotomultiplicadoras e dos 
Cabos de Fibras Oticas do Contadores de 40° 

'Tatiana da Silva-IF/UFRJ 

1 Introducio 

A colaboracio DELPHI instalou o STIC (figura 1) no inicio de 1994. procurando autnetitar a hermeticidade do 

detetor na regiao frontal - havia urn gap entre 8° e 11 °  deixado pelos calorirnetros eletromagneti cos (SAT + F &If C) 

c medir a luminosidade corn uma precisao de 0.2%. 

A principal tarefa do STIC é permitir unia medida precisa do ponto de impact() do eletron no liinite interno de 

aceitacao. 

2 Descricao do Detetor : 

2.1 Calorimetro : 

0 STIC consiste de dois cilindros localizados simetricamente a 2.2 ni do ponto de interacito, cobrindo uma regiao 

angular 29mrad < 0 < 1881nrad e uma radial 65rrirzi < r < 420mm. E constituido por 47 sanduiclies conipostos 

por placas de chumbo larninadas corn ago e telhas cintiladoras, correspondendo num total de 27X 0 . 

A luz produzida nas telhas pelo chuveiro eletromagnetico a trasportada para os fotodetetores, localizados na 

partc parte de tra.s do detetor, por fibras W LS (posicionadas ortogonalmente as placas do calorimetro) clue tern um 

pico de absocao em 420nm e urn de emissao em 520nm, ou seja, absorve no azul e emite no verde. 

As telhas cintiladoras se encontram segmentadas em 16 setores azimutais de 22.5 °  e 10 radiais. As hordas dos 

setores se encontram deslocadas de urn piano para outro eni 375;lin nuns total de 18 mm do primeiro ao ultimo 

piano. Este deslocamento foi feito a fim de se obter uma completa hermeticidade e se evitar que part.iculas es:capein 

do calorimetro atraves dos bura.cos destinados as fibras oticas ou atraves das falhas entre as duos metades cilindricas 

que compoem o calorimetro. 

As nip uniformidades na resposta em energia tipicas de detetores deste tipo sao resolvidas. emit°, corn tuna 

cstrutura de torres compostas por pianos continuos de conversio e corn uma aka densidade de fibras. 

2.2 Detetores de Said° : 

Os pianos 8 (4.0X 0 ) e 15 (7.4X0 ) do calorimetro foram substituidos por detetores de silicio. cobrindo a regiao 

interim do detetor (29mrad < B < 80mrad). 

Cada urn dos pianos é constitido por silicio altamente resistivo do tipo-n. corn strips tipo-1> iniplantadas na 

frente e uma camada n+ Was. 

As strips sao circulates corn uma separacio radial de 1.712 Mill (1.751 mm) para o primeiro (segundo) piano. 

cobrindo 22.5° em 

Estes detetores permitem a reconstrucao da direcao do chuveiro, inipedida peia geometria do calorimetro. 



Tatiana da Silva 	 329 

2.3 Sistema de Veto : 

E composto por 64 contadores trapezoidais dispostos ern 2 planes posicionados em frente aos Cilindros do calorimetro, 

a uma distancia entre 2010 e 2050 mm do ponto de interacao, cobrindo uma regiao angular, 43.77nrad < 9 < 

185mrad, e uma radial, 87.8mm < r < 379mm. 

A luz a coletada por 16 fibras WLS sendo 8 cm cada lado do cintilador. 

Este sistema permite a separacio entre particular carregadas c neutras. 

2.4 Nariz e Sistema de Mascara de Mingstenio : ' 

Extendem-se radialmente de 61-96 mm a partir da linha do feixe c cobrem uma regiao angular de 30-44 mrad. 

Encontram-se no lado C.do calorimetro, definindo o limite interno do detetor para medidas de luminosidade. 

Existe urn gap de 5mrad entre este sistema e a protecao de tungstenio que foi deixado para permitir uma major 

clareza na instalacao dos contadores de veto. 

Este trigger de energia neutra foi operational para o run de 95 no qual o LEP rodou a energia de 140 GeV, nuts 

forneceu uma taxa de trigger alta demais para urna operacio segura no DELPHI dentro de um tempo morto razoivel. 

Por este motivo decidiu-se instalar urn novo anel cintilador posicionado bem proximo ao beam-pipe cobrindo este 

gap. 

3 Teste do protOtipo semicircular do novo anel cintilador corn leitura 
feita por fibras WLS: 

O objetivo deste protetipo a checar a coleta do 1112 e investigar urn metodo para-se colar fibras numa superficie 

circular sem provocar o aparecimento de bolhas de ar que podem limitar a transmissao de luz. 

0 contador tern uma forma semicircular corn urn raio interno de 56 mm e um externo de 120 mm. 

A coleta de luz é feita usando-se urn dispositivo, que se encontra nas duas extremidadcs do contador. no qual 

8 fibras WLS sir) coladas coin cimento Otico. Estas fibras eram terminadas corn conectores que permitiam a lien 
ligacho corn fibras transparentes quo transportam a luz para os fotodetetores (fotomultiplicadora-s Hamamatsu 

H3165). 

A resposta do contador foi estudada corn uma fonte de raios beta (Rutenio). Os dados foram armazenados para 

comparacio corn os resultados obtidos nos testes feitos corn raios cesmicos. 

No teste corn a fonte as fibras nas extremidades interna e externa .do contador cram conectadas corn cabos 

de fibras eticas, de lm de comprimento, a fotomultiplicadoras separadas a fim de se medir a transmissao de luz 

separadamente. Urn pequeno contador de 2 mm de espessura foi colocado em baixo do 'contador teste (8mm) e a 

fonte 

0 sine] era mandado para urn fanin fan out linear que tinha como lunch° copiar a entradaTornecendo duas saidas 

exatamente iguais a entrada. Uma saida seguia para o ADC e a outra era discriminada, somente sinais acima de 

—20mV cram aceitos, gerando o trigger. Apes a geracao do trigger a coincidencia a bloqueada, a unidade de tempo 

atrasa o trigger para o computador xate que o ADC termine a digitalizacao do sinal e tambem impede que triggers 

adicionais sejarn gerados ate que o sistema de aquisicao gere um busy. A coincidencia a vetada pelo tempo morto 

do sistema de aquisicao. 

A aquisicao foi baseada no sistema MACU A1 que rodava num Macintosh ligado a urn modulo Ciarnac (ver figura 
2) 

A fim de se estudar a uniformidade na coleta de luz foram obtidos dados em diversos pontos do contador. 

3.1 AnaIlse dos Dados : 

1. Qualidade do contador é dada pelo numero de fotoeletrons( tabela 1): 

A PrPe — 
(
Pico—Pedesgaif  , sendo 47 = iier 2  — cr= — 	 dist 	red 
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2. AnaIlse de uma fotomultiplicadora impondo urn cone na outra para eliminar sinais que nao correspondiam 

ao de uma particula carregada que tivesse atravessado o contador. 

0 efeito a mostrado superimpondo o espectro do ADC apps o carte e o espectro sets o corte(figura 3). 

4 Teste dos Cabos de Fibras Oticas e das Fotomultiplicadoras usadas 
nos Contadores de 40 0  

4.1 Os Contadores de 40 0  

Sao urn conjunto de contadores constituidos par chumbo c material cintilador, instalados na regia() entre u barril 

e us calorimetros eletromagneticos na.regiao frontal no lado C do DELPHI. 0 proposico identilicar. a ettergia 

eletomagnetica que nao d detetada par escapar na.s falhas entre o barril e as tanipas. aumentando a hermeticidade 

do detetor. 

Cada contador consiste de 2 cm de chumbo e I cm de material cintilador. A coleta de luz c feita usando-se 

fibras WLS. Sao tres os tipos,de contador: A. 13 ;  C. Possuem formas diferentes mas tern a IlleS1118 espessura c se 

encontram dispostos em tres aneis concentricos. - , 

0 raio mais externo a constituido pelos contadores 'A que cobrem urn angulo polar (0) entre 39°  e 42°. e um 

interval° azimutal de 15°. Os rains inediaccoe interno consistem dos contadores H e C. respectivanicnte. Eles cobrem 

um intervalo polar entre 36° e 40° e cobrern a mesma regiao azimutal estando acoplados a inesina fotomultiplicadora. 

4.2 Teste dos Cabos de Fibras Oticas Usados nos Contadores de -I00  

0 objetivo deste teste é verificar a existencia de algum cabo danificado medindo-se a transmissao de luz atraves dos 

mesrnos. 

A medida foi realizada iluminando-se as cabos corn a mesrna fonte de Liz. 

A aquisicao é sernelhante a do teste anterior. etas o trigger é dado por um pulsador que faz cow que 0 LED 

pisquc. Este led emite luz verde para reproduzir a sittiacao. cm  que estes cabos de fibra transparence recebein luz 

no verde das fibras WLS c a transporta ate os fotodetetores(figura 1). 

4.3 Teste das Fotomultiplicadoras usadas nos Contadores de 400  

Procurou-se atraves deste teste investigar a estabilidade das fotomultiplicadoras(figura 5). 0 minter° de fotoeletrons 

e o ganho(tabela 2) foram calculados em relacao a uma determinada fotomultiplicadora. Os resultados foram 

importantes para a comparacio corn medidas realizadas tan 95. 

m — I ADC•ATT—PED13  Arrr= 10 
 ''I'e 	 (o•ATT) 2  

(A DC •  ATT - P  CD)  

Ganho = 	"r' 
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DELPHI STIC 

• Figure 1: STIC e Cintiladores do Sistema de Veto 
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Figura 3: Superposicao do espectro do ADC apos corte e o sem corte 
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Figure 4 : Aparato experimental do Testa dos Cabals de Fibras °bus 
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Contadores de 40 0 



:3:34 	 XVII Encontro Nacional de Particulas e Campos 

Table I: Ntimero de Potoeletrons 

I Imid 	] mid rmid r 

miped_veto_r cut veto 1 9.5 ± 0.4 8.6* 0.4 9.8 ± 0.2 9.4 ± 0.3 8.1 ± 0.3 
miped_veto_l cut veto r 9.8 ± 0.4 10.2 ± 0.5 9.2 ± 0.3 10.9 ± 0.4 9.6 ± 0.4 

sum(l+r)_cut I 18 ± 1 15 ± 2 18 ± 1 17 ± 2 15 ± l 
surn(1-1-0 cut r 20 ± 1 16 ± 2 20 ± 1 18 ± 2 17 ± 1 
sum(I+r) cut lr 22 ± 2 21 ± 2 24 ± I 20 ± 2  23 ± 1 

Table 2: Result.ados 

PM lyre Ganho PM. Npe  Ga11110 

082 1.52 0.26 312 2.01 0.57 
083 1.42 0.87 323 1.18 1.38 
087 1.91 0.60 :344 1.91 0.87 
091 1.80 0.44 379 1.13 0.34 
092 1.61 0.41 460 1.38 2.33 
093 1.45 0.67 461 0.87 2.98 
097 0.95 . 2.77 462 1.03 2.85 
102 1.78 0.63 465 0.92 3.47 
109 1.24 1.01 472 1.56 0.71 
103 1.42 0.36 480 1.69 1.72 
139 1.59 0.83 511 1.33 1.12 
172 1.88 1.18 549 1.52 0.35 
177 1.09 1.39 655 1.59 1.90 
193 1.57 0.75 670 1.41 0.69 
203 1.95 0.98 677 1.33 1.79 
209 1.00 1.00 688 2.04 0.32 
212 1.00 1.56 693 0.85 2.39 
222 1.50 0.71 739 2.21 0.25 
232 2.26 0.21 750 0.85 0.56 
240 1.65 2.22 751 0.80 1.32 
242 1.27 0.85 752 0.89 1.06 
301 1.45 1.02 771 1.30 0.37 
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Critical Coupling for Dynamical Chiral-Symmetry 
Breaking with an Infrared Finite Gluon Propagator 

A. A. Natale' and P. S. Rodrigues da Si!vat 
Institute de Fisica Teorica. Universidade Esiadual Paulista 

Rua Pamplona, 145. 01405-90O. Sao Paulo. SP Brazil 

We compute the critical coupling constant for the dynamical chiral-symmetry breaking in a 

model of quantum chromodynamics. solving numerically the quark self-energy using infrared 

finite gluon propagators found as solutions' of the Schwinger-Dyson equation for the gluon. 

and one gluon propagator determined in numerical lattice simulations. The gluon mass 

scale screens the force responsible for the chiral breaking, and the transition occurs only for 

a larger critical coupling constant than the one obtained with the perturbative. propagator. 

The critical coupling shows a great sensibility to the gluon mass scale variation. as well as 

to the functional form of the gluon propagator. 

1 Introduction 

The idea that quarks obtain effective masses as a result of a dynamical breakdown of chiral symmetry (DB('S) 

received a great deal of attention in the last. years [I, 2]. One of the most common methods used to study the quark 

mass generation is to look for solutions of the Schwinger-Dyson equation for the fermionic propagator. It. is known 

that above a certain critical coupling (a, 7,-  y; /4r) a nontrivial self-energy solution bifurcates away from the trivial 

one. Numerical evaluation of this critical coupling in QCD with three and four flavors gives o, — 0( I) (3. 4]. 

Parallel to the study of DBCS a lot. of effort. has also been done to obtain the nonperturbative behavior of the 

gluon propagator [5. 6. 7], and perhaps one of the most interesting results is the one where it is argued that. the 

gluon may have a dynamically generated mass [ii]. The study of the infrared behavior of the gluon propagator was 

also performed numerically on the lattice N. and more recent numerical simulation give strong evidence for an 

infrared finite gluon propagator in the Landau gauge [9]. It is worth mentioning that front the phenomenological 

point of view, the existence of a "massive gluon" may shed light on several reactions where long distance QCD 

effects can interfere. and examples of the possible consequences can be found in the literature. see. for instance. 

Ref. [10. 11. 12]. 

Much work has yet to be done about the infrared behavior of the gluon propagator. but it is clear that its 

implications have to be tested in all possible problems. It is possible that the constraint coming from DI3CS. 

and other phenomenological studies [10, 11, 12] will provide a map of the infrared gluon propagator. Since the 

bifurcation point for DBCS was studied up to now with the perturbative 1/k 2  gluon propagator. it is natural to ask 

what. is going to happen with the infrared finite propagators that have been found through solutions of the gluonic 

Schwinger-Dyson equation or using Monte Carlo methods, and, moreover, to look for the consequences of different 

forms of non-perturbative gluon propagators. It is intuitive that the force necessary for condensation is going to be 

screened if the gluon propagator is infrared finite, therefore, the actual critical coupling constant should he larger. 

and this is what we will investigate in this work. 

We will present the Schwinger-Dyson equation of our problem. and first we will discuss the critical coupling for 

the linear approximated problem in the case of a bare gluon mass. This will teach us on the general behavior of the 

critical coupling constant as a function of the gluon 111aSS. Secondly. we perform a numerical calculation of the full 

nataleOaxp.ift.unesp.br  
tc-mail; fedef$axp.ifr.wiesp.br 
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nonlinear equation, for two different gluon propagators resulting from solutions of the gluon polarization tensor. 

and one obtained from numerical simulation on the lattice. In the conclusions we discuss the differences in the 

critical coupling for each of the "massive" gluon propagators, 'arguing that its value definitively gives information 
about the infrared gluon propagator. 

2 Quark propagator Schwinger-Dyson equation 

The Schwinger-Dyson equation for the quark propagator in Minkowski space is 

5-1(P)  =73- 1

4 	d44 

04-f0.5(q)''.(P.o92D“'"(1)- 

where we write the gluon propagator in the form 

g2D.up(q) =:44ri.i(-112/A2) 

	

atgi, 	que) 

(12 	 q 2 

The propagator has been written in the Landau gauge, which will be used throughout. our work. In the above 
equations l' fr (p, ti) is the vertex function. and o(-q 2 /A 2 ) is the ()CD running coupling constant. for which we know 

only the ultraviolet behavior, and to solve Eq.(1) we make the same ansatz of Ref. [3, 4] about its behavior for the 

full momentum scale 
127/(33 - 2:0  

(3) 
ln(r + 41 ) 

Eq.(3) goes continuously to the perturbative result. and has already been used in phenomenological applications. 

To proceed further we also need to introduce an ansatz for the quark-gluon vertex rP(p,q), which must satisfy 

a Slavnov-Taylor identity that, when we neglect ghosts. reads 

(p q)„rm(p.q) = 5 -1 (p) - 	 • 	(4) 

This identity constrains the longitudinal part of the vertex, and if we write S-1 (p) in terms of scalar functions 

	

S -1 (P) = A(P) - B(P), 	 ( 5 ) 

we find the solution [13] 

" 
l'"(P,q) = A(P 2 ) -1" + P

-  q) 
p - q)2 ([.4 ( 12 ) -.4 (q 2 )] - [B(?) - 8 (q .")]) 

-f- transverse part, ( 6 ) 

which is a much better approximation than the use of the bare vertex. Assuming that the transverse vertex part 
vanishes in the Landau gauge we obtain 

D'w (p - q)1 .„(q,p) = D"P(p - q)..1(q 2 )1„, 	 (7) 

and airive at the approximate Schwinger-Dyson equation 

t.-ttp 	
, 	 4 	ig4 

	
- 	 :1(- )  - 1 .1 p - 8(p2 )  = 1-

3 	(2d;0 	
u tp - 	

0 
- 13(q::) ' 	 (8) 

G.oing to Euclidean space, we will be working with the following nonlinear coupled integral equations for the quark 

wave-function renormalization and self-energy 

(1) 

(2)  

167 	d 4 Q 	- Q) 2 / A'') 

3 J  (270 4  41)[(P - Q) 2 ) 

x (e.Q + 2 11-(P - (1)Q.(1) -  
(P - 

.42 (Q 2 )  
x  .4 2 (Q 2 )Q 2  + B 7 (Q 2 )' 

[A(P 2 ) - 1 ]P 2  = 

(9) 
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B(P 2 )= 167r 
ir d4Q o up _ Q)2/A2) 	A(Q2)B(Q2) 

(10) (2.704 	$[(P — 	A2(Q2)Q2 	B2(Q2)' 

Q2 = 	and P2 = — where 	 —p2 , and we introduced a function 44(P — Q)9 which, in the case of the perturbative 

propagator. is simply 411(P — Q) 2 ) = (P — Q) 2 . for the massive bare gluon it will have the form •[(P — Q) 2] = 
(P — Q) 2  + Ing2 . and will be a more complex expression in the case of a dynamically generated mass. 

3 The linear problem with a massive bare gluon 

Eq.(9) and Eq.(10) possess the trivial solution :I( P 2 ) = I and B(P 2 ) = 0 for small values of the coupling constant. 

We can also see that B(P2 ) depends on B(P 2 ) at first order. whereas .4(P 2 ) has a higher order dependence on 

B(P 2 ). In order to examine the possibility that. a nontrivial solution, B(P2 ). branches away from the trivial one 

at a critical coupling, a c , we examine the so-called bifurcation equation [14). This involves differentiating Eq.(9) 

and Eq.(10)•functionally with respect to, B and then setting B = 0. Since the equation for .4(P 2 ) depends at least 

quadratically on B(P 2 ) it will he droped at leading order from the bifurcation problem. and we Fdabstitme .1( P2 ) 

by 1 in the bifurcation equation that will come out from Eq.(10). We define the dynamical fermion mass (WI) by 

the normalization condition 

68(0) = rnf. 	 (II) 

and filially arrive at our bifurcation equation 

16 
(SB(P 2 ) = 	 (IQ2 	dOsi

n 
- 0 	 

(27)

;r3 

 	Q2  + in2  

p — 0'2 
/A  X " 	' 68(Q2 ). 

( 13  — 	+ "1; 
(12) 

where we already assumed a bare massive gluon. 

Our main intention in this section is to verify the gross behavior of the critical coupling constant with the 

existence of an infrared finite gluon propagator. stressing that the results obtained here have a qualitative meaning 

only. In order to do this, we can still make sonic simplifier approximations before estimating or. making the angle 

approximation (which consists in separating the integration over the momenta in two regions. P Q and Q > P) 
in the coupling constant as well as in the gluon propagator. and this introduces an error of about. 10% in the 

calculation [41. Defining the variables x = P2 /m2  y = Q 2 /mj! , = A 2 /m .f K= 11I g2  IP12 .; , and 1( P 2  ) = B( P 2 )/ , 
we obtain 

f(x) = 
1 
— dy K(z. y) f(y). 
r 

(13) 

where 

0 1110 Y 0(y — J!). 
a(.r11) 	 ( g( x  — y) + 	+ I KVY)  = X + Y + 1 	Y + Y 

(14) 

The kernel K is square integrable, therefore Eq.(13) has a nontrivial L 2  solution for n„ on a point set. The 

smallest eigenvalue (a,) for which Eq.(I3) has a nontrivial square integrable solution, is the first bifurcation of the 

nonlinear equation, and satisfy 

III"   II= 1 . 
	

(IS) 

where Mi K II means the integrated kernel in and y over the whole space. Table I gives the critical value 	as a 

function of f and K. 

The values of Table I were obtained with n1 = 4 but they do not change appreciably as we change /if. As 

we can see from table 1, if we increase the gluon masses we can Satisfy Eq.( IS) only with larger critical coupling 

constants, and this is what we can expect. from the numerical solution of the complete nonlinear problem. 



338 	 A. A. Natale and P. S. Rodrigues da Silva 

e K 1 	a c  

104  I 0.6971 
104  102 0.9440 
104  103  1.4853 
106  1 0.5568 
106  10 2  0.6607 
106  10 4  0.9489 
10 10  104  0.6226 
10 10  106  0.7822 
10 1°  lab 1.2278 

Table 1: Critical coupling constant (cr,) as a•function of C = 4 2 /m1, and K = 171 "q711 ► -; for nj = 4 

4 The critical coupling for infrared finite propagators 

' In this section we'solve Eq.(9) and Eq.(10) numerically without further approximations. The numerical code we 

used is the same of Ref. [16], and the criterion to determine the critical coupling is the one of Ref. [•]. With the 

•.perturbative ghion propagator we obtain (with n j  = 4) 

= 0.854. 	 ( 10) 

which is compatible with the calculations of Ref. [3. 4]. We will solve the gap ',guar ions with three different 

propagators which we discuss in the sequence. 	• 

One of the infrared finite propagators found in the literature was determined by Cornwall (5] 

•■ 

9 	 . 
SW') = 1) 1 (Q ? ) = [Q2  in;(Q-1  )09 -9  luf

(2' + 11), 
 •
;(Q - ) 

I. 

where my(Q 2 ) is the momentum-dependent dynamical gluon mass 

(17) 

tri(0=  rely 	
aRe ^ 

"In 
(18) 

— 1.5 — 2 is the strong coupling constant, and b = (33 — 271j)/487r 2  is the leading order coefficient of the ,d 

function of the renormalization group equation. This form for the propagator was obtained as a fit to the numerical 

solution of a gauge invariant set. of diagrams for the gluonic Schwinger-D•son equation. 

Another infrared finite gluon propagator has been found by Stingl et al. [6]. Its form agrees with that derived 

by Zwanziger based on considerations related to the Gribov horizon [17]. and is given by 

= AT .I (Q 2 )  = 	+ /14/Q 2 . 	 (19) 

where p is a scale not determined in Ref. [6]. It. is interesting to note that. the Bernard ef al. [9] lattice result for 

the gluon propagator call be fitted by Eq.(17) as well as Eq.(11)). These propagators. apart from some multiplying 

constant, approach the perturbative gluon propagator in the small mass limit. 

Finally. Marenzoni et a/. [9] also performed a lattice study of the gluon propagator in the Landau gauge. obtaining 

for its infrared behavior the following fit. 

4) (Q2 ) = DV Kn .= 177 4 + Z(22 (Q 2/A 2 )". 	 (20) 

where m 4 . 7 and q are constants determined with the numerical simulation. :n, is of (2(A). / 	0.4 zind 	0.5. 

what is slightly different from the previous propagators. The results of Bernard el al, also show the behavior (Q 2 ) 1 . 

but with a smaller value for q. 
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With the above propagators we computed the dynamical fermion mass as a function of the coupling constant. 

As in Ref. [4] the results were fitted by a function 

h(a) = .3(cr — a c )'. 	 (21) 

characteristic of a phase transition phenomena. We have not found large differences in the values of the critical 

coupling as we variated the number of fermions, therefore, the fitting will be presented for PI/ = 4. In Fig.1 we plot. 

—1/ In B(0) as a function of the coupling constant, for the Cornwall propagator. which was studied by Haeri and 

Haeri [18] whom performed a cancellation between the coupling constant. in the vertex function and the factor y in 

Eq.(17), something far from clear to for m g  = 2A and mg  = 2.2A, and as expected from the example of the previous 

section if we increase the gluon mass the critical coupling also increases. These gluon masses are consistent. with 

the values determined phenomenologically in the last work of Ref. [5]. The parameters of Eq.(21) and the critical 

coupling are given by 

= 1.0785, 7 = 0.2535. c! 4  = 0.8692, (mg  = 2.0A):. 	 (22) 

= 0.8424. 7 = 0.2682, a, = 1.4211, ( m g  = 2.2A). 	 (23) 

As will become clear in the following. not only the value of the gluon mass scale is important to characterize t he phase 

transition, but the precise form of the gluon propagator will affect considerably the value of the critical coupling. In 

this case, as well as in the next ones, we verified that for small gluon masses we start having dynamically generated 

quark masses for critical couplings quite close to the value obtained with the I/Q? propagator (see Eq.(25)). After 

some value of the gluon mass the critical coupling deviates very fast from the value of Eq.(19). An example of 

this behavior is shown in Eq.(26), where the coupling constant. is almost. twice the value of Eq.(25). although we 

obtained it increasing the 'previous gluon mass value only by 10%! 

Using the propagator determined by Stingl et al. [6], we obtain the curves shown in Fig.2 for ill' = 0.25A? and 

/1 2  = 0.30A?, and described by Eq.(21) with 

13 = 0.2482. 7 = 0.4784, a 	= 2.9038, ( an ?  = 0.25A 2 ): (24) 

= 0.2946. 7 = 0.3362. 	n, = 6.4720. (p r  = 0.30A 2 ). ('25) 

Note that the values for the critical coupling constants are quite large. We rely on these numbers based on the 

continuous growth of the coupling constant from a value near the one of Eq.(19) for small gluon masses. to the 

ones of Eq.(27) and (28) as. the mass is increased. It is known for several other theories with chiral breaking for 

coupling constants of 0(1), that higher order corrections do not modify the critical behavior shown by the ladder 

approximation [19], and we expect the same fo hold here. Comparing Fig.2 to Fig.l we see that the dynamically 

generated mass is much smaller for this propagator, than with the Cornwall one. Performing the calculation for 

p 2% 0(3..0A) we do not obtain a significative signal of chiral symmetry breaking, i.e. if there is a dynamical mass it 

is Much smaller than A, and do not satisfy our numerical criterion to recognize mass generation [4]. This result is 

compatible with the one of Ref. [20], where it was verified that the quark condensate is consistent with zero above 

a certain critical value of p for this same gluon propagator. Here we foresee a problem for the Stingl el al. [6] 

propagator. because as shown by Cudell and Nguyen [11] we need p 0(3.0A) to obtain a correct description of 

diffractive scattering with this propagator. 

Fig.3 contains the critical curve for the lattice propagator (Eq.(20)) in the case of m g  = U.7A. and with 

= 0.4588, 7 = 0.2870. a, = 3.9712. (ra g  = 0.7A). 	 (26) 

The Marenzoni et al. propagator gives a value for the critical coupling constant which is intermediate between the 

other . two propagators that we discussed up to now. If we increase the gluon mass we will also find a point where 

the symmetry is not broken anymore. however, this will occur for larger masses than the one predicted in Ref. [9] 
(m g  A). Comparing all the results it becomes clear that, for masses of the same order. the softer is t he propagator 

in the infrared the larger will be the critical coupling for chiral symmetry breaking. We believe that. the value of 

the critical coupling constant can be a good indicator of the gluon propagator infrared behavior. 
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5 Conclusions 

We studied the chiral-symmetry breaking in a model of quantum chromodynamics, using infrared finite gluon 

propagators found as solutions of the Schwinger-Dyson equation for the gluon. We first solved numerically the 

linearized equation of the quark self-energy, and found that a bare gluon mass scale screens the force responsible 

for the chiral breaking, and the transition occurs at a larger critical coupling constant if we increase the ratio of the 

gluon to fermion mass. Secondly, we solved numerically the full quark self-energy equation for some infrared finite 

gluon propagators. The result confirm our linear approximation. We also verified that the functional form of the 

propagator is also important to characterize the chiral transition. 

With the Cornwall propagator (Eq.(17)) and gluon masses of the order that are expected phenomenologically. 

we obtain critical coupling constants not far away from the one obtained with the 1/1c .i propagator. Wit h the Stingl 

et al. propagator (Eq.(19)) the chiral transition will occur only for quite large values of the coupling constant. 

If the gluon mass scale is of 0(A) the critical coupling is one order of magnitude larger than the one obtained 

with the perturbative propagator. Unfortunately, a phenomenological study .  of diffractive scattering with the Stitt& 

propagator demand gluon masses of 0(3A), for which there is no symmetry breaking! This means that this 

propagator does not represent the actual gluon infrared behavior, or the model of diffractive scattering of Ref. [11] 

must be modified. The Marenzoni et al, propagator leads to a picture of the chiral transition that is consistent 

phenomenologically, but with a larger value for the critical coupling constant.. In general. the softer is the propagator 

in the infrared the larger will be the critical coupling. The value of this coupling can be used as a tool to study the 

infrared behavior of the gluon propagator. and associated with other phenomenological calculations (like the ones 

of Ref. [10, 11. 12]) may provide a map of the gluon propagator for every momenta scale. 
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Figure 1: Results of the evaluation of Eq.(10) as a function of the coupling constant with the propagator 
of Eq.(17). We show some of the calculated points, and the curve is the result of the fitting by Eq.(21). 
The calculation was performed for ni = 4, the upper curve is for m: = 4.0A 2  and the lower one is for 
m2  = 4.84A2 . 

Figure 2: The same as Fig.1 for the propagator of Eq.(19), with p 2  = 0.25A2  (upper curve) and p2  = 0.30A2 
 (lower curve).. 
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Figure 3: The same as Fig.2 for the propagator of Eq.(20), with T74 = 0.49At. 
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The real part of the elementary (parton-parton) amplitude is calculated, using a derivative 

analyticity relation and a phenomenological parametrization for the imaginary part. As a 

first test for future analysis, physical observables are calculated through a multiple diffraction 

approach early develop. With this formalism global•descriptions of the experimental data 

on pp elastic scattering above 10 GeV are achieved. The predicted p parameter reaches 

the maximum value 0.15 at Nti 500 GeV and then goes asymptotically Co zero through 

positive values. 

1 - Introduction 

Phenomenological aspect. of the high-energy elastic hadron scattering have been investigated through 

multiple diffraction models [1). In the framework of the impact parameter formalism and eikonal approximation. 

this approach connects the hadronic scattering amplitude with the hadronic form factors and elementary (parton-

parton) amplitude. In a previous work it was shown that the real of the hadronic amplitude may be calculated by 

assuming proportionality between real and imaginary parts of the elententary amplitude, the coeficient being a free 

.parameter depending on the energy. With suitable parametrization for the form factors and for the imaginary part. 

of the elementary amplitude, a satisfactory description of the experimental data on pp elastic scattering above 10 

GeV was obtained [21. In this communication we make use of a derivative dispersion relation in order to compute the 

real part of the elementary amplitude. Assuming that the elementary part factorizes in the energy and momentum 

transferred, the result leads also to a proportionality relation. Beside the elimination of one free parameter. this 

could he viewed as a theorical justification for the proportionality early assumed. The paper is organized as follows. 

In section 2 we briefely review the multiple diffraction formalism and the phenomenological model early developed. 

In the section 3 we introduce the derivative analyticity relation in the context of the model. showing the predictions 

for physical observables and comparisons with experimental data. Some critical and final remarks are the content 

of section 4. 

2 - Multiple Diffraction Model 

The eikonal approach connects the hadronic elastic scattering amplitude F with the eikonal function 

through the well known formula [3]. 

F(s, q) = i f bdb,10(0)[1 — exp[i•(s, b)]]  E i < I — exp(ix(s. b)] > 
. 	o 

(1) 

•Financial Support: CAPES-PICD/CNPti 
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where .js-  is the c.m. energy, q the transferred momentum, b the impact parameter , Jo the Bessel fuction and the 

angular brackets denote the symmetrical two-dimensional Fourier transform. In the first order multiple diffraction 

theory, the eikonal is expressed by [4] 

X(s,b) =< GAGsf > 	 (2) 

where GA, GB are the hadronic form factors of the hadrons A and B and f the averaged elementary (parton-parton) 

amplitude. 

Recently Martini and Menon investigated elastic pp scattering with the following parametrizations for the 

form factors and elementary amplitude [2]: 

GA = GB = 	q2837 .  4. qvar  

f = Ref + Urn f 

I m f = C 
1 — q2 / 
1 	+ v a 4 

and assuming 

Ref = Almf, 

where 0( 2 , 	a 2 . C and A are free parameter. Defining 

12(s, b) =< G 2  I m f > 

the complex eikonal reads 

x(s. b) = (A + 	b) 

and the real and imaginary parts of the hadronic amplitude. eq.(1). are expressed by 

ReF(s, q) =< e -nt'. 6) sen(Al2) >, 

I m F(s. q) =< 1 — e -1-21 "leos(AM > . 

With this, physical observables may be investigated. such as the differential cross section 

do 

de — 

the p parameter (ratio of the real and imaginary parts of the forward scattering amplitude) 

ReF(s. 0) 
p = 	 

I mF(s, 0)' 
(12) 

and total cross sections 

	

cr,„, = 4;r/niF(s.0). 	 (13) 

Analysis of pp elastic scattering above 10 GeV leads to the following values and parametrizations for the five free 

parameters [2] : 

= 8.2 Gel/ 2  „i12  = 1.8 Ge1/ 2 . 	 (14) 

C(s)= 14.26 — 1.65(ins)+ 0.159(ins) 2 . 	 (15) 

0 2 (s) 
= 2.57 — 0.217(Ins) + 0.0243(/ns) 2 . 	 (16) 

A (s) — 	

0.06951n(s/so) 

1 + 0.118[/n(s/s o )] + 0.015[in(s/s oP 

With this, a satisfactory description of the observables in eqs. (11). (12) and (13) was obtained. 

1 	I 
(3)  

(4) 

(5)  

(6)  

(7) 

(8)  

(9)  

(10)  

riF(s,q)1 2 , 	 ( 11) 

(17) 
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3 - Derivative Analyticity Relation and Results 

In spite of the satisfactory description achieved with the above model, the hypothesis olproportionality 

between Ref (q, s) and Im f(q, s), eq.(6), was assumed by simplicity, without a theoretical justification. More yet. 

this introduces one free parameter, A(s), and its dependence with the energy, eq. (17), has also no theoretical 

justification. 

Attempting to formalize these aspects, we applyed a derivative dispersion relation directly in the elemen-

tary amplitude [5) 
7r d r  

, 	
2 dins 

. Ref(s,q) = --117U(S.O. 	. 	 (18) 

Making use of Imf(s,q) given by cq.(5) and parametrization (15), we yet obtain 

Ref(s,q) = A(s)/ ► f(s,q), 	 (19) 

but now A(s) is explicity determined: 

—1.65 + 0.3181ris 
A(s) = ( 

2 
)[

14.26 — 1.65/ras + 0.159(!; s) 
(20) 

As a first, test, we introduce this theorical result directly in the formalism descrited in the last. sec.tion. 

To this end, we substitute the phenomenological parametrization (17) by the analytic result (20 ). With this, eqs. 

(3) to (10) and parametrizations (14) to (16) lead to the observables ), (12) and (13). The predictions for pp 

differential cross section, total cross section and p parameter are shown in figs. I. 2 and 3. respectively. 

• From fig. 1 .  we see that, with the exception of the dip region, all the differential cross section data are well 

described. Figure 2 shows that the predictions for the total cross section are in agreement with the experimental 

data at ISR energies; extrapolations to cosmic ray energies show agreement with the reanalysis performed by 

N.N.Nikolaev [6] on the Akeno data [7]. This result was also obtained in the previous formalism [2]. From fig. 

3. predictions for p(s) overestimate the experimental data. Extrapolations to higher energies indicate a maximum 
value p = 0.15 at ji x 500 GeV. In the region VT; : 10-20 TeV (LIIC) the predictions are p : 1.02-1.03 

4 - Final Remarks 

In high-energy hadron-hadron scattering, dispersion relations are usually applyied to the hadronic ampli-

tude. Up to our knowledge this work presents the first test of use in the elementary (parton-parton) amplitude. In 

order to compute physical observables, use was made of the multiple .diffraction formalism and previous parametriza-

tions for the hadronic form factors and the for the imaginary part of the elementary amplitude. With this, global 

characteristics of the experimental data on pp elastic scattering above 10 GeV could be described. 

A crucial point concerns the overestimation of the differential cross section in the dip region and of the 
p(s) at ISR energies. However, all these results depend strongly on the phenomenological parametrizations and 

previous assumptions, e.g. the factorization of the imaginary part. of the elementary amplitude arid the energy 

dependence of the free parameters. Although we did not attempt a general "best fit". we see that. the gross features 

of the experimental data may he reproduced. We hope this first test may bring insights on the subject. 
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t. 

Fig.1: scattering of N closed !Demonic strinp. 	Fig.2: scattering after conformal transformations. 

0 
Fig.3: all orders of perturbation theory. 
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Analise Bi-Dimensional de x2  em 
Interferometria de Kaons 

C. G. Rola.° • and S. S. Padula t 
Instituto de Fisica Tedrica. Universidade Estadual Paulista 

Rua Pamplona. 145. 01405-900. Sdo Paulo. SP - Brazil 

Este trabalho apresenta resultados preliminares. uma vez quo esti em fase initial, da anilise 

de x2  sobre dados obtidos da Colaboracao E859. 0 principal objetivo aqui a quantificar o 

poder de resolucao da interferotnetria bidimensional cm Lions. 

1 Introducio 
Na dicada de 50 Hunbury-Brown e 'l'wiss [1] propuseram urn novo inetodo para determinar os raloS. ou ao 

memos ingulos. subentcndidos por fontes de radio estrelas proximas. Este inetodo fundamenta-se na correlacio 

do tempo de chegada dos fOtons. oriundos (la fume, cm dois detectores separados. Em 1959 Goldhaber et al. 12] 

observaram que pions produzidos cm colisOes p; possuntin inn efeito setnelhante. A interferometria de particular 

identicas é utilizada para determinar a dimensi° espaco-temporal tic reacoes a altas energias, sendo por este motivo 

sugerida como assinatura para o plasma de quarks e gluons. pois pode oferecer informacoes sobre a distribuicio de 

materia durante o ultimo esti& do process° da reacito. 

A funcio de correlacio. na  sua forma mais simples. e dada por 

k 2 ) 
C(1,71, L- 2 ) = 	

P(ki, 
)1, (A:2)  = j I ± A I /1(!1)1 2 ) , 	 ( 1 ) 

onde PRO. i = 1, 2, e 1 1 (k 1 . k2 ) saw as distribuicoes inclusivas para inn e dois kaons, respectivamente. q = k i  

a diferenca de quadri-momenta dos dois kaorts. A e o parametro de caoticidade e p(q) é. a transformada tie Fourier 

da densidade espaso-temporal, p(x), cla particula einitida. 

0 metodo utilizado para a obtencio das referidas dimense.)e..A. no espaco-tempo consiste na anilise do gra.fico 

da funcao de correlacio fornecida pela Eq.( I) versus a diferenca tic momenta do par, sendo a largura desta curva 

o Myers° do raio, R, do volume da reacito. Alas Bata interpretacao estritamente geornotrica é vilid° apenas no 

!Mike setni-clissico e quando nao existe nehnuma correlacio no espaco de fase dos kaons. Freqiientemente efeitos 

dinimicos podem levar a existencia de ulna forte correlacio entre o quadri-momentum, po. e o espaco-tempo. 

causando distorcoes em C2(ki , k2), o que invalida esta interpretacao. Por estes inotivos sera usado, no lugar de (1), 

uma forma mais generica para a funcao de correla.cio 

G(k i .k2 ) = (1+ 
G 

IG(ktk,)12  

(k i , 4- 1 )04. 2 . k 2 )) 

onde G(k. k) e a chstribuicao inclusive pant Inn finico kaon e 	 a amplitude complexa que content o termo 

do interferencia. 

Para pacotes Gausseanos corn minima incerteza e ausencia tie ressottancias. G(ki. k2), sera [3. 4. 5] 

I G(k. 1 , k2) = 	d I  z 	 ig: irl  p D( .r , W ee Ar 7 I 2  dr- K-P I2ap" (X (e i gr i -I  e C-- "I`IP 2 ) . (2) 

roldaorilaxp.ift.uriesp.br  

t'-mail: paciulatbaxpift.unesp.br  
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onde Ape a largura do moment() do pacote e Az é a largura no espaco-tempo. Os colchetes (...) indicam que foi 

feita a media sobre a distribuicao no espaco de face desacoplado dos kaons, D(x,p), e (x1 , pi) sao as coordenadas 

de free:e-out no espaco de Ease dos mesmos. Quando efeitos devido a ressonancias de longa vida sao considerados, 

a amplitude complexa sera 

G(kr, kz) 	(E .fic+ir (1 — iqur/rr 	exp(iqx,. — IC:p r  /142 )) , 	 ( 3) 
r 

sendo fK + 1r  a fracio de K+ decorrente de decaimentos de ressonancias do tipo r corn quadri-velocidade final ur, 

e para kaons c f 	az.. 0.50 [3, 4, 5]. Tanto na Eq.(2) 	quanto na Eq.(3) foi utilizada a notacio padrao, onde 
4.ralo 

q = k l  — k 2  e = (k i  k2 )/2. 

As Ref.[3] e [5] mostrarn que as ressonancias distorcem a funcao de correlacao, simulando fontes de longa 

vida e parcialmente coerentes, o que justifica o interesse.  em testar sua abundancia em baixas energias atraves da 

interferometria. Neste contexto dais cenarios serao analisados. urn sem a producao de ressonancias e outro corn 

ressonancias previstas pelo modelo de Lund [6], ambos a energias do AGS. 

2 Analise Bidimencional de x2  

	

Como na Ref [8], a interferometria em uma dimensao, 	k2) x ql . onde (a é a diferenca de momenta 

transversal dos dois kaons, nao a suficiente para determinar qual dos dois cenarios, corn ou sem ressonancias. 

adequa-se melhor aos dados experimentais, uma vez que os parametros geom6tricos R7 e r, raio transversal c 

tempo prdprio da bola de fogo, respectivamente, podem ser escolhidos, em ambos os crisos. para concordar corn os 

dados experimentais. Desta fornia surgiu a ideia de cstudar a interferometria em dual dimensOes. 

Para comparar os dados experimentais projetados em dims da.s seis dimensoes corn a funcao de correlacao teorica. 

calculamos a funcio de correlacao projetada 

Cpro(q7.qL)= 
I dak,d3 k2 Pi (k i )PA2 ) 

onde P1  e P. sao as distribuicoes inclusivas para um e Bois kaons, respectivamente. e :1 2  e a fungi° de aceitancia 

experimental. Todos os calculos foram realizados usando CERES [3], onde a funcao de aceitincia experimental para 

os dados da Colaboracao E859 foram aproximados por 

.42(qT•qr,;k1,k2) = .4 1(kr).4 1(k2)0( 22 — 101 —Q21) 

x 6(qL — 	— 1':21) 6 ( 111 	ik I 	k _OD 	 (4) 

Os ingulos de cone experimentais. m1 e 62. sao niedidos errs graus e os momenta em GeV/c. Os cones da distribuicao 

inclusive siu:o especificados por 

.41(k) = e(14 < Oida < 28 )e(Proo < 2.9 GeV/c)0(Ytttit, > 0.75) . 

As flutuacoes nos dados experimentais Da° pennitem nenhuma conclusao a respeito de qual dos Bois cases 

analisados esta em melhor concordancia corn os dados obtidos pela Colaboracao E859, que podem ser vistas na 

figura (1.a). A fig.(i.d) mostra sous erros experimentais. As fig.(l.b) c (1.c) ilustram as funcoes de correlacao 

filtradas pela Eq.(4) correspondendo aos calculos coin e sem ressonancias, respectivamente, no interval° 0,005 < 

4i, Vt < 0.125GeV/c. Os parametros que fornecein as melhores curves sao R.T = 2.5fm e r = 2.5fm/c. no caso sew 

ressonancias, e R• = 2.5fm e r = 1.51m/c para o caso COM ressonancias. Ulna alternativa a este impasse calcular 

a qualidade do ajuste de x2  no piano (qi,gL), para ambos os cenarios. Para isso usaremos a stigestao dada por 

Zajc [7] para x2. 

f d3 ic113k•1)2(k1,k2) A2(q_L. qL:ki,k2)  
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x2 (i,j) _ 	(AR j) —Afx -I Cth(i,j)B(i,j)] 2  

[(A./1(i, j)) 2  + (A(A:  -1 Cfh(i, j)AB(i. j)) 2 1 

onde Afx  é um fator de normalisacio escolhido para minimizar x 2  inedio e depende do intervalo ql, q . no piano 

sob analise. Os indices i e j referem-se ao correspondente bin (q.L,qL) [9, 10]. x 2 (i, j) pode ser visto em (Le), na 

ausencia de ressonancias, e em (l.f), quando as mesmas esti.° presences. 

3 Procedimento de Minimizacao 
A minimizacio de x2  c feita variando-se os parametros RT e Ar e entao (x 2 ) a calculado sobre uma grade de 

30 x 30 no piano dos momentos, onde 0,005 < qL < 0.605 GeV/c. Na vizinhanca onde RT„ e TO (os minimos 

de RT e r) deve-se determinar os parametros a e If  da .superficie quadratica 

(X 2 (RT, Ar)) = din rk(RT — RT,0 2  + f3(Ar — AMP • 

Este procedimento foi proposto por [11), onde dados da Colaboracao E802 foram analisados, nesta ocasiao uma 

clara distincio entre os dois cenarios foi encontrada, os calculos sem ressonancia estavam em rnelhor concordancia 

corn os dados experimentais. 

Este trabalho visa realizar a mesma analise para kaons, e os resultados por nos obtidos. embora prelirninares e 

ainda em lase inicial, indicam que nas duas referidas situacOes os conjuntos de parametros (RT, r) sit° similares, o 

que acreditamos refletir a menor sensibilidade dos kaons a influencia de ressonancias. 
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Figura 1. Funcio do correlacio para h . + produzidos na.colisio Si+A n. Os dados da Colaboracio E859 podem ser vistos em 

(a) e sus error em (d). Em (c) e (h) estao as funcOes de correlaciu) teOriciu4 seta c corn ressonancias, respectivamente, e suas 

correspondentes distribuicoes de A 2  em (e) e (1). 
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Hadronic Size Dependence in High-Energy Scattering 

Erasmo Ferreira 
Institute dc Fisica, Universidade Federal do Rio de lonely.° 
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Flavio Pereira 
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The functional dependence of the high-energy observables of total cross-section and slope 
parameter on the sizes of the colliding hadrons predicted by the model of the stochastic 
vacuum and the corresponding relations used in the geometric model of Povh and Iltifner arc 
confronted with the experimental data. The existence of a universal term in the .expression 

for the slope, due purely to vacuum effects. and independent of the energy and of. the 
particular hadronic system. is investigated. 

1 The Model of the Stochastic Vacuum and the Geometric Models 

Diffractive high energy scattering is largely determined by the non-perturbative regime of QCD. The extended 

character of the interaction, involving correlation properties of the gauge field, determines the properties of the 

observables, which are fixed by the sizes and global structures of the colliding systems, rather than by the number 

of constituents and their couplings. These features have led to models of geometric nature for high-energy scattering 

[1. 2]. 

A non-perturbative QCD description of the main features of high-energy scattering is given by the model of the 

stochastic vacuum [3, 4], which combines QCD quantities (gluon condensate and corrrelation length) and hadronic 

sizes in an eikonal framework, leading to a unified description of the data for different hadronic systems. In the 

present work we explore further the results of the model for the pp and pp and other hadronic systems and compare 

them with those from the geometric model of B.Povh and J.Iiiifner [2]. 

The hadronic structures enter in the form of transverse wave-functions [3. 5], with the .  hadron size represented 

by a parameter SH. The dimensionless scattering amplitude TH I N., is given in terms of the dimensionless profile 

function JH,H., for hadron-hadron scattering. We define the dimensionless moments of the profile function (with b 

in units of the correlation length a) 

It = I (PE b k  J{b) 	k = 
	

(I) 

which depend only on Saa. S2 /o, and the Fourier-Bessel transform 

f(1) = 	./0(bu N50 J(b) . 	 (2) 

Then 

TH, H= = is[(g 	nal 2 a 2 1(1) . 	 ( 3 ) 	• 

and 

d 	de r I 19 ., QT = Jo ((g2  F F)a ^ra 2  , B = 
(11 
— (In 

dl  —) I 	= 
2 / 

— a -  E 1` a -  
i=a 	0  

(4) 
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This conveniently factorizes the dimensionless QCD strength (y 2 FF)a4  in the expressions for the observables. 
• 	' 

The correlation length a, which is an intrinsic parameter of the corrrelation function of the QCD field, appears 

as the natural length scale for the observables and for the geometric aspects of the interaction, contained in the 

quantities /0(.51/a, .92/a) and 12 (S 1 la,87/a), which depend on the hadronic structures. aT measures the strength. 

while the slope B has the strength cancelled out and is only related to the hadron geometry. 

2 pp and pp systems 

We first discuss pp and pp systems. with S i  = 82 = 	T curves for 10 he 	 = c .r / Ry'FF)'a l l and K = B/a2  can 

be parametrized as simple powers of S/a with good accuracy. The convenient expressions are 

= (I
S  

) 	
K = 71+ 7( —

) 

	

(5) 

The parameter values result front integrations over correlation functions, are intrinsic to the model of the 

stochastic vacuum. and do not contain dependence on experimental quantities. Their values are 71 = 2.03.13 = 8/3. 

= 3/8, 6 = 2 , 6113 = 3/4 . o = 0.76 x 10-2. 

. The QCD parameters are the gluon condensate (p 2  P) and the correlation length a. The proton radius can be 

eliminated from eqs.(4) and (5), and we obtain a relation between al" and B at a given energy 

y 	
(6)

i/0 
pom (- 

(/3 — q 	
[< 

a 2 ) = 	
;(1 /7  F > derh3  n olo 	a .2 

The two QCD parameters can then be determined using the experimental data for irT  and B at. two different. 

energies. 

The available data on al.  and B for pp and pp scattering at high energies consist mainly [6) of 1SR (CERN) 

measurements at energies ranging from 1;7= 23 GeV to ■./;:= (13 GeV. of the f = 541 — 546 GeV measurements 

in CERN SPS and in Fermilah. and of the VT = 1800 t.k.:1/ data from the E-710 Permilab experiment. Since we 

are here concerned with non-perturbative contributions only. at the !SR energies we take for total cross-sections 

the values given by Donnachie-Landsholf parametrization [7) for the pomeron-exchange contribution. and for the 

values of the slope we take those of the pp system. Using as input the data for the highest. energies (541 and 1800 

GeV). where the process is essentially non-perturbative and no separation is needed, we obtain [4) 

a= 0.32 ± 0.01 fin. < FP > = 181 . < !PPP' >= 2.7 ± 0.1 GeV 4. ( 7 ) 

The relation between the experimental values is well represented at all energies from 23.5 to 1800 GeV with the 

form 

13 = 13 ,s + 	( C T 	 . 
	

( 8 ) 

This form is similar to eq.(6), with an obvious correspondence of parameters. In our calculation with the model 

of the stochastic vacuum the exponent A = 6/0 does not, depend on QC1) quantities and is equal to about. 0.75. 

Eq.(8) is also used in tire geometric model, with A = 0.5 and 13 ;1 =0. 

In fig.1 we show the description of the data through eq.($). with A = 1. 0.75 and 0.5. There are no free 

parameters. since B a  and Ca  are fixed by the input. data. The values of N:2  are also shown. and. although A = 0.75 

is favoured, we cannot say that the differences are statistically meaningful. however. the model of the stochastic 

vacuum gives precise meaning to the parameters B a  and C a  in terms of QCD quantities , and successfully fixes 
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Figure 1.: Relation between experimental quantities of the pp and pp systems. At energies up to 62.3 (.;eV the values 
of a r  shown in this figure are those given by the parametrization?p uce  = (21.70 nib)so.osobof vonnachie-Landshoff 
and the values of 13 are those of the pp data. The point at 1800 GeV is front the Fermilab E-710 experiment. The 
values of Ba and Ca  arc obtained taking the 5'l I GeV and 1800 GeV data as inputs. The horizontal lines represent 

the constant Ca  with values for A= I. 0.75 and 0.5. The values of V 2  represent the average deviation of the live 
ISR points from the constant line. 

= 0.75 a priori. It is remarkable the presence in this case of a bounding minimum Ba for the slope. which occurs 

for all hadron-proton systems. 

B.Povh and J.Hiifner [2] write for lip(hadron-proton) scattering 

= 	+ 11% 	gir t, = g 	R I; . 	 0-0 

The expression for BH p  is to he considered as a delinition of effective hadronic radii. For proton-proton scattering, 

with k il  = R p , these relations lead to 

ii = Gip  (iT 1 )i r2  . 

which is of the form of eq.(8), and it is remarkable that using the input data and :A = 1/2, one obtains the same 

B.% = 0, as shown in fig.l. 

The radii are functions of the energy in both kinds of model. with values near electromagnetic radii, and a slow 

increase with the energy. 

3 Hadron-Proton Systems 

In the treatment of the pp system we are constrained by V; > 211 GeV. and cannot observe clearly the effect of t he 
minimum slope Ba . The presence of this term can be better observed in lip systems, where II represents hadrons 

of small size. Since we deal with radii which arc energy dependent quantities, We must compare dill-emit hadronic 

systems at the same center-of-mass energy. 



354 	 E. Ferreira and F. Pereira 

The parametrization of the results obtained with the model of the stochastic vacuum for general Hp systems is 

apTom  [02F/14 412 a 2 0  (._
a a 

 SP 	 B = a _ + 
2  _
7 s

P 
 z .911,  9 	1 

With a = 0.32 fm, we have qa 2  = 5.38 GeV -2  . 

. in order to compare the models, it is important to eliminate the influence of specific values of radii, since they 

have different definitions. Thanks to the convenient. factorization in the final expressions, we may actually build 

relations involving only the observables, or involving only the ratios of radii, which we may assume to follow the ratios 

of electromagnetic radii. We thus have for alip /crw p  the ratios (ridrif,) 4 / 3  and (ridriv)2  in the stochastic vacuum 

and geometric models respectively. Entering with the known values [9] for the radii of the proton (0.86210.012 fm). 

of the pion (0.6610.01 fm) and of the kwon (0.5810.0 ,1 fin) we obtain the results shown in table 1. The experimental 

ratio refers to the poineron exhange contribution. We observe t hat the value 2/3 given for the ratio c-Tp /upp  by the 

quark additivity rule is here obtained as a simple consequence of the sizes of the hadrons. Also the ratio cricp /cr,p  is 

consistently obtained with a value close to the data, without need for different couplings of the pomeron to strange 

and non-strange quarks, as must he the case with quark additivity rules. The factorization relation crt , = / ("pp  

is identically satisfied in both cases considered here. 

Table I - R,atios.of the pomeron exchange contributions to the total cross-sections for different. hadronic systems. 

Cross-section 
ratios 

stochastic 
vacuum 

geometric 
model 

Experimental 
values 

cri.iihrrr 
apidap. 

0.69 ± 0.02 
0.83 ± 0.08 

0.591 0.02 
0.77 ± 0.08 

0.63 
0.87 

Considering all Hp systems at a given energy. eqs.(11) lead to a nonzero minimum possible value for the slope, 

given by 

I 1  o. 	 1 
Bm i n(s) = 	

2 P 	2 	2 
+ 	= -ger + 7 Oppt Si = 2.69 GeN' -F

2
Bpp (s) ilp  (12) 

The existence of this minimum is characteristic of the model of the stochastic vacuum. We call G = rri(g2  E F)431 2a 2 

 and for a given energy we write 

Bpp  - 	(7/ 2 )( 5i; 	6 71 ) 	(7/ 2 ) (12  =(13) 
cPP 	 - 4/0 
	1/0 — (71/0(.57/112)2— Gm/P(51,Sn /a- r 	G211343  (7 

 

The last quantity is fixed, for a given energy. We obtain a straight line in a plot of Bfi p  against iii,1413 . going from 

the point representing the observables for the pp system to the point. representing the limit point Bmin cr = 0 given 

by eq.(12). This plot. is shown in fig.2. together with data for the pp, rp and Kp systems at f 20 GeV. The 

limit point is shown inside a square window in the figure. 

A similar plot. built from the equations (9) of t he geometric model is shown in fig.3. In this case we have 

Brkipm ( s ) = 9 	 Upp — Blip
= 	1  = Bpp(s).

2 (14) 
app - orHp 	(appg) 

Comparing figs 2 and 3 we may, with some subjective influence:decide which case reproduces better the data. 

The existence or not of a universal term tie , representing a pure non-perturbative QCD contribution to hadronic 

scattering, is an important question. The model of the stochastic vacuum predicts for the 7r7r system at Viz  20 

GeV that B„ = rya'- + 7 2 = 9.6 GeV -•  while the geometrical model predicts 13,, = (2/3),S = 7.5 GeV -•  . 
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Figure 2.: Observables for different hadronic systems at 20 GeV. The straigth line is the prediction of the model 
of the stochastic vacuum, and the square window shows the minimum value obtained in the limit of small hadrons 
colliding with protons at this energy. 
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figure 3.: Observables for different hadronic systems at 20 GeV. The straigth line is the prediction of the geometric 
model. The square window shows the minimum value obtained when very small hadrons collide with protons at 
this energy. 
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Probing Higgs Couplings in e+ 	-yry 

F. de Campos, S. M. Lietti, S. F. Novacs and R. Rosenfeld' 
Institute de Fisica Teorica. Universidade Estadual Patdista. 

Rua Pamplona 145, CEP 0140.5-900 Sdo Paulo. Brazil.. 

We present a summary of a recent investigation [I] about the existence of anomalous Higgs 

boson couplings, H77 and H Z7, through the analysis of the process f.+e -  LEP2 

energies. We suggest some kinematical cuts to improve the signal to background ratio and 

determine the capability of LEN to impose hounds on those couplings by looking for a 

Higgs boson signal in this reaction. 

I Introduction 

The predictions of Standard Model (Sill) for the structure of the fermion-vector boson couplings have been ex-

haustively tested in the last. few years. In particular. the recent data of 1,1:P1 at 1 he Z-pole have confirmed with 

a unprecedented degree of precision the properties of the neutral weak boson and its vector and axial cowlings 

with the different fermion flavors. Nevertheless. we do not have the same level of confidence on of her sectors of 

the SM. like the self-couplings among the vector bosons and the Iliggs boson couplings with fermium: and bosons. 

The determination of these interactions can either confirm the non-abelian gauge structure of the theory and the 

mechanism of the spontaneous breaking of the electroweak symmetry or provide some hint about the existence of 

new physics beyond the SM. 

A convenient way to parameterize possible deviations of the SM predictions is through the effective theory 

approach [2]. In this scenario, we assume that. the existence of new physics. associated to a high-energy scale A. can 

manifest itself at low energy via quantum corrections. where the heavy degrees of freedom are integrated out. These 

effects are then described by effective operators involving the spectrum of particles belonging to the low-energy 

theory, i.e. the usual fermions and bosons. 

In the linear representation. a general dimension six effective Lagrangian can be written as, 

L k 

Celt = E 
la 

A 

where the operators ° n  involve simultaneonsly both vector boson and Higgs boson fields which share the same 

coefficients L i . Therefore, the study of anomalous Iliggs boson couplings can be an important tool to investigate 

the effect of new physics and concomitantly furnish information about the self-coupling of the vector bosons. In 

particular. anomalous H-17 and H Z7 couplings have already been considered in Z and Higgs boson decays [3]. in 

e+c-  collisions [3, 4] and at -y7 colliders [5]. 

We make an exhaustive analysis of the anomalous Higgs boson contribution to the reaction e+ 	— -07 at 

I,EP2 in order to extract information about possible anomalous 1177 and II Z7 couplings. This process is an ideal 

place to look for deviations from the SM since it only involves well known purely QED contributions al. tree level 

16]. Our Monte Carlo analysis of the contribution e+e-  Z 7H( — ) includes all the irreducible QED 

background and the respective interferences. After detailed study of the signal and background distributions. we 

find optimum cuts to maximize the signal to background ratio. We show how to use energy and invariant mass 

spectra of the final state photons in order to identify the presence of a Higgs boson and extract information about. 

its couplings. Finally, we compare the bounds on the anomalous couplings that could be provided by this reaction 

with the present direct information on the triple vector boson coupling. 

*Presented by R. Rosenfeld at the XVII Brazilian Meeting of Particle and Fields. Serra Negri. Septenii.er  19 ►6. 

( I)  



358 	 F. de Campos et al. 

2 Anomalous Higgs Couplings and e+e-  7 -11 

The anomalous H-y-y and HZ7 can be written in a compact form as. 

	

= yll-, 1 11,1„,,AP fr  + ►g (1 11 .)z .,, A„„ ea' 	+ •eti 
	 (2) 

where A(Z),„ = a,,A(z)„- 0„A(Z) ► . 

In order to reduce the number of free parameters and, at the same time relate the anomalous Iliggz. and !he 

triple vector boson couplings, we make the natural assumption that all the coefficients of the dimension 6 operators 

have a common value f [7]. In this scenario. g(Hi l_r  = 0. and we can relate the other lliggs boson anomalous couplings 

with the coefficient of the usual anomalous vector boson coupling. = / :1')f , through. 

qs -  

	

Igii-,71 = 	--1.:.‘ti-,1 .L..-. 9.2 x 10 -1  GeV -1  x IA ,I. 
2:1/o,- 

rise(' - ..z ..!/c 2 ), 

	

= 	 Ian,' = 1.2 x 10 -3  GeV -I  x lAti-d. 
2 Alw 

( 3 ) 

We should point out that the anomalous vector boson couplings. like 1n,. are basically unconstrainted by the 

current high precision electroweak data. Presently. the best direct. hound on An, was the one aired by t he 

CDF Collaboration [8] and constraints -1.0 < An, < I.I. at 95% C.L.. At LEP2. the angular distribution of final 

state fertnions of the reaction e+e-  Cujj will be able to further restrict the allowed values of AK, to 

-0.19 < 	< 0.21, at 95% C.L. [7], for 17 = 176 GeV. 

An interesting option to test the couplings described by (2) is through the reaction e+i — 	- 11( — - , -. I. 

This process has already been tested at. the Z pole by L EP I which established an upper limit on he branching 

ratio B(Z rro < 1.0 x 10 -5 . We found that. this hound is not able to further restrict beyond the existent 

direct bounds [8]. For instance, for a 70 GeV lliggs. the above limit requires AN, > I A. 

Here we make a detailed analysis for the two expected runs of LEP2 collider i.e. ,17 = 176 (;,.V. with L = 0.5 

fb - I , and fi = 100 GeV. with /2 = 0.3 lb'. %Ve performed a Nlonte Carlo analysis using the package u1Graph 

[9] coupled to HELAS [10]. Special subroutines were constructed for the anomalous contributions which enable 

us to take into account all interference effects between the QED and the anomalous amplitudes. The phase space 

integration was performed by VEGAS [11]. 

In order to search for optimum cuts to maximize the signal to background ratio, we label the dace final state 

photons as 7 1 . 2 . 3  according to decreasing value of their energy, i.e. E.„ > E. > E„. We start our analysis applying 

the following standard cuts on the events . I cos 0,i1 < 0.97 > 15° . L, , > Ft GeV . where Oei  is the angle between 

the photon i and the electron/positron beam direction. and 	tine angle between the photon pair (i. j). 

An analysis of the angular distributions suggests that, if we require the maximum angle between any pair of 

photons to be less than 165° (cos > -0.97), we can eliminate a large portion of the background events. On 

the other hand, from the photon spectra we learn that cutting the maximum energy of each photon. for instance 

E, < 70 GeV. can significantly reduce the background. Finally. the angular distribution of the softest photon with 

the beam suggests a cut. I cos 0, 3 1 < 0.8, which reduces the background to the same order of the signal cross section. 

We should notice that the above cuts are less efficient for heavier Higgs bosons. restricting our analysis to a lliggs 

boson with mass up to 100 GeV. 

Front the above considerations. we have further imposed the energy cut.. 

< E.,, 	< 

for Nfi = 176 (190) GeV. and the following angular cuts. 

70 (80) GeV . (•1) 

I cos O.. < 	(1.97. (5)  

I cos 0, 3 1 «).S0 . (6)  

15 °  < Oij < 	1(15 °  . (7)  
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3 Conclusions 

In order to estimate the reach of LEP2 to disentangle the anomalous Higgs boson couplings via the reaction 

e+e-  — 777, we have evaluated the significance of the signal based both on the total cross section and on the lliggs 

boson enhancement in the doldE-dMi n, distribution. IVe have scanned the values of AK", for MB = 80. 90. and 

100 GeV. 

We studied the minimum values of LSK., that can be probed in two runs of LEP2. for a center-of-mass energy 

of 176 and 190 GeV, with luminosities of C = 0.5 and 0.3 fb -I , respectively. The combined result for both runs is 

also presented. We required a 95 % of C.L. effect in the total cross section (a,,,, t ) and also in the double differential 

distribution (dcr/dErdMi nv). In the latter case, we have added up the events in the eight 1 GeV bins around the 

expected Higgs boson signal. 

We found that, if the anomalous coupling IAN. 1 1 > 0.8 it will be possible to identify an anomalous Higgs boson 

in the range 80-100 GeV with 95 % C.1,.. However, the signature of a heavier Higgs boson will not be so clear since 

the reaction e+e-  — 7, Z 7H(— 77) is particularly important. when the Higgs boson is almost on-mass shell. 

In conclusion. the search for anomalous lliggs boson couplings at LEP2 provides a complementary way to probe 

effective Lagrangians that are low-energy limit of physics beyond the SM. We have shown that the study of the 

process e+e -  — 777 is able to improve the present limits on the anomalous vector boson couplings that are 

concomitantly involved in operators that modify the bosonic sector of the Standard Model. 
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We consider the simplest way for solving the flavor question by embedding the three-familiy 
Standard Model in a semisimple gauge group extending minimally the weak isospin factor. 
Our demonstration shows how the theory leads to determination of families structure when 
the Standard Model is the input at low energies. 

In the Standard Model [I) the fundamental fermions come in families. In writing down the theory one may 

start by first introducing just one family, then one may repeat the same procedure by introducing copies of the 

first family. Why do quarks and leptons come in repetitive structures (families)? How many families are there? 

Flow to understand the inter-relation between families'? These are the central issues of the weak interaction physics 

known as the flavor question or the family problem. Nowhere in physics this question is replied [2]. (.The of the most 

important experimental results in the past. few years has been the determination of the number of these families 

within the framework of the Standard Model. In the minimal electroweak model the number of families is given by 

the number of the neutrino species which are all massless, by definition. We wish to suggest here that some very 

fundamental aspects of the Standard Model, in particular the flavor question. might be understood by embedding 

the three-family version in a Yang-Mills theory with the gauge semisimple group [3, 4] 

G331 E SU(3)c  Q SU(3) L  0 U( ) N  

with a corresponding enlargement. of the quark representations. In particular. the number of families will be related 

by anomaly cancellation to the number of quark colors. In the 

6321 E SUGN. SU(2) 1.  0 11(1) 1 . 

low-energy limit all three families appear similar and cancel anomalies separately. The 6331 model is a dilepton 
gauge theory which is chiral and has nontrivial anomaly cancellation. This novel method of anomaly cancellation 

requires that at least one family transforms differently from the others. thus breaking generation universality. Unlike 

the G321 Standard Model, where anomalies cancel family by family, anomalies in the 6331 model only cancel when 
all three families are Laken together. With this meaning we present here the simplest solution for the flavor question 
just enlarging the SU(2) L, weak isospin group to SU(3)1,. This does not. expalin why Nfam  > I for the number of 
families but is sufficiently impressive to suggest that Nr„„, = 3 may he explicable by anomaly cancellation in the 

simplest gauge extension of the Standard Model with a very particular representation content. The electroweak 

gauge group extension from SU(2) to SU(3) will add five gauge bosons. 

The adjoint gauge octet. of SU(3) breaks into 8 = 3 + (2 +2)+1 tinder SU(2). The 1 is a Z' and the two doublets 
are readily identifiable from the leptonic triplet. or antitriplet 	. 1+) as dilepton gauge bosons (U -- , V - ) and 
(U++.1. 1- ). Such dileptons appeared first in stable-proton GUT [5) but there the fermions were non-chiral and one 
needed to invoke mirror fermions; this is precisely what is avoided in the G ni  model. Contrary to the GUT case. 
there is no -grand desert" if G331 models are realized in nature and new physics could arise at. not too high energies, 
say in the Tel/ range [6]. 

We start with the way the electric. charge operator t) is embedded in the neutral generators of the SU(3)L group. 
The fermion contents depend on the electric charge operator 

Q = ,y(kis + 	N 	 ( I)  

'Talk presented at XVII Brazilian National Meeting on Particles and Fields. Serra Negra. September 1996 
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where #8 . are the neutral generators of SU(3)L..; is the embedding parameter and N is the U( 1)s charge pro-

portional to the unit matrix. The SU(3)L generators are normalized as Tr(AL'Af ) = 26.6: a, b = I. 2....,8. In the 

G331 models with lepton charges 0,±1 there is always a set of families transforming as (1.3.0) under the gauge 

group. In these families there is charge quantization in the sense of GUTs; the electric charge operator is a linear 

combination of the simple group generators. 

In the = 	model [3) three families of leptons belong to representation 

(  • 	

iii 

L E 	1 	•••-• (1. 3. No,, = 0): 	1= e, p, r 	 (2) 

L 

where = Cir and C being the charge conjugation matrix. The right-handed neutrinos may be included in the 

theory if desired [7]. 

A result of this embedding is that there arc no new leptons in the G331 model. While all three lepton families 

are treated identically, anomaly cancellation requires that one of the quark families transforms differently front the 

other two. In particular, canceling the pure SU(3)L, anomaly requires that there are the sante number of triplets 

and antitriplets. Taking into account the three quark color degrees of freedom we must introduce the multiplets of 

chiral quarks 

d 	( 3 . 3,  NQ, ); 	 ( C. I 

J. . h 

with the respective right-handed fields in SUM, singlets. 

QIL 

LIR 	(3, 1 . NuR )• 	"'" ( 3 . 1. Nen )• 	IR 	(3.1, Nr „): 

dR — (3, 1, NciR  ), 	5R 	(3. 1. Als R  )• 	bR 	(3. 1. .'Vb„). 
	

( 4 ) 

and the exotic quarks 

JH 	(3, 1, Ni R  )'• 	Jttt — (3.1. 	), 	j2R 	(3, 1. Ni2R  ) 
	

( 5 ) 

where we. have suppressed the color index. We are dealing with a gauge theory of chiral fermions. 'There are two 

quite distinct ways in which the G331 model establish the inter-relation between fermion families. Firstly. there are 

a set. of constraints with follow from the consistency. of the theory at the classical level, such as the requirement 

that the Lagrangian be gauge invariant, while there are other constraints which follow from the consistency of 

the theory at the quantum level which are the anomaly cancellation conditions. Anomalies imply the loss of a 

classical symmetry in the quantum theory [8]. For chiral gauge theories in four dimensions our basic tool will be 

freedom from the triangle perturbative chiral gauge anomaly which must he canceled to avoid the breakdown of 

gauge invariance and the renormalizability of the theory. Of course. it. is clear that, anomalies alone cannot lead 

to a definite theory without some way to specify the underlying chiral fermions and some knowledge of the. gauge 

symmetry that is responsible for the dynamics. 

Let us first obtain the classical constraints. In order to generate Yukawa couplings we introduce the minimal set 

of scalar fields SU(3)L triplets ?? (1.3. N,).• p (1:3. N1,). and x (1,3, Nx ). The Yukawa Lagrangian. without 

considering the mixed terms between quarks is 

= OiL(G. Igo) Ge/Rp + 	Jn.v) + (GcOn.,cn + GiOat./ it)P .  

+ (G8(zr..sit + Gb(1.1Lbil)tr 	(Gi 1 C22Ljlif 	G J.A3L.P2R)X .  + 11.c. 	 (6) 

where all fields are weak eigenstates and fr , p' • x' denote the respective antitripiets [9]. The requirement of gauge 

invariance leads to the classical constraints 

NQIL. — Nan = 
	

(7) 

NQ a — AiR = 
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for the first family and 

Nij„ — N511 = 

NQn. 'Yeti = 

Ncht. :Vex  = 

for the second family. The constraints for the third family arc obtained from those of the second family making the 

replacements Q2L Q3LL j1R — cR — and tiR bR. The above equations with = = —2Vp. 

and N.• = —N x. imply 

NQ1L 	• r4771. 	= 	R 

NQat = Ndrr + '\'e n 	 (9) 

NQLL 	NQIu. = Niirr 

constraining the first and second families and 

ArQ 3 L 	Art2 3 L = N,i1n — N.i2a 

1\rQ3L 	IVQ3L = NcF, — Not 
	 (1 0) 

N4  v. NQ3L = N$1, A rbri 

which relates the second and third families. This step illustrates how the Lagrangian is used as the primary source 

of constraints. In contrast to the minimal Standard Model. the classical and the quantum constraints enclose all 

three families of fermions. Although each family is anomalous. this type of construction is only anomaly-free when 

the number of families is divisible by the number of colors. Thus three families are singled out. as the simplest. 

nontrivial anomaly-free G331 model. 

The flavor question of the Standard Model might he understood by embedding the three family version in 

the G331 group with a corresponding enlargement of the quark representations. In the 6332 low-energy limit all 

three families appear similarly and cancel anomalies separately. By matching the coupling constants at the G331 

symmetry breaking an upper limit on the symmetry-breaking scale of a few Tel's can he placed by the requirement 

that sin' Ow < 1/4, implyng that the physics associated with the (Li±±,1%) dilepton gauge bosons. the additional 

Z' neutral gauge boson, and the J, j 1 .2 exotic quarks will be accessible to the next generation of colliders [6. 10]. 

The Standard Model is the effective low energy theory of the 0331 model and it enjoys considerable support from 

experiment. As such we can take it to be a safe input to G mn . According to Eq. (2) we have directly No, = 0 for 

any leptonic family l = c, r. Let us set. the following notation 

N„ H  = 	= 	E Nti k 
	 (11) 

ArdR = 	ft = Nbrr = N Fr 
	 (12) 

and from the constraints given in Eqs. (10) we obtain the following two conditions 

= 	 " = 2. 3; 
	

(13) 

and 

(14) 

Thus we write the quantum constraints in the concise form 

Tr[SU(3)c ] 2 [U(1) ..,1 = U : 

3(N,Q„ + 	— 3(N1J 11  + ND„) — NJ}, — 2Ni5  = 0 
	

(15) 

Tr[SU(3) /f[U(1) j ] = U : 

(8) 
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3 (NQIL + 2NQ,,, ) = 0 
	

(16) 

Tr[U(1) 1,43  = 0 : 

3(  Nq +21.,) — 3(NeIR  N2)B )— 11 JR —  2N ,R  = 0 

and the mixed gravitational-gauge constraint [11] coincides with the 

[SU(3)c.] 2 [U ( 1) x ] 

anomaly. In the new notation the classical constraints given in Eqs. (9) becomes 

1VQ,, + N92, = NUB + MD R , 

NQIL + 	— NIB  + AiJit • 
	 (18) 

From these classical constraints we obtain 

Nun + OR = Nhe + :ti  i n 
	 (19) 

which through Eq. (16) the quantum constraint of Eq. (15) gives a relation between N-charges of the exotic quarks 

'INJ„ 5N5„ = 0 	 (20) 

and from Eq. (19) we find 

	

Nu, + :VD„= 7)1  Nj„. 	 (21) 

If the Standard Model is the input at low energies we know that 

	

NUR = 723  and ND„ = 
	 (22) 

and then from Eqs. (20) and (21) we obtain the electric charges of the exotic quarks 

4 
Arjh  = 5  and NiR  = — 5 . 	 (23) 

At this stage it is also possible to establish the last U(1 )N charges of the new G331 atributions. Let us take the 

quantum constraint of Eq. (16) 

:V(/' L = — 2  Ar4.1. 	 (24) 

and the cubic quantum constraint of Eq. (17) which, in turn, may be related to give 

111Q = 2 

	
(25) 

= 2.3 	 (26) 

for the three families of chiral left-handed quarks. 

The G331 model is indistinguishable from the Standard Model at. low energies. In this class of models in order 

to 'cancel anomalies the number of families. N ra„,, must be divisible by the number of colors degrees of freedom. 

N. Hence the simplest possibility is Ni„„iNc  .= 1. An interesting fact. concerns the generalization from SU(3)L 

to SU(4)L. . Using again the lightest leptons as the particles which determine the approximate symmetry, if each 

family is treated separately, SU(4) is the highest symmetry group to he considered in the electroweak sector [14 

In this sense this is the maximal generalization of G331 model. There is no room forSU(5)to U(1) if the nature 

restrict to the case of leptons with 0, ±1 electric charges. 

and 

= 
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Much of the appeal of the G331 model is that the new physics is guaranteed to be below a few Mk', well within. 

the reach of future colliders [6]. Finally, could be that 331 models are not just an embedding of the Standard Model 

but an alternative to describe these same interactions and new ones. 

I would like to thank the Funaacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) for a research 

fellowship. 
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',Istituto de Fisico/UFF - Niteroi - RJ 

N.Amato, 
Centro Brusileiro de Pequisos Fisicas-CLIPF/CNPq - Rio de Janeiro - RJ 

Os fluxos de muons e neutrinos sao calculados analiticamente para cnergias entre 1 GeV e 100 

TeV e para diferentes angulos zenitais. As razoes lepton/antilepton.sao Lambent estirnadas. 

As razoes 1.1+//r -  calculadas ao nivel do inar e de 1.37 quando se considera unions vindos 

unicamente dos pionS c Urn valor de 0.74 para a razilo neutron/proton no top° da atmosfera. 

As razaes .1= 	- sao usadas no cilculo do rale do detetor dc liarniokande. 
pc+rc 

Hipoteses Usadas no Calculo 

Os fluxos de hadrons e leptons silo obtidos .analiticamente coin o use do Nieto& das Aproximacoes Sucessivas 

considerando timasecio de choque constitute. inn espectro primario na forma usual de potencia coin 7 = 1.7 e para 

as distribuicoes de energia dos mesons sectindarios. as parainetrizadas por A. Villas [I] de dados de aceleradores e 

tainbern as iisadas por Gaisser [2]. 

Para as densidades atmosfericas foi usada a IJ. S. Standard para altitudes menores que I I ktn c a isoterinica 

para valores maiores que. 11 km. 

Introduziu-se nas equacaes de Music) dos unions os termos de ionizacao e do decaimento dessas particulas em 

eletrons e neutrinos. A perda de energia dos muons ao atravessar a atmosfera foi considerada continua e da forma: 

= a + bE. corn a e b constantes. 

Para ingulos zenitais maiorcs clue 604  fez-se as correcoes nos Iliixos devido a curvatura da Terra [3]. 

Na regiao de energia entre 300 MeV•e I GeV introduziu-se efeiios geomagneticos que sao importantes na esti-

mativa dos fluxos dos neutrinos mironicos e eletroilicos. Esses fluxos sao comparados corn os obtidos por simulacio 

por T.K.Gaisser et at N. 

	

Como route de muons (1,±) e dos neutrinos 	e (y e . 	considerou-se os decaintentos dos mesons r±, K±, 

kf e tambern o decaimento dos ;i± em e±. 	e Pe. - 

Resultados e Conclusoes 

Na figura I rnostra-se que os fluxos (IC minions vindos dos r± silo sempre inaiores que os vindos de K±. Para 1 

• GeV os unions originados do decairnento dos kaons a aproximadaniente 5,2% dos unions originados do decaimento 

dos pions atingindo urn valor de 40% para 100 TeV. Essc fato esta intimamente ligado corn a escolha do valor da 

razao neutron/proton do espectro primario e das razors 	e k+/K - . 
Na figura 2 observa-se que acima de 1 TeV os t.„ e r7,-; sao dominados pelo decaimento dos K±. enquanto que 

na figtifit 3 verifica-se que os ti e  ctip silo originados unicamente dos decaimentos dos KL e k±. 

As razors lepton/antilepton variam dc 1 GeV ate 100 TeV tla seguinte forma: 

/I . 3 < /1 +  hi - < 1. 51 

	

0 = 8. 9° — 	I.05 < ii„/P7, < 2A 

1.28  < 	ri,./07 	< 1.6 
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1, 26 < . 1s+/1.1 - 	< 	1, 51 

0 = OQ 	{ 1.9 < va177," < 2.42 

1, 32 <. 	 < 	1.6 

A razao 	„ 	por nos calculada. na regiao de•energia entre 300 MeV 	e I ( -.;e1". para os eventos detetados 

cm Karniokande. cujo vertice da intcracao estii coutido no interior do detetor. de aproximadamenie 0.73. Como 

os neutrinos eletronicos tearicos e experimentais sacs aproximadamente iguais. enquaroo tine Os neutrinos inuonicos 

teoricos sao 1.4 dos obtidos experimentalmente e se considerarmos como nnla explicaciio possivel para esse law a 

oscilacio dos neutrinos, o canal viavel seria entao inna oscilacao 110 tip() rip  
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Difragao de Solitons Bidimensionais 

J. E. Cieza Moritalvo' 
Institute de Fisica, Universidade do Estado do Rio dc Janeiro 

CEP 20559 —900 Rio de Janeiro. Brazil 

Y. P. Rybakuvi 
Institute de Fisica, Universidade de Patricio Lurnurriba 

PO BOX .97, 117419 Moscow, Russia 

1 Introducao 

Nos ultimos anos o interes pelas solucoes dos solitons (solticoes regulares e localizadas coin energia finita) title 

recebem-se das equagoes nao-lineares, crescen mint°. Dc acordo cony isto o soliton pode ser c.onsiderada ulna 

particula elementar coin extensao. Para esciarecer u quanto esta correspondacia a verdadeira. estudamos a possi-

hilidade dos solitons aparecerem corn propriedades ondulatOrias. 

Coin este objetivo nos estudarernos a difracio de solitons bidiniensionais sobre urn cilindro imporietravel de raio 

c. Consideraremos que na regiao .r << c. onde .r o  é o parametro de inapacto. o soliton interage foriemente coin o 

cilindro e somente na regiao xo > c acontece a difracao. 

2 Difragio de Solitons sobre urn Cilindro 

Descreveremos o soliton como urn campo escalar complexo ,{l. p) no modelo tie Synge [I], cony a densidade de 

Lagrangeana 

• 2 	 21 	3 L 	 - 	
2 + 	191 ) 

onde m e g sao constantes. 

A solucao regular corn simetria cilindrica do soliton em repot's° nit° excitado é coo = u(p)c..rp(—it..4). mais no 
entanto o soliton real «I sempre excitado c set' campo r r  diferencia-se de v o . Cohsiderando que o campu ci.7 tern ulna 

simetria cilindrica e aiuida devido ao soliton ser estavel. as interacoes irao variar cp somente na regiao p > a. ou seja 

a ['uncap ;.1(t, a) c sua transforinada de Fouric c;7 4  serao dadas. Entao na regiao p > a, onde o termo nao linear 

pequeno. o.  soliton excitado d escreve-se aproximadainente pela solucioda equacao linear ( ❑ — = 0 : . 

41(1, p) = 
27r 1 

d•tri(u.,  p)exp( — iwt). 

onde 	p) c a solucao da equacao de Bessel de ordein zero. eut.ao  

ko (11, p) 
41 (t, = 

2
-

7r 
ILLIV,e— e-EP( — iw t)• 

ko(P. a) 

• Na.presenca do cilindro o problema initial nazi linear de contorno é formulada na forma integral 

'E-mail address: CIEZAOUSPIF.W.USP.BR  (internet) ur 47602::CIEZA {ileenet). 
• 1 E-mail address: RYBAKOVOUDN.MSK.SU (internet). 
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(07 = 	+ 4Tr- 1 ,1 2 ptc;(1 — 	— )'.72#  IV' + 

de I (II I 	— Li 
du' 	On' 

(I) 

onde C é a funcito de Green retardada para o operador ❑ — Pn 2  gi igual a 

'Tap) [co:4mA]  

Este prohlerna resolveremos pelo metoclo de iieracoes. y =   considerando 	midi! c t o rain do 

Nos escolhernos r.60 como aproximacao zero ou seja. o camp° do soliton livre transforntado por Lorentz 

kil(1 1 -P0)  kr. , 0  = (A.e.1:14— 	— 1:01. 
27 	ko(p. ) 

ondc p0 = (( x — X0) 2  + 72 (y — vt) 2 j I t2  e t; = L. y  ( 1  a velocidade do soliton incidents. 

Ccinsiderando que r = 0 no contorno c.. enroutrainos pela equacao 1 a priineira aproxiniaci'io coil send() 

[ 

= 
du' 	du' 

(2)  

A integral (2) calcula-se pelo inetodo di'  lases estaciouiirias. cons derando conio parantetro de desconiposicao 

I 

	
f 
	 (1 .11    (2 7V? + 	)) 1/2  

t1:1 	
3272 	f V 	Ai) 	.')( P — 

ko(1l. a  ) 4,
, 
 J.,ut 	c— 	 (p — pi= — 	+ 	— 7/0) 

Calculando agora o impulso perpendicular. n qual adquire o soliton ao passar pelo cilindro. ohternos 

< 	>= 	(110., 104'(I.5• = 	ler 	 dc2 
• 	1 	 ezza 

Opt/Oro! + (v'o. 	— 1 » .  t:',101 )n,-) • 

	

Devido ao soliton ser estavel, entao o camp° 	, u) corresponds a nut process° casual estacionario corn a seguinte 

correlacilo 

	

< 	>= 

	

A principal contribuicao en' /),,. vein clan fregnencias 	Depois da considerar isto e int egrando en) t. lerensus 

<  

cos(k(x0 — r) + 7/1) 

n1,14.r 0 	— 0:1/2 

(2  + c)sin(4-(to — r) + r/•1))  

Nfir(x cl  + c) 7 (.c 14  — (1 3 / 2  

\/,Ti 

(3)  

a 3 rr;j11.1 52 r2  
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A secao de choque diferencial para o espalhamento do soliton corn o parametro de impacto que esta entre x o  e 

.ro + dxo e o impulso entre Pr  c P=  + dP,., tern a forma 

do = 27rx 0 W( • .co )dxo d Pr . 

onde W a densidade de distribuicao de probabilidade de Pr  xo, de onde encontramos a expressito seguinte 

exp  –flan 4 + 	ef(xo)1 2 ) , 
ITC " . , .„ 

dcr = — sm .ti,t + 
iTrPt-I4  r  

,i,,„ 	 xii. 
2 	 A cos- j, 	 2W .:  

onde e o angulo de espalhannento. Aqui na priiiieira parte d?1 ,ita formula (onus a expressito dada Ha mecanica 

quantica e a segunda parte e a correcao que aparece devido ao soliton ser considerada ulna part.icula coin exiensio 

/ 2r cos(k(ro – + 7r/4) 
= 	  trriv(.r o 	c) 2 (.ro  — c) 3 / 2  

(2 + e)siti(k(4:0 	c) + r/4)  \ 
vc(x4)  + 42 (37 0  – 0:5 1 2  1 

C0111 E = 

E =. fy, 
= _T. 

Este trabalho foi em parte financiado pelo Uonsellio Nacional de 1)csen•olvimento Cientilico e 'Frcnolo},iro 

(CNPq) c pela Universidade de Patrick) Luniumba 
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Spin-flip Conversion and Time Variations of Solar 
Neutrino Data Provoked by Solar Magnetosonic Waves 

.1.H. Colonial ;  I1 M. Guzzo' and N. R.eggianii ' 2  

Instiluto de Fisica 'Met Wataghin' 

Universidade Ernadual de Carnpinas - UN/CAMP 

13083-970 Cumpinas, Stio Paulo. Brasil 

2  Laboratorio Nacional de tal.: Sincrolon 

Rua La Ur° Vanucci. 1020 

13083-970 Carapina.s, Sao Paulo, Brasil 

Analisamos as clistorcoes no espectro de producao dos neutrinos solares provocadas por 

ondas magnetossonicas lentos no Sol o usamos nossos restiltados para mostrar que tail ondas 

' magnetossonicas podem ser responsiveis pelo comport amento temporal do fluxo de neutrinos 

solares ohservado experimcntalmente nos dados de Iloniestake Kamiokande. 

Tern silo argumentado que o fluxo de nen trinos . solares detectados no experiment° de Homestake Nostra algunia 

dependencia temporal [1], no entanto. os dados dos experimentos de Kamiokande [2]. (.1allex [3) c Sage (1] parecem 

nao confirmar esta variacio temporal. Viirios autores [5] discutirain a possihilidade de explicar a depeitancia 

temporal dos dados de Homestake considerando inn moment° magnetic° nao nulo dO neutrino. de Lai' forma que 

esta variacao 'temporal do fluxo de neutrinos solares podesia estar anticorrelacionado cons a variac.io temporal 

do campo magnetic° solar. De fato. quando os neutrino atravessain o campo magnetico do Sol e inn momento 

magnetic° diferente de zero 6 a.ssumido, parte dos neutrinos ativos de mao esquerda mudam a neutrinos est ereis de 

inao direita. os (ials escapam a deteccao. lkstle quo a taxa de con•ersao 6 sensivel ao valor do canipo inagnetico. 

Ilutuaciies deste campo poderiam afetar o fluxo total de neutrinos oliservados iia Terra. 

Nuni artigo recente [6] analisamos tun model° onde ondas magnetossonicas lentas sao produzidas a partir de 

deslocamentos de plasma no Sol, perturhando o campo magnetic° solar. Como conseqiiencia disco, quando se 

considera o moment° magnetic° do neutrino iiiio nulo. observa-se Hut uacoes' no fluxo do neutrinos solares cm 

periodos em torno de 100 (has. Nest.e trabalho. analisamos distorsoes do especl.ro de producao dos neutrinos 

solares provocados por tail ondas inagnetassonicas. Usainos este resiiitado para comparar as dados•experimentais• 

de Hoinestake c Katniokande. 

Considerando tiro moment° magnetic° diferente de zero para o neutrino. a interacao coin o campo magnetic° 

sera dada pelas equacoes de evolucao [1]: 

d 	L ( r) N f (r ) 	 1 1 1,81(r) 	 1 	PL ► ')— 

dr 1 utr ( r) 	 p„Bi(r) 	 G Art 	) _ 	
PR('•) 	

(1) 

onde vr, e vR  silo as cornponentes de 	esquerda a moo direita do neutrino. a difercnca das potencias quadradas 

das inassas 6 denotada por lout E 	 m;i n . E e a encrgia do neutrino. 	6 a constant c de acoplamento de 

Fermi, Nef(r) 6 a densidade de numero de eletrons no Sol e Bi (r) 6 a componente transversal do campo magnetic° 

solar [6). 

Resolvemos a equacdo (I) para calcular a probabilidade 	sohrevivencia dos neutrinos de mit° esquerda pro- 

duzidos na parte central do Sol, quando cstes atingem a Terra depois . de interagir con' o campo magn6tico solar. o 

qual 6 periodicamente perturbado pelas ondas inagnetossonicas [6]. A prohal>ilidade P( E.1) depend,: ,lo tempo e do 



Periodo E11.-  a In 

Jan 1987 - Mai 1988 
Jun 1988 - Nov 1991 
Nov 1991 - Jul 1993 

9.3 MeV 
7.5 McV 

7.0 MeV. 
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espectro de energia dos neutrinos solares. 0 espectro de energia varia entre 0-15 MeV, onde neutrinos produzidos a 

partir das reacoes de SBe ' Be sac) os clue mais contribuenl para o espectro detectado nos experimentos. Kamiokande 

observa somente neutrinos de 6B e tent urn lirniar aproximado de 8 McV (veja Tabela 1), entretarito Honiestake 

observa majoritariamente neutrinos de 'Be c sB c tern urn limiar dc 0.814 MeV. 

Table 1: Limier de Energia ern kamiokande. 

Nossos resultados sao integrados levando em costa os limiares de enorgia.s dos experimentos de lioniestake e 

Kamiokande: 

, 	1 .4 [06(E)P lie (E.0+  (D isism ( E)PH(E.IldE 
R Hornig) = 	 / 15 wi t  (E)+ 41.sm (EVE 

Josii ssm 

f 1J 

	B 
rb s.531 (12.)1 (li.i)cr(E)dE 

Rioim(l) =
e ll s

" l5„ 
4) .14sAr (1...)rr(E)dE 

onde cDssm = `PT ot 1( E) é o espectro total de producito. Os valores do espectro f (E) est ao dados na rekrencia [S] 

v o flux° do neutrinos (1)7- 0:  a dado por (8]: (14„, = 5.8 x 	 CI):7 0C, = 4.7 x 

A secito de (Roque 	E) incrementa-se liiearinente con) a cu.:I-girt segundo o Model° Solar Padrfto [8]: ct(E) = 

9.2 x E x 

As relaciies (2-3) sao novamente integradas, 	viz 110 tempo. considerando o period° di' colet a de &tilos .  

dos experimentos mencionados. Observaunos clue nossos result ados simulate o comportamcnto temporal do fluxo 

.le neutrinos solares detectados inn Terra 0 concluimos time as c a magnetossonicas potion sin responsaveis do 

comportamento temporal observado experimentalmente oin llomestakc e Karniokande (voja. figura 1). 

Os autores agradeceni a Fundacao do Arnparo a Pesquisa du Estado de Sa..c, Paulo (FAPESP) e ao Conselho 

Nacional de Desenvolvimento Cientifico c Tccnologico (CNPq) polo suporte financeiro. 
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Busca de Ressonancias na Conversao de 
Helicidade de Neutrinos em Interacoes 

corn Campos Magneticos Rotantes 

Jose Bellandi, Marcelo M. Guzzo. Pedro C. de Holanda 
Institut() de FiSiCa • UNICA A1P 

Partindo da suposieno que o moment() magnetic° do neutrino é diferente de zero. estudamos 
a evoluca° de neutrinos sujeitos a cainpos magneticos rotantes. c o modo polo qual essa 
evolucao poderia resultar cut conversio de neutrinos tie helicidade "left -  (aliens) ern neut ri-

nos "right -  (estereis). Querenios utilizar o faro de que os neutrinos - right. -  nao imerageru 
corn os cicteci.ores para conseguirmos informaeoes sobre a magnitude do moment° magnet ico 
dos neutrinos. Para resolver a equaeao de evoluctio dos neutrinos. combinou-se o metocio dos 
expansionais corn o da aproximaeno por fase est acionaria, usada para resolver as integrais 
dos expansionais. reit° isso. calculamos a probabilidade de con•ersiiQ de neutrinos left -
em neutrinos "right" em fungao dos parametros da inaLriz de evolucao (coin° o moment° 
magnetic° do neutrino, a densidade de eletrons do mei°. a magnitude e a lase do cam po 
magnetico). A partir dal procuramos ;Aar condieoes de ajuste desses parametros t al que 
a probabilidade de transieno tie helicidade desses neutrinos sofra ressonancia.s. de modo pre 
a transient) controlada de helicidacie 'testes feixes poderia nos dm novas informacoes sabre 
limites para o moment() magnetic° dos neutrinos. 

1 A Matriz de Evolucao: 

Consideramos nests traballio um sistema de neutrinos compost° de urn auto-estado interageme (1/0 e. urn auto-

est ado esteril (r.R), cuja evolueno se da da seguinte forma: 

	

d
•  ,V 	.1111 .: 

	

2 "' • ' 	711r; 
11,,I3(1)17 +i(11  

it„11(1)r-iQUI 	LIR 

— 4G F:v, .Nnef - ( L L  J 

onde: 

• 13 : modulo da componente do camp° magnet ic° perpendicular ao cixo de propogaeao. 

• p,,, : moment° magnetic° do neutrino 

• a : angulo relativo ao campo magnetic.° 

• GF : constant.e de Fermi 

• A",. : densidade de &trans do meio 

• Arn : diferenea dos quadrados das massas dos auto-estados li~kps [Ant' = rn 2 ( eq. ) — rn 2 (1 ,0] 

• E : energia dos neutrinos 

Consideraremos nossos neutrinos como ultra-rela t.v.st.cos. pie consists ern assumir pie rn << p . que nos 

permits iratar a derivada temporal comb derivada espacial. r aproximar E por p. Alcin disso. ratuarernos rteste 

modelo neutrinos de de Dirac, o que nlip1oea que. sem a introducao de trausicao de sabor, o term° de tliferenca de 

massa entre os estados left e right. nulo. 
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2 0 Calculo de P(ZIL -4  VR): 

Dado urn neutrino no estado vL no instante 1 = 0 (e esse vai ser sempre o caso. uma vez que os neutrinos sao criados 

sempre no estado "left"), queremos calcular a probabilidade de. decorrido urn cert.o tempo t. encontra-lo lio estado 

vt.• 

P(t/L. — vit) = 	 = 0 ))1 2  

0 processo de transicao de. helicidade fica mail claro se trabalharmos em outs base. quo se relaciona corn a 

base original atra.ves da relack: 

VS = expi—if;  4G • Ne (1 ')di 

0 

0 

exp[+i ft: 42 G y Nc or 
Vs 

Nessa nova base. a amplitude de probabilidade de transicao difere da inestna amplitude na base original sim-

plestnente por urna fase. Portanto. para o efeito de calculi) de probabilidades. as duns bases sao equivalent es. Alem 

(kiss°. temos quo v5 — vy se t 0, o quo nos da as mesmas condicoes iniciais cm mill:Ls as Lases. 

Nessa nova base. temos: 

II vs 	(0 	11{1) 
	vs 

ts -  (1 ) 	0 	) 

onde: 

u(t) = 	exp[ — i (6(1) — 	 I N,(ildi ')] 

Ulna solucao formal pode ser obtida atravis do metodo dos Expansionais 	onde a soltivio se 	terttios 

de tmiltiplas integrais da tnatriz do evoluctio. Aplicando esse metodo para o ctilculo da amplitude de transivio. 

encontramos a seguinte expressito: 

(vii(1)11/t.( 1  = 0 )) = 	fo '  "( 1 ')llt 1 + 

+i 
	ti(1 1 ) 	lg .  (I " ) I 	u(1" 1 )(11" 1  (if "dr — 

a 

Como u(i) contem urn termo oscilante. podemos aplicar o met odo da case est.acionaria[3] para chegar en' urn 

resultado aproximado de sua integral em I. Esse iii(Siodo consiste +,n. caso o termo oscilante seja preponderante. 

considerar que a integral se anulara. a nil° ser quo. no interval° de integracao. haja inn ponto onde a lase é • 

estacionaria. Nesse caso temos: 

f ( C } 	= I 
1
1( 1 ) eirht1)(11  

[

2 	1 112  
1.01„ (7)1 ] 	g(r) exp[i.rh(r)+ 	.1 	quflUdO 	X — OZ. 

cattle r representa o ponto de fase estacionaria [W(r) = 0]. 

Aplicando esse teorema ao nosso caso. cliegamos tto segninte resultado: 

1/2 
1: (1(1 `)(11 =her(  r) 

	
Il{r)exp[ih u (r) + 

onde 	= fo ■fiG N e (t 1 )dt 	6(0 o r e delinido tal que W(r) = 0. 

Conio a integral acima nio depende de 1.. rt..; nitiltiplas integrals do expansional redtizeni-se 	seguinte :,aerie de 

potkcias: 

(vn(1)i vdt = 0)) = — i 24( 1 —4 -2  +4 4  — ...)exprih n(7) + 

onde I 1/2 
= [ 	 

	

2 lb"( r)1 	
it I3(r) exp[i h"( 7) + 
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Sc < I elude a serie converge c o resultado a simplesmente dado por: 

• 
(uR(t)Ii/L(i. = 0)) = 	

1 	
exp[th

it  (r) + 
 + 

— PH) = I( vR(t)i uL( 1  = 0))1 -  = 4  

3 0 Parametro de Adiabaticidade: 

Ames de avancarines em nossos cilculos. hi inn aspect° interessante neste problenta que nierece ser ressaltado. 

Se calcularmos o parametro de adiabaticidade. que se di pela comparacao dos terrnos !lac) diagonals da matriz de 

evolucao. escrita para os auto-estados massa. com  os terrnos diagonais. chegamos ao seguinte valor na ressonancia 

on fase estacionariii[2]: 

/1"(71 

Por4m cssa expressao se relaciona diretamente coin o parametro encoutrado aciuna. de forma que podemos 

escrever a probabilidade total de transicao de helicidade em termos do parr 	de adiabaticidade. eneontrando: 

P = 

 

(16 + 77) 2  

Dessa expressao vcmos plc a maxima transicao de helicidade se dii tan um meio termo de adiabaticidade (no nosso 

case, corn 	5). se anulando para transicees totalmente adiabriticas 	I) ou extreinamente 	adiabaticas 

(< 1). Esse resultado ji tinha side destacado qualitativan tent c por SinirnolV, mas aqui se chega a ulna expreri:siio 

quantitativa para essa relack. E claro (pie nao cliegamus em tima expressao geral para qualquer tipo evolucOo. 

mas a interessante destacar a relaciio entre adiabaticidade I! escilacio entre auto-estados em nosso case particular. 

4 Maximizando P(vi, —t. 

Como queremos que o major Mutter° passive! de neutrinos - left sejam convcrtidos em neutrinos - right tle mod° 

que a experiencia que qucrernos proper seja a mais sensivel possivel. vamos procurar valores de nossos parametros 

que maximizam Ply!, — PRY Nola-se que o valor iniximo clessa probabilidade Sc di quando 16.1 = 1. o que nos 

chi unia transicao contpleta de helicidade viR) = 1]. •emos entao. cotno condicao para que o efeito da 

ransicao de helicidade seja observivel: 

Tomando o limite do memento magnetic° do neutrino [ ji < l0 -121,0) a adinita..o que m 	m capos agneticos da  

ordem de 10T sao factiveis em laboraterio. substituimos esses valores na condicao acinia. °kende: 

Ih"( r)! = NfiC;F" N:( 	On ( 7 )1 -- • 10-31 e 117! 

	
(1) 

Porinn lia outras condicOes que precisalu ser sintultaneamentesatisfcitas. Precis:tines garantir clue a aproximaciin 

tie fase estacioniria se aplique ao nosso caso. Ent primeiro Ingar e ❑ ecessirio que haja U111 porno na evoluctio dos 

neutrinos onde a fasc seja estacioniria. um polite nude: 

h i (r) = NfiGriV.(r) - o'(r) = 0 	 (2) 

Ern segundo sugar. o termo u(t) deve oscilar pelo menos Lima vez entre o ponto de criacio e 0 ponto de lase 

estacioniria. e entre este ponto e a detecclio, de modo que podeinos desconsiderar integral nessas regiOes. ticando 

sornenie corn o valor dado pela fase estacionaria. 

= 2 
(2/LB( r)) 2  

[ 	 1/2 

2 	 )I J 
- 1 

Ih(r) 	11(0)1 = 	 [o(r)- o(0)11? 2a 	 (3) 
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h(r)I = 	4GFNe{tio , -(00)_0(11_?.2. 
	

(4) 

5 Conclusio: 

Temos fa-es condicoes que precisarn ser satisfeitas simultaneamente para quc um feixe de neutrinos ativos seja. ao 

menos parcialmente, convertido em neutrinos est ∎ireis. Satisfazer essas condicoes e a principio possivel. Lima vez 

quc nio stio necessirio valores de campo magnetic° ou de densidade de eletrons inatingiveis, ou aceleradores de 

extensao irrealizivel. Porent existe urn problem de precisio para se compatibilizar as condicoes I e 2. Se arranjamos 

nosso aparato para que tenhamos controle (la cowlick I, perdentos controle da condicio 2. c vice-versa. Talvez o 

ajuste fino dessas duas condicoes seja possivcl experimentalmente. o que nos daria ulna receita para se mortar urn 

aparato experimental para a criacao, interacio e deteccao de neutrinos, que possa nos trazer infortnact: adicionais 

para melhorar os lirnites de seu momento magnetico. O traballio que se seguiri portant° sere o de estudar a 

factibilidade experimental do ajuste entre as condicoes citadas, procurando para isso valore que possam ser usados 

experimentalmente para os parametros do nosso problema. como a densidade elet.ronica. ou o campo inagnetico. 
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A Geracao da Massa do Pion na 
Quantizacao dos Skyrmions 

Jorge Ananias Neto .  
. Departameneo de Fisica. ICE 

Uniuersidade Federal de Juiz de Fara, 36036-330 Juiz de Fora. MG, Brasil 

Atraves das solucties tipo &ikon que minirniza todo o Hamiltonian° quantico do modelo de 

Skyrme, é possivel gerar a massa do Pion, sem introduzir o termo de massa explicitaniente 

na Lagrangiana da tcoria. • 

bias tiltimas decadas, o modelo de Skyrme alcancou naive' sucesso devido a sua simples capacid I em descrevt:r 

os fentimenos da fisica hadronica. A ideia a representar os barions e suns interacoes atraves de solucoes tipo sOliton 

num modelo que tern como base o Sigma nit° linear. Neste traballio vamos mostrar que c possivel obter a tnassa 

do Pion I atraves do comportamento assintotico cla solucao solitonica que minimiza Lod° o Hamiltonian° quautico. 

Para isso, varnos proceder, de unit' maneira inais cuidadosa, a quantizacio operatorial do modelo. tentando prestar 

mais atencio no problema de ordenamento que existe tins relacoes de comutacio entre as variaveis cam -micas. pantos 

iniciar pela Lagrangiana estatica do modelo de Skyrine. que é dada por • 

L = 	d3 r {— 
16 	

piuthu+) +
32e.- 	

(I) 

onde F, e a constante de decaimcnto dos Pions. e e um parintetro aditnensional c U a tuna inatriz SU(2}. Ex-

pandindo U atraves das coordenadas rotacionais coletivas, on seja. U(r) por t) = :1(1)Li(r)A(1)+ ent ( I), ondc 

A tambin a uma rnatriz SU(2), que é expandida coino A = n o  + ir re, obternos 

L = — + ATr [do/Wart -1 ] = — 111 + 2A Dai) 2 
	

(2) 
i=0 

(Dude M e A sio a massa e o momento de inertia do sOliton• respectivamente. Como A 6 tuna matriz SU(2) ternos o 

vinculo 

1=3 

E " = 1. 
i=o 

Introcluzindo o momento conjugado 7ri = 	= 	podemos escrever o Hamiltonian° na forma 

3  

	

= 	L = Clain ;  — L = M +2Aciini = M + 1 
	

zori. 
ago 

0 vinculo (3) é do tipo triesfera. Logo, a Hach° de comutaci -to entre a coordenada a; o moment() 7ri 

[a;, 	= i (bi — a 	. 

Esta mimic) de comutacio a niio trivial. lima possivel soluvio da emiaciio (5) c; 

'Sem introduzir explicit/laterite o termo de nutssa na Lagrangiana di, inodeiu. 

(3)  

(4) 

(5)  



31 (1 + 2 )07 1  

872  (f:" .r 2 	I•• (1 + 4 	+ ' 14L'')] dr) 

Da equacio (8) obtemos o comportamento assintotico de F(x) 

k 2  
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1 
7rj = ' 	

+ )1 
[(d i  — aja;)0; +'or 	noi)] - 

	

1 	• 	' ' 
— (6, 	uja, + )1 

onde a, a principio, é urn parametro livre. Substituindo a represento'cao do moment° (6) no Hamiltoniano guanaco 

(9) obtemos a expressito para os autovalores da energia 2  

2° — 3) 1 E = Al 	1 
 ri• [1 ( 1  +. 2 ) 	

50(
(1 + (1)2 	

= 1,2,3 .... 	 ( 7 ) 

Agora e possivel escolher urn valor do parametro a tal que tenhamos uma solucao variacional que minimize todo 

o Hamiltoniano quintico 3 . A forma assintotica (x Inuit° grande) da equacio de Euler Lagrange na representacio 

hedgehog, 1./ = ext• it • /7(x), é dada por 

d 2  F 2 dF 2 
— 	+ + k - F =0, 

4112 x dr 	.r 2 	 • 
(8) 

onde k 2  a escrito como 

(6) 

( 9 ) • 

ex p  ( 	) 
	

(10) 

Do comportamento assintOtico de F(x), tipo Vilkawa, podemos identificar k como sendo a mosso do Pion. Para 

calcular este valor, temos que resolver uma equal io integrodiferencial que, a principio, nao a tuna tarefa Neil. Como 

primeira aproximacio, vamos usar valores de F(x); Fr  e e obtidos num cilculo semiclassico. Obtemos r», z 140Mer , . 

0 Valor experimental é In, = 138Mev. 

Mais•iefer'encias podem ser encontradas ein 

1..Jdrge Ananias Neto: Journal of Physics G21 (1995) 695. 

Uma tipica representayiso dos autoveiores du Hamiltoniano quintico c dadu por 1171 (at + eu 7 ) 1 .' 
3 A eacolha que elirnirus a divergencia infraverrnelha e o > (21 + 5V2[)/1.1 nu i < ( 21 — 5s/27)/14. 
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Otimizacao de Tempo na Simulacao de Cascatas 
Eletromagneticas na Atmosfera 

Luiz Americo de Carvalho, Carola Dobrigkeit. Jose Augusto ChineHato 
Departarnento de Raios Castnicos e Cronologin 

Institute de Fisica Gleb Iliataghin 

liniuersidade Estadual de Carnpinas 

13.083-970, Carnpinas, SP, Brazil 

We have studied and applied two procedures with the aim of reducing the time for simulation 

of high energy electromagnetic cascades for high depths. The first procedure is based on 

the longitudinal transport of particles. i.e., without considering the deflections due to the 

multiple Coulomb scattering and the influence of the magnetic field of the Earth: in this way 

we remove subcascades that do not contribute with particles above threshold energy at. the 

detection level. Those that contribute are then transported. now considering scattering and 

the influence of the magnetic field. The second procedure is based on the cut of subcascades 

avoiding even the longitudinal transport. For this we have studied a cut. function that 

depends only on the depth the particle has to move till the detection level. With the use of 

both procedures we get a considerable profit in the time of simulation without jeopardizing 

the results. 

Introducao 

A simulacio de cascatas cletromagneticas envolve o desenvolvimento de urn modelo computational (111) (.11.14' 

realize operacoes que representem a propagacito e as interacOes das particulas envolvidas. 

A base do modelo e que as secOes de choque fisicos sit° thretamente represent.adas por distribuicnes de proba-

bilidade. e assim podemos amostrar a transfercncia de energia pars a particula-fillio utilizando o titet.odo de Monte 

Carlo nas expressoes da secao de choque diferencial dos processos de product -to de pares e Bremsstrahlting ([2) c 131). 

A propaga.ca.o de cada particula carregada prodnzida no fenomeno envolve o processo de espalltamento mtiltiplo 

coulombiano (12) e [4]). a influencia do campo magnetic° terrestre e, consequentemente. a atualizacito dos cossenos 

diretores e das coordenadas da particulas coin a parainetrizacao da densidade atmosfdrica ([5) e [G]), alem da perda 

de energia por ionizacao a uma razio constant.e ((1.678 x 10 -2  GeV/X0 ). Ontle .Y o e o comprimento de radiacao 

no meio, a unidade usual de distancias no escudo do fenomeno de cascatas eletromagneticas. Ji a propagacao dos 

fOtons envolve apenas a atualizack das coordenadas corn a parametrizacao da densidade atinosferica. 

A simulacio inicia-se corn a entrada na atmosfera de ulna part icula primaria que pole ser urn 7. on eletron, ou 

positron corn energia entre 4 MeV c 1.000 TeV. Esse d o intervalo cfe energia na atinosfera no qual apenas esses 

processos fisicos acima sa,o relevantes c as expressoes de secao de choque utilizadas sao 

Como a sitnulacao de cascatas eletroinagneticas consume tun consideravel tempo. principalmente Para primairios 

de alias energias (acima de 1 TeV), foram utilizados dois procedinientos corn a intenca° de tnclhorar o desempenho 

da simulacao sem o comprometitnento dos resultados. 

1 Otimizacio de tempo na simulacio 

0 transporte de particulas pela atmosfera envolve: 

Fotons 

- atualizacio das coordenadas espaciais corn a parametrizacao da atmosfera de Shibitta/Gaissor/Chinellato ([5] e 

(6)), que permite transformar profundidades (dadas em gicin 2 ) em ;auras ((hulas ein min) t. vice-versa: 
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- registro das particulas. 

Eletrons 

- amostragern do angulo e de espalhainento mUltiplo coulombiano: 

- amostragem do angulo azimutal 4) de uma distribuicao uniforme (0,21r); 

- defle)Cao devida ao campo magnetic° tcrrestre (calculado para o Equador); 

- atualizack da direcao de voo (cossenos diretores); 

- atualizacito das coordenadas espaciais corn a parametrizacao da atmosfcra; 

- registro das particulas. 

Esta etapa é a que mais consome tempo na simulack do fenomeno. Para exemplificar : na sirnulacao de urna cascata 

iniciada por urn futon primario de 10 TeV, corn uma energia de lirniar (ou registro) de 4 MeV e corn a profundidade 

de registro de 25 X0 (cerca de 400m acima do nivel do mar) gasta-se 75% do tempo de simulacio no transporte de 

eletrons e 3% para o transporte de futons. Sem a menor.dtivida, a maneira mais eficiente de econornizar tempo 

buscar °Wes para realizar esta etapa sem desperdicar tempo corn particulas que nit) contribuirio para os resultados 

da simulacio do fenomeno, on seja, nit) contribuirao corn particulas corn energia acima do lirniar na profundidade 

de deteccio. 

Pensando nisto, foram estudados dois procedimentos 1 , os quais denorninamos: 

- A) Algoritmo catalisador 

- B) Funcao corte 

Assim as particulas corn energia menor que determinado valor de energia. aqui clenoiiritlada crtiergia de entrada (p)), 

sera.° propagadas por este procedimentos. 

1.1 Procedimento A: Algoritmo catalisador 

0 algoritmo catalisador foi construiclo para el-mar virtualmente o transporte longitudinal das particulas. 0 

transporte é virtual pois os dados das particulas quo intcrageni nit° sio eliminados da simulacio. 0 transporte 

longitudinal consiste ern mover a particula de ulna distancia dada pelo livrc caminho amostrado nas subrotinas 

dos processos de producao de pares e Brenisstrahlung, sem considerar as deflexiks de espalhamento e uo campo 

magnetic° terrestre e sem converter esses valores segundo a parametrizacio atmosferica. Caso a particula pai (Jesse 

subchuveiro quo entrou no algoritmo catalisador. ou pelo tuenos um de setts descendentes, chegue it profundidade 

dc registro corn energia acima do lirniar, todo o subchuvciro sera transportado. agora efetivamente• considerando 

as deflexOes e utilizando a parametrizacio da densidade atmosferica. Senio, todo o subchuveiro sera descartado. 

1.2 Procedimento B: Fungfio corte 

Neste procedimento descartam-se particulas, sem near mesmo transportzi-las virtualmente, desde que suas 

energias sejam menores que valores calculados a partir de urna funcao dcpendente da profundidade que a particula 

ainda tern que percorrer ate o nivel de registro. 

Esta fun4ao foi calculada a partir de 1 1111 estuclo na propagacito longitudinal de particulas e possivel registro 

dest.as, ou de pelo menos urn de seas descendentes. Para isto construiram-se graficos coin as energias dos pais 

(futons ou eletrons) dos subchuveiros coin sobreviventes e as respect.ivas profundidades ate o registro. Os graficos 

coin os subchuveiros sobreviventes e r•ectivas profundiclades at6 o registro sao dados. respectivamentc, nas figuras 

.(1 e 2) para eletrons e fotons. 

Do estudo destes graficos foi construida uma funcito cone. Esta funcio nos (16 o valor de energia para o qual, 

abaixo destc, os subchuveiros muito provavelmente rrao teriio polo mcnos urn sobrevivente na profundidade de 

registro, exceto fiutuacoes, que, sumo jiff dito, sit° inerentes ao processo. A funclio cone é dada pela expresso: 

!curie(A 1 ) = 	 
Get/ 

sendo 1.1t a profundidade quo a particula tern (pie percorrer ate o registro. expressa em unidades do 

(I t ) 0 — 3.0 -1- 1).1 224:164 + a ju st.. 
( I)  

!A ideia da utilizacio destes procedimentos veio de um trabalho de 1.'J89 Fla() publicado de Josef !Spitzer quandu no Instituto Max 
Planck, Heidelberg/Alemanha. 
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Pode-se notar pelos graficos apresentados nas figuras (1 c 2) que Canto para eletrons. quanto para ratans. 

utilizamos a inesma funcao cone. Isto a feito para simplificar o cone, minimizando a necessidade de comandos 

condicionais na simulacao. Urn parametro de ajuste pode ser colocado para, de acordo com as nccessidades do 

usuario. cortar maior ou menor mitnero de subchuveiros dentro de urna margem de seguranca relacionada corn a 

probabilidade do subchuveiro nao contribuir com pelo inenos urn sobrevivente na profundidade de registro. 

E importantc notar (ver figuras 1 e 2) que exist= profundidades minimas para conc. que 10.0X0 para 

fetons e 5,0Xo para cletrons. Estas sao colocadas para permitir possiveis flutuacoes no livrc caminho amostrado. 

2 Resultados 

0 programa que executa a sirnitlacio neste trabalho foi desenvolvido ([11) cm linguagem Fortran ([81). As 

simulacOes foram realizadas cm estacao de traballro niodelo Alpha. 

Foram realizadas simulacoes para quantificar o ganho de tempo. sempre utilizando conjuntainente os dois pro-

ccdimentos. Resultados que mostram cstes ganhos sao apresentados na tahela 1 para algunras profundidades para 

cascatas iniciadas por 

ajuste ajuste ajuste ajuste 

Profundidades +0,7 +0.3 sem ajuste -0,3 -0.7 

10,0 X0 2.2 1.9 1,9 1.7 1,6 

14.6 X0 2.5 2,3 2,2 2,2 2.2 

25,0 X0 15.9 8.5 7.0 •.8 4.0 

Table 1: Ganho de tempo corn os dois procedimentos: valores para primario c e 10 'reV. Eca c a ti Aa dur = b GeV • 
Ei,miar = 4 MeV 

Na tahela (1) poclemos ver que o ganho maxima foi conseguido coin a utilizacao dos procedimentos para o caso 

simulado corn a profundidade de registro ern 25 X0 (circa de •00in acima do nivel do mar) e corn o parametro de 

ajuste da funcito de corte igual a +0,7. Este valor de parametro de ajuste autnenta ern cerca de 5 vezes energias 

de corte calculadas. Apresentamos resultados para os seguintes valores de ajustc: +0.7. +0.3. -0,3 e -0.7. c e3 claro, 

Para justificar a utilizacao dos procedimentos Lentos que. al6in de quantificar o ganho de tempo. mostrar que os 

resultados da simulacao sao mantidos corn a iitilizaciio dos procedimentos. Podeinos comparar hem os resultados 

analisando os coin 

3 Conclusao 

Corn a utilizacao dos proccdimentos estridados conseguirnos um cousidcrivcl ganho de tempo. A simulate o 

foi exccut.ada ate 16 vezi.s mais rdpida (para a profundidade de 25,0 .Y 0 ). Podemos alcaricar maior m.onoinia part 

energias maiores que 

Desta maneira. conseguirnos minirnizar o graude inconveniente da simulaci o. que o ienipo dispendido. 

Os resultados da simulacao corn a utilizacao dos proccdimentos sao os niesmos. covtparaudo-os ([7)) aos da 

simulacao sem os procedimentos e considerando a influencia da Humacao. (pc C 	no ferionicno. 

Ulna eficiencia ainda maior pock ser ohtida corn a utilizacao de funcocs corte difcrent es para eletrons e fOtons. 

pots para os eletrons (maiores consumidores de tempo de simulaciio) podernos iitilizar urn valor de parametro de 

ajuste ma 
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ec,-10 TeV - y - Reglatro : nivol do mar 

Figura 1: Grafico da energia versus a profundidade ate o registro de eletrons (pais de 
subchuveiros corn sobreviventes) de um 7 primario de 10 TeV, corn transporte longitudinal 
desses subchuveiros abaixo de 6 GeV e energia de limiar de 4 MeV. Grifico da funcio corte 
construida e fun*, corte corn ajuste +0,7 (reta tracejada).Foram simulados 10 eventos. 

Profundidade At (em X0 ) ate o registro 

Figura 2: Graco da energia versus a profundidade ate o registro de 7's (pais de sub-
chuveiros corn sobreviventes) de urn y primirio de 10 TeV, corn transporte longitudinal 
desses subchuveiros abaixo de 6 GeV e energia de limiar de 4 MeV. Grifico da funcio corte 
construida e fungi° corte corn ajuste +0,7 (reta tracejada).Foram simulados 10 eventos. 
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Bounds on Excited Leptons from Precise 
Electroweak Measurements 
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S. F. Novaes 
Instiluto de Fisica Tedrica, Universidade Estadual Paulista, 
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We study the effects induced by excited leptons at the one-loop level in the observables 
measured on the Z peak at LEP. We compute their contributions to oblique parameters, 
Z partial widths, and weak-magnetic moment of the r lepton. Our results show that the 
new effects are comparable to the present experimental sensitivity. but they do not lead to 
a significant improvement on the available constraints on the couplings and masses of these 
states. 

The standard model of electroweak interactions (SM) obtained a remarkable agreement with the present exper-

imental data at the Z pole performed at LEP [1]. However the SM is•not able to provide a satisfactory answer to 

some fundamental problems like the family repetition and the fermionic mass pattern. A very appealing idea that 

might shed some light on these issues is to consider the possibility of the these particles being composite states. 

Composite models assumes the existence of an underlying structure, characterized by a mass scale A, with the 

fermions sharing some of the constituents [2]. In this case, excited states of each known lepton should manifest 

itself at some energy scale, and the SM should be seen as the low-energy limit of a more fundamental theory. We 

still do not have a satisfactory model, able to reproduce the whole particle spectrum. Due to the lack of a predictive 

theory, we should rely on a general approach to explore the possible effects of compositeness, employing effective 

Lagrangian techniques to describe the couplings of these excited states. 

Several experimental collaborations have been searching for,excited lepton states [3, 4]. Their analyses are based 

on an effective SU(2) 0 U(1) invariant Lagrangian, proposed some years ago [5]. Also a series of phenomenological 

studies of excited fermions have been carried out in electron-positron [5, 6, 7, 8, 9, 10], hadronic [8, 9], and electron-

proton [5, 10] collisions. 

Another important source of indirect information about new particles and interactions is the precise measurement 

of the electroweak parameters. Virtual effects of new heavy states can alter the SM predictions for some of these 

parameters, and the comparison with the experimental data can impose bounds on their masses and couplings. We 

report here our analysis of the effects induced by excited leptons at the one-loop level in the oblique parameters, 

Z partial widths measured at LEP [11] and in the anomalous weak-magnetic form factors of the leptons [12], at an 
arbitrary. energy scale. 

	

We consider excited fermionic states with spin and isospin 	and we assume that the excited fermions acquire 
their masses before the SU(2) 0 U(1) breaking, so that both left-handed and right-handed states belong to weak 
isodoublets. The coupling of the excited-usual fermions can be described by an effective Lagrangian [5. 10] which 
is SU(2) 0 U(1) invariant and CP-conserving, 

Lpf = 	 f2 W' + 	B „) + h c 
2A 	 2 Pu 	2 	L  

where th is the standard leptonic doublet and 'P = (N E)T is excited fermion doublet with hypercharge = -1. 
The constants h and fl  are weight factors associated to the SU(2) and U(1) coupling constants, with A being the 
compositeness scale, and cr,„ (i/2)[7,, p . 
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The coupling of gauge bosons to excited leptons can also be described by a SUP) 0 U(1) invariant and CP 
conserving effective Langragian, 

, Y 
CFF = -47.[(g:f 

2 
•TP W i  + g 	Bp ) + ( 72-TcgK2  cr"" iTt - Tcr"d„13,..) 	 (2) 

2 

We should notice that the particular model presented above has been used by several experimental collaborations 

as a guideline to the search of composite states, and our results can be directly compared with the bounds on the 

excited fermion mass and compositeness scale obtained by these collaborations. 

Excited leptons contribute to the vector-boson-two-point functions through the diagrams shown in Fig. 1. The 
loop contributions of the excited leptons were evaluated in .0= 4 - 2e dimensions using the dimension regularization 

method [14 which is a gauge-invariant regularization procedure, and we adopted the unitary gauge to perform the 

calculations. The results in D dimensions were obtained with the aid of the Mathematica package FeynCalc 41, 
and the poles at D = 4 (c = 0) and D = 2 (c = 1) were identified with the logarithmic and quadratic dependence 
on the scale A [15]. 

FIGURES 

F 

(1) 

V V
2 

F 

(2) 

Figure I. The contribution of the excited leptons (F) to the two-point functions. 

We have studied the oblique corrections due to these particles, parametrized in terms of the variables 

and c3 of Ref. [14 Comparing our analytical results with recent global analyses of the LEP. SLD. and low-energy 

data, we verify that the constraints coming from oblique corrections are less .restrictive than the available direct 

experimental limits. 

Excited leptons affect also the Vi ff couplings, with V1  = or Z, whose result we parametrize as. 

1  
{ 	

i 	
,c) 

, 
.. 1 	a" , PO 70  [4:,./ (q 2. ) _ Fxit (q2 )1 51 + , 	a  ( 	Iv} 

I, { 
I  . 

J" = e 1.'1 ( P' ) 	2 sin Ow cos 64' 	 2rrif i 

where q = 	p2 . The terms 4:' t  and F'X'l are present at. tree level in the SM, c.g. for the Z boson. F,z,f 

+2Q f sin' Ow, and F',zi f = -Tat  . The anomalous weak -magnetic form factor.n IP is generated only at one- loop 

in the SM as well as in the models with excited fermions. 

(3)  



f 

(4) 

(5) 

(7) 

(9) 

V2 

V2  
(12) 
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FIG. 2. The contribution of the excited leptons to the three-point functions 
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There are twelve one-loop Feynma.n diagrams involving excited fermions that contribute to the above form 

factors, which are shown in Fig. 2. The complete results for the excited leptons contributions are rather length and 

can be found elsewhere [11, 12]. We should point out that we made a consistency check of the whole calculation. 

verifying that our exact result for the vertex lee cancels at q 2  = 0. This result should be expected since we are using 

a gauge invariant effective Lagrangian, and the QED Ward identities require that the excited fermion contribution 

to this vertex, at zero momentum, vanishes. In the same way, we have also checked that the contribution to the 

coupling 7iiv cancels. 

The form factors 41  = Ff/ changes the Z widths, r e  E r(z eke - ) and r;„„ = 3 r(z — i7v). by 

(sw 
 4   c

1/2)  

	

otAlz 	x FP(z) 
33, iv  

1 
= 	2112 	x Fj" (.1-) . 

2si:v  cry  

The theoretical values for the Z partial width generated by ZFITTER [17]. for m gor, = 175 GeV and A fff = 

300 GeV, are T, = 83.9412 MeV and 	= 501.482 MeV. The most recent. LEP results [18], assuming lepton 

universality, are TPLEP(Z 	t ft - ) = 83.91 ± 0.11 MeV and for the invisible width ff .1',: 13  = 499.5 ± 2 MeV. 

Therefore, at 95% C.L., we should have -0.25 < 	< 0.18 MeV, and -5.9 < 	< 1.94 MeV. 

Our numerical results show that the most restrictive bound on the excited fermion mass and compositeness 

scale comes from the comparison of Ar, with the LEP data for this observable (see Fig. 3). In Fig. 4, we present 

the excluded region, at 95% C.L., in the A versus M plane imposed by Ar e., for ft = 12  = M1t = = 1. We have 

further assumed that M < A, leading to the excluded region represented by the shadowed triangle. For comparison. 

we also present the regions excluded by the ZEUS [19] and HI data [20], for ft = f2 = 1. Since we have assumed 

that BR(e` — e-y) = 1, these curves represent the upper limit. for ZEUS and H I hounds. As we can sec. we were 

able to exclude a small region beyond the available limit. We also show our results when we relax the condition of 

< A. In the latter case, our analysis excludes all excited lepton masses with scales A < 210 GeV. 

For the anomalous magnetic (a;) and weak-magnetic (a f) moments, we just present. an  approximate expression, 

assuming M2  = A 2  Maw  , and ft  = fs  = f and k i  = = k: 

a 1.2  riq 37 +  74 cos' Ow + (24 + 39 cos 2  Ow)k 
48r M 2 	 5111 2  Ow cos' OW 	 • 

a f 2  rn2f 1 37 + 2 cos 2  Ow (27 - 74 cos 2  Ow ) + 6(4 - 13 cos 4  Ow )k 

Our results for the anomalous magnetic moment a; arc in agreement with those of Ref. [21], for k = 0. 

Nowadays, the most precise determination of the anomalous magnetic moment of the muon a;/, E (g„ - 2)/2 

comes from a CERN experiment. [22], 	= 11 659 230 (84) x 10', This result should be compared with the existing 

theoretical calculations of the QED. electroweak, and hadronic contributions. which are known with high precision. 

The main theoretical uncertainty comes from the hadronic contributions which is of the order of 20 x 

Therefore the present limit on the non-standard contributions to the anomalous magnetic moment of the muon 

is 16 a;f1 < 8 x 10-9 . The proposed AGS experiment at the Brookhaven National Laboratory [23] will he able to 

measure the anomalous magnetic moment of the muon with an accuracy of about ±4 x 10' 0 . 

Taking these results into account, we plot in Fig. 5 the attainable values for the r anomalous weak-magnetic 

moment, assuming universal couplings, after imposing the constraints from q„ - 2 measurements. We Can see that. 

only for a narrow band of k values around k0 can la,z(M:23 )1 he large enough to he observed at. LEP. 

a' 

a 
967r 111 2 	 sins  Ow me Ow 
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Figure 3. Attainable values for the new contributions to the width r(z 	e+r) in the model as a function of the scale A. The 
thin (thick) line correspond to excited lepton mass value of M = 100 (200) GeV. We have assumed different configurations 
of the weight factors (fi, f2. 1'4 1, 	(a) = (1.1,1,1): (b) = (1. - 1, 1, - 1); (c) = (1, 0, 1.0); (d) = (0.1, 0, 1). 

Figure 4. Excluded regions in the A versus M plane from the bounds on ar„ (shadowed area), from ZEUS data (below and 
Jell of the dashed curve) and HI data (below and left of the dotted curve), at 95% C.L. 
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Figure 5. Attainable values of la rz (Afl )1 for universal excited lepton couplings after imposing the constraints from g„ - 

In conclusion, we have evaluated the contribution of excited lepton states, up to the one-loop level, to the oblique 

variables, to the Z width to leptons, and to the anomalous magnetic and weak-magnetic form factors of the leptons. 

We compared our results with the recent bounds obtained through the direct search for these particles. Our results 

show that the present precision in the electroweak parameters attained by LEP is marginally able to constrain the 

parameters A and M beyond the present limits from direct searches. For the anomalous weak-magnetic moment 

of the r, our results show that the existing limits from g N  - 2 strongly constrain the possibility of observing the 

anomalous weak-magnetic moment of the r lepton at LEP, 
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Aspectos de SUSY corn Quebra de Paridade-R 

Mauricio Bernardino Magro 
Institute de Fisica, Uniuersidade de Scio Paulo 

Nos modelos supersimetricos é definido urn novo ntimero quantico multiplicativo chamado Paridade - R: 

	

Rp .= ( - 1)2j+3B+L 	 ( 1 ) 

onde J e o spin, B o numero bariOnico e L o ntimero leptonico. Este novo rnimero quantico assume o valor +1 

para as particulas do modelo padrio e —1 para as de SUSY. Se RP se conserva, como assume o MSSM, podemos 

concluir que as particulas supersimetricas sax) produzidas a pares e que existe uma particula SUSY estivel (LSP). 

No aspecto experimental, os tiltimos dados dos aceleradores restringem cada vez mais os espaeo cinematic° para 

a observacio de novas particulas SUSY. Este fato faz corn que os fisicos teOricos busqueni novas alternativas que 

substituam o MSSM na busca de sinais de SUSY na ;dual escala de energia dos aceleradores em funcionarnento. 

Uma dessas alternativas se baseia no fato de que irk existe nenhuma forte razao para que se conserve. E nesse 

contexto que se situa o modelo supersimetrico corn quebra de Paridade-R. [1] em que nos baseamos para desenvolver 

nosso trabalho. 

Como no mecanismo de Higgs, o modelo corn quebra espontinea de paridade-R introduz novos campos ao 

superpontencial do MSSM. 0 novo potencial 4 dado 

hu Q11.u` + hdfIdQ( + 11,111de c  + ( hoHund — ( 2 )4' 

+ h u lli„vc + h.Sve + li.c. 	 (2) 

onde se introduz supercampos (4), 4,5i ) que sac) singleton sob SU(2)0 (.1(1) e carregam mimero leptOnico (0. —1, 1) 

respectivamente. A esses supercampos se atribuern VEVs que levam a quebra do mimero leptenico e. portanto, de 

paridade-R. 

Como consequencia desse modelo surge um novo boson de Goldstone, chamado de majoron J, singleto de 

SU(2)OU(1). E irnportante notar que, devido a que a paridade-R Ilk) se conserva, o LSP, que neste modelo sempre 

e o neutralino mais leve, nit. ° é estavel e, portanto, possui canals de desintegracio. Da diagonalizacao das matrizes 

de massa, observamos que sua massa ester na regiao 25 GeV £ M x° 500 GeV. 

Para muitas aplicacOes praticas, este modelo pock ser substituido por urn modelo efetivo [3] onde se adiciona 

ao superpotencial do MSSM o term° 

(3) 

e a conexio corn o modelo espontineo é dado por 

t i 	E 	trill  . 	 (4) 

Com a finalidade de estudar os possiveis sinais que o LSP pock gerar no modelo corn quebra mpontinea de 

paridade-R, desenvolvemos urn simulador de Monte Carlo que gera eventos quo ocorrem em aceleradores . Este 

simulador nos permite calcular as eficiencias de deteccio dos processos que violam paridade-R., depots de aplicados 

os tortes que eliminam o back-ground. Este simulador nos permite, entao, estudar os seguintes processos 

 

Z 	• c e 	 . (5) 

   

Uma descricao detalhada do modelo, barn como a apresentacio dos acopiamentos a das matrizcs de massy pare us rharginos c 
neutralinos pode ser encontrad.a na ref. 12]. 
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e + e - 	Z -• XX ; 	 • (6) 

onde o processo 5 claramente viola paridade-Ft e, portanto, trata-se de urn novo processo predito pelo modelo. 0 

processo 6, ao contririo, ji ester predito pelo MSSM. 

A secio de choque diferencial para estes processor incuindo somente a troca do Z em f = Mi é dada por [4] 

onde 

e 

aqui 

e 

der 	 cd 
(e + e- 	XiXi) = --(2 - 6ii)1Q(s)1 2 A 112  

4s 2 

l 	

4 

[GI 	G2ii(S) 

1, 

	

s 	S 

COS 9 + G3ij ( 9) "62 9 1 

	

mi 	I/ 	 II 

(7)  

(8)  

(9)  

(10)  

(11)  

(12)  

(13)  

(14)  

(15)  

(16)  

ii(S) 
(sin 0,,,cos 9,„ 

a e a fungi° de Killen usual e 

Ej ••2 
= 	(gv .• 4- 3 	2  3A ) [2f  ,- 	tJ —,- 	L ;j  

If 8 

G2i1(8) 	= 	2gvgA (0y;j — 
ORij1 Aii2 

2 
G3ij( 8 ) 	 (gif + 9;1 ) 	+ 	)1 

2 

s + rn1 - rny 
= 	 - 

ORii 0 + 	
) 

+ 4 	
8 	

LijO Rii 

9 	2  

1, -- 
S` 

9 	2 ) 
771 	rni  

A 	1, -L, — 
s 	s 

s 	rrq .- 
E, 	 E.?  

2 \5 

Q( 5 ) = - itiZ + iMzrz 

gv e gA sic) os acoplamentos vetorial e axial usuais pare o vertice Ze+e -  do model() padrio 

1 
gv = --

4 
+ sin` 	 gA = 

os acoplamentos xi Xi relevantes sio determinados em [4]. 

0 simulador tambem permite estudar os canais de decaimento do neutralino (LSP) 

x 	 vrVii , vr qi4; , 

x - rtil* - 	rqu iid  • 

Hi tambern urn terceiro tipo de decaimento 

- 117•J • 

que nao é levado em consideracio no simulador, pois apresenta um sinal de missing Pr, ji que as particulas finals 

escapam do detetor. ' 

Para a producio simples e+e - 	xi, Com o decaimento x 	 o numero de eventos é dado por 

Nexpi(Xv) = a(e + 	 - Xv)BR(X - LiT11+ 11- )c k . Liut 	 (17) 

onde c x„ e a eficiencia de deteccio , obtida do gerador descrito anteriormente. 

Usando a expressio para a secio de choque em 7 podernos escrever 

2 „ ,, 2 	ice 2 7r(di;  + g;4 ) 
NexPi(x li ) = — L13 • 

:3 U 	(sine,,,cos0..)4 
(2 34 + 4) 

13R(X 	I/To + 	)env Ling 	 (18) 

onde x i  = mx /mi. 
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Ademais, a relacao entre o acoplamento C41 243  e o BR(Z — xv) d dada por 

2 	i4CF  
 BR( 	
( • 3 2 	6 ) 

Z 	=  
3 '43  rz7V-2 1 - 

7  + - 7  

	

2
x 	

2x ' 

De 18 c 19 pode-se obter urn limite de 95%CL sobre o observiVel BR(Z xv)BR(i Pre P) 
massa do neutralino, x. Isto a mostrado na figura 1 [4]. 

0 winner() de eventos 	p+Ir-  esperados para a producao a par c dada por 

Nerpr(XX) = cr(e,+e — 	xx)2BR(x 	invisivel)BR(x 	v,p+ p - )c,,:x  

e de 7 obtemos 

(19)  

como func5sa da 

(20)  

2 " 2  n 2 	+
A 	

) 	3 4 

3 • 
sin0 „,cos0 , ) 4  Nerpt(xx) = —0/.44 	 ( 1  4zi) 
(„ 

2BR(x 	vrir + p-)BR(x — invisivel)c" Lin: (21)  

e a expressao correspondente para o branching ratio Z 	•x é 

BR(Z — xx) =(1;i 4 -1A,1:7rCv,72:f  (1 - 44) 3' 2 	 (22) 

Destas ultimas expressbes a possivel obter urn limite ilustrativo corn 95%CL para BR(Z — .y•)Bil(x — 

rr,./s+p - )BR(x 	invisivol) como funcio da massa do neutralino, como mostra a figura 2 [4]. 

Dentro do contexto deste modelo corn quebra espontinea de paridade-R [1], o stop mais love pode ter um novo 

inodo de decaimento na terceira familia de fermions, b + r, dcvido a mistura entre os ICptons carrcgados e 

os charginos. Mostraremos aqui que este decaimento pode ser dominante ou ao menos comparavel corn o modo de 

decaimento que conserva paridade-R., c+ para < ni b  + ny, onde denota o LSP. 

0 decaimento 	c + 	somente é possivel ern ordens mais aitas. Como e mostrado em [5], a contribuicio 

dominants d dcvido a 	 Este precesso pode ser parametrizado atraves de uma matriz de massa na 

base (6., tR, EL) [6]. 0 autoestado de massa do stop leve pode ser escrito como: 

= Cr LL + CziR 	 . 	 (23) 

Estimativas para D sad) dadas em [5]. Para nossa discussio fenomenolOgica. tornamos urna mistura 	rnuito forte, 

6 	0(0.1). Note que esta d urna postura muito conservadora, isto e. se 6 for menor, a importancia relativa do 

nosso novo modo do decaimento é aumentada. 

Os modos de decairnento ern questa.° sao dados por [6] 

Y 2  b+ r) 	
d. 	

• 
\(M:1  — 	 ) 2  - 4rrignq (( / 2  + k 2 ) 

167r1r 
11 

x,
• k 

- my — rn2r  — 41kinbnir ) 	 (24) 

2  ciT)  pii 2 R(rni - rn;:

▪  

: ? ) 	 (26) 

rrr r  
1 = ‘5,7114" 	sin  164C2 Kib 	1.135(cl lirb + 6K,6) 	 (26) 

=  	 7 4-rnw cos  u34ci 	 (2) 

fi  = — 	 (

• 

 tan Ow N47 + N4 ) 	 ('28) 

▪ , 

12 = — 
6 

—(tan Ow N57 + 3 1\156) 	 ('29) 

onde 
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Aqui 1/34 , U34 (L/35) denotam a mistura entre tau-higgsino e kge, = 0.999. lieu = 0.04 sax) os elementos da matriz 

CKM corresponcientes. 

Em nossa analise fixaruos 	= 80 GeV, c i  = 0.5, v11100 GeV, 	= 0.1 GeV e h„33 = 0.03. Varianios iodos os 

outros parametros supersimetricos nos intervalos que estao permitidos experimentalmente para o MSSM. Na figura 

3, mostramoso valor miximopara o branching ratio para b + r em fungi.° da massa do neutralino no. interval° 

1 < tan /.3 < 40. Podemos observar que o BM( '  — b + r) pole facilmente alcancar 80% para massa do neutralino 

de 50 GeV 16J. 
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Figura 1: Reglio de aensibilidade corn 95% C.L. park BR(Z —4 xv)BR(x -4 
p+p- v), ern funcio da maasa do neutralino male leve me. Isto 6 derivado 
das buscas de ifor p+p-  quo poderiam aparecer da producio simples de 
neutralinos em LEP, seguida pelo decaimento x 0+  v 

-a 

so 
a 

I 
e3 sm 

Figura 2: Regiio de sensibilidade corn 95% C.L. pare BR(Z 	XX)(X 
p+p - OBR(x —1 invisible) em funciio da mesas do neutralino mais !eve. Isto 

derivado doe bastes de 0r  f p+p -  quo apareceriam a partir da producio 
a pares de neutralinos em LEP, corn urn neutralino decaindo envisivelmente 
e o outro decaindo em x -4 tt+p - v. 

Figura 3: Maximos valorem pare o branching ratio de ie -+ b t r em por- 
centagem como funcio da MOM% do nentrallno maim lave, mio4. Tomamos 

= 80 GeV, ci = 0.5, vR100 GeV, of, = 0.1 GeV a 433 = 0.b3. Os out= 
pezimetros foram variados como explicado no texto. 
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Colorless States in Perturbative QCD: 
Charmonium Production 

O.J.P. 	E.M. Gregores'I and F. Halzen' 
• Physics Department, University of Wisconsin 

t Institut° de Fisica, USP 
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We point out that the experimental data on the production of charmonium states support 

the predictions of the duality model, also known as color evaporation model, which state that. 

the bulk of charmonium production is due to the formation of colored cc. We demonstrate 

that the duality model gives a complete picture of charmonium production, including low 

energy data, the recent. Tevatron results. and the IIEH.A data on photoproduction. 

There has been a renewed interest in studying the mechanism by which charmonium is produced, triggered 

mostly by some puzzling data from the Fermilab Tevatron. The standard perturbative QCD calculations using 

the color-singlet model failed to explain the data. occasionally by orders of magnitude [l]. The data incited a 

complete review of the treatment of color in QCD and can. in fact, be explained by allowing perturbative color 

octet cc states to evolve into the asymptotic colorless charmonium states. This prescription is present in both the 

color-evaporation[2] and in the color-octet models[3]. 

The color-evaporation model (GEM) quantitatively describes all charmonium photo- and hadroproduction data 

[4]. The model simply states that charmonium production is described by the same dynamics as DD production, 

i.c.. by the formation of a colored a pair. Rather than imposing that the cc pair is in a color-singlet. state in 

the short-distance perturbative diagrams, it is argued that. the appearance of color-singlet asymptotic states solely 

depends on the outcome of large-distance fluctuations of quarks and gluons. These large-distance fluctuations are 

probably complex enough for the occupation of different color states to approximately respect statistical counting. 

In the CEM the sum of the cross sections of all °Mum and open charm states is described by 

rro„,„,„ = 1  I - 	dm. 	 (I) 
9 2m, 	 (1171 

and 

8 12,nn 

	dam"
de:1.a 	

(2) cropen  = – 	dm — + I dm 
9  `'rric 	 dm 21/i D 	dm 

where the cross section for producing heavy quarks, cr„,:, is computed perturbatively. irrespective of the color of the 

rc pair, and m is the invariant mass of the a pair. The coefficients 1 and 4  represent the statistical probabilities 

that the :3 x :i charm pair is asymptotically in a singlet or octet. state [4]. 

The GEM assumes a factorization of the production of the cc pair. which is perturbative and process dependent. 

and the materialization of this pair into a charmonium state by a mechanism that is nonperturhative and process 

independent. Comparison with the tb data requires knowledge of the fraction po of produced onium states that 

materialize as Cs, i.e.. 

0'0 = 	Cron ium • 
	

(3) 

where p,j, is assumed to be a constant. This assumption is in agreeMent with the low-energy data [5]. 

Quantitative tests of color evaporation are made possible by the fact that the factor po is the same in hadro-

and photoproduction. Once po has been empirically determined for one initial state. the cross section is predicted 

without free parameters for the other. In Fig.l we compare the photoproduction data with theory. using the N1.0 
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perturbative QCD calculation of charm pair production. This reaction determines the only free parameter. p, x 0.5. 

From this figure we that conclude the photoproduction of J/tb and DD is well described by the color evaporation 

model. • 1 

At this point the predictions of the color evaporation model for hadroproduction of th are completely determined, 

up to higher order QCD corrections. These Can be estimated by fitting the hadroproduction cross section of DD 
pairs with a global K factor. This factor is subsequently used to correct the 1,/: prediction. In Fig.2 we show that the 

CEM is able to accommodate all data on the hadroproduction of . charmonium. This is a remarkable result given 

that the subprocess responsible for the charmonium hadroproduction changes from (pi fusion to gg fusion as the 

center-of-mass energy is increased. Analogously we can show that. the high pT production of charmonium at CDF 

can also be explained by the CEM [4]. 

To conclude, we would like to stress that the CEM describes extremely well all the available charmonium-

production data in photon-hadron and hadron-hadron collisions, as well as in Z decays [7]. 
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Figure 1: Photoproduction data 161 and the predictions of the CEM at next- 
to-leading order as a function of the photon energy in the hadron rest frame, 
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Figure 2: Hadroproduction data 161 and the predictions of the CEM at next-
to-leading order as a function of the center-of-mass energy, E. 
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A Producio Associada de Bcisons de Gauge e Jatos 
Atraves de Interagoes Multiplas de ;  Partons 

0. J. P. Eboli, J. N. Mizukoshi 
Institute de Fisica. Universidade de San Paulo. 

Caira Postal 20516. 01452-990 Sin Paulo. Bmzil 

F. lialzen 
Physics Department, University of Wisconsin. Madison. WI 53706 

Em colisOes hadrOnicas, W + n jatos sax) processos de order's mais altas em QCD, mas 

tambem podern ser processos devido as interacoes rneltiplas de partons. Urn subprocesso 

produzindo W + k jatos no estado final. seguido de um outro produzindo 1 jatos numa 

mesma interacao nucleon-nucleon. resultara nurn evento de W + n jatos, caso k+/ = n. Nos 

analisamos essas interacoes mUltiplas ern termos do tip° de tortes experimentais usados no 

Tevatron (Fermilab), considerando as casos V = Z, W e 7. 

1 Interact-3es Muaiplas para V + n jatos 

A medida precisa dos eventos contendo V + n jatos cm interacoes prOton-antiproton no Tevatron pode nos levar a 

urn melhor entendiment.o da QCD. Especificamente, esses eventos tern sido usados para determinar a,. a constante 

de acoplamento forte. No entanto. Mem de serern processos de orders mais alta em QCD, des podern ser originados 

a partir das interacoes nniltiplas dos *tons [I]. 

Como exempla, tomeinos o processo W + 2 jatos. Neste caso, alem da contribuicao usual vinda da QCD. ternos 

de levar em costa a producao do W simples devido a aniquilacao quark-antiquark e a producao siinultanea de 2 

jatos devido a urn outro par de partons (vide fig. 1.). Neste caso, a produyao associada de W + 2 jatos pode ter 

como origem a interaciso. dupla dos parkins de urn memo "beam" (fig. 1.a) on de "beams" diferentes (fig. 1.b), 

;dem do termo de interferencia. 

(CO (b) ( 

Figure 1.: Interacoes multiplas para W + 2 jatos. Em (a) temos a interacao dupla de partons, cm (b) interacao 
mdltiplapp entre os "beams" e em (c) o termo de interferencia. 

A secio de choque total para a produclo de W associada com a de 2 jatos e dada por [2] 

mutt. _ 1 	 1 N-1 N— I1 
"W+2jatos 

, 	
-7 112 + 	 — nrR 2  Cr inef 	Crinei 

(1) 
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corn 

N = CAlainet 
	

(2) 

sendo o mimero medio de colithes por "bunch". onde G e a luminosidade, At o tempo entre duas colisOes e cri„,1 a 

secie de choque total inelistica. 0 primeiro termo entre colchetes e a interacie intiltipla em urn mesmo "beam",. 
.. • 

enquanto . que o ultimo, entre "beams" diferentes. 0 segundo ternio e a interferencia. No nosso trabalho vamos nos 

preocupar somente corn o primeiro terrno, ji que o efeito das mtiltiplas interacoes dos "beams" pode ser identificado 

pelo detector e eliminado do conjunto de dadcrs. Vesta forma. a produck associada de W + 2 jatos dependerit 

somente da area efetiva do proton, nact dependendo dos parametros do acelerador. N este t.rabalho escolhemos 

= 0.7 Fermi, o que corresponds a urea area cfetiva de aproximadamente 15 mh. 

A eq. (1) pode ser estendida para o caso IV + jatos. Neste caso. nos terernos dois tipos tie contribukoes: a 

producao de urn simples IV associada corn a de 3 jatos e a producho de W + I .jato associada coin a de 2 jatos. A 

secio de choque total sera dada por 

mult. inter. 	 I N-1 	N-11 
crw 4.3.01, 	= ttt4'T3jaroa 	ati'-i-ijagorr2jatuA)[ L, 

	

will - 	 -  

A express -a° para o Z e analog° a do W. was para o foto!) devcruos lembrar que nao exists a producao simples 

deste na aniquilacao parton-parton. Assiut. so fazsentido falarinos en' interacoes uuiltiplas para 7+ a jatos cluando 

> 3. 

2 Resultados 

As secOcs de cheque dos processes V+ k jaws foram calculados usando-se o meted° de integracaopor Monte Carlo, 

onde os elementos de rnatriz quadrados foram gerados por MA DGRAP11 (3]. Este pacote caicula a amplitude 

quadrada dos processos para feixes nao polarizados no estatlo c somados sobre as polarizacoes finals. 

Nos estudamos varies cones nos momentos tranversais dos jaws. A figura (2.) mostra as distribuicocs dos 

mementos t.ransversais para os cones cm pr  >. 5, 10. 15 e 20 GeV do processo IV + 2 jatos. Os tortes adicionais 

usados aqui correspondent aos usados recenten write pela colahoracao do GDP' [4] na delinicao de jato. Para os casos 

de tVeZ usamos 

= V:16'2  + ISu2  > 

< 3.0 . 

enquanto que para o fOton usamos 

1 11, 1 < 1.0. 	Irjj „ , „, I < 4.0 . 

Na expressaito acirna LIO e a separmao entre os angulos azimut ais dos jaws e At, a diferenca de pseudorapidez 

entre Os inesmos. As tabelas 1. 2, 3. 4 e 5 content os resnitados para IV + 2 jabs. IV + 3 jaws. Z + 2 jaws. Z 

+ 3 jaws e + 3 jaws, respectivarnente. Co ► sideramos aqui I? 0.7 Fermi para mita simples cstimativa. inns a 

principio podemos considerar a area efetiva ocupada por quarks diferente daquela ocupada pelos gltions. A energia 

do centre de massa no Tevatron e de 1.8 TeV. 

( 3 ) 
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. 	- 
A (buck de distribuicao dos parsons dent.ro do proton c anti-prOton usada foi a parametrizasio CTEQ 3M Oh 

onde AQCD  = 239 MeV, listada no pacote PDFL1B [6]. Corn esses dados obtemos ow = 8.7.3 nb para a producio 

simples do W e az = 5.13 nb para o Z. 
• 

3 Conclusoes 

Pelos resultados das tabelas 1 e 2 nos vemos que para o torte experimental mais realistico, p, > 20 GeV e acima, 

as intera46es mtiltiplas de *tons tem•contribuiciio cm torno de 6 % para o processo W + 2 jatos e 7 % para W + 

3 jatos. Para o caso 7 + 3 jatos, os tortes usados levam a um grande valor, mas vale lembrar que estamos fazendo 
. „ 

conies nos processos duros e nao aqueles usados pelos experimentais. De qualquer forma, c importante olharmos 

para processos que envolvem producio de bOsons de gauge associada corn a de jatos, principalmente na regiao de 

pequenos pr's. 

.p, cut (GeV) cr ?i , i , x 102  (rnb) CriV2iela (Pb) C7r2jill:,"1.  (pb) 

5 106 1301 601 
• 10 13.6 461 77 

15 • 3.52 221 20 _r 
20 1.25 122 7.1 
•25 0.54 73.5 3.1 

Table 1: Seca° de choque para W + 2 jaws no Tevatron. 

p i  cut (GeV) cr3j ei , (pb) frwi, i (nb) 0w3j el , (Pb)  cr44,u37t sa rl 	(pb) 

5 89 4.21 336 . 	340 
10 7.0 2.20 	• 80 23 
15 1.3 	. 1.36 29 3.8 
20 	' 0.36 0.90 13 0.9 
25 0.12 0.63 6.4 	' . 	0.3 

Table 2: Seca° de choque para W + 3 jatos no Tevatron. 

I p, cut (GeV)  MUltpari. f  
aZ-1-2—jeg  (p h ) 	13'2+2—jet ‘P u ) 

20 
	

4.2 

Table 3: Seca° de choque para 2, + 2 jatos no Tevatron. 
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p t  cut (GeV)  I crz +j et  (nb) I  Grz+3 • (pb) 	din".part.  (pb) —.tee 	Z4-3—jet  

20 
	

0.58 
	

8.6 
	

0.6 

Table 4: Seca() de choque para Z + 3 jatos no Tevatron. 

multpa rt. 
Pt cut (GeV) 	I 1721ci (nib) er-v+iet (nb) 	 (Pb) 1 0 ,+3 —jel (pb) 

16 for 7 and leading jet 
6 for secondary jet 

0.86 5.0 483 279 

Table 5: Seca° de choque para 7 + 3 jatos no Tevatron. 
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Figure 2.: As distribuicoes en' pr para o processo W + 2 jatos. A linha cheia indica a contribuicao usual da QCD 
e a tracejacia as interacoes 
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LOOKING FOR INVISIBLY DECAYING HIGGS BOSONS THROUGH THE 
FINAL STATE bb J67. 
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°Physics Department, University of Wisconsin, Madison, WI 53706, USA 

6 Instituto de Fisica Corpuscular - C.S.I.C., Dept. de Fisica Teorica, 
Universitat de Valencia 46100 Burjassot, Valencia, Spain 

`Institut fiir Theoretische Physik, Universitat Karlsruhe 
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We study the potential of LEP 11 to unravel the existence of invisibly decaying Higgs 
bosons through the reaction e+ e-  -4 bb + Or  We perform our analyses in a model 
independent way and our results show that LEP II is capable of discovering such a Higgs 
for a wide range of masses and couplings. 

There are a variety of well motivated extensions of the standard model (SM) with an spon-
taneously broken global symmetry. This symmetry could be either be lepton number or a 
combination of family lepton numbers [1. 2]. These models are characterised by a more com-
plex symmetry breaking sector which contain additional Higgs bosons. It is specially interesting 
for our purposes to consider models where such symmetry is broken at the electroweak scale 
[3, 4]. In general, these models contain a massless Goldstone boson, called majoron (J), which 
interacts very weakly with normal matter. In such models, the normal doublet Higgs is ex-
pected to have sizeable invisible decay modes to the majoron, due to the strong Higgs majoron 
coupling. This can have a significant effect on the Higgs phenomenology at LEP II. In par-
ticular, the invisible decay could contribute to the signal of two acoplanar jets and missing 
momentum. This feature of majoron models allows one to strongly constrain the Higgs mass 
in spite of the occurrence of extra parameters compared to the SM. In particular, the LEP I 
limit on the predominantly doublet Higgs mass is close to the SM limit irrespective of the decay 
mode of the Higgs boson [5, 6]. 

In this work we consider a model containing two Higgs doublets (44, 2 ) and a singlet (a) 
under the SU(2)L x 1/(1)ir group. The singlet Higgs field carries a non-vanishing U(1)L charge, 
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which could be lepton number. Here we only need to specify the scalar potential of the model: 

1," 	11 ?4, (25i 	ii! o.t o. 	Ai(oioi )2 + A3(0.r o. ) 2 

Al2(0100(402) + A13(0101)(cr t er) + A23(0202)( 0 a) 

+ 6(0102)(0/01) + 2 K[(0IO2) 2  + h. c.] 

where the sum over repeated indices i=1,2 is assumed. 

Minimisation of the above potential leads to the spontaneous SU(2)L x U(1)y x U(1)L 
symmetry breaking and allows us to identify a total of three massive CP even scalars H i 

 (i=1,2,3), plus a massive pseudoscalar A and the massless majoron J. We assume that at the 
LEP II energies only three Higgs particles can be produced: the lightest CP-even scalar h, the 
CP-odd massive scalar A, and the massless majoron J. Notwithstanding, our analyses is also 
valid for the situation where the Higgs boson A is absent [7], which can be obtained by setting 
the couplings of this field to zero. 

At. LEP II, the main production mechanisms of invisible Higgs bosons are the Bjorken 
process (c+c-  hZ) and the associated production of Higgs bosons pairs (e+e-  Ah), which 
rely upon the couplings hZZ and hAZ respectively. The important feature of the above model 
is that, because of its singlet nature, the majoron is not size-ably coupled to the gauge bosons 
and cannot be produced directly, therefore, thereby evading strong LEP 1 constraints. The 
hZZ and hAZ couplings depend on the model parameters via the appropriate mixing angles, 
but they can be effectively expressed in terms of the two parameters EA, EB: 

LhZZ = e B  (\fiGp) 112  Al2Z u Z'Ai 	 (2) 

rhAZ = 	
g 	zi  7 si rt Clp A 	

(3) cos Ow 

The couplings EA(B)  are model dependent. For instance, the SM Higgs sector has E A = 0 and 
Q.)  = I, while a majoron model with one doublet. and one singlet leads to E A  = 0 and El < 1. 

The signatures of the Bjorken process and the associated production depend upon the 
allowed decay modes of the Higgs bosons h and A. For Higgs boson masses m h  accessible at 
LEP 11 energies the main decay mocks for the CP-even state h are bb and JJ. We treat 
the branching fraction B for h JJ as a free parameter. In most models B is basically 
unconstrained and can vary from 0 to 1. Moreover, ye also assume that, as it happens in the 
simplest models, the branching fraction for A -4 bb is nearly one, and the invisible A decay 
modes A hJ, A JJJ do not exist (although CP-allowed). Therefore our analysis depends 
filially upon five parameters: Alh, MA, EA, CB, and B. This parameterisation is quite general 
and very useful from the experimental point of view: limits on Alh, MA, EA, CB, and B can be 
later translated into bounds on the parameter space of many specific models. 

The parameters defining our general pararnetrisation can be constrained by the LEP I data. 
In fact. Refs. [5, 8] analyse some signals for invisible decaying Higgs bosons, and conclude that 
LEP I excludes itl h  up to 60 GeV provided that cB > 0.4. 

The ith+ 167. topology is our main subject of investigation and we evaluate carefully signals 
and backgrounds, choosing the cuts that enhance the signal over the backgrounds. Our goal is 

(1) 
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to evaluate the limits on Mh, MA , L A , LB, and B that can be obtained at LEP II from this final 
state: There are three* sources of signal events with the topology •F$ T  -1- 2 b-jets: one due to the 
associated production and two due to the Bjorken mechanism. 

e+ e - 	(Z 	bb) 	(h 	JJ) 	 (4) 

e+ C 	—> (Z -4 vi)) 	(h -4 66) 	 ( 5 ) 
e + 	-+ (A -4 a) 	(h 	JJ) . 	 (6) 

The signature of this final state is the presence of two jets containing b quarks and missing 
'momentum (07.). It is interesting to notice that for light Wand MA, the associated production 
dominates over the 13jorken mechanism [8]. 

There are several sources of background for this topology: 

e+c- 	—) ZI-y ZI-y 	q4 ,'17 	 (7) 
e + e - 	-4 (e÷ e -  )77 	[et elq4 	 (8) 
e+c - 	—) 	 qii[

^
ry] 	 (9) 

e+ 	—> W+1, 11-• —) 	[1']v 	 (10) 

e + 	—> W [di/ 	yir teiv 	• 	 (11) 

c+ —> Zzth qeir yip (12) 

where the particles in square biackets escape undetected and the jet originating from the quark 
q is identified (misidentified) as being a 1)-jet. 

At this point the simplest. and most efficient way to improve the signal-over-background 
ratio is to use that the Higgs bosons .4 and h decays lead to jets containing b-quarks. So we 
require that the events contain two b-tagged jets. Moreover, the background can be further 
reduced requiring a large )6. T.. Having these facts in mind we impose the following set of cuts, 
based on the ones used •  by the DELPHI collaboration for the SM Higgs boson search [9]: 

• • 
1. Charged multiplicity cut. We require that the eVezit'should contain more than 8 charged 

particles. With this cut we eliminate potential backgrounds from the production of T . I  
pairs. . 

Missing momentum cuts. We require: 

• The z component of the missing momentum to be smaller than 0.15 x Nrs. 

• The absolute value of cosine  .of the polar angle of the missing momentum to be less 
than 0.9. 

• The transversal component, of missing moznentum OT  should be bigger than 25 GeV 
for x/..; = 175 and 190 GeV and 30 GeV for Nrs = 205 GeV. 

3. Acolinearity cut. The cosine of the angle between the axes of. the two most energetic jets 
is required to be above'-0.8. This is equivalent to the requirement that the angle between 

:the axes is smaller than 145°. 

9 
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4. Scaled acoplanarity cut. The scaled acoplanarity is computed as the complement of the 
angle in the perpendicular plane to the beam pipe between the total momenta in the two 
thrust hemispheres, multiplied by min {sin Ojei  ' ,sin Oj et 2, in order to remove instability 
at low polar jet angles 19]. Scaled acoplanarity is required to be greater than 7°. 

5. Thrust/number of jets cut. We require the event thrust to be bigger than 0.8. For the 
intermediate visibly decaying Higgs boson masses in the range 45 — 80 GeV this cut gives 
relatively small signal efficiency. For this mass range instead of the thrust cut we demand 
that the two most energetic jets should carry more than 85% of the visible energy. 

6. Invariant mass cut. We assume that the visible mass should be in the range M ± 10 GeV, 
where Al is the mass of the visibly decaying particle (Z, h, or A). 

7. !-tagging cut. We adopt the efficiencies for the b-tagging directly from the DELPHI 
note [9]: 68% efficiency for the signal and the appropriate values for the backgrounds 
extracted from Table 5 of ref. [9]. 

Depending on the h and A mass ranges, including or excluding the invariant mass cut gives 
better or weaker limits on the ZhA and ZZh couplings. Therefore, for each mass combination 
four limits are calculated (with or without invariant mass cut, with thrust cut or the cut on 
the minimal two-jet energy) and the best limit is kept. 

We denote. the number of signal events for the three production processes (4 - 6), after 
imposing all cuts, NJ  j , Nsm . and NA respectively, assuming that e di  = es = 1. Then the 
expected number of signal events when we take into account couplings and branching ratios is 

N„p  - e2B 1BN.J., + — B)Nsmi + c!4BNA • 	 (13) 

In general, this topology is dominated by the associated production, provided it is not sup-
pressed by small couplings C A or phase space. The most important background after the cuts 
is (7). The total numbers of background events summed over all relevant channels are 2.3, 2.8 
and 5.9 for V7s = 175 , 190 and 205 GeV respectively. 

NC 
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Figure 1: Limits on c 2B  as a function of Ali, for Vs = 175,190 GeV and for different values of 
B = Br(h JJ) 

In order to obtain the limits shown in Figs. 1-2, we assumed that only the background 
events are observed, and we evaluated the 95 % CL region of the parameter space that can 

voriec 
	 6=1 
	 6=0 
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be excluded with this result. By taking the weakest bound, as we vary B, we obtained the 
absolute bounds on E A  and CB independent of the h decay mode. The limits on EA  obtained - by 
searches for the bb + it$ 7. final states are stronger than those given by the bbbb topology. The 
bounds on E g  apply directly also for the simplest model of invisibly decaying Higgs bosons, 
where just one singlet is added to the SM. A more complete presentation of these results will 
be given in ref. [1O]. 

Vs=190 GeV L=300 W I  Vs=190 GeV L=300 pb -1  

40 	60 	80 	100 	120 140 160 
m, mA 

Figure 2: Limits on OA  as a function of Mh. MA for Vs = 190 GeV. The left plot shows the limits 
obtained for B = Br(h —>• JJ) = 1, in the right plot 13 is varied from 0 to 1. 
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Hadronic Inelastic Cross Sections 
from Analyses of the Elastic Channel* 

P.C. Beggio, A.F. Martini ancl M.J. Metion 
Institute de Fisica . Glob Wataghin . 

 Universidade Es1adual de (_'ang/map' Unicarnp 

13083-970 Carapinas. Soo Panto. Brasil 

We present a comparative analysis of the -Inelastic Overlap Functions predicted by three 

models for elastic scattering: Chou and Yang. Henzi and Valin and Martini and Nlenon. 

The results arc also compared with two model independent extractions (Atnaldi-Schubert 

and Carvalho-Menon). We then calculate the predictions for the corresponding integrated 

inelastic cross-sections from the three models and compare the results with the experimental 

data on pp and pp scattering available above 10 GeV. Similarities and differences between 

all models predictions are presented and discussed. 

1 - Introduction 

The main physical observable in elastic hadron scattering is the differential cross-section 

—acr  = 7r1F0.01 2 • 
	 (I) 

The elastic scattering amplitude, F( s. q), in the ',intact parameter representation defines the Profile Function P(b..$): 

17 (s. q) = i I bclbJ a(gb)1 . (-.b) 
	

(2) 

and in the eikonal formalism the profile function F(b, s) is expressed in terms of the eikonal function y(s, b) by [1] 

b) = 1 — exp(ix(s. b)). 	 (3) 

Elastic scattering is usually investigated throught different. models for the eikonal. 

On the other hand, unitarity of the S-matrix in the impact parameter space connects 1'(b. s) with the Inelastic 

Overlap Function Gin (b,$) [2] 

Vier(s. b) = 	b)I 2  Gi„(s,b) 	 (4) 

Integration of Gi„(s,b) over the impact parameter determines the inelastic cross section as function of the energy 

rr i as) = f bdba i „(b. 	 (5) 

With this framework. starting from analysis of the elastic data. the inelastic channel may be investigated through 

Gi,a (b.$) and cri „(s). 

In this communication. as first step for further analysis. we calculate G1„(b. s) from three phenomenological 

models for elastic hadron scattering: a geometrical model by Chou and Yang (CV) [3]. a dispersive diffraction 

model by Henzi and Valiu ( HV ) [4] and a multiple diffraction model by Martini and Menon (MM) [5]. The results 

are compared with two model independent analyses of the elastic scattering (fits to differential cross section data): 

parametrization by Amaldi and Schubert [6] and by Carvalho and Menon [7]. From Gi„(b, s) we calculate crigs) 

*Financial Support; Capes and CNPq 
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for the three models and compare the results with the experimental data on pp and i5ppp scattering available above 

10 GeV. In section 2 we review the essential formulae in the three models and in section 3 the model independent 

parametrization for the scattering amplitude. The results for Gin (b,$) and cri„(s) are presented and discussed in 

section 4. 

2 - Phenomenological models 

We are interested in three models for the elastic channel. developed from the analysis of the differential cross 

section data, eq.(1). Two of them are eikonal models and one introduces a direct parametrization for Gin (b,$) 

(dispersive diffraction model). 

2.1 - Eikonal Models 

In first order Multiple Diffraction Formalism (Glauber) the eikonal is expressed by [1,8) 

	

x(s,b) = 	qdqJo(qb)GAGDf, 	 (6) 

where GA,B are the hadronic form factors and f the averaged elementary (parton-parton) amplitude. Models are 

distinguished by different parametrization for these quantities and we are interested in the following cases. 

2.1.1 - Chou-Yang Model 

This model is characterized by the choices [3] 

	

GA = GB = 	23.7)1 .2  • f( 8 ) = iC( 8 )• 	 (7) 

with m2  and C are free parameters. The real part of the scattering amplitude is introduced by the Martin prescrip-

tion. In reference [3], analysis of pp scattering at 23.5 GeV and iippp at 546 GeV leads to the determinations of m2  

and C. Following the authors we parametrized these quantities by 

C(s) = 2.193+ 1.238[in(s)] (GeV -2 ), = 0.837+ 0.072[In(s)] 	(GeV -2 ). 
in2  (8) 

2.1.2 - Martini-Menon Model 
In this case the choices are [5] 

GA f A  = GB = 	
1 	

(s•q) = Re .1. ( 8 . (1) ilmf( 8, q) , 	 (9) 
(1 + Frs )(1+ 37) 

17nf(s,q) = C(s) [ 1  — ( q 1(22)] Ref(s,q) = 	 (10) 
(1 + (via+) 

with a 2 . #2  a2 , C, A free parameters. Through fits to pp elastic scattering data the following values and dependences 

with the energy was obteined [5) 

C(s) = 14.26 

1 
—7  = 2.57 
a- 

A(8) = 

u:'=8.20 Gelfj, 	/32 =1.80 Geti 2  

	

— 1.65[/n(s))+ 0.159[111(s)] 2 	(GeV -2 ), 	- 

	

— 0.217[In(s)] + 0.024:3[in(s)) 2 	v 

0.0695V/1(s/so)] 

(11)  

(12)  

(13)  
1+ 0.1 18[1n(s/ so)] + 0.015(1n(s/842  

where 50 =400 GeV. 
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In these two models the eikonal x(s,b) is calculated from eq.(6) and then i(s. b), Gi n (s, b) and cri n (s) through 

eqs. (3), (4) and (5), respectively. Due to its small contribution, the real part of the scattering amplitude was not 

taken into account in the calculations. 

2.2 Dispersive Diffraction Model 

In this approach by Iienzi and Valin, elastic differential cross section is fitted through a suitable parametrization 

for the inelastic overlap function. Analyses of pp data at ISR and fppp at Collider energies lead to the following 

result [4] 

0.908 0.0271n 2(slso) 
Gin(s,b) = 	1+ 0.0271n'-(s/so) exp(-b

2 /•1B)(1 + 62( + 620 

62 = 0.115 + 0.000094[/n 2(s/so)], • C = (4.2462 /4 B)exp(-1.56b 2/4B) 

13 = 6.64 + 0.044[In(s/ste. 	GeV -2  

and so = 100 Gel/ 2 . Integration over the impact parameter determines crin(s), eq-(5). 

III - Model independent analyses 

Starting from paratnetrizations for 1.1s, q) and fits to the differential cross section data, eq. (I). the inelastic 

overlap function may be extracted in a model independent way through eqs. (3) and (4). In order to discuss the 

model predictions for Gi n (s,b) we make use of two different parametrization: 

3.1 - Amaldi and Schubert (AS) 

-Elastic pp scattering data between 23.5 GeV and 62.5 GeV are well described by NI 

1 	. 	. 	 1 
F(s,q) icf[A i ezp(--

2
bicre)+ ..4 2e.rp(- -b2aql iA 3exp(--

2
b3q 2 ) 

2  
(17) 

Cr tol(S) r , 
= 

n(y) = crtor(23Gett)11 	
S)] 	 (18) 

where Ai, b1 . i=1,2,3 are fixed free parameters and p(s) is the ratio the forward real and imaginary parts of the 

scattering amplitude. 

3.2 - Carvalho and Mellon (CM) 
Similar description of pp elastic scattering between 13.8 and 62.5 GeV has been also achieved with the 

parametrization f7) 

2 	 ri 	
P(S)E; cri  

F(s,q) = iEcri(1 + ip)exp( 	q 2 )+ iEo jerp(-M 2 ), p(s) = 	 (19) 
o f  + j=1 	 j=3 

where ni, /31 , i=1..n are free parameters depending on the energy. 

The results for G i n (s • b) arc presented and discussed in the next. section. Error propagation from the free 

parameters was taken into account in the GM analysis, but not in the AS case. 

4 - Results and Conclusions 

As explained, we calculated the predictions for Gi,,(s,b) from the two cikonal models (CV and MM) and from 

two model independent analyses (AS and CM). All these results are here compared with the predictions of the 

HV model. We limited the calculation to pp scattering in the ISR interval. 23.5 GeV and 62.5 GeV. The results 

are displayed in Figs. 1 and 2 up to 0.5 fin and 3.0 fm, respectively. We then integrate Gi„(s,b) over the impact 
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parameter space obtaining ain (s), eq.(5), for the three phenomenological models. The results are shown in Fig.3 

with the experimental data on pp and pppp scattering at ISR, Collider and Tevatron energies. 

From Figs.1 and 2 we observe a general agreement of all results for Gin (s.b) with the exception of the CY 

predictions at. 62.5 GeV and small values of the impact parameter (<1.0 fm). Figure 3 shows that. the CY model 

does not reproduces any experimental data, but are in agreement .  with some overall average behaviour of all pp and 

fippp experimental data. Obviously this approach does not take account of the differences between pp and Pppp 

scattering observed in the ISR region. The IIV model reproduces the pp data at 1SR and rippp data at Collider 

and Tevatron energies. This was in fact the strategy in the original analysis [4]. The MM model treat only pp data 

and the description of the experimental data is satisfactory. We observe that the predictions for this reaction at 

Collider and Tevatron energies are above the values of the experimental data on fippp scattering. 
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Figure 1 - Results for Gin (s, b) (in the central collision region) for pp scattering at 23.5 
GeV (left) and 62.5 GeV (right). 

Figure 2 - Results for Gi n (s, b) for pp scattering at 23.5 GeV (left) and 62.5 GeV (right). 
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Figure 3 - Inelastic cross section predicted by CY, HV and MM models and experimental 
data. 
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The Importance of Thermal Fluctuations During 
the Electroweak Phase Transition* 

Rudnei 0. Ramost. 
Universidade do Estado do Rio de Janeiro, 

Institute de Fisica - Departarnento de Fisica Tedrica, 

20550-01.1 Rio de Janeiro, RJ. Brazil 

The electroweak phase transition has been intensively studied in recent. years. The possibility of generating 

the baryon asymmetry of the Universe during the electroweak phase transition has been the main motivation for 

the interest of understanding the dynamics of the phase transition. Among other things, today we learned that 

the phase transition is possibly too weak first. order for acceptable values of the Higgs masses. within the minimal 

standard electroweak model. We study [1] the implications of this weak first order phase transition. in particular 

the role of thermal fluctuations to the dynamics of the phase transition. Our results show that, in the minimal 

standard electroweak model, for realistic higgs masses. rrtlf > 60GcV, the phase transition can be completed by 

the percolation of the . true vacuum, induced by the presence of subcritical fluctuations, ruling out the possibility of 

haryogenesis in the model. 

Here. . we further investigate:[2, 3] the possible consequences of having a weak first order phase transition at 

the electroweak scale. Although we will restrict our analysis to the standard electroweak model, our results can 

be adapted to any of its extensions. In fact, we will show that the strength of the transition can be used as a 

new constraint on the parameters of the model. always a welcome•addition to the often large parameter space of 

extensions to the minimal standard model. 

We will modellarge amplitude thermal fluctuations by Gaussian-shaped bubbles of approximately correlation 

volume. Previous results based on a kinetic approach, have indicated that such fluctuations can destroy the first-

order character of the transition for Higgs masses of order mll > 55 GeV [4, 2). Here we complement this calculation 

by computing in detail the nucleation rate for such configurations.. As these configurations are not solutions to the 

Euclidean equations of motion, we must treat with care the evaluation of the nucleation rate. Within reasonable 

approximations, we will be able to obtain the equilibrium number density of these configurations as a function of 

the tree-level Higgs mass, to shoW how the weakness of the transition is closely related to the breakdown of the 

dilute gas approximation. 

FolioWing the work of Ref. [3], large amplitude fluctuations describing thermal fluctuations arc parameterized 

• 

( 
1.- 

93c( r) = VA (T) exP 	h,2. (T) 	. 	 (1) 

where ip„(r) describes (spherically symmetric) fluctuations in the scalar field, with amplitude i,:-. A and radius given 
by R(T). Here we adopt for R the correlation length. given by the inverse of the temperature dependent. mass for 

the higgs effective mass,•appearing in the effective action for the higgs boson field. For c,./ A  we take the temperature 

dependent true vacuum value, obtained from the effective potential for the Riggs boson field. Ilas discussed in 11). 

these are the most natural choices for R and . 9A. 

Let us define in the Electroweak model the partition function 

'Work partially supported by CNPq 
E-mail address: rudnei0vmesa.uerj.br  
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(2)  

(3)  

where •i 

Z = 	 f 

denotes gauge and fermions fields (and ghost fields) and 6 is the SU(2) doublet 

( 	i62 
0  

V2 	01193 	k54 

where 6; (i = 1. 	•) are real scalar fields. The tree level potential for the complex scalar field c5, given by 

v0(16 1) 	+ A (cif0 ) 2 
	

(4) 

for p 2  > 0. 6 acquires a nonvanishing vacuum expectation value 	= es, which one assumes real and along. for 

example. the real component 6 3  of 6. Thus, in the broken phase. we define 6•3  = 63  + a and 6 ] .62 and 64  are the 

three Goldstone bosons. 

Let us denote by yi the coupling of the field 6 with the x; fields. If A •fc re, i.e., the interactions among the 

6 field are weak compared with the 0 — interactions. then we may formally integrate out the fields in (2) to 

obtain 

Z = Doe-w""
J  

where 

= — In J D yi e- 	f 

For vector fields, the integration measure above includes the gauge fixing and ghost terms. We choose to work in 

the Landau gauge, which is the one usually used in the studies of the elect.roweak phase transition. Expanding 

IV(6) in a derivative expansion, 

11.1 (0)= 	drid3 .17 [Vo(161)+ 1'i3(161)+ 2(10( 0;10) 1'(d'1 0) + 	 (7) 

where I/0(161) is the tree level potential (4) and 1 13(161) is the contribution of the xi loops, coming from the integration 

over the vi fields in (2), with the scalar field 6 in the external legs. Z(161) is the wave-function renormalization 

factor. 

One important approximation that. can he take to the above expression. as it. has been shown in [1], it. is that, 

for the range of temperatures we will be interested in. we can neglect the wave function term and take V f/(161) 

as the usual expression for 1-loop finite temperature effective potential. as for example given by [5]. We can now 

substitute in (7) the expression for Eq. (I). obtaining the usual expression for the free energy of subcritical 

fluctuations. However• in order to obtain the nucleation rate for these fluctuations. we need to take into account 

the fluctuations around the higgs field, not considered yet. in (7). 

In 11). we show that the equilibrium number of thermal fluctuations in the system can be obtained in terms of 

the nucleation rate by: 

Z(vEle) 27r 
-- 	 (8) 

Z(Vv) 

where r is the transition rate given by :If 	 and 	is the negative eigcnvalue. -zM is the partition 

function ratio of the system computed by expanding the scalar field 6 around the field (vacuum) configuration („7„, 

( ,r7t.)• 

In [I). we obtain the full expression for the equilibrium number density n RC (E- 	where I; is the system 

volume) for subcritical fluctuations modeled by (1). The volume fraction 	/V . given by *-.-L3 ri,V, evaluated 

at the critical temperature (when the minimum of the effective potential are degenerate) plotted in terms of the 

higgs boson mass m il  shows that for higgs masses mit > 60Get• the 'volume fraction occupied by the true vacuum 

(5)  

(6)  
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fluctuations is high enough (Ii.,/1/ > 0.3) to complete the phase transition by just percolation of the true vacuum 

phase (I). The main consequences of this is the impossibility of baryogenesis in the minimal standard model, since 

we do not have nucleation of critical bubbles and not enough departure from thermal equilibrium. 
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Producao de Pares do Top corn urn 
Gluon Extra no Tevatron 
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Calculamos a producio c decainiento de pares do quark top no Tevatron. coin►  a emissio de 

ma gluon extra. Estudamos o sisal correspondente, do W + 5 jatos. incluindo as correlacOes 

de spin nos decaimentos leptanico — iv e liadronico W jj. Este sinal apresenta 

aspectos interessantes. devido a possibilidade do gluon ser irradiado em qualquer er.apa do 

processo. apresentando caracteristicas diferentes de acordo coin a lase em qua ele foi emitido 

(antes ou depois da producao do quark top). Estudamos a possibilidade da reconstrucao 

dos eventos considerando quo tun dos quarks b sera identificado coino tal (h-tag) e incluindo 

Lima resolucao de energia realist.ica para us detcctores. Nosso procedimento bisico, baseado 

apenas ria cinemitica. apresentou 74% de eficiencia sendo que, (testes. 74% foram corre-

tamente classificados (pureza). Considerando Luna dupla identificacao dos quarks b. ester 

percentuais sobem para 82% c 77%. Tambeni apresentamos uma sugestao de refinamento 

baseada nuns critdrio de virtualidade cm que tiramos proveito do faro do gluon ter maior 

possibilidade de ser irradiado proximo a partici& que o emitiu. Este novo procedimento de 

reconstrucio apresentou Lima maior pureza as cust.as de urn inenor grau de reconstruck de 

eventos. 

I Introducao 

ficcentemente o Quark Top foi detectado no Ferinilab pela colaboracao CDF [II. A colaboracito DO 121 tambern 

detectou eventos confirrnando a existencia do Top. A principal caractcristica do Quark Top e a sua grande massa. 

176 ±8GeV (CDF), 199± 19 GeV (1)0), levando a um pequena vida como consequencia o top decal antes do 

processo de hadronizacio ocorrer. 0 '['op decal. portant°. au-Lives da interacao cletro-fraca em um IV e urn Bolton. 

Podemos estudar o Top como urn Lepton pesado apOs a sun producao, um(' vez quo seu decaimento c puramente 

eletro-fraco. No entanto as correcoes de QCD para a producio do top silo bastante grande. Para urn top de 174 

GeV temos. na ordem mais haixa em QCD (r q) 

	

rproT(pli 	51:1' + 1•17-  +X) = 3.8Pb 	 (I) 

Nil prOxima ordem ern QCD (o;;) a secio de choque de producito 

aNLO(1)15  — 11  + X) = 4. 9 Pb 	 (2) 

onde vemos um acrescimo de inais de '25% (note quo o ciilculo para a correcio radiativa Li apenas para a producao do 

Top. Em primeira ordem Canto faz, pois o Top decal 100% days vezes ear 14 1 b. n uts no calculo da correcio radiat.iva 

silo estamos considerando emissoes de gluons apOs o decaimento). 
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Nossa proposta é estudar o processo de ordern o„3  em nivel de irvore quando teremos a emissao de urn gluon 

real. 

44 - (b1V+)(b141-  )y 
	

( 3 ) 

ern que o gluon pode scr emitido dos quarks incidentes, dos Top produzidos. ou dos quarks b ape's o decaimento do 

Top. Este processo leva a urn sinal corn urn jato extra. 

2 Producao do Top corn urn Gluon Extra 

O processo (3) foi estudado anteriorrnente [3] utilizando MA DGRAPH [4) para a geracao das amplitudes de helici-

dadc. Para fazermos uma simulacio mais realistica iremos decair os Ws. Aproveitaremos o fato de MADGRAPH 

nos gerar as amplitudes de helicidade para fazermos o decaimento dos %Vs conservando as relacoes de spin [5]. 

Utilizarcmos a aproximacio de largura zero para o decaimento dos Ws e nao levaremos em consideracio a radiacio 

de gluons proveniente do decaimento hadrOnico do U', ulna vez que o W sera identificado corno urn par de jatos 

corn massa invariante Mw . 

Fizemos a simulacio de eventos para o caso em que urn dos Ws decai leptonicamente e o outro hadronicamente, 

utilizando os seguint,es cortex. 

pT(i) > 20 GeV 

PT(./) > 10 Ge‘l 

AR.((. j) > 0.4 

lrir > 25 GeV 

Iii(e)i 	< 	2.5 

< 2.5 

L1R.(jj) > 0.4 
(4) 

onde I se refere ao lepton (p ou e) e j a qualquer dos cinco jatos. Temos a pseudorapidez dada por rJ = In tan(0/2). 

(AR) 2  = (1.1n) 2  + (:10) 2  mede a separacao angular. e 0,6 sio os angulos polar e azimutal em relacao ao cixo dos 

feixes iniciais. 

Incluimos tambem o efeito da resolucio de energia dos detectores. O calorimetro 'Tiede a energia do feixe corn 

uma certa resolucao, a partir dest.a energia a que t.odo o quadri-moment o do feixe a inferido. Fizernos uma simulacio 

gerando uma distribuicao gaussiana corn largura dada pela resolucao do detector. 

AE/E = 0.15/FeV (para leptons) , 	 (5) 

./.1E/E = 0.8/V7.1(73eV (para quarks), 	 (6) 

A energia de cada particula sera gerada de forma a obedecer main distribuicao gaussiana corn media no valor 

dado pelo espaco de fase e largura dada por LIE. A partir delta energia reconstruimos o quadri-moment° de 

forma que consideramos.que a imprecisao no quadri-mon-lento 6 devida apenas a resolucao de energia (nio estamos 

considerando possiveis desvios devido a incerteza na posicao do calorirnetro). 

3 Reconstrucio dos Eventos 

Para fazermos a analise do sinal (W — iv)+ 5 jails precisamos estahelecer alguns criterios para a identificacao dos 

jatos. Nos consideramos que urn dos jatos h sera identificado (b tagg) [I] [2]. Os jatos decorrentes do decaimento dos 

Ws scrim) identificados por sua massa invariante. Temos a.ssim tres jatos identificados. Identificamos agora o gluon 

como sendo o jato de menor tima vez que os gluons tendem a sair corn baixo PT  devido a divergencias no infra-

vemrelho. 3a o b tende a sair corn urn alto pr. devido a um pito jacobiano em pT (r4 — Met,. )/(2171,) = 70 GeV 

no referencial de repouso do top. 0 quadrimotnento do neutrino pode ser reconstruido identificando 16T  = pr(u) 

e impondo que a massa invariante do par er' = Mw , levando a duns solucoes para o moment.° longitudinal do 

neutrino. Temos doze configuracoes diferentes de sinal ( W it.)+ 5 jatos que podem ser interpretadas corno a 

producao de pares do Top (corn seu subsequente decaimento) mais urn gluon irradiado. Temos tres possiveis classes 
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cur que o evento pode ser caracterizado dependendu 	onde que o gluon foi irradiado: 

Classc A: 	9(1 	iyub)(1 	Wt„b), 	 (7) 

Classc B: 
	

(1 — Mib)(1 	1.1•1„bg). 	 (8) 

Classe C: 
	

(1 — Ilijibg)(1 — Wri,b) . 	 ( 9 ) 

Em cada classe ternos quatro reconstruidos diferentes para a massa do top. correspondendo a duas solucoes para 

o neutrino e a duas forams de cornbinar os quarks b coin os Ws. Avaliamos as massas invariantes das candidatos ao 

quark top, rra t  atribuimos urn valor F que seria uma medida de quad perto csta massa estaria do quark top. 

F = (In t  — ni g  + (rn2 — mi ) 2  (assurnimos que a massa do top sera bent conhecida a partir do sinal tV + 4 jacos). 

A configuracao que der o menor valor para F é considerada a melhor configuracao. A escollta do menor valor dc 

F nos determina a classe a que ele pertence, assint Como a identilicacao do b c do b. Consideramos apenas eventos 

que tenhanr Fmin < 500 GeV 2  para eliminar reconstrucoes erradas. 

Este procedimcnto se mostra bastante satisfatOrio quando Rao estamos sirnulando a resolucao de cnergia dos 

detectores. Neste caso os quarks oriundos do decaintento do W silo sempre corretamente identificados enquanto 

que o gluon. cm 85% dos casos. tern menor pT. do que o b. 0 teste de aceptincia. F m k, < 500 GeV 2 . se encarrega 

eliminar grande parte dos eventos onde o gluon nao tl corretamente identificado. Nossa estrategia reconstroi os 

eventos nas classes corret.as em mais de 95% dos casos que passain pela aceptancia. Quando simularnos a resolucao 

de energia. no entanto, niuitas vezes mn par de jatos que nao foi oriundo do decaimento do W reconstrOi melhor 

massa do \V sendo que ern tun grande minter° de cation urn destes jaws a justamente o gluon. Temos, mais 

tuna Ionic de identificacio erronea para os jaws. Os result.ados de nossa estrat6gia podem ser visto na tabcht 1. 

Observa-se que 55% dos eventos que passaram nos cones silo reconstruidos corretamente nas classes A. B e C. 

enquanto que 19% sap reconstruidos incorrctamente e 26% nao passant no teste da aceptancia. Veruos ainda que 

dos eventos que reconstruimos como classe A. 83% estho corretantente reconstruidos, enquanto que na classe B (C), 

apenas 61% (65%). 

Apresentamos alguns graficos mostrando 0 comportamento dos gluons reconstruidos nas diferentes classes. Para 

efeito de comparacao. apresentamos o comportamento do gluon corretamente identificado sem a simulacao da 

resolucao do calorimetro. Na Figura 1 mostramos a distribuicao cur PT nas classes A e 13 (a classe C apresenta 

um comportamento similar a classe B). Notamos que nil classe A Lentos urn excesso de gluons reconstruidos corn 

baixo PT enquanto que a classe B apresenta o compurtamento oposio. 1st° ocorre porque, para urn gluon corn 

u quadri-momento pequerto, podemos reconstrui-lo facilmente nil classe errada. tuna vez que inclui-lo on nao na 

reconstruciio do quadri-ntomento do Top nao Para muita diferenca. Como temos mais eventos na classe A terms 

mais gluons de pequeno moment° sendo recontruidos erroneamente tras classes B e C do pre na direcao oposta. 

Table 1: Eventos reconstruidos apOs aplicacao do teste de aceptancia . 

Classe Verdadeira Porcentagem nas Classes reconstruidos 

A 	 13 	 C 	fail 
A 59.7 	. 32.5 4.8 4.5 17.9 

B 20.2 4.1 9.9 2.0 4.2 

C 20.1 	—,. 2.5 1.6 12.1 3.9 

Na Figura 2 lentos a separacho (SR.) do gluon corn o h correspondents para classes 11 e C. Esta curva moscra 

grande discordancia entre os eventos reconstruidos por nos c a sittracao ideal, made todos Os eventos sit° corretamente 

reconstruidos. Poderiarrtos esperar este comportamenro. lenthrando que tcmos apenas apenas 59% (67%) dos eventos 

reconstruidos corretamente nas classes B (C). A curva de All se mostra extremantente sensivel a tuna reconstrucao 

na classe errada, uma vez que urn gluon irradiado do beam-pipe (por exemplo) nao esti necessariamente prOximo 

ao h. 
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Figura 1. Distribuicao de Pt do Gluon para Classes A. B e C. 0 histograma é para o gluon correto sem a resolncio de energia 
enquanto que o histograma pontilhado é o resultaklo de nossa simulacao . 

4 Estrategia Refinada de reconstrucio 

Esta sensibilidade em OR pode ser utilizada corno urn criterio extra de classificacio dos eventos nas diferentes classes. 

Implementamos esta ideia atraves de um criterio de virtualidade. Para a classe A consideramos a virtualidade do 

propagador do quark initial apos emitir urn gluon, [p(q')} 2  = —2p(g) • p(q). Atribuimos o menor valor entre os 

dois possiveis (correspondentes ao quark ou anti-quark) para a classe A. Para as classes B e C, consideramos a 

virtualidade do propagador do quark b apos a irradiacio do gluon, 50112  — mb = —2p(g) • p(b). Esti claro que 

uma pequena virtualidade implica em urn major elemento de matrix portanto se o gluon foi realmente emitido na 

configuracio considerada esperamos uma pequena virtualidade. 

Estabelecemos, entio, urn novo criterio. Para urn evento ser classificado numa certa classe deve ter o minimo 

F e a minima virtualidade nesta classe. Eventos corn F major que 500 e que nao obedecem ao criterio anterior situ 
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desconsiderados. Observamos os resultados desta nova estrategia na tabela 2. 
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Figura 2. Distribuicio de aR do Gluon cam o b para. Classes B e C. Mesma convenclo de (2). 
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Figura 3. Distribuicao de AR do Gluon corn o b para Classes B e C apps o cone em AR. Mesma convencio de (2). 

Vemos que conseguimos melhorar a porcentagem de eventos reconstruidos corretamente, principalmente nas 

classes B (71%) e C (73%), embora muitos eventos foram perdidos ncste processo. Na Figura 3 vemos a distribuicao 
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de (AR) do gluon coin o b para'classes B e C apOs os cortes ern (AR.). Notantos que est.a estrategia aproxima a 

curva dos eventos reconstruidos a curva ideal. ern que os jatos aio corretamcnte identificados. 

Para o caso em que seje possivel a identificacao dos dois quarks b. continuamos corn certa ambiguidade para 

identificar o gluon e o par de jatos que reconstroe o W. alert' de rifto sabermos qual e o b e qual o b. 0 resultado de 

nosso procedimento de reconstrucao basic° é mostrado tra tabela 3. a ser cornparado coin a tabela 1. 

5 CONCLUSOES 

0 pont() principal deste trabalho e apresentar unia estrategia para o escudo dos eventos corn urn jato extra na 

producio do Top. Fizernos a simulacao a nivel de partons utilizando QC1) pertubativa para calcular o element() de 

rnatriz completo, o que significa que o gluon pode ser emitido em qualquer parte do processo. A (liar ricao de regiOes 

A B e C e feita apenas na reconstrucao dos eventos e trio na geracao dos eventos. Este trabalho foi priblicado no 

PLB[7]. 
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Table 2: Eventos reconstruidos apOs aplicarmos teste em .R. 

Classe Verdadeira 	 Porcentagem nas Classes Reconstruidas 
A i3 C Fail 

A 59.7 	-. 15.7 2.5 2.3 39.2 
B 20.2 .5 8.3 1.1 10.4 
C 20.1 .3 1.0 9.1 9.7 

Table 3: Eventos reconstruidos para dupla identificacao de b. 

Classe Verdadeira 	 Porcentagem nas Classes Reconstruidas 
A B C Fail 

A 59.7 38.7 4.6 4.5 11.9 
20.2 •.0 11.1 1.8 3.3 

C 20.1 =,. 2.4 1.4 13.6 2.7 
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Fixed Points and Vacuum Energy of 
Dynamically Broken Gauge Theories 

A. A. Natale • and P. S. Rodrigues da Silva! 
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Rua Pamplona. 145, 01405-900. Seto Paulo. SP, Brazil 

We show that if a gauge theory with dynamical symmetry breaking has non-trivial fixed 
points. for values of the coupling constant within the range delimitating the dynamically 
broken phase, they will correspond to extrema of the vacuum energy. This relationship 
provides a different. method to find fixed points. and we suggest that. it. can be tested in 
lattice simulations. 

Gauge theories without scalar bosons may undergo the process of dynamical symmetry breaking. where dy-

namical masses are generated, and we have the phenomenon of dimensional transmutation [l], i.e. we basically do 

not have arbitrary parameters once the gauge coupling constant (g) is specified at some renormalization point (p). 

In these theories all the physical parameters will depend on this particular coupling. Therefore, it would not he 

surprising if the dynamical masses follow a critical behavior totally related to the one of the coupling constant. 
QED is one example of a theory that may show dynamical chiral symmetry breaking in the strong coupling 

regime. It has been suggested that QED in four dimesions at the same time that generates fermion masses, develops 

a non-trivial ultra-violet fixed point whose characteristics have recently been reviewed in Ref. [2]. This fixed point 

behavior could imply that four-dimensional QED is a non-trivial theory. In three dimensions QED also suffers from 
dynamical symmetry breaking, and recently it has been pointed out that it also may have a non-trivial infrared 

fixed point [3]. Such fixed points are determined as zeros of the renormalization group 0 function, and generally 
speaking they can be attractive or repulsive. According to the idea of dimensional transmutation we can think 
about how this critical behavior of the coupling constant is transmitted to other calculable physical quantities. 

One of the quantities for which we have precise methods to compute in field theory is the vacuum energy, and 
we could naively think that the fixed points would appear as extrema of the vacuum energy. Such intuitive idea 

is not new. When Wilson developed the concepts of renormalization group and critical phenomena [4], he gave an 

example of the renormalization group equation making use of an analogy in classical physics of a ball rolling on 

a hill. In this example the equation of motion of the ball in the hill potential was related to the renormalization 

group equation, and the fixed point was related to a stationary point. Therefore, it seems natural to expect a 
deeper relation between fixed points and extrema of energy also in field theory. However, we have been unable to 

find a proof of this in the literature. and here we will present a simple demonstration of such connection. This 

relationship provides a completely different method to determine non-perturbative fixed points, and can be tested 
in lattice simulations of gauge theorif. 

Many years ago Cornwall and Norton [5] emphasized that the vacuum energy (f) in dynamically broken gauge 

theories could be defined as a function of the dynamical mass 

indyri E E(P) 
	

In, 
	 (1) 

where 11(p) is the fermion self-energy, and 12 = r2(p, 9 2 , in) is a finite function of its arguments. because the 
. perturbative contribution has been subtracted out. S1 must satisfy a homogeneous renormalization group equation [6] 

0 „ 

ap + IAD — ) =O. 
Og 

•e-mail: naLale0axpLift.tmesp.br  

to-mail: fedeleaxpalt.unesp.br  

(2) 
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On the other hand, the dynamically generated masses can he written as m = pf(g) [6], from what follows that 

p(arn/ap) = m, and consequently 

In 	= —a(g)q--
s-? 

 
Om 	ag 
	 (3 ) 

This last and simple equation will be central to our argument, because it relates the stationary condition for the 

vacuum energy (aQ/arn = 0) [5]. to the condition of zeros of the L1 function, as long as 8f2/8g # 0. Therefore. 

in the following we will show that in a gauge theory with dynamically generated masses (or condensation), the 

condition for an extrema of the vacuum energy: 

.3(9) 	 = 0. 	 (9) 
c'g Iffilitrn=0 or J=1:1 

allways imply 1(g) = 0, because in the broken phase ofilag . computed at the extrema condition is allways different 

from zero. 

The vacuum energy in dynamically broken gauge theories can be computed with the help of the effective action 

1(G) for composite operators, since we are interested in theories which admit. condensation of composite operators 

as, for instance, &lb) [7]. If J is the source of the composite operator 0, we have [8] 

	

= (01010) . 	 ( 5 ) 
6,1 j =0 

From the effective action we determine the effective potential V (G), which depends on the complete propagator G. 

and finally we can define the vacuum energy is [7] 

	

f2 = •(G) — Vp„,(G), 	 (6) 

where we are subtracting from V(G) its perturbative counterpart, and Q is computed as a function of the nonper-

turbative propagators G, i.e. its self-energies. E. or II, whether we are working with fermions or gauge bosons, and 

is zero in the absence of mass generation. Ultimately, Q is a function of the dynamical masses of the theory. 

There is a long discussion in the literature if the vacuum energy SI can be identified with the effective potential 

as described above [9], if the effective potential is single-valued, gauge-invariant. etc... However, we stress that all 

these problems are absent at the stationary points of the vacuum energy [7. 9], and it is exactly for these points 

that we must compute Eq.(4), which we can now write in the following form: 

13(g)[ -- 	= 0. 
as) OJ 

	

0.1 Og j=0 
	 (7 ) 

However. acvaJ = —or /of . and as a consequence of Eq.(5) we have 

OJ 
i3(Y) (0 ION) 	= 0 - 	 (8) 

1.0 

The vacuum condensate (01010)  is allways non-zero above a certain critical coupling (ge ), which is the same for the 

onset of mass generation resulting a non-trivial Q. Actually, we separate the dynamically broken phase from the 

symmetric one exactly by the coupling ge  for which (0 1010) 	0 It remains to show that -N J. °  is also different 
Vg 

from zero in the same conditions, what can be accomplished through the so called "inversion method" [la 

Fukuda has devised a very ingenious method to determine nonperturbative quantities [10]. He noticed that 

to compute a nonperturbative quantity like (01010) E 0. the usual procedure is to introduce a source J and to 

calculate the series: 

	

19 = Ell"itn(J)• 
	

(9) 
n=0 

In practice we have to truncate Eq.(9) at sonic finite order, and it gives us only the perturbative solution 0 = 

when we set J = 0. The right-hand side of Eq.(9) should be double valued at. J = 0 for another solution to exist, 
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which is not the present case. The alternative method proposed by Fukuda is to invert Eq.(9), solving it in favor of 

J and regarding 0 as a quantity of the order of unity. We obtain the following series: 

E 
gnknon, 
	 (10) 

n=D 

where the k n 's satisfying n < m (rn being some finite integer) arc calculable from li n  also satisfying n < m. We 

can find a nonperturbative solution of 0 by setting J = 0 through a truncated version of Eq.( 10). The details of 

the method can be found in Ref. [10]. The important point for us is that. by construction of Eq.(10) we verify 

that when J = 0 and 0 # 0 (i.e. the theory admits condensation), the same value of 0 that satisfy Eq.(10) gives 

19J/8gl1.o 0 0 trivially. According to this and looking at Eq.(8), the only possibility to obtain 811/0m = 0 is when 

we have a fixed point (0(g) = 0). from where comes our main assertion that fixed points are extrema of the vacuum 

energy. The other two terms of Eq.(8) never can be equal to zero in the broken phase! We have made a detailed 

calculation of Eq.(8) in the case of QED4  [11]. 
A few years ago one of us [12] computed (ft), which denotes the values of Si at the stationary points, in the 

case of quenched QED 4 . (0) was computed using approximate solutions of the Schwinger-Dyson equations for the 

fermion propagator, and the minimum of energy was obtained for each value of the coupling constant (a). It was 

observed that the deepest minimum occurs exactly for the critical value of the coupling constant expected to be 
a fixed point. This fact now has been proven not to be accidental. but consistent with the relationship that we 

discussed here. The connection between fixed points and vacuum energy provides a totally different way to find 

fixed points. As (CZ) is a gauge invariant physical quantity it can be computed in numerical lattice simulations of 

QED., for a fixed value of the coupling constant. Therefore, it. is possible to obtain the curve of minima of energy 

in the regions of small and strong coupling, approaching the region of the phase transition. and according to our 

previous discussion the point of minimum energy connecting these different regions will indicate the fixed point.. 

In conclusion, we have shown that the extrema of the vacuum energy are associated to the fixed points of 

dynamically broken gauge theories, if these points occur within the range of coupling constants delimitating the 

dynamically broken phase. Using the "inversion method" it is possible to verify explicitly that Eq.(7) could have a 

zero, in the case of chirally broken QED, only if the A3 function has a zero. It would be interesting if such relationship 

could be investigated by other methods, such as direct lattice calculations. 
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Starting with the von Neumann algebra in its Tomita-Takesaki realization. structural el-
ements of Thermofield Dynamics (TFD) are derived on an axiomatic-algebraic standing 
point. This approach results in a consistent. (physical and mathematical) interpretation of 
the set of dual variables arising in thermal theories. in this context, the Ojima's work about. 
equilibrium TFD is generalized to arbitrary states. The representation space in the Tomita-
Takesaki theory is also used to define a vector manifold for representations of Lie algebras. 
As an example, the Galilei group is studied. 

I Introduction 

The von-Neumann or te – algebras were proposed as an attempt to build an axiomatic quantum mechanics, widening 

then the original formalism to embed quantum, classical and statistical theories into a broader structural approach. 

In a general sense, the theory of linear representations of w – algebras was deVeloped by Gelfand, Naimark .  and 

Segal (known as the GNS construction), and it stresses the importance of the dynamical states as a basic element 

for building the representation space of the algebrall, 2, 3]. This aspect is particularly relevant to 'systems with 

infinite degrees of freedom, for in such cases, the von Neumann's irreducibility pOstulate has no validity at all, 

resulting, for example, in the breakdown of symmetry and infrared divergences[l, 4, 5]. 

in this paper we present an aplication of the von Newmann algebra to thermofield dynamics (TFD)(4, 5. fib in 

order to obtain a consistent (physical and mathematical) development to the set of dual variables arising in thermal 

theories[7]. In this context, we generalize the Ojima's work[8] about. equilibrium TFD to arbitrary states. 

In Section 2 the notation and some formal definitions related with the Tomita-Takesaki representation of the 

to' –algebra , as well as some basic elements of TFD, are introduced. In Section 3 the Tomita-Takesaki representation 

is used to introduce a representation space for Lie algebras. In Section 4, as an example, the representations of the 

Galilei group are studied and the Wigner and Kirkwood functions are introduced in connection with a concept of 

quantum-phase-space wave function. 

II Outline of von Neumann algebra and Standard Representation 

A e`-algebra A is an algebra over the field of complex numbers C with an involutive mapping • : A — A and 

another mapping II' A R+ , which is the norm{I, 2, 3]. The set. of normal forms ts, on A is called the pre-dual 

of A and denoted by A.. When A, a c'-algebra with identity, can be identified as the dual of the pre-dual, A is 

called a w'-algebra or a von-Neumann algebra. (From now on, we will refer to A as w' –algebra.) 

'Financial support: CAPES (a Brazilian Agency for Research) and Natural Sciences and Engineering Research Council of Canada. 
1 Senior Associated Researcher - Dep. de Fisica. Universidade de Brasilia. 70910-900, Brasilia-OF. 
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Let (11, x(A)) be a faithful realization of A, where 71 is a Hilbert space. ir(.4) : 11 	N is, then, a 

• —isomorphism of A by linear operators on H. Taking V) E 71 normalized, it follows that V I r(A) 	for 

every A E A, defines a state over A denoted by wc(A) 	71. (A) I E). Such states are called vector states. 

Gelfang, Naimark and Segal (GNS) demonstrated that the inverse of the proposition 2.1 is true. That is, every 

state w of a w•-algebra A admits a vector representation I E 71, such that w(A) 7r,,(A) I C r ). This 

realization is called the GNS constructionll, 2, 3). (In order to emphasise the dependency of the representation 

space and of the operators on the state w E A, it is usual to denote such a realization by (71,., 7,,( A)) .) 

A Tomita-Takesaki representation is a class of representations defined as it follows. 

Let a 	11,„ be a conjugation on 11,,,; that is. a is an anti linear isometry such that cr 2  = I. 	r,.( A)) 

is a Tomita-Takesaki representation of the w•-algebra A, iff crx ,,(A)a = ri,..(A) defines a "-anti isomorphism on 

the linear operators. It. follows that (71,,„ A)) is a faithful anti realization of A. Notice that ii,.(A) is the 

commutating of ir,,,(A); that is [7r,..( A), if w (A)] = 0. 

Some properties of this representation deserve to he stressed. In particular, the representative vectors of the 

states are invariant by a; that is, a I &,,) =I These vectors I &.,) are defined in a sub set P,,,, C 71‘) . In 

addition, faithful states are represented by cyclic vectors &„) E P„, in the representations (anti representation) 

7.(A) (AaA)). That is, rw( A) L , ) and I 4.c..,) are dense sets in H... 

'-automorphisms on the w'.-algebra A arc defined through unitary operators. U(r), such that (U(r), crl = 0. 

The unitary operators U(r) can be written as U(r) = exp(irA), where 	is the symmetry generator. Because of 

property (U(r), a] = 0, cr.4cr = 	Therefore. should be a combination of elements of 	A) (say .4) and if,,(A) 

(say A) given by A = A — A. That is, is an element of the set .4) = A) — Tr„,( A). The tilde and non-tilde 

operators, defined above by the a conjugation, satisfy just. the so-called tilde conjugation rules ;  which are derived 

in thermo field dynamics (TFD) in association with physical properties of free systems. 

The usual (equilibrium) TFD is derived assuming that w is given by the canonical or the grand-canonical 

ensemble. In such a situation, as w is a faithful state, the vector 	> is cyclic; and so, it can be taken as the 

vaccum (the standard ket) for convenient realizations of the space 	In those cases, it is possible to use the 

'—isomorphism (even for oo degrees of freedom) and to consider 11,., E H 0 H'. Then the representation space 

is a h'—algebra (a Hilbert algebra), and we can write: >= MO) >= Z(i3,P) 1/211 E exp(.1(flET, — pN ))In, n >, 

r(A) = A 0 1, and Tr(A) = 1 m  .A; where Iri,» > = In > 0 < »I and In > is an eigenstate of the energy 

with eigenvalue E. Notice that the basic elements of TFD are derived here without reference to any particular 

(equilibrium or non-equilibrium mixed ) state w of A. 

III w*-Algebra and Lie Groups. 

Let us consider a Lie algebra C = 	= 1,2,3, ...}, over the field It, characterized by the algebraic relations 

cri 	ai = Cijsas, where Cijk E R are the structure constants and 6 is the Lie product. The space 71,. can be 

used as a space of representation of C, and according to the Tomita-Takesaki representation, there exists a reducible 

representation of C specified by linear operators, such that r,..,(€) C However, as this realization is reducible. 

Hu.. is also a space of an anti realization specified by Fr,(t) C 5„.(A). Using the generators of transformations,. the 

hat operators A; introduced in last section, we derive the following set of commutation relations as a representation 

of C in the standard representation: 

(I) 

(2) 

(3) 

Bacause the properties of the standard representation, the .4 operators are interpreted as dynamical observables, 

while the hat variables are the generators of symmetries. The algebra given by Eqs.(I)—(3), which will be denoted 
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by CT, was derived in the context of TFD and called therrnoalgebra[9]. 

In order to write the thermoalgebra of the Galilei group[10]. we use the fact that the hat algebra is a faithful 

representation of the Lie algebra of the Galilei symmetries. Moreover. we consider the general situation of projective 

representations. Therefore, we obtain 

[Ji, Jj] = it 	, Pi] = kip ;  Pk , 	1 	Ki] = rt;ikhk . (4) 

[H. Hi] = i Pi  , 	[1:i. Pk ] = irnbik. (5) 

= 	J1] = kijk ■11: • (6) 

[ 1k, Pi) = i( ilk Ijk • = 	Pi] = itijk Pk. (7) 
• 

kJ] = le iik hk. [.11 , h i ] = 	= it 	k (8)  

.Iii] iPi, (!I. 	= [H . 	jj= 1P,. (9) 

[h1, Pi] = i7716ii [1:1. Pi] = [1:1 , Pi) = 	, (10) 

where ciik is the Levi-Civita tensor and i, j. k = 1.'2.3: the other commutation relations arc mill. 

	

Considering ►n 0 0 the invariants of t• are given by 1 1  = 	— H. 1 2  = (.1 — kK x P)". 13 = 1 = 
A 	

and 14 = 	= 	— TT] 	x 1-1 2 1 A  

From the commutation relations for the 1hermoalgebra of the Galilei group. 11 is the generator of the time 

translation, and so the time evolution of an arbitrary dynamical variable is specified by A(!) = 	.4 e - " 1-1 

 means or .1 operator). Using the Schrodinger picture we have 

Or 	= 	I ) 	 ( 1 ) 

Considering Eq.(4)-(10). we have several possibilities to define a frame in the Hilbert space "H,.. An interesting 

frame can be built with the operators P and Q defined by P = P — 03  and Q = Q — . Observe that 

[. Q] = 0, and more, P and Q satisfy the Galilei- boost conditions: therefore. they can be taken as momentum and 

position operators. respectively. But despite this fact. p and Q can not he considered as observables, for, in this 

Tomita-Takesaki representation, the hat-operators are generators of symmetries. not observables. 

Since P and Q commute with each other. a representation in which both operators are diagonal can be used to 

define a quantum phase space. This phase-space frame is defined by P I q,p) = p I q, p) and Q I  q, 	= q I q• P) 

where the kets I q, p) are an orthonormal basis in 	that is. (q,p I  q'. p') = 6(q—qt)b(p—p'), f I  q,p)(q,p I dqdp = 1. 

In this basis, we can write the observables Q and P. and the generator P and Q as Qi = qi + 	. Pi = 

pi  —;ham • Q i = ih . . These results show that is a reducible representation space for 

the observables Qi and P, El 11(but this is riot the case for the full set of dynamical variables). From the evolution 

equation for the states. Eq.(11), can he written as[10] 

O r  fiv(q,v,t) = {II (q, p) . 	 M • 

where where {•. • }m, the Moyal bracket. is given by 

— — 

2 . 	h 	 „ q. p).  
{g, f} 	p) = 	• 01, 5111 ( Ei111- 	Jut 

by fw(q,p)= (tbt 0 0)(q, p), being O(q,  p: I) = (q, p I OM). and 

— 7 7 h E) 
op 0')(q . p) 	dqq, p) exp I 7515-,i 	— 	J (q•1)1 	 (12) 

We can show that the function fw(q,p) satisfies just all the properties of the Wigner function[lU, 12. 13]. Then the 

functions OW p) can be interpreted as a wave function attached to the Wigner-function approach to the quantum 

mechanics. 

fw is defined 
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The non local product Eq.(12) equips the space fl.. a 'HOW' with a structure of Hilbert algebras. Therefore, we 

can consider other representations for such a product, giving different (but equivalent) descriptions of the quantum 

phase space. Indeed, let us consider two examples. The first one is defined by commutant operators PI = 0. 

such that PITO =p1 q,p), Q 14,p) = q I q, , Q i  = 	!-ili z*;  and 	= pi + 	. Then the product of 

the Hilbert algebra is now written as 

( o 1/. 1 )(q, p) = tb(q p)exp(i Ti
h a 4.) , 	

(13) P) 

As the second example, we can consider [Q, 	= 0. such that P I (hp) = p I ( • Q I q, P) = q I q• P) 	= 

qi — 	and 13.i = pi — 	, resulting in 

.h a 	., _ 
(71 (n 

'
p). ) 	, = p) ON. p) exp[ i 2 	&I 	1  

(14) 

These, products. Eq.(13) and (14), give raise to the complex distribution functions introduced by Kirkwood[12. 14]. 

These aspects will be studied in more detail elsewhere. 
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In this work we present a generalization of the Hamilton-Jacobi formulation for singular 
systems with arbitrarily higher order Lagrangians. We follow the procedure of obtainning 
the Hamilton-Jacobi equation from Caratheodory's equivalent Lagrangians method and then 
develop the approach for singular systems writing the equations of motion as total differential 
equations in many variables. 

1 Introduction 

Singular systems, i.e. those which have a singular Hessian matrix. have been studied widely in literature. The 

Lagrangian and Hamiltonian formulations for such systems have already been developed by many authors [I, 2] 

but, since its development, Dirac's Hamiltonian formalism [3] has been the main tool to the study of such systems 

[4, 5] 

Recently a new approach for singular systems. based on Haniilton-Jacobi formalism, has been developed for first 

order singular systems [6. 7] and have also been generalized for second order systems [8]of physical systems and, as 

a consequence, it is still necessary to develop and analyze the applications'of this formalism. 

In this work we present the Hamilton-Jacobi formalism for singular systems making its generalization for singular 

systems with arbitrarily higher derivatives. First, we will analyze the constraints structure present in singular higher 

order systems and then we will apply Caratheodory's equivalent Lagrangians method to obtain the Hamilton-Jacobi 

partial differential equation which we will use to write the equations of motion as total differential equations. 

2 Constraints structure in higher order systems 

We will analyze a system described by a Lagrangian dependent. up to the K-th derivative of the N generalized 

coordinates qi , i.e. 

7 	(10 	ii) 	dsq ;  

where s = 0. I, ..., K and i = 1, 	For such systems, the Euler-Lagrange equations obtained through Hamilton's 

principle of stationary action will be: 

, 	 ( ar, E 	‘7,7 	 0 	 (2) 

q 

This is a system of N differential equations of 2K.th order so we need 2K N initial conditions to solve them. 
(2K-11 

These conditions are the initial values of 	 that describe the "velocity" phase space ( IMPS). 

• Partially supported by CNPq 
'Supported by CAPES 
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The Hamiltonian formalism for theories with higher order derivatives, that has been developed first by Ostro- 

gradski 	treats the derivatives q 	g(,);  (s = 0, 	K - 1) as coordinates and introduces the momenta 

_ t L 

	

PiK 	- (K) 	 ( 3 ) 
q 

OL 
E -01 	s = 	— I 	 (4) 

q 

conjugated respectively to q(K_ i); and q( i -1g, s = I 	K - I. It is important to notice that the momenta p(, ) ; 
(2K -I-J) 

(s = 0,1,...,K - I) will be dependent of the derivatives up to 	q 

The Hamiltonian is defined as 
K-1 

H = E 	q -L 	
(K) 

q 
) i0-1-1) 

and the Hamilton's equations of motion will be written as 

OH 

aP(I)i = 

OH 
HI . 

where Einstein's summation rule is used. 

The phase space (PS) is described in terms of the canonical variables q( , ) ;; m oi (where i = I..... N and 

s = 0, ..., K - 1) and we have 2N K equations of motion (given by equations (6) and (7)) that need 2KN initial 

conditions to be solved. These initial conditions are analogue to those needed in Euler-Lagrange equations, but 

now they are the initial values of the canonical variables. 

But the passage from VPS to PS is only possible if the momenta expressions (3) and (4) can be solved with 
(K) 	(2K-1) 

respect to the derivatives q 	q 	so that these can be expressed as functions of the canonical variables and 

eliminated from the theory. The necessity of express these derivatives as functions of canonical variables comes 

from the fact that they are present in the momenta expressions (4). So. fixing the initial conditions of the momenta 
(K) 	(2K-1) 

in the Hamiltonian formulation is equivalent to fixing the initial conditions to the derivatives q 	q 	in the 

Lagrangian formulation. 

We can use the fact that the momenta Poo;  (5 = 0, 	- 1) will he dependent of the derivatives up to 
(2K-1-J1 

q 	and that the highest derivatives appear linearly. with coefficients that are the elements of the Hessian 

matrix 

	

- 	 )  p(K_Iii 	02L 

	

_ 	= 	 
(10 	(K) 

a q j 	0 qi0 qj 

(K+p) 
to show that the derivatives q 	can be solved as functions 

(h:+p) 

	

q i= f(k +p );( q(r),; 	 p(1,--1- 7,);); s,P = O. 	K — I 	 (9) 

(1+ +)') 
if. and only if, the Jacobian matrix of the change of variables q j — puc _ 1 	with elements Jij given by 

■ =0 

(q(,), HI 

(5) 

(6) 

(7) 

(8) 

- 	(-1)5 	
q 	= i1 11:+411)a 

	 (1 0) 
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= 0, ...,p- 1), be non singular. Consequently, it. will be the non singularity of the Hessian matrix (8) that will 

determine if the passage from the VPS to PS is possible or not. 

Let's suppose now that the Hessian matrix has rank P = N - R. In this case it will not be possible to express 
1 

all derivatives
( 
 q ) 
	(2K— 

q
1)

in the form described by equation (9). Anyway, without loss of generality, we can 

choose the order of coordinates in such a way that the P x P sub-matrix in the bottom right corner of the Hessian 

matrix has nonvanishing determinant: 

det 	= det  
a.21, 

(K) 	(K) 
8 q aa q b 

0: a, b = 	+ 1, ..., N 	 (11) 

   

p)+ 
With this condition, the derivatives 

(K
q 0  (ft = L...., R; p = 0, ..., K - 1) will remain undetermined and we will 

have expressions like 

P(K—i—p)a = 9(K-1-00 (q(s)j; NK-11o)••-, P{E-1—p)a) 
	

(12) 

that will correspond to primary constraints 

O(K — 1—p)o 	—1—pio 	9(1C-1—pjo (ti(0j; P(K-042,••• ■ MK-1—p o) ;Z. 0 	 (13) 

in Dirac's formalism (3). 

Then, we have as result that in a higher order systems the existence of constraints involving a given momentum 
(•) 

will imply the existence of constraints involving all p ( ,)„, momenta conjugated to the derivatives ch, 10  = q a  
(lc) 	(2x-1) 

(a = 0, ...,K -1) due to the fact that the derivatives q 	q 0  can't be expressed as functions of the canonical 

variables. Consequently, when the Hessian matrix has rank P = N - R. there will be KR expressions of the kind 

(12) that correspond to KR primary constraints as given by (13). 

The existence of such constraints structure in higher order systems have already been noticed by other authors 

[10, 11, 12]. But even noticing the constraints structure showed above is present in the momenta definitions, all 

these authors consider that only the constraints involving p ( K_ tic'  are primary constraints. Anyway, this makes few 

difference in Hamiltonian dynamics for singular systems since the others constraints will be secondary constraints 

obligatorily obtained as consistency conditions: 4) (K _ 2),, will be generated by the consistence condition of 4)(K-1).; 

•(K_ 3),„ will be generated by the consistence condition of 4) ( K_ 2),,, and so on. Besides that, it is important to -

notice that the constraint, structure showed above is different for a higher order Lagrangian obtained from a lower 

order one by adding a total time derivative. We will not discuss this case here however the reader can find a detailed 

analysis of the constraint structure for such Lagrangians in reference [12]. 

3 Hamilton-Jacobi formalism 

The Hamilton-Jacobi equation for higher order systems which can be obtained through CaratheodOry's equivalent 

Lagrangians method [13], are given by 

7 = 	Pow- 	= 0, K - 
wit , 

as 	
(14) 

where H is the Hamiltonian given by equation (5) and S (qi,...,q ( K_ I)i,t) is Hamilton's principal function. An 

example of the application of Caratheodory's method to a second order system can be found in ref. [8]. 

Due to the singularity of the system we have expressions like (12) which we rewrite as: 

P(d)c, = — H(dio (q(s)i,p(,).); d = 0, •-•, K -1 
	

(15) 

Although p(d),,, is dependent only of momenta p (0)., p(1)a, 	p(d) a , as.it can be seen from equation (12), for 
simplicity we will treat them as if they were dependent of all p(,)„. 
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The Hamiltonian H becomes 

K —1 	 K —1 (a+11 	( 4 + 1 ) 	 (K) 	(K)  
H = E P(s)a q 4  — L (q0),i; q a; q a= f(K)a)1-  Le q OP(a Ipood=-1. 

1=0 	 2=0 
(16)  

(K) 	(2K —1) 
where d, u = 0, 	K - 1. The Hamiltonian H does not depend explicitly upon the derivatives q a, 	. q a  
since its partial derivatives with respect to them are identically zero. 

Now we adopt the following notation: I will be called qo = to and q ( , ) ,, will be called tw o . The "momentum' 
Po  will be defined as: 

as 
(17) po  = — 

(91 

Then to obtain an extreme of the action integral we must find a function S (qi, 	(AK _ 	t) that satisfies the 
following set of Hamilton-Jacobi partial differential equations (1IJPDE): 

( 	
as \ 

H I; = Po + Ho go ,  its)u; qii )°' P( ' )°  = 	
= 0 	

(18) 	. 
 aq(s)a 

( 

 S O 
H( 	

\  0  (19) a/a = pc, 1„ + Ho). toil(' )u; tiboai Po la = ago). ) - 

From the definitions above we have 

014 	OH' 
dqo 	

(a lo  
= di = to di o  + 

 aP 
 dio),„ 
o 

011;:,

)i 	

to

J )

a OH' 

01)( 
d 0 + 	di(oa 

8  

From the momenta definitions we get: 

,.., 	02  S i 	02 s 	
(32  .5 	, 

dro = —alto + 	dt ( , )c, + 	aqo  )„, 	 (22) 0 2 i 	aiat,,,c, 	Otag o  )„ 

0 2 .5 , 	825 	 825. dp(, );  = —uio  + 	A u k, + 	, 	dq(u)a 	 (23) • 	ago  ) ;i91 	Uri( liUl(u)a 	 Uq(11iLlq(u /a 

If we consider that we have a solution S (qi, ...,q(K _ 1  , t) of the set of HJPDE given by equations (18) and (19), 

in a procedure analogous to that used with second order systems in ref. t8], we can reduce the equations above to: 

011;)  , Al  

	

dPo = - —alp 	di (0,, 	 (24) 
010 	at °  . 

H' 	OH' 
dp ( , );  = - 	(It o 	(u)a  400 	 (25) 

"q1 	U(1( 8 )i 

Besides that, making Z = S (qi, 	_ I)i ,i) and using the momenta definitions together with equation (21) 
we have: 

dZ = (- H o  + 	07:13.° di o 	-11 0.00 + P(a}a 	di(u). 	 (26) 

This equation, together with equations (20), (21), (24) and (25) are the total differential equations for the charac-
teristics curves and, if they form a completely integrable set, their simultaneous solutions determine S (qi 	- 	to) 
uniquely by the initial conditions. 

(20)  

(21) 
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4 Conclusions 

We have obtained a generalization of Hamilton-Jacobi formalism for singular systems that allows the study of higher 

order systems. For that., the constraints structure in such systems was analyzed. This is due to the fact that if 

we had considered only the constraints containing the momenta i ,„, given by equation (12) when p = 0, the 

other constraints would have to be obtained from integrability conditions. The integrability conditions of the total 

differential equations for such systems will be similar to the integrability conditions for first order singular systems 

that have already been studied (7). To avoid unnecessary work we consider all the constraints structure since the 

beginning of the formalism. 
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The study of the mechanism of decay of metastable systems via bubble nucleation finds a wide range of appliCa-

hility in all realms of Physics. From condensed-matter physics. in polymer transitions [2, 4. 3. 8], to baryon number 

violation via sphaleron transitions in high-energy physics [9). 

In this work, we present a study of the role of fermions in the decay of metastable states of •a scalar field via 

bubble nucleation. We consider a system of interacting fermions and bosons that starts in a metastable vacuum 

and gradually decays to the true one via nucleation of bubbles. Our main purpose is the analysis of the effect of 

fermions on the stability of these bubbles. We analyze both two and four-dimensional systems. In order to obtain 

the effects of fermions on the bosonic field, we construct. an  effective theory, integrating over the fermions. However. 

integrating over the fermions implies calculating the fermionic determinant. If we focus on the long distance (small 

momentum) properties of the theory, we may calculate this determinant by using a systematic functional gradient 

expansion for an arbitrary number of dimensions v [10, 11]. Using this procedure. we obtain the corrected form 

for the bubbles (now charged ones) and their energies as functions of their radii. In this way, we obtain all the 

information about their stability, and we may even calculate decay rates as explicit functions of time. The results 

for two dimensions are compared to the exact results of previous work [2]. 

The model Lagrangian has the following form 

C = 2  (00 6)(0PO) — [V(0) — V(0 7 )) 1-41).(i1P8, — p — gO) va ( 1 ) 

where <1)2 is a local minimum of the potential (We may find a physical realization of this form of potential in the 

description of conducting polymers [3, 4]. V(t5) = .c((;') — 60) 2 (o + cio  + 7) ..16) 
Integrating over fermions implies calculating the following determinant 

$F = 	 p — go)) = —ir(ln(i7PO„ — — 0)] 	 (2) 

In one spatial dimension, it is possible to perform an exact calculation of (2) by making use of inverse scattering 

methods [2, 5, 6]. For three spatial dimensions, we must resort to approximations. 

We may rewrite the effective action as 

Se f [0] = 	dvx {-
1
(6 ci)(0P — [V(6) — 1' (02)] — tri/n(i7PO„ — p — gO)1 

2 P  

The field configuration that extremities (3) must. satisfy the Euler-Lagrange equation 

OV 
= — 	— Sp < i.tuap 	p go  > 

•Work partially supported by CNN' and FUJI3/LiFRJ. 

(3) 

(4) 
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We may calculate the Green function by using a functional gradient. expansion. -To do so, we use the identity 

[10, 11] 

g(X, 	 Sp < XI, 	  >= 7 0 a, +  

 Iii 	1  
= Sp I (2  ci"P 	  

7? Ill p, + M ( .r) ,,,E0
( -1 ) 

=.
" (.:1M ( 

r
, 

op 
x)

-ep, + A' (x) 

where 

1 0 	 1 	1 	 1 

	

+ -0 0 ‘1()( 	 + r 001 ( 1177 	 ' • 	ap„Opp i Op• 	 id 	2 	 i 
. 

Keeping terms up to second order in the derivatives and explicitly performing the integrals, we obtain c(x,z)= 

+ 13,Alv -4 0M , where o, and ;3, are functions of the number of space-time dimensions. 

For v = 2 and v = 4, these functions are divergent. Nevertheless. we may absorb these divergences in a suitable 

redefinition of the free parameters of the model. After a redefinition of g, p and j and remembering that, in our 

case. M(x) = 	+ gc0), we may explicitly calculate the equation of motion. 

For v = 2, we find (up to order g 2 ) 

(p + go):' 
❑ = 

do 	+ yo' + 
( 7 ) 

and, for v = 4. 

The part of the effective action. SF ,  

011  
06 = - T-43  

associated with the fermionic determinant has the 

• 	(8) 

form SF = 
-g f d"x f [Do] g(z,z), with the matrix element given by (5). 

We note that, in the case of v = 4, the only effect of the fermions is (to this order of approximation) to 

renormalize the free parameters of the theory. We will see that this situation is completely changed if we include a 

gap and bound states in the fermionic spectrum. 

Based on the results of our previous work, we shall look for sphaleron-like (droplet-like) solutions to the equations 
of motion obtained above [1, 2, 4, 7]. 

For the v = 2 case, we may define p E o + pig and. using the thin-wall approximation [1] (i.e., considering 

a droplet whose radius is much larger than its wail thickness) and imposing the boundary conditions vaph(x — 

±c:o) s02 and d---V-(x ±oo) — 0. we obtain 

V;sph = 	- Optianh(4 + 6,0)- tanh(E - G)] 
	

(9) 

9 
where 4 E gaip(z - z c .„,,), 	= I2 cosh -1 	- -  

- 1 "5 
and Qp is a constant. 

and where we have assumed pig >> I (neglecting corrections of order 0((g/p) 2 )), consistent with the conditions 

of validity of the gradient. expansion, in order to obtain a closed form for the function that repr esents the sphaieron. 

For the v = 4 case, we may assume a solution with 'radial symmetry so that. we have, in the thin-wall approxi-

mation, 

(5) 

(6) 

V.ph(E) = 	c;P[ianh(i. + 	tunh(' - &I)]. 	> 0  

where we have imposed conditions analogous to the case v = 2. 

Therefore, we have a true vacuum bubble, of radius 6, centered at the origin. The situation is the same as we 

would have encountered in a purely bosonic system [1]. 

(10) 
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In the previous calculations, we have shown that a bubble-like configuration still satisfies the modified equations 

of motion (In fact, in the I/ =. 4 case, we have no changes at all). These bubbles play the role of a background field 

in the determination of the fermionic spectrum. In fact, in some cases, instead of a simple continuum, we may have 

the presence of a gap and pairs of bound states [2, 5] (we will consider, for simplicity, just one pair). Therefore, if we 

have a richer spectrum, the calculation of the fermionic determinant, performed above, should be reviewed to deal 

explicitly with the bound states. The previous calculation of the determinant• is the result of a gradient expansion 

approximation for the total trace, where we sum over all continuum and bound states. However, as we are interested 

in an effect that depends crucially on the relative occupation of the bound states [2]. we should consider a finite 

density of fermions, i.e., a partial trace. Thus, instead of summing over all fermionic momenta (the restriction of 

small momenta is over the bosonic fields only), we shall sum them only up to the (occupied) top bound state. 

Therefore, the complete effective action has the following form 

f Se I 1 [0] = f d v I [i(ai3O)(d u 0) — [V (0) — V (0.2)j} — 

— 
2 

I d' x I [DO] g(..r , x) — 

T 	 T 

— n + y I di i  I di I dt2 I 41 [D©] tr Ei (Zi l  ,[0,ph]) x 
0 	 0 

X g( Y)thB(i. t2. [Owl]) 	 ( 11) 

where On is the wavefunction of a bound state and it is its occupation number ("doping - ). 

The only term that remains to be calculated is the last. one. Assuming that the occupation of the bound states 

will not affect in an appreciable way the form of the bubble (in the one-dimensional case, this is an exact result. 

[2, 5]), we may rewrite this term as 

Sbotind = n+gi' I ( 14( 1)6,0(r) ( 12 ) 
• 

where p(i) = r,V2 (E)tbEi(i) is the normalized density of probability distribution of the bound charge. However, it is 

already known [3, 5] that the charge associated with a bubble tends to concentrate on its surface in a gaussian-like 

way. For our purposes, we will assume that a delta-like distribution will he a reasonable approximation. 

In the it = 2 case, we may write the density p as p = .1[6(C — 	45( + 6)]. 

The energy of the bubble, E = —Se ff/T, as a function of the radius C o , has the following form: 

-1- co d5 	( Ly i O ) 2  (4'1 + V  • 	— " g p 	 (caph) 	92)] — E(o) 
cu  Op 2 	I27r p 

— n + lanh(go) (13) 

where we have incorporated the contribution of the Dirac sea in the first. term, by making use of the equation of 

motion. In fact., the contribution of the continuum is of order 0((ght) 2 ) and may be neglected to this order of 

approximation. The only relevant contribution of fermions comes from the bound states. 

In the v = 4 case, we may write the density p as p = 	(5( 	co).  
The energy of the bubble as a function of the radius 	has the following form: 

E(o) 
,k" 	1, 	(dOarh ).2 	[V(0jph) 	V(02)) —ulopp fo  IN. (94;02 ( gc:5 p ) 	2 • 	< 

 

 

n + tanh(240) (14) 

To analyze the stability of the bubble-like solutions obtained above. we shall study the behaviour of the the 

energy of the bubble as a function of the bubble radius 6 ) , now considered as a dynamical variable, s. The results, 

for the cases v = 2 and = 4. are plotted in Fig. 1 .  and Fig. 2. respectively. 
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Our results for the v = 2 case should be compared wit h the exact results. previously obtained by using inverse 

scattering methods [2] (sec Figs.). In this way, we may control our approximations. In fact. the observation of Fig.1 

shows that our approximation preserves the 'quantum stabilization -  brought about by fermions. Nevertheless, we 

find a quantitative difference between the approximate and the exact. results due. mainly. to our naive delta-like 

approximation for the fermionic density. In order to improve on this approximation. one may use a gaussian-like 

pattern or even the exact. fermionic density in the presence of the sphaleron. However, in doing so. one can no 

longer use the simple analytic form of our analysis. 

From our results, it is clear that the effects of fermions in an arbitrary number of space dimensions are due, 

almost. exclusively, to the relative occupation of hound states. The states of the continuum contribute only to order 

0((g/ 0 2 ), and may be neglected. For v = and v = 4. the new charged bubbles have the same functional form as 

the purely bosonic ones, except for a reparametrization. and have their stability drastically modified by the fermions: 

besides unstable bubbles. we find metastable bubbles as a result of a "quantum stabilization -  brought about by 

the fermions. For v = 2. this rt.ult was obtained exactly in R.el.[2]. This striking feature may, in principle, he 

measured in some realistic systems. The two- dimensional case finds a natural application in the physics of linearly 

conducting polymers [3, 4. 5]. The results for the four-dimensional case may have important consequences for the 

physics of Baryogenesis and in sonic problems in Optics [8. 9]. 

From the results for the energy of the bubbles as a function of their radii. it is possible to calculate decay rates 

for the metastable states of the scalar field as explicit functions of time. This may he implemented by using the 

formalism presented in [I] and [2] and allows for a min -equilibrium description of the decay process for both v = 2 

and v = 4 cases. 
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Figure 1: Energy of the bubble as a function 
of its radius for v=2 (purely bosonic, exact 
results with fermions, approximate results 
with fermions) 

Figure 2: Energy of the bubble as a function 
of its radius for ‘4 (purely bosonk, approximate 
results with fermions) 
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Cordas Magneticas Quanticas a Temperatura Finita 

1). G. G. Sasaki 
Gerafro Brasilen) de Pesquisns Fisiens ((_'BPF) 

L. C. Marino 
Universidade Federal do Rio de Janeiro (V FR!) 

We apply the method of dual quantization of topological excitations to magnetic strings in 

the Abelian Higgs Model in (3 + l)-dimensions. In the approximation of constant. absolute 

value of the Ifiggs field. we evaluate the correlation function of a closed and circular magnetic 

string, both at finite and in the zero temperature limit. We show that in zero temperature. 

only infinite strings exist. as genuine excitations. However. the introduction of temperature 

makes the system unstable and even infinite strings disappear from physical spectrum. 

1 Introducio 

0 objetivo central dente trabalho e determinar a iniitiencia else temperatura no comportamento de cordas quanticas. 

Corn este fin, juntamos a tecnica dr introducio de tvniperatura ern 'I‘QC corn o meiodo de quantizactio dual [I]. title 

é tuna generalizacao dos conceit os de dualidade ordeni-de.sordein (la Mecanica Estatistica. Este modelo foi escolhido 

porque e o mais simples daqueles (ie admire:it cordas niagneticas conic) solucoes chissicas estiveis. 

2 Quantizacio Dual de cordas 

MHA e delinido por: 

CH A = 
.
—
i

i" „,P "u 	1),,o D" 	 0 .  ) 

CUM 

onde A e m Sao para.metros du model°. 

0 potencial e infinitamente degenerado e a 	carga topologic:a conservada e o fluxo magnetic° no longo ede trio 

piano transversal a corda. 

Inicialmente, definimos uma algebra dual. tine obedece a simetria [2): 

a arg y — .r) 
p 	.t) 	= r 	 .1) p ( 

— (7.1) A; (7.0 = [Ai (7.0 	1 – 	(yi arg( —  y – .r )1 p 	• 1) . (1) 

0 panto 7 e o porno em relacao so qual o angulo arg (7 – ) e delinido. Ele detertnina a posicao ern clue a 

corda corta 11111 piano transversal a els. 

Em [2] mostra-se quc a acio do M ilA potle ser escrita cuitio: 

= i (I v  : { - 1.;,, 
[ 
I + —I F' + y),,,00 1` p + v,2 1),,A0'`N + 1• .  (p) 

, i 

1 	

(-0)

f1'. 12 	, 	1 	 I • 

{ 
 ( - 0) 

i1„ 1.- Pu 	r- 	, a" 
-- 	 11 	00 	[ 	

(-0) (-0)
1} - 

e 

1 1  
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A funga° de correlacao dos operadores de desordem. no model() de Maxwell livre sao obtidas adicionando-se urn 

campo extern apropriado ao F. Ern:a°. na aproximacao onde o campo de Higgs p e constance [2]: 

( 1,( x ) pt (y)) = —Z[0] 

1 
DpDy DA, exp – f cip z I (F„,, + ij,„) x 

[1 — 
p- 

(F'w 	) –2 P 2 att 	Y + V (P)1 
( -0 ) 

	IL ) 
	1 . 	

(2) 

tal que 

– 
r. 	S  

onde S e urna superficie gen6rica cujos contornos sao as cordas L r  e L y . 

A expressao (2) a independente da superficie escolliida.Considere urea outra superficie generica S' (L), ligando 

as cordas L r  e L y . Vamos efetuar a transformacao: 

A„ 

corn 
27r 

= — 
r fv(s.,s , ) 

onde (5.5') é o volume limitado licks superficies S c S'. Sob esta mudanca de variavel. 

.111,  ± 	( Si ) — B„Y ( 5) • 

Logo, (2), é claramente invariance de superficie. 

Sejam duas superficies S r  c Sy, corn orientacoes opostas e presas. respectivamente, ism cordas 1, 1  e L y , como 

bandeiras em urn mastro. No caso de cordas fecliadas. as superficies assumem a configuracio de mernbranas ligadas 

a urn aro. Escolhendo-as. de modo a se superporem, formando a superficie S. temos: 

	

(x)pt (0) = 
Z [0] 

DA, exp { – I z [ER – 
e 	

6 4  – F"d2f,„., 
s  

- - 	61  ( - 	F t ' (1 .2 1; 14 ,1 	. 
e s 

Mesta forma. podemos extrair urna representacao explicita do operador de criacao de cordas. no espaco de 

Minkowski: 
air  

Pll'd2 c 
c sr 

Calculando-se (2). rnostra-se que o operador p nao gera estados .topologicos reais [2]. 

0 comutador entre o operador p e (I)e obtido em [2]: 

9 7r  
[(1),p 	= is (.0 I di: 	(7 – .7) = —p(x)• 

t: 	 f. 

demonstrando que p gera cordas formadas por 	unidades de fluxo magnetic°. 

A relacio de comutacao do p coin A; [2]: 

	

( .7, t) , A, (I, )1 = ;I  p(x)e4 YI arg 	– ) . 	 ( 3 ) 

Verificamos que (3) e (1), sao iguais. Estas relacoes caracterizam p corno um operador que cria cordas magneticas 

quanticas. 
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2.1 A fungi() de correlagio da corda quAntica a temperatura finita 

Em [2] a expressao foi conseguimos: 

{  '4  7r -  c•-• 

1 

	

(11 ( 17 )1d (Y)),- = exI) 	- e - 

	

=.- 2_, Ad 	
, 

	

V 	(le 	dra t  FM (, - ►I)  

	

id. , 	i „, 

	

onde Cr , d o contorno da superficie S 	.r1 E 	E y. 	-= I e 	= 	e 

A/ 2  p3f  = :r_i — + 10  H - 
( -0 ) -  

A introducio de temperatura em TQC e realizada atrav,:!s das regras de Fe•nitian no espaco Euclideano. corn 

as substituicoes abaixo [3]: 

k 

	

J (2;7) 4 
	

J (2;0 3 ' 
7:rn 

	

ku 	
13 

(

(274 1  i'i 4  Oh + 4. 2  + ...) — - (27) 3  36,., +, + ... x 6 3  T 1  + IT 

onde L3 d o inverso da temperatura. 

Calculando-se (4) a temperatura Iinit.a [4]: 

•I 

(7,I) (TA) = 	 dethi 	
1 1 

411.0 D 
,J =1 

1 	1 ;11 2  
D - 	in (1 - 	} 	 ( 5 ) 

	

D 	_ 
	, 

3 11 	7r 3 	S7 .2  

Esta expressito para a funcao do correlacito d vilida para qualqii.:r configuracio do cordas fechadas a temperatura 

finita, dentro da aproximacao considerada. Podemos utiliza-la tambern para cordas retas e infinitas [2]. 

A configuracito geomdi.rica mais simples e aquela cons si metria cilindrica (Fig. 1). 

Para esta configuracao a expressao (5) torna-so [4]: 

	

.17"R 2 	 dr: cos 
(pi (7 	

i.)=1 
,i) pt (TO) = e;xp 	. 	,.A .) 	. I 	r 	  

270 h 	+2R2(1- cos a) 

- 1112  j z  do cos (} \ 117. + 21(2 ( 1 - cos u) 

I 	

.17rd 0 	 .1 

	

do cos II 	 1 ▪— 

	

10  vi 	+ 2R.2  (I - COS 	d  ( i  _ 	vlit;,+2.142( 1-cos .)) 

	

112 	da cos o 	( I 	"if-011,+2"1-c°s"))1 
4v 2  0  

( 6 ) 

onde 
// para i 	j 

ilij = 1 0 para i = 

Se assumirrnos de inicio que H 	 primeira integral claramente ira se anular e a segunda integral tera 

um termo dominante H: no entanto o integrando esti multiplicado por cos o c a integral, neste intervalo. sera 

zero. Finalmente. as dual integrais restantes, so poderao ,far tima contribuicao nao nula quando /3. no argument° 

(4) 
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da exponential, for tambein infinito. Logo. concluinios que a fungi° de correlacio a longas distincias sera 1. e 

portant° trivial, a mcnos que E3 seja infinito (temperatura zero). 

Figura 1. 

2.1.1 Limite de temperaturat zero 

0 resultado de (6) no limite de temperatura zero t; [41: 

2 ;r 2 	//;2j  2R7 	M r 2  R 2  
(11(. .1) id (7 .1)) = exp AiAj 

4:-  /i• • 	+ 4 h' 2  1) 	

• 	

2r2 

4R7  

Os termos con] i = j sio auto-interacoes das comas. sendo portant° nit° fisicos. RenornializamcK4 o operador: 

• R 

	

= pexp 	 
e2  171 -  

Para 171 — 0. Substituindo 	= H r, realizankla a santatOrio eni A. entio: 

21.2  H 2  + 2 R 7 	Al 1'7 2  !?2 	 1-1 22 	H – 	+ 4R2  
(/' ( T. 	( V ' 	= exP  { • 	  

	

11111 2  -1-ve 7 	 + 	+ 

o H R 

	

7r 7 	 A1 7 ;r 7  

	

Kp (7. t) p t 	t)) = exp 	8 7 e 	

• 

— 	
1 .1  + e.- 	— 	• I 

r. – 

Tomandoo limite de longas distancias (17 – 	.x.). (Nit) ,  = 1. Logo, o operador E1 cria estados de vicuo. 
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(p (7 .1.) pl 	• I)) 	exp 27!  	
:1/ 2 7 2  117..— 

171} e'- I 	 r2 
.1; 	y 

0 seu comportamento assintotico c (mit) ,  = 

Observe clue como R > H. ao fazermos o Hittite assintotico. atitoinaticamente estamos considerando cordas 

infinitas. Logo, apenas estas constituem estados legitimos. 

A densidade de energia da corda 
AI 2 7 

= ,fir _  H. ( 7 ) 

3 Conclusio 

A conclosio pole ser sumarizada do seguinte modo: 

o Temperatura zero 

No caso de cordas coin tamanho flint o. nit° existent estados quitnticos associados. Somente para cordas infinitas 

existent tais estados fisicos. A densidade de energia da corda circular infinita e identica 1 corda reta 

o Temperatura finita 

Para cordas finitas, o mesmo comportamento a temperatura zero e mantido. No entanto. para cordas infinitas, 

os estados quanticos de corda sao proporcionais poriarilo nao se constituent em estados fisicos genuinos. 

A inclusio de temperatura desestabiliza os estados givinticos de cordas fechadas e infinitas, clue estavam presentes 

a temperatura zero. Este d o principal resultado dote traballio. 
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Blindagem versus Confinamento na 
QCD em 2 DimensOes 

E. Abdalla7 H.. Mohaya.ee 
International Centre for Theoretical Physics. Trieste. Italia 

A. Zadra 
Institute de Fisica, US!', Silo Paulo. Brasil 

A propriedade de confinamento dos constituisites fundamentals da inateria ainda nao é total-

mente comprcendida. Trata-se de um dos problcmas fundamentals da fisica teorica. fla dais 

fcnomenos aparentemcnie relacionados. o confinamento c a blindagern das cargas, que uao 
devem scr confundidos. Para diferencia-los, foram i ► portantes us escudos da eletrodina ► ica 

quantica em duas dirnensoes (QED2). conhecida como modelo de Schwinger. Nosso objetivo. 

neste trabalho. e o de estender estes escudos para o caso nao-abeliano: para a cromodinamica 

quantica em duas climensoes (QCD2). Discutimos as propriedades de blindagem e confina-

mento de cargas (de car). usando uma versa() bosonizada da QCI)2. Nossos calculos se 

baseiam em solucoes estaticas das equacoes semi-classical tie campo. Levamos em consid-

eracao a possibilidade dos campos f.”Aarerri em diferentes representacoes. Nossa conclusao é 

de que prevalece a fase de blindagem. ao inves de confinamento, mesmo quando as particulas 

(quarks) possuem uma pequena massa. Para confirmar este resultado, eshocamos a con-

strucao dos operadores que correspondent aos quarks blindados. 

1 Introducio 

Nosso objetivo é o de descobrir em que condicoes (da massa. constante de acoplamento, representacao dos fermions) a 

QC D2 exibe confinamento ou esti na lase de Iliggs (blindagern). Forilos motivados pelos resultados de outros grupos, 

que dizem obter confinamento para fermions massivos na representack adjunt.a. Adotamos corno estrategia 

solucao serni-classica do modelo bosonizado da QCD e, ao contrario dos outros grupos. obtemos blindagem pan 

fermions rnassivos. 

Lembremo-nos da diferenca entre confinamento e blindageni. No fenUriteno de confinamento, os estados de quark 

estao permanenternenie ligados. Por outro 'ado, a blinclagern sc caracteriza pela impossibilidade de reconhccermos 

cargas (cores) individuals. Para distinguir estes fenomenos. podemos usar o teste do par quark-antiquark, calculando 

sua energia potencial de ligacho Va( CM funcito da distancia L entre eles. Na fase de confinamento, a energia 

varia lineramente corn a distancia, c o loop de Wilson depends da area .4: 

	

Iva — L 	(W(C)) 	c - drt  

Jii na fase de Higgs (blindagern), a energia tende assintoticamentc a urna constalitc. c o loop de Wilson obecece 4 

lei do perimetro P: 

VI? 	e 	(11 I  (C )) ••■• 	P  

Este teste pode eventualrnente falliar devido a criacao de par's. Urn criterio mais rigoroso consiste cm introduzir 

outros mimeros quanticos (sabores): quando existirern estados coin sabores observaveis ou distinguiveis. teremos 

blindagem; se os sabores nao forern distinguiveis, teremos confinamento. 

'Enclercco permanente: Institut° de Fisica-USP, C.P. 66318. S. Paulo. Brasil. 
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-2 Licoes da teoria abeliana 

0 limite abeliano da QCD bidimensional é o model° de Schwinger. delinido pela lagrangeana 

C = (i 	- 	) - .1i  1:,„ 

onde 

70(ou 	F„„ = A„ - avA„ = <„„F 

campo eletrico 

e — constante de acoplamento, dimensho de massa 

Na versa° bosonizada, este model° a descrit.o pela seguinte lagrangeana 

r = 2 
	2 
F2  + 1 (  „ E) - —p 	Icos(21-irE + 0)- 11 

uncle 

E campo mesonico, 0 — vicuo-teta 

2m 2  = .E111. = e'-!-P4 - 2 	condcnsado fermianico 
2/ 3 2  - 

Vesta teoria bosonizada, efeitos quanticos (corno geracao de massa e vicuo teta) se apresentam ji no nivel Ia-

grangeano. Por este motivo. o teste semi-classico do dipolo fornece respostas corretas. Colocando duas cargas-de-

prova externas. segundo a distribuicao de carps 

	

p(x) = -q [6 (x - 
1 
 - 	 Q( ) 

2 	\Fr az 

chegamos a seguinte equacao de movirnento (independents-do-tempo) para o campo E(x): 

= 
e 
-HE - Q) , 1 ‘/Trm .'sin(2 NFrE + 0) 
7r 

De sua solucao . obtem-se a energia potential do par tie cargas. 

11"  

de onde se faz o teste: 

SE V( L) L= cons! - ENT AO blindagem 

SE V( L. ) 1=2" ,:x: ENTAO confinamento 

Cont as hipoteses de campo E "fraco" , continuo c E' continuo. cliega-se aos seguintes resultados: 

(I) rn = 0. 0 = 0, q qualquer 	blindagem: 

.2 /7 

	

v (0=  q V . 	_ c -ti.N17) 
2e 

(ii) rn 	0. 0 = 0. q qualquer 	conlinamento: 

e - q - 

( L) = —(1 - e 	+ 	- . 	. 	= — + tsirrn- 
2 	7ro 2 	 7r 2;m 3  

(iii) rn # O. q = e: blindagem para 0 = 7r e confinamenio para 0 # 

V( L) --y. 
c4 

 —2.Tn3 (1 - r - " L ) + 
7e- _7

.,
(1 - in , )(0 - 7r)/.. 

Estas previsoes senticlassicas sao confirmadas pela construcao dos charnados eslados eroticos. Corn a introducao 

uma simetria interna .51.1(k) (sabor), define-se inn operador fermionico quc carrega sabor. 

= e 
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a partir do qual se constroem os mesons (..1,1) e barions (6): 

k 

= :Ff :F t/  

Para fermions sem massa (rn = 0), :Ff comma corn a hamiltoniana, e conclur-se yue os quarks bliudados sao 
observiveis. Se in 0 0 e 0 = F, canibtim se constroem operadores que comutani cony a liamiltoniana. Se rn # 0 e 

0 0 :Fj nit° gera auto-stados da liamiltoniaria. assint ternos conlinamento. 

3 Estudando a QCD 2  

O model() fermionico da QCD coin fermions nutria representaczio arbitraria e dado por 

1 
C = - -

1
1 

m
-F 	+ 	(100 + e.A I J )6 .1  - ' 	61 

I   

nude 	i = indite de cor; f = I. 	k = indite de sahor. 

Segundo Gross ci.al. (hcp-th/9511104). cujo critt:rio foi o ciilculo do ceficiente-de-area ((r) no loop de Wilson 

(W(C)) 	(ex.') iy f ..1„(1.r") 	e- " A  

se 	= 0. (Jai° a = 0 (blindagem) mesmo (wand° os fV2rinions esti -to na representacio adjunta (!). I'or outro 

ludo. se M 0. emit° eles obtern cr = 21-,M 0 (confinamento). onde = -(+e) = condensado fermionico. 

Na tentative de reproduzir estes resultados, consideramos o motlelo de QCD bosonizada. dado pela acio 

S = S•m 	 - 	+ ) [1E1 + 

uncle 

..J = acao de WZW 

= 	tr Wa+ C__) 2  + iAC_.3-1 (:) 4 131 

= rn 2  E 1  (Ey7 1 13 -1  - 	E ) 

of — setor sem massa dos fermions bosonizados 

.i3 C) 	setor rnassivo dos fermions hosonizadns 

— excitacoes corn metrica negativa 

Casimir: fabc fdbc 

A = ,fr(c, + k) 

m 2  = p,ll , p = parametro de renormalizacao 

Na construcio dest.e model°, fizetnos a inpotese de que o termo de massa M f 	possa ser tratado perturbativa- 

mente e bosonizado. 

Seguindo o tests do potencial quark-antiquark, coniecarnos introduzindo Ilm par de quarks-de-prova de cores qa 

-qa nos pontos .r = L/2 e x = -L/2. o que se faz pela transformacao 

I  1.1.14.1)u 	
27r 	

(b(x - 7 ) - 6(x+
L  

Ira acao acima. Ern seguida, resolvernos as equacoes de movimento. na aproximack linear (i.e. campus frucos) e 

calc.ulamos a energia potencial interquarks pela formula 

V(L) = 	+0y" (C ( L/2) - Cn- L/2)) 

Por fn. estudamos o que acontece (wand() L 	!tom. 

Como resultado. temos o seguinte potencial: 

l' (L) = (c"
+  k)2q  

2k 
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V47rA 2  - krn1)(1 	 - -1-dA .2 )( 1 — 	4 1 
. 	 . Lk . 	 111+ 	 - 	 A 	A "1 + 

onde 

E  - 	 ..— rc.+ki 

[

mi = 21- 0 2  + (1 + c)2kre) ± VP= + ( 1 + c)2krrfj.) 2  - 84A 2 rn 2  

de onde inferirnos que: 
- 1; (L) permanece finito quando L — oc. 	blindaycur 

- ha duas escalas de massa, m i. > m_. para os campos de gauge. 

- quando os fermions nao tern massa (rn = 0) entfio tn_ = 0 e in +  = Ifr/k.A. 

(c t . 	k) Nfr (12  
V(L)= 	+ . 	. (I — ,: - 2 V7AL ) 9 	 e   

- no limite c, — 0, reobtemos as resultados do model() de Schwinger corn 0 = U. 

4 Conclusao 

O estudo semi-classic° da QC; D2 bosonizada preve o renOrneno 	blindagem. a nao de confinamento, mesmo 

quando os reunions (numa representacao arbitraria) possuem uma pequena massa. llnra verificacao rigorosa exige 

a contrucao operadores fermionicas (c.stados eniticos) que carreguem outios minieros quanticos (sabores). Resta 

tambern calcularmos o valor critico da massa dos reunions para a qual ocorra'a transicao de rase blindagem —

confinamento. 
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The q-Virasoro Algebra Obtained by an Analogue 
of the Hamiltonian Reduction Procedure 

E. Batista: .1.F. Conies! LI. LautenschleguerI 
Institut() de Fisica Te6rica UN ESP 

September 1996 

In this work we introduce a new kind of q-Deformed Virasoro Algebra. This Algebra is 

obtained from the Quantum Current. Algebra // q (sIi(2)). by imposing constraints on the 

currents and performing the Dirac Bracket procedure. 

I Introduction 

The Hamiltonian Reduction of WZNW models is well established in the literature [7]. WZNW models are 7 

dimensional quantum field theories in which the fields take values on a Group. Manifold and the action consists of a 

chiral term and another term of topological origin. The conserved currents of the model satisfy a Kac-Mood• Algebra 

with respect to their Poisson Brackets. The Hamiltonian Reduction proccess consists in imposing constraints on 

the currents of the model and reduce, by means of these constraints. the number of fields in the action. Choosing 

appropriated constraints, the resulting models are the so called Conformal Toda Models. The Dirac. Brackets of the 

remaining currents close an extended Conformal Algebra (W ri ). For instance, if the Group Manifold is Sli(2), this 

proccess gives us the Lionville Model and the Conformal Algebra of the remaining currents is the Virasoro Algebra. 

Our approach consists in taking only Current Algebras. discarding the field theoretic substract. given in terms 

of Ol'E relations. We then use an specific prescription to define Poisson Brackets associated to OPEs. In order to 

ensure that our construction is consistent.. we apply this method to the classical case, where the results are well 

known. Finally we take the Quantum Current Algebra 119 (0i(2)) and construct. the Dirac Brackets after imposing 

the constraints on the currents. Verifying carefully in each step the classical (q — 1) limit. we obtain a new kind of 

t1-Deformed Virasoro Algebra. 

II From OPEs to Poisson Brackets 

In the context of Conformal Field Theories it is usual to deal with OPE relations. In 2-dimensional field theories the 

time ordering is replaced by radial ordering, and contractions among fields usually appear as poles in the complex 

plane. Let _4(z) and B(:) be two fields on a 2-dimensional space. the OPE relation among A and B read 

[A B]„ (  „,) 
.4( :) B( w)   t- regular terms, 	 ( 

( 	w) " 
0<n<h(A.L1) 

: — 

where h(A, 13) is the highest order pole appearing in the Ol'E, which. obviously. depends on A and B. it is possible 

to define Poisson Brackets associated no OPE relations ¶3]. the Poisson Brackets related to (I) is given by the 

expression 

f_4(:), B(w)}1.,B = 	(-1 	1  )n-  (mori(n)t.: - ' 6(: — w) 
(n 	I)! 

making the correspondence (AB], (w) = {.413}„(w). 

(2) 

'Supported by FAPESP 
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Sonic remarks are needed about. these Poisson Brackets: First, the time cot5rdiiiiite in this case is'the variable 

Moreover, the Poisson Brackets ignore double contractions, which appear in OPEs of chains of fields, as stated 

by Wick Theorem, then we may consider these PoisSon Brackets as the -classical" counterpart of the OPE. • 

III The Classical Case 

Let us start with the Current Algebra sii(2). with generators {I} 

H(:) = E 

. ra=n;•. 

These currents satisfy the following OPE relations (A. = 1): 

	

H(:)H(w) = 	 + regular terms 
(: - w) 2  

	

H(.7)EI ( w) = 	
Nt2E}(w)  

+ regular terms 
- w 

	

E± (:)E(Ur) = 	
,,i2//(111  

 + regular terms . 
: - 	(: - w)- 

The associated Poisson Brackets (2) of the OPE relations (•) are 

(H(:).11(w)} pn = -6 1 (: - w) , 

{H(:). Ei(w)} pn = ±‘fi (OM: - w) 

E= 	E*(w))pB 	±N/DI(w)6(: - w) - O'(: w) 

If we impose the following constraints in currents (3). 

X i(z) 	= 	H(:) 

X2(:) 	= 	E + (:) - I • 

	

which are of second class. the Dirac Matrix. 	w) = ixi(z), xj( it!)} lin. read 

- w) 
-1 (:• w) = 

 
— v Lb(: - w) 

and the inverse is 

.1 -1 (.7.w) = 71 6(z - w) 

The Dirac Bracket of the remaining current E -  (:), defined by 

0 

— w) 
0 	j 

w) 

- 	- w) 

(E- (:), 	(w)}Dn = (E -  (:). E (w))pB + 

- I dw'rhir {E -  (:), xi( tv i )}PBATi l (w1, w"  )(Xi( w"), 	(w)} 

results in 

11.-  (w)1DB = i-)„,E- (w)6(: - w) - 2E -  (w)6 1 (z w) + 
1 
-11 11 (.: 	. 	 (9) 
2 

This algebra is a Virasoro Algebra with central charge c = -ti. obtained by the procedure decribed in previous 

section from the OPE (T(:) = 	(z)) 

	

0..T(w) 	2T(w) 

	

— it 	 — HO' 	(: ••••• 

(10) T(.-.- )T(tv) = 
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IV The q-Deformed Case 

The Quantum Current Algebra blq (iii(2)) is generated by currents 
ro 

	

E± (z) 	E En± 	, 
n=-co 

	

41 (z) 	E 	= q V77114"exp \/(q -.q - I  ) E 11,,z - n 

	

ri>0 	 n>0 

	

4,(z)  = E 	= q - '4711° exp - ‘1-21ki - (/' 	HT' .1"-n  
ri<0 

The only OPE relations among these currents having singular terms are (k = 1) 

- wq 3 )(.: - wq -3 ) 

+ r. t. 

+ r.t. 

Dirac Matrix for (13) read 

w) ) 

(12)  

(13)  

(14)  

41 (.)(D(w) (1)(w)tlf(z) 
- wq)(.7 - wq -1 ) 	

. 

41(z)E±(w) 	= 	2 C :  E*(1.041(z) q± : 	 : , 
((:- wq ± g

) 

 ) 

(: — 	1)  E± (z)4'(w) 	 CD(w)E ± ( = 	q±2 : 	 :) 	: 	, 
— w 	i) 

4)( uu/ -  E+(: )E - (w) 
rif(wq;') 

w(q - 

E-  (z)E+(w) 

	

wq 

	
wq - 

	

(PI( wqk ) 	kii(tvq - [  

w(q - q -1 ) 

The analogues of classical constraints (6) are given by 

Z.  — tin" 	- wq -1  

4:0 

xl(:) 	- 	1 . 

These constraints have as classical limit (q — 1) the set of constraints (6). The 

- 41 D,g ,06(z- - to) 	%(1 —  45(zq —  4 — 
zi g (z,w) 

( 
-%6(zq - 	- w) 	 0 

where 

and 

f(.7q) - f(.:q -1 ) 

:(q - 

crt—q — r 

The inverse of (14) is 

	

0 	 -46(zqi w) 
w) = 	‘r, 

	

si 	3 	 9  3 " 	 (15) 
rifq 7 ": 11 3 	111) r-21 D0:4 3 ) 6(:(13 	w) 

In the classical limit the matrices (14) and (15) tend to (7) and (8) respectively. 
Finally, let us calculate the Dirac Bracket of the current E- (:), which gives us a quantum version of the Virasoro 

Algebra (9). The resulting algebra has the form 

{E -  (c), E.- 00)pp = q -6  (Do „ 1 -3 ) E-  (wq -. 3 ))6(.7 - wq -4 ) + 

(E (w) + q -6  E- (wq -2 )) 	- wq -3 ) 

[2) 	) 
	 • 	(16) 

The classical limit of (16) is the Virasoro Algebra (9). 
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V Conclusions and Outlook 

We have found a new method to obtain a q-Deformed Virasoro Algebra by a quantum analogue of the Hamiltonian 

Reduction proccess applied to the Quantum Current Algebra /./q (s—ti(2)). We used an especific prescription to 

construct Poisson Brackets from OPE relations and then performed the Dirac Bracket procedure after imposing 

constraints on currents. 

Now we are performing the same method in the case of the Quantum Current. Algebra // 9 (iii(3)), in order to 

construct a new q-Deformed W3 Algebra. In both cases. there are no field theoretic substract. that. is. there are 

still no QFT which obey a q-deformed symmetry, described by th ese algebras. It is necessary to search these new 

QFT and study their properties. 
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Remark on Shape Invariant Potential 
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For more than a decade, Supersymmetry has provided new information about ordinary 

quantum mechanical problems. and Supersymmetric Quantum Mechanics (SQM) has be-

come a field of research by itself. It. has been shown that the symmetry between two different 

systems that share the same energy spectra' can be interpreted in terms of supersymmetry. 

From the knowledge of the ground state of a given potential it is possible to find another 

potential with the same energy spectrum, except for the ground state. I 11 fact, from the use 

of supersymmetric partner Hamiltonians and their degeneracy spectra it has become possi-

ble to determine a ladder of llaniiltonians and their spectra. only through the ground states 

of the ladder. Concerning the partner Harniltonians with potentials 1 1+  and V_ that are 

similar in shape but differ in the parameters. Gedenshtein introduced in 1983 the concept 

of shape invariance. Here we propose an extension of this concept. It is formulated in terms 

of the functional form of the whole super-family and not only between any two members of 

the ladder. We give two examples where all the members of the super-family can be written 

in a general functional form and conclude that. Getlenshtein's condition of shape invariance 

is sufficient but not necessary in order to obtain the super-family. 

Gedenshtein [1] defined the "shape invariant" potentials by the relationship 

V+(z; ao) 	V_  (x;  a l ) = W 2 (x,a 0 )+ 1.11 1x, a0 ) - W 2(x:ai) + 
I.  '(x; al) = Mai) 	 (I) 

where W(x: a) is the superpotential, a o  and a l  stand for parameters of the supersymmetric partner potentials V + 

 and V_, R(a) is a constant. The supersymmetric partners are related with the supersymmetric Hamiltonian in an 

usual way [2]. 1/11. = W 2  - W' and 1 ,1_ = W 2  + W'. 

The relationship beetween shape invariance and solvable potentials is discussed by several authors (see, for 

instance, [3] and [4]). Other mathematical aspects of shape invariant. potentials arc also present in the literature, 

for example in the supersymmetric WKB approximation, [5], Berry phase, [6], and in the path-integral formulation, 

[7]. 

There is a general conclusion about these kind of potentials which is that the'concept of shape invariance is a 

sufficient but not a necessary condition for the potential to become exactly solvable, [4]. 

In a recent work, [8], the Hultha potential was studied from the Supersymmetric Quantum Mechanics formalism. 

This potential has an interesting property. that is when the angular momentum is zero, I = 0. it is not shape invariant 

in the sense expressed in ref.[1]. However. it is still possible to construct a general form of the potentials in the 

super-family of Hamiltonians: 

d 	 n(r1 - 1)6 2 e -26 r 	[n(1 - n)6 + 2]6e -45 r 	I 	n 	1 ., 
V„ ( r ) - 4" 3  = 141,2i  ( r ) - — W„ ( r ) =   	 + ( 	6 + - )-. 	(2) 

dr 	 2(1 - e-sr ) 2 	2(1 _ c-sr) 	2 	2 	n 

where n = 1, 2,3... labels the n-th member of the super-family whose ground-state is E,(3" ) , (n = 1 and 2 correspond 

to the two first members V4. and V_ . respectively, except by addictive constants in V_) and b is a fixed parameter. 

For n = I the potential in (2) leads us to the usual Ilulthen potential VII 

	

= 1/11(r) - F (1)  - 	6 c -6r 	I 1 -6 

2  

	

-0 - 	 2()' 
(3) 
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and from (2) it is easy to note that the condition (1) is not satisfied, i.e.. VI  is not shape invariant but the whole 

super-family has the same functional form given by equation (2). 

Taking the previous example, it is possible to suggest an extension of the concept of shape invariance. This 

invariance would be associated with the functional form of the whole super-family potentials and not only with the 

first. two members (V+  and V_), since all the members of super family can be written in a general functional form 

in terms of one or more parameters (as the natural number n in flulthen potential case) . In other words, it is 

possible to construct a general expression for all potentials of the super-family. 

The simple example of the free particle in a box can be used to make clear the above idea. The Hamiltonian H 
in this case is 

= 	E,(3 11  =— (12 

	

(Tr; — I ; —
a

< r < 	 (4) 
2 	2 

where the. constant term (-1) sets the eigenvalue of the ground state of II+  to zero. [9]. In this case the general 

form for the superpotential is 

1.11,(x) = vi tan(x) 
	

(5) 

where n is a natural number different from zero. (n = 1 : 2,3...). The super-family is such that d i)  = n 2  and the 

n-th member of the super-family potential is 

t; ) = ri(ri — I) 
(6) cos-(x) 

	

Thus, it is not shape invariant in the Gedenshtein's sense. [1]. since V+  = 	and V_ = , 05 2iz  — 1, whereas it 

is shape invariant in the extended sense. 

in our definition the potentials arc shape invariant when it is possible to construct a super-family whose members 

have the same functional form. On the other hand, in the usual definition introduced by Gedenslitein. once relation 

(1) is satisfied it is possible to find all the members of the super-family. However, having built a super-family it does 

not necessarily mean that relation (1) is satisfied, as shown in the two examples above of the Hulthen potential and 

the particle in a box. In other words, Gedenshtein's condition of shape invariance is sufficient but not a necessary 

condition to obtain the super-family. 

The interesting question to be studied now is if the extended shape invariance is a necessary condition to the 

potential to be exactly solvable. Other questions concerning shape invariance. [5], Oh [7], can also be analysed 

using this extended concept. 
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The Lagrangian BRST formalism of Batalin and Vilkovisky (LW) [1, 2. 3] is presently considered the most. 

powerful procedure for the quantisation of gauge theories. The application of this formalism to anomalous gauge 

theories was first. discussed by 'Roost, van Nieuwenhuizen and Van Proeyen [4]. that succeeded in using the Pauli 

Villars regularization in order to give a regularized meaning to the master equation at. 011C loop order. 

The Chiral Schwinger Model (CSM) has been an important device to understand the quantisation of anomalous 

gauge theories. 

The superspace formulation has the nice property of been. by construction, explicitly BRST invariant. The 

master equation is translated into the existence of a superlield structure associated to the quantum action in such a 

way that realizing the Wess Ziunino mechanism is just equivalent. to building up such a superlield without anomaly. 

The fermionic nature and the nillpotency of the HRST transformations makes it possible to build up a superspace 

representation where they are realized as translations in a Grassman variable[7]. One adds to the original space-time 

variables one Grassmanian degree of freedom 0 and associate to each original field 6(z) a supertield: 

(1)(x.0) = 0(x)+ 04(r) 	 (I) 

in such a way that: 

n  

(S toi.57• 4) ( 1% 0 ) = of/0O 	
( 
	

Li) 	 (2) 

• When one tries to apply this superspace realization to the case of the field midfield (FA) quantisation one faces 

a problem. The quantum master equation[I] 

1 
7,-( W. IV) = ih4.11.1" 

involves the operator: 

6 r 

bO° 66; 

that represents the possibly non trivial behavior of the pal h integral nieasure.One then needs a superspace version for 

this operator and thus one should introduce functional derivatives with respect to superfields. However, superfields 

of the form (1) will in general be constrained. as the BRST transfix- For an unconstrained superlield: 

cl(x. 0) = 	0f3(r) 
	

( 5 ) 

(3)  

(4)  

However. as discussed in [5], functional differentiation and integration for constrained superfields is not in general 

well defined. 
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The collective field approach to BV consists (in a very summarized way) in starting with a gauge field theory 

characterized by a classical action so[¢'], introducing ghosts, antighosts and auxiliary fields associated to the original 

gauge invariances of Sri in the.usual way, getting an enlarged field set. represented as OA . These fields realize a 

BRST algebra: 

= R A  [6] 	 (6) 

Then we introduce a new set of fields called collective fields thA and replace everywhere d by o A —o A . This way 

we double the field content of the theory and at the same time associate to each field a new trivial shift symmetry. 

In order to.gauge fix these new symmetries we introduce new ghosts, antighosts and auxiliary fields, represented 

respectively as: irA, (VA and BA. We have a large freedom in choosing the BRST transformations for this enlarged 

set of fields. Following [81 we can define the enlarged 8I1ST algebra as 

6 ,35.4 = r A ; 6 4;A = rA RA 	ii3] ; 6 rA = 0 ;  w A = BA ; 6 BA = 0 	
( 7 ) 

and the total action as 

S = Soto' — 	6(6 -  A  (P A ) + 60[01 
	

(8) 

where tgibAl is a fermionic functional representing the gauge fixing of the original symmetries (6). The BV gauge 

fixed classical action is obtained if one functionally integrates the vacuum functional associated with S over rA, qA  
and BA. 

The interesting point is that in this collective field approach all the fields of the sets OA and o' A  have BRST 

transformations that are independent quantities. unrelated to the associated field. as follows from (7). Therefore, 

if we introduce superfields of the form (1), at least for this two sets, they will be unconstrained. The component 

decomposition for the functional derivatives then makes it easy to see that the operator: 

6,. 	61 
AE ithrid01 de' 	 

64)A(.r,O) 641•A(z,0 1 ) 

with 

0(z,0) = oA (z)+07r A (z) 
3A (z,0)  = 0;A (.0+ oor A (x)  _ 

(
i'Aio 4;:61) 

"(z.o) = 6"(:)-F finA(x) 

(10) 

represents. the operator 	in superspace. 

In the superspace formulation the quantum action, for non anomalous gauge theories, will have the component 

expansion 

11 = iv+Bifu (11) 

and the master equation will read: 

• 
ih 	14; 

corresponding, order by order in h, (we are considering quantum corrections only up to One loop order): 

. 	 0 
= 	NM' 	s  

The classical action for the Chiral Schwinger Model (CSNI) is: 

(12) 

( 9 ) 
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1 	1 - so  = 	d2 a:1- F„, F"` + -L10(1 - 75)tbi (14) 

where D,1  = a, + icA„. The BRST transformations of the fields are: 

,5.4 0  = am c; 	= ithc; Ctb = — itTc:bc = 0 	 (15) 

where c is the ghost field associated to the gauge invariance of SD. 

We enlarge, as explained in the previous section. the field content of the theory, introducing the collective fields 

A,, 	0, .6 and build up the associated superlields. 

The total superfield action will be: 

= „So  + S + S 	 (16) 

with the extended superspace version of the classical action: 

= Id 'x( 	 - 	Ply [d. - 

+ .70P - * up ta„ — 	1(1 — -:5)(tY — 4► ) 
	

(17) 

the gauge fixing of the shift symmetry: 

= - N8  I dz142 1  + tir + 	7/1 

	
(18) 

and the gauge fixing of the original symmetry of S o : 

	

= t.y0 	d2 x A id„, 1,11. tY. yi ] 	 (19) 

with the collective field version of the classical action: 

We must now build up a superspace Pauli Villars (PV) action, that will regularize the action of the operator 

	

on the action. Following the prescriptions of 151 we associate with 	and 7 the PV fields A. and t and the 

corresponding collective tilde fields and introduce the action: 

(20) 

that represents a copy of the fermionic part. of action (17) hut. with a mass term that, after calculating the regularized 

6S. allows the removal of the PV fields by taking the limit M 

We define the BRST transformations of the PV fields to he similar to the ones from the corresponding fields. 

The action of the operator A on the regularized total action. if we include the PV fields also in the operator 

(9), is then: 

A(S + S pv = 0 	 (21) 

The regularized form of AS when we use the PV regularization shows up as a violation of the zero order master 

equation associated to the presence of the mass term. In the present superspace formulation. this absence of BRST 

invariance of the total (regularized) classical action ST = S +S pt' is translated into the presence of a 0 component 
in the corresponding superfield: 

ST = S + Sm,  = ST ± 06ST 	 (2'2) 
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The general form of 45S• is 

45.97• = 	— 711CY — 	— c) 
	

(23) 

Integration over the fields 7r ( t )A  , 	I A  and 	removes the extended collective field structure, recovering the 

usual result as in [4], that corresponds in (23) just to the absence of the collective tilde fields. The next step 

would be to integrate over the PV fields. We will not repeat this procedure here as it is exactly the same as in the 

component case. that. is widely discussed in the literature[3. 4. 9]. The result. is: 

(AS)„,,. = 
4a
I d2X(C — Z)(( — (1)i), ; (.-1 /‘ — 	— e''v ap H„ — AO) 	(24) 

Now going back to the one loop order master equation (13) we have to look for a superfield M 1  whose 8 

component is equal to i(AS) reg. . 
That realize in superspace the collective field version of the Wess Zumino field transformations. We include a 

gauge fixing term for the WZ field in the action defining: 

=S-- fez itt 	 (25) 
()0 

From the transformation of i2 one easily realizes that AS = AS'. Now we can write a superfield that satisfies 

OM I mo = 

Tri 	(12,!( ( " 1 1)  ou (si - 

- ()„(c).- i1)((u - 1)(d'` - 	 - A ))) 

in components this superfield reads: .1./ 1  = 	+ 0(iAS)r cg  with: 

I f ., ((a  — l) 
Al i 	 — 	— 

— 0„(w — .Z.)((u — )(A" — A") + ("'(..1 v  — 	))) 

If we remove the collective fields, this corresponds just to the Wess Zumino term found in [6] in the non superspace 

approach. 

Therefore. the superfield W = 	satisfies the superspace version of the master equation (12), representing 

the superfield action, that includes, besides the quantum action. also the anomalous contribution from the path 

integral measure AS. 

We have shown to represent the quantum action of the Chiral Schwinger model in a BRST superspace. An 

interesting point of this formulation is that both the action and the AS terns (that comes from the non trivial 

behaviour of the path integral measure) show up in the same superfield. The master equation corresponds thus just 

to a restriction on the structure of this obj,:ct. We have also shown that the Wess Zurnino mechanism can also be 

realised in this formulation, by adding a superfield that. represents the gauge group elements. 

This work was partially supported by (:NPq. FIN EP, FIJI B and CAPES (Brazilian Research Agencies). 
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• 

• We compute the Casimir pressure between an unusual pair of parallel plates, namely, a 

	

. perfectely conducting plate (e 	oo) and an infinitely permeable one (p 	oo) at finite 
temperature with the generalized (-function method. 

Since Casimir's paper[3]on the attraction between two parallel (perfectly) conducting plates due to the vacuum 

fluctuations of the electromagnetic field, a considerable amount of work has been done on this subject, varying from 

the application of alternative techniques to the investigation of new geometries and theories. Casimir's approach to 

this problem consists basically in computing the interaction energy between the plates as the (regularized) difference 

between the zero point energies with and without the boundaries conditions dictated by the physical situation (for 

instance, perfectly conductor character of the plates). In fact, the great novelty of Casimir's paper of 1948 was 

not the fact that two neutral objects attracted each others, but the simplicity of the method of calculating this 
attraction in the context of quantum fled theory. 

However, since Casimir's work, many other techniques were developed which may be more appropriate depending 

on the physical situation under study. In particular, methods of computing effective actions are in general very 

powerful for our *poses. Weghall be concerned here with one of these methods, namely, the so-called generalized 

(-function method. In this paper we shall apply it to the unusual case of a pair of parallel plates, where one of 
them is perfectly conducting (c — co), while the other is infinitely permeable (p oo) at finite temperature. This 

problem, at zero temperature, was solved by T. Boyer[4] two decades ago in the context of random electrodynamics 

( a kind of classical eletrodynamics which includes classical eletromagnetic zero-point radiation). In order to apply 
the generalized (-function metliod,.let us introduce the partition function Z for.bosons 

13 

	

Z.= N 	[DI;b] exp (I dr / daze) , 	 ( 1 ) 
/periodic 	 o 

where N is a constant which has no influence on the final result and the term periodic means that the functional 
integral is to be performed on fields satisfying the condition: 

0 ( r, 0) = 0(z,13 ). 

	 (2) 

The free energy F is related to the partition function Z(0) through the relation F = 	I InZ(0), where 
= T-1 . Beside the condition (2) we can consider boundary conditions which are determined by the geometry and 

nature of the physical fields. Choosing the Cartesian axes such that the axis OZ is perpendicular to both plates 
with the perfectly conducting plate at z = 0 and the infinitely permeable one at z = d (see figure), the boundary 
conditions are the following: the tangential components of the eletric field must vanish at z=0, while the tangential 

components of the magnetic field must vanish at z=d. However, since we will be dealing with standing wave modes 

between the plates, these conditions are equivalent to imposing that tangential components of the eletric field 
vanishes at z = 0 (as before) and its z-derivative vanishes at r = d. Hence, we can compute the partition function 

e- mad filadelfeif.ufrj .hr  
e-rmailmorteiLufrj.br 
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as if the electromagnetic field were a massles scalar field. All we have to do is insert by hand an extra factor of 2 

to take into account for the two possible polarizations of the electromagnetic field modes (this can be done only for 

the plane geometry of this problem). Therefore, the boundary conditions for this scalar field are: ' 

o) = 0, 
8cs
—(7 x, 	= d) = 0. 	 (3) Ox • 

Thus we can write the In Z as: 

1 
1nZ = (-0 In det(-0E1Fd ), 	 (4) 

where the symbol F Id means a set of functions which satisfy the conditions (2)and (3). The generalized (-function 

method consists basically in the following three steps: (i)first, we compute the eingenvalues of -OE  and write 

((c - OE) = Tr(-0 E ) -1 ;(ii) second, we make an analytical extension of ((a; -OE) to a meromorphic function on 

the whole complex s-plane; (iii) finally, we compute det(- ❑5 I Fd) = exp{-k(s = 0; -0E)}. Combining the 

previous equations, we obtain: 

F = 	
= 0, -OE) 

8 

The eigenvalues of -OE whose eigenfunctions 45(r, x) satisfy(2)and3) are 

2 2 4771 n? 	 1) r a2 +K r + Ky+(n1+ -2 	—d2 	, K2 E 5RnI , n2 = 0, 1, 2, ...} 	 (6) 

The (-function then reads 

co 	co 	 r 2 	21.2 n 3 

((s, -0T)=- L 2  E E f dK
(2 02 

dh y  [ , 2  
+ K + (2n i  + 1) 2  v2 4 ,•77-2 

n2=-co n 1 =0 JJJ 

where L 2  is the area of the plates. Now, rearanging the terms in summations, we can write this last equation as 

00 1 
 -i- 

-J 

CI  C(Si — E) = 	
•')  

L- 
27r 
— E 	dK,K, Ki + ri?— 

• n 1 =1.3.5... o 	 4d2  
co oo 	 co i  ir 

Ki + 	E E 2-17r o 	
clKi [K 2  n2I72 472n'- 	 (8) -1  2 

1
+ 

4d2 
 + 

IP n2=1 n 1 =0 

where K1 = K z.2  + By and the angular integration was already made. Using the following integral representation 

for the Euler Beta function: 

.1) 
co 

dx xP -1 (x =  + t)° -i  = IB ( II 1 -v- 11) 
2 	2' 	2 

r 
B(x, y) =(x)r(y)  

r(z+ y)  

which is valid for R(v + 1.;-) < 1 and ?R p > 0, we get 

((s ,  -CIE) = TEL- 
r(8 - 1)  {( ) 2-2a 	E  

r(s) 	1/2(1) 	 n 2-2.8 
+ 

47r 	C 1 

00 [ rz 	471 211 
21r 2-2* E E 

4d2 	132  n.31 =1 n 1 =1,3,5,... 

(5 ) 

( 7 ) 

n1=1,3,5... 

In order to connect the summation on the rhs of the above equation to the (R-function, we use the following trick: 
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E 	= ( 1 - 22-2, )(R  (2s - 2). 	 (12) 

• 
Furthermore, taking into account the Epstein function which, for any positive N and large enough Rz, is defined 
by 

I. 
Ersii 2 (z; al', a2, aN) E E 	E 	  

n2=I nN=1 
(ai n? + a2n3 + + aN n 2  + M 2 ) 2  

where a1,a2,...,aN > 0 and using one more trick: 

00 	 2 	 co 	 2 1-1 	co 2 	 r ni 	4n 2 1 	 r(2n1) 2 	4rtil 
E E [4-72 + 	E ri-7/2 + fY2 j - E 	+ -j 4p n2=I ni=1,3,5 	 n2n1=1 	 n2 ,n1=1 

we can write 

((s,-07.) = L2 
47 r( RS)  — l)  x2- 2, [

( 

Ti

I )2-2/ 
0 _ 22-2s) 

(R( 2 s — 2)+ 

+ 2E, (s — i: 471  ; iT,,4  ) — 2E, (s — 1 ; 71  ; 74  )1 . 	 (15) 

The Epstein function has an analytical continuation to a meromorphic function in the complex plane. For N = 2 
and M 2  = 0 the analytical continuation is given by [2]: 

I/2 

f(zr(z) 

-  1/2)
ar" /"(N(2.7 - 1)-F E2(z;cii,a2) = 	(;R(2.-.1+ 	1. ) 

2 	 ( a2  
co 

2 	- 	 /1/2(:+1/2) 1 	n z—I/2 ain2•I 2(1/2-2) x a., 	 L 	( 	I) - 
ni,n2=1 

27rn2 
X / -%.112—s (—

V2a 	
n 

Making the proper substitutions for z , a l  and a2 in the Epstein function and after some simple algebra, we obtain 

(R( 8 , —DT) 	

L2 72-21 	 ( 	3) 	
I 	 4-, 

r(s) 	2 

	

a t S — 	cR(2S — 3) [( 4p ) 	- 	 + 

2 	 03 
n2d 

4 (--) 	 E 
ni 

ri I 0%3 =1 

[

1
2

\ - i + 4 	pan i n2) 	( 207rnin2)
2d

1} 
) 	 2d j  

And finally, using the fact that the derivative of function G(s)/r(s) at s = 0 is simply given by G(0) we obtain 

60, —Or) 
-(i)r3L 2  

  

720d3  

'2 N/ 	 • d 	• L 	E 
, n1 

(n 2 ..) 	[ 	3 	(firnin2 ) 
(2) 3  K s 	

h. (2,87nin.2)1  
Nig 	 2d 	 2d 

(18) 

03 03 	os 

(13)  

(14) 

(16)  

x (17)  

. From equations (5) and (18) we obtain the free energy: 
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— 

 

- 	T, 2  720d3  + 1)6 	E (-) -4  1(2)-4R1 	
wn, 

—72c
n
i ) 

hi.
(2,872ndi ri 2  ) 1 

• 	 (19) 
n1 ril,n2=1 

The first term in (19) represents the Casimir energy at T = 0, the second one the correction due to thermal effects. 

From this result we can derive easily the Casimir pressure. Notice that for this particular boundary conditions (19) 

will yield a repulsive Casimir pressure. 

Acknowledgements. The authors are indebt to C.Farina for enlightning discussions. 
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In this work we analyze a spherical model for the nonlinear collapse in the weak field limit 
•a the Higher Order Gravity Theory (HOOT). In this limit, the Newtonian gravitational 
potential is corrected by an Yukawa-like term. In this approach we obtain some constraints 
to the initial size of the spherical region. In the case the coupling parameter a is positive, , 
we obtain a critical radius r,, maan  such that only mass shell with r i  < r,,mp would collapse. 

On the other hand, for negative a only mass shell with r i  > r,,,„in  would collapse. 

1 Introduction 

Structure formations are one of the most amazing fields of modern cosmology. We know that in the standard 

Friedmann models, the Universe is highly homogeneous and isotropic as seen by Cosmic Microwave Background 

[1]. However, we see too, several lumpy of matter in the Universe, all highly non-homogeneous. This apparently 

.contradictory situation is explained assuming that at some instant of Universe evolution, some kind of seed was 

responsible for triggering structure formations. Unhappily, although great success of existing scenarios - quantum 

fluctuations in the early Universe, cold and dark matter, cosmic strings (2] - there are not at moment any conclusive 

results excluding one or other scenarios. 

On the other hand, although great- success of General Relativity and Friedmann models, several other theories 

and models was proposed to explain apparently anomalous results due to utilization of standard gravity theory. One 

of these theories - Higher Order Gravity Theory (HOOT) - is obtained with introduction of and R 2  terms 

in the standard Einstein-Hilbert 'action [3]. The main interest of HOGT is to obtain a renormalizable quantum 

gravity theory (4], in such-a way that the only appreciable consequences occurs at very small scale. Moreover, one 

interesting feature of HOGT is that at weak field limit, the resulting gravitational potential is a Newtonian added 

with a Yukawa-like term [3]. The possible existence of such term in laboratory scale was tested, resulting that its 

influence if exist is very small (5]. Nevertheless, this not exclude the possibility of its influence in a more large scale. 

Some observational consequences of this extra term in the gravitational potential at large scale was analyzed by 

several authors [6]. 

In this work, we are interested in a possible role of HOGT in the formation of large scale structure. For this 

purpose, we analyze how an initially spherical regions evolve in the framework of HOGT. The background is assumed 

Co be flat, and expanding like Friedmann model. This can be accomplished assuming that the range of Yukawa 

term is nearly the same as the size of spherical region. For the sake of simplicity, we assume that spherical region 

is always. H -1 . In this approach, we avoid any trouble with gauge fixing problem. Thus we can assume•that 

these spherical region evolve under action of a gravitational potential resulting of weak field limit of HOOT. An 

advantage of this scenario is that we obtain an analytical result of its evolution [7]. 



rn, 	I + An, — = 	 
. ri 	I + Ai — 	1  (8) 
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2 Non-linear collapse in Spherical Model. 

In the weak field limit of HOOT, the gravitational potential is given by [31 

GM. t  
OH= - 	+ oe - P1 	 ( 1 ) 

where M. = 4ipr3/3 is the matter content inside spherical region of radius r. Then the energy of a particle located 

at distance r is given by 

1(dr 2  GM. - 
r2  

where M. E p(4wr3 /3)(1 + cre - Pr). 

The initial energy of a given mass shell with radius r i  at instant ti is 

E(ri) = kin; [f27 1  - (1 + Aid 

where R.; E Hir?/2 is its initial kinetic energy, Ai = 1 + ae - u' and o, = 	with Hi the standard Hubble 
c g 

constant and pe (ti) = 3H; /(87G) is the critical density. 

When E < 0 the mass shell would collapse, which in our case result in a constraint 

= ae - .Pr 

Now, if a < 0 and Qi > 1, we obtain a critical radius 

ri .m i n  = log 

> - I. (4)  

(5)  
— I 

such that only mass shell with ri > ri, nn„ would collapse. In the figure 1 we plot ri,„n„ x Qi with three distinct values 

for a, using p = 1. In this case, we have first a formations of large structures, which would suffer fragmentation to 

form small objects. These situations are similar to the scenarios using hot dark matter [8). However, because the 

range of Yukawa term is given by µ-', note that if Q 1, there would be no significant differences with Newtonian 

case. 

In the case a > 0 and Qi > I the mass shell always collapse. However, if a > 0 and 	< 1 we obtain a critical 

radius 
ail; 	1Iu 

ri,max = 	 (6)  

such that only mass shell with r i  < ron„,, would collapse. Note that 	and a are constrained by 12; > 1/(1 + a) 

and assuming 0 < a < I In we obtain that Qi > 0.5. In the figure 2 we plot ri , m  x Qi for three distinct a values, 

using p = 1. When 121— 1/(1 + a), we have ri
, max — 0. 

The equation 6 show that this case (a > 0 and 	< 1) is more favorable to formations of small objects. 

Therefore in this scenario, the hierarchy goes from small to large objects, like models using cold dark matter 191. 

Finally, if a < 0 and Q i  < 1 there are not collapse at all. 

The spherical region with E < 0 would reach a maximum radius rn„, and after this instant would begin its 

contraction phase. At this point the spherical system would be detached from Universe expansion, and its evolution 

would be determined mainly by local mass concentration. We know that at maximum radius the velocity of 

spherical shell would vanish, in such a way that all energy would be stored as gravitational potential. Then, it is 

straightforward to show that at this point the energy is given by 

E(rrn) = -
GM. 

 [I + Am] = —
GAIG 

[1 + 	
ri 	

(7) 	• r„, 	 r; 	 r,, 

with An, = ae- Pr.•. Now from energy conservation. we know that E(r.i) = E(r„,), then using equation 3 and 7, we 

obtain 

• 

(2)  

(3)  
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We solved numerically the equation 8 using a = 2/3 - which is standard value obtained in HOGT [3] - with 

= 0.90 and 0.75, with results displayed in the figure 3. For small T.; we obtain that ratio r,./ri oc 1 -10(1 +4 -1 
 with smooth variation near origin of ri, whereas for ri 1 this ratio grow exponentially. The data in ri-axis is 

constrained to ri < r; ma,,. The behaviour of rm /ri for different a is show in the figure 4. Note that these are 

similar to the graphic displayed in the figure 3. When ri ri,„ tir , we have 1 + DT I  (see equation 4), and in 
this case rnari 	oo as can be seen in the figures 2 and 3. (In the Newtonian case, this happen when perturbation 
di -= SIT 1  - 1.) 

Nevertheless, with a < 0 the behaviour are different. In the figure 5, we plot a graphic of r„,/r; x ri using 

= 1.10 and a = -1.0, -2/3 and - 1/3. In this case we obtain that smaller ri greater are the ratio r n,/ri, and 

with greater ri, the ratio goes to a constant value for all a. This behaviour is expected (see equation 8), because 

when ri is large we obtain r n,/ri — S2;/(i2; - I). 

The spherical region after reaching its maximum size rin  will collapse and virialize forming a bound system 

independent of Universe expansion. From virial theorem colir re isstraightforwardreir to see that energy after virialization 

is given by 

E(rv,r) = 	 (9 ) 

2 

 

In non dissipative case E(r,) = E(rvir) such that 

(10) 

remembering that in a Newtonian gravity r y i r  = r,42. 

In the figures 6 and 7 we show several graphics of rvir/rm x ri for different a and D. Its is interesting to note that 

HOGT results differs only slightly from standard Newtonian case - a difference of nearly ±I0%. With negative a, 

rvir/rm goes to standard Newtonian value with large ri, and with positive a this happens with small These are 

expected, remembering that when r << p -1  we obtain a standard Newtonian gravity with resealed gravitational 
constant C — G(1 + a), and with r >> p - I we obtain a standard Newtonian gravity. In the figure 8, we show the 

. behaviour of a overdense region (Di = 2.0) with a < 0. Note that when a = -2/3 and a = -113, the curve show 

a maximum. This happens because in both cases, the minimum radius is very small. Note that when a < 0 we 

have a repulsive term in the gravitational potential. Thus with small mass (corresponding to small radius ri), the 

repulsive term is dominant. With expansion, due to its exponential behaviour, its influence decrease and attractive 

term begins to dominate. This explain the existence of a maximum in those graphics. 

An important question is how large is 	. This term is related to the range of Yukawa term in the gravitational 

potential. A natural choice is the size of horizon at decoupling time. If 	was smaller than horizon lid, at this 
time, it would be expected a formations of several bound structures and these lumpy regions would perturb the 

cosmic microwave background. On the other hand, if p -  is greater than H&c , we have a gauge fixing problem. To 
avoid these undesirable features, a natural choice is p -  I = Hdec , which result in a conservative value of p - i 	5 Mpc. 

Now, from our results given in the figures I and 3, the case with a > 0 is more feasible. In this case, the 

maximum initial size of perturbations is smaller than horizon scale when c? < 0.8 0.9. Thus, it is easy to obtain 

perturbations which evolve to galaxies sizes. On the other hand, with a < 0 the situations is more problematic. 

Only when a = -1/3 and Q > 1.2 it is possible to obtain a initial size smaller than horizon. In all other situations 
(with a < 0), to obtain an initial size smaller than horizon. we need a exceedingly high S/ value. 

3 Concluding Remarks. 

In this work we obtained that the presence of extra term in the Newtonian gravitational potential change the 

behaviour of a spherical collapse. Depending of a parameter, we can simulate "top down" (hot dark matter) or 

"bottom up" (cold dark matter) scenarios for large scale structure formations. In particular, a > 0 is consistent. 

with standard value a = 2/3 obtained in HOGT (3] (It is possible to obtain a negative a, but only with a presence 

of additional scalar and vectorial fields [II].) To be applicable in the formations of large-scale structures the range 



470 	 Fernando Kokubun 

of p -1  need to be as large as galaxies cluster sizes, and in this case this would be undetected in the laboratory 

experiments, as is the actual case [5]. Nevertheless, it is important to note that out results don't exclude an existence 

of dark matter. But it show that some expected behaviour can be only a signature of non standard gravity. To 

obtain a more confident result, it would be important to perform a fully relativistic analysis of perturbations in 

HOGT including dark matter. 

Other aspects which need to be considered are cooling and heating process due to formations of star and 

supernova bursts during the collapse of spherical region. Although a detailed analysis are complicated, we expect 

that due to Yukawa term, shells with different radius collapse with distinct time (note that td yn  oc C112  and in our 

case we can consider G as a function of shell radius, whereas in a Newtonian case it is independent). In this case 

we expect that shock waves would be formed during collapse. These shocks may be very important in the heating 

process. A more detailed analysis including cooling process will be performed in a future collaboration. 

This work was partially supported by FAPESP, Brazilian financial agency. 
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Figure 2. The critical radius 	for a < 0 and f2, > 1. The radius are expressed in units of p -1 . 
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Figure 6. Graphics of rvir/rm with n = 0.90 and a > 0. The ri-axis is limited to r, < ri,ma., with  nap.. = 2.1972. 1.7918 and 1.09: 

respectively when a = 1.2/3.1/3. 

r. 

Figure 7. Graphics of r y i r /r. with II = 1.10 and a < 0. The ri-axis is limited to ri > ri, m i r„ with 	= 2.3979, 1.9924 and 1.229 

respectively when a = -1, -2/3, -1/3. 

Figure 8. Graphics of r.;,./r„, with 11 = 2.00 and a < 0.The ri-axis is limited to ri > ri,„i„, with ri an i c, = 0.6931, 0.2877 and -

0.4055 respectively when a = -1, -2/3, -1/3. 
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It is common knowledge that the vacuum effects of quantum field theoiy contribute to the atomic energy levels 

and transition probabilities. The best known example for this type of contribution is the appropriate component of 

the Lamb shift caused by the v In modern quantum optics the atoms inside some cavity are frequently dealt with. 

In such a situation some boundary conditions are imposed on the photons wave functions resulting in the change 

of vacuum modes and vacuum contribution to the Lamb shift. Such It is interesting to give a fully relativistic 

consideration of the part of frequency shift due to the retardation effects (i.e., for large L). For this purpose it is 

worthwhile to use the photon propagator in the presence of boundary conditions [2] w 

, (z , y) = Dg ) (x y) +•, y). 	 ( 1 ) 

where D,; (1„ )  (z — y) with p, v = 0, 1, 2, 3 is the usual free-space propagator in covariant gauge. 

The second term in Eq. (1) is the boundary dependent part. In the region between the plates it may be presented 

as 

4.1.(z9 y) = (2r)3 d3 k E 	 8Fsin(CL) F'1" ( k ' F"°( 	11) • 

	

_ cre irL. 	
(2) 

Here the indices take the values cr = ±1; s = 1.2 (the coordinate axis .r3 is orthogonal to the boundaries), the 

three-dimensional vector k has the components k= (ko,k1, k2), and the notations are used 

F„(k,z) = e e e -iker °  (e irr 3 ae -irr 3 ) 
	

(3 ) 

where a = 0, 1, 2. 

The photon polarization vectors in Eq. (3) are 

-1 	

( ki 

C P  = 	
kOkl ) 1. 	

-2 
kOk2 	kl 

0 02  

k 	1 
—k, 	k 1  

( 0 

(4) 

with the quantities kl = \iki k? and C = 	 + if, where c > 0 which is to say that the propagator 

is causal. We use unite in which h = c = 1, e2  = 4ra, e is the electron charge, a = 1/137 is the fine structure 
constant. 

In the paper [3] using the propagator (2) the expression was obtained for the Rydberg energy level shift of 

Hydrogen atom. This expression, however, incorporated the summation over all the spectrum of states resulting in 
impossibility to separate and inve 

,"On leave from North-West Polyteduical institute - St. Petersburg, Russia 
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By the use of the quantum electrodynamical perturbation theory of atomic spectra [4] the general relation for 

the self-energy corrections to the levels of a Hydrogen atom between the conducting plane parallel plates in the first 

order of perturbation theo 

- 
AE. = 	 d3 k E 	daz d3 y11):(x)707,,elp e-i& o ra 	 (5 ) 

(2703 	 81' sin( I' L ) 

x (eirs3 + ere 'Tr') E Lib 	 )  tb Y)r  e lk  Y s  (e ir" + ere -ir") 47`7 ° Iba(Y)• 
Co — f o e — iv a' 

Here the index /3 takes the values ;3 = 1,2, the index a denotes the Dirac electron wave functions (i.e.. the set of 

four quantum numbers ri, j, f, m [5]). and c a. ,  = Ea  - Ea r. 

It is well to notice that the corrections to the energy level due to the change of the wave functions of atomic 

electron between plates and due to the change of the photon propagator are additive (as it should be in the lower 

order of perturbation theory 

When taking into account that the energy shift under consideration increases proportionally to n3  (n being 

the principal quantum number) [1,3) we may neglect by the fine splitting of the energy levels in calculation of the 

correction (5). When it 

(=3 ± y3 )I << 1. 
Z3 ± va 
	 « 1. (6) 

it has been possible to get the following expression after the long but straightforward calculations: 

= — — E ( nu' < x3 >;in ,  E 
n'<n L 	 m=1 

2i , 	',
-1- + 
	.) x 	

i  ) CO e l(t ..f L +W )nl 	 e2  FIG  

L 
— — k< x i  > ;in ., < x..2 >Tin ') (Cnn ,  + — E 	 

2L 	 711 	
+ 0 ( 17-1,4 ) 

m=1 

The values of matrix elements < xi >nn , ==- < t,i2„Ixiltb„, > are given in the monograph (5]. 

It is not complicated to get the contribution from the general expression (7) to the frequency shift. of spectral 

line (the corresponding correction is determined by A E n  = Re A E„) and to the change of spectral line width 

(described by Im AEn ). Let us consider now the first of the mentioned corrections which will look like 

Ain 	
e 2  E 	 ,r,„,L 

L 
- <x3 >i„,

• 

 In 12 sin 
7 	 2 n-<a 

r + 
2cnn'

12 
I< z3 >Li As(( n ri , L) — (< 	> n' 	< Z2 > nn t) A,(t„„,L + 71)1 

1e 2 n 6  
- (< x1 > 2„, + < x2 > 2 „,) A c (c„„ ,  L + r)} + 0 (Dv! ) , 

where 

A,(x)  E 
 .11 1X 

- arcsin 2  cos —X  — 72  
171 2 	12' 

m=1 

We emphasize that the summation in the expressions (7), (8) is carried out only over the lower states of the 

discrete spectrum while the infinite summation occurs only in Eq. (9). Therefore the formula (8) is very convenient 

for the numerical calculations 

. Let us note also that the first item in brackets in Eq. (8) tends to infinity when c„„ , L — 2irf. (1 = 	.) 

and presents the resonant contribution which was obtained in paper [I] in nonrelativistic limit. It. can be shown. 

however, that if the width of the levels is accounted for the magnitude of this item turns out to be of the same 

(8) 

(9)  
m=1 

A a (X) = 
E  sin nz.r. 

rn 2  
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n' = 1. Let e r, I L = 27r1, and r„ is the width of the upper level. Then the resonance term has to be written in the 

form 
C.J2 

2  2 e 	 I  1 in(c L) dc = —
e 

< .r 3  >1 1  cZ 1  [1n(r„L) - 1). 	 (10) 
< z3  'n 1  C1  —rn 	 7 L nL 	

--r./2 

For all the possible values of the width I n  the contribution (10) into the level shift does not distinguish 

considerably by its value from the contribution of the nonresonant items of (8). 

We will look now at the imaginary part of the correction (7) which defines the change of the spectral line width. 

it may be written in the form 

eEn„' 2 	 c ImAET, = - 	<x3>,,„, arcsin cos ru-1  
L 	 2 

2e„„, 

L2 
i< x3 >,1„, A c( (nn. L) - (< xi >;,„, + 	 L + ir)] 

—
L3 

(<x l  >4„, + <x2>Z n i)..1,,(c m., , L + 70} . 

The functions A c (x), ./.1.,(x) were given in Eq. (9). 

Note that the item of the order (e21,16)/(004)  in Eq. (7) is purely real. By this reason it contributes to the 

Eq. (8) but does not contribute to the Eq. (11). 

The resulting expressions (8) (with regard to the averaging over the width of the levels of the Eq. (10) type) 

and (11) may be used for the calculations of atomic levels shifts and spectral lines widths which are necessary for 

the interpretation of partic 
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The search of additional long-range interactions between macrobodies has been the object of much concentrated 

attention of a number of authors (see the collection of references on the subject in [1]). Such interactions may 

be caused by the exchange of light elementary particles, predicted in unified gauge theories, supersymmetry and 

supergravity [2], between the atoms of distinct macrobodies. Among these particles are axion, scalar axion, dilaton, 

spin-one antigraviton etc. New interactions may arise also as corrections to the classical gravitational theory at 

small distances [31. The potential of a force acting between two atoms separated by the distance r due to the 

exchange by light particles has the Yukawa form 

V(r) = o 	exp 	, 	 ( 1 ) 

where A = m-1  is the Compton wave-length of a particle with mass m, a is the dimensionless interaction 

constant. The factors N1, N2, which are the numbers of nucleons in atomic nuclei, were introduced for taking off 

the dependence of a on the sort of atom, i.e., on the nuclear charge's. An action range -A in (1) may vary from 

one angstrom to hundreds of meters. We use the relativistic units, in which h = c = 1. In the following we shall 

suppose that the long-range interaction field of a macrobody is the additive sum of the Yukawa-type fields of its 

atoms. Such supposition is justified by the smallness of long-range interactions. 

The main objective of a number of investigations is to determine some constraints for the constants a, A. In the 

paper [4) the recent constraints were collected resulting from the Eiitvos-, Galileo- and Cavendish-type experiments, 

Casimir and van der Waals force measurements. In the action range A 1 m the best constraints on a result from 

the Eiitvos experiment of paper [5]. Then with decreasing of A the best constraints on a may be deduced (see 

[4,6]) from the Cavendish-type experiments of papers [7-9). As a result the permitted region of (a, A)-plane lies 

below some curve (see later). 

In this paper we suggest to use the precise experimental setup [10] for obtaining stronger constraints on the 

constants of Yukawa-type interactions. This setup includes the large homogeneous steel sphere with a non-concentric 
spherical cavity in which the strictly homogeneous, flat gravitational field arises. The sphere may be rotated around 

some vertical axis coinciding with the technological opening. The rotation of the sphere results in the rotation of 

the gravitational field relative to the stationary detector mounted in is not homogeneous. The setup of this kind 

was created originally for the calibration of accelerometers [10]. In a really existing setup the sphere diameter is 

600 mm, the cavity diameter is 475 mm. The sphere is made sectional so that the turning o The detector is inserted 

in the cavity through the opening into the place usually occupied by the accelerometer. 

We suggest using the torsional pendulum as a sensitive element of additional interaction. The pendulum string 

passes into the cavity through the opening and coincides with a vertical rotational axis of the setup. The gravitational 
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forces acting upon two balls attached to the opposite ends of the pendulum beam of the length 21 are the same 

for any position of rotating sphere. It is a consequence of homogeneity of gravitational field inside the cavity. But 

the additional forces acting to different balls are not equal to each other to give rise to some torque which have to 

be registrated. The most important characteristic of the detector is its sensitivity to acceleration ad d' . Below the 

value ada  10-12  cm/s2  will be used, which is realistic one for the high level gravitational experiments (see, e.g., 

[I I]). It surpasses in 10 times the acceleration of the detectOr, test bodies due to thermodynamic fl 
In the event of no additional interaction being registrated the constraints on the parameters of this interaction 

will result from the inequality • 

Mrnax .< Mdet = 2mo/adet , 	 (2) 

where M 	is the maximal value of the torque produced by the additionalinteraction, and Mdet  is the sensitivity 

of the detector to the torque. 

Let us start the calculation of the torque with the potential energy of one atom having N2 nucleons in its 

nucleus and inserted into the spherical cavity of R2 radius inside the steel sphere of R2 radius. This last sphere 

is characterized by n1 atoms in a unit volume with N I  nucleons in their nuclei. The atom under consideration is 

located at a point M spaced r1 apart from the center of• the sphere and r2 apart from,the center of the cavity. 

Then its potential energy is 

U( 	= Id 3 r V(r), 	 ( 3 ) 

where V(r) is the potential (1), D is the volume of the sphere with exception of the cavity and r being the 

distance between the point M and an arbitrary point of I). 
Performing the integration in (3) with the use 01(1) one gets the result: 

U(M) = 4TN I N2 n i ciA 2  [ 1.12  + A  Binh(r2) exp (-k2) 
r2 

Birth (F1) exp (-RI)] • 
R i  +  A  

r i  
(4) 

Hereafter the tilde means that the corresponding quantity is divided by A. 

Let us consider as a test body the small spherical ball of radius ro with its center at a point M. Let. the material 

of a ball have the atomic density' nq and the number Of .nucleons in one nucleus N_. Integrating Eq.(4) over the 

volume of this ball we obtain its potential energy: 

Ub(M)= 3n2eof (Fo)1/(M), 	 • 	( 5) - 

where vo = 47rra/3 is the volume of the ball, 

f(x)-= 	(cosn 
- X 2 

	sinh 	
(6) 

• 

	

Note that the quantity f(F0) 	1/3 for all values of ro, A to be used later. 

. Now it is possible to calculate the torque due to additional interaction acting on the torsional pendulum detector. 

In Fig. 1 the projection of the torsional pendulum is shown onto the plane orthogonal to the rotational axis of 

the setup and passing through the centers of the sphere 0 and the cavity 02. The detector itself may be located 
at some distance h below or aliove this plane. Using the Eqs.(4).(5) we get the potential energy of the detector: 

	

Lid = 	 vof (Po) {A (R2) [B (7V 3 ) + B (021 . 	• 

.4 (iii) EB
( r ^ +t )  + B (i 1 11} 
	

( 7 ) 

where 

y.'! ±)  = (r? + h 2  + 1 2.  ± 2ril cos sod i " 
	

i = 1, 2. 	 (8) 
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Figure 1.: The position of the detector relatively to the centers of the sphere 01 and of the cavity 02 
( the point M is the projection of the setup rotational axis which is orthogonal to the plane of the figure). 

In (7) we also used the notations 

.4(x) = CT+ z). 	8(z) = 
sinh 	

(9 ) 

From geometrical considerations (see the Fig. 1) it is evidently seen that cos W2 = cos(co l  - 8). .Further we will 

use the notation co Es 

The torque we are looking for may be expressed as 

= 
our' ow

, 

(10) 

where Cia is given by (7). 

Differentiating in accordance with (10) we get. the result: 

M = 127r/VI N2 n i n2a voj (to) 1  A (R2) 	
(4"") f (4- 91 r2  sin(W - 

A (ii l ) 	- I (01 r i  sin col . 

To obtain the desired constraints for a fixed position of the detector inside a cavity it is necessary to find the 

maximal value of M with respect to co. In the general case this may be done only as a result of computations 

which are not very descriptive. But if the detector is located at a plane of the sphere and cavity centers which is• 

orthogonal to the axis of the setup (i.e., h = 0), the analytical investigation may be performed equally well. 

To do this let us expand the energy Lid from (7) which is a periodic function of so in Fourier series. After long 

but straightforward calculations[12] we will find 

2472 N I Ar2nrn_aA'vof (Fe) 	 (12) 

x 	a-L)  + E InV )  cos(2kw,) - tk l  cos(2kcod , 
2 

k=k 	 JJJ 
where the coefficients are: 

atki) = 7_,%A (ki) > 
	 (2(,:', 2:kk))(2(,7„n:: ))/2.+ i  (i) /2.+ i  ( 1 i) 

m=k 

and ao -2 413 + 421 , /v (z) are Bessel functions of imaginary argument. 

L1d = 

(13) 



M -  ad-. a< 
27r phc Q(A. I, r i ,r2 , 

(19) 
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Differentiating the quantity (12) with respect to w E (p i  we obtain the net result 

co 
M = 48w2 N1 N2n ri2aA 11 tod (io) E k [42)  sin 2 k(so - 0) - alkl)  sin 2kwl . 

k=1 

(14) 

It is seen from (13) that the coefficients of the series (14) 

in the region A scriptscripislyleZ 2 cm it is quite sufficient 

represent the maximal value of the torques, which are given 

decrease very quickly with the increasing of k so that 

to take into account only 4 )-terms of (14). Let us 

in (11) or (14), by the angle w in the following way 

= 121rAir 1  Nzuln2avoi (io) 	ri, r2, h )• 	 (15) 

Here the multipliers before Q are extracted as a matter of convenience, Q is the maximal value in so of all the 

other multipliers (11) or (14). So in the general case (Eq.(11)) 

Q(A, /, r1 , rz, h ) = /max { A (k) [J .  (i42+) ) - f (I-111 r2sin(+,0  - 9 ) 

	

A (ii i ) Ef (F(1 +1 ) - f (i' 11 -1 )1 r sin w} 	 (16) 

In the particular case h = 0, where the Fourier expansion (14) is valid, 

Q(A,/, r i  r2 , 0) = 411-A 2  max E kraV i sin2k(w - 0) - 41)  sin 2kw]. 
co 

(17) 
k=1 

In the case when no additional interaction was registrated the constraints on the parameters of this interaction 

result from the inequality (2). Regarding to Eq.(15) it is seen that the constraints on a, A do not depend on the 

parameters of the torsional pendulum balls. In fact, the multiplier before Q in the right-hand side of (15) may be 

transformed to 
121rN 1  N2ni n2avof (i.o ) = 12ir —;-avof ( .1.0) 	' 

PP0 	 (18) 
rn p- 

where p, p o  are the densities of the sphere and of the test body, and ni p  is the proton mass. 

Substituting (15) into (2) taking account of (18) and using the evident equality povo = me we bring Eq.(2) to 

the form (with the restored constants h and c) 

where the approximate equality f(i.- 0 ):;,-- 1/3 was used. 
The numerous calculations were performed using the result (19) for the different positions of the detector inside 

a cavity and for the different values of 1 with 0.1 AI 500cm. Let us start with the geometrical sizes of the 

existing setup 1101. In this case the constraints on a, A practically do not depend on the value of 1. Because of 

this, in the following we shall use the value I = 4 cm (the distance between two balls of the torsional pendulum is 

21 = 8 cim). 

Different positions of the rotational axis have been considered as well as of the detector along the rotational 

axis. In order to get the strongest constraints it is necessary to make the configuration of the setup maximally 

non-symmetric. The way to realize it is to place the rotational axis of the setup maximally close to the boundary 

of the cavity from inside. Our calculations have shown that the best position of the axis is the following. One of 

the detector's balls is bound to be near the wall of the cavity whereas the axis itself — approximately in the middle 

between the wall of the cavity and the center of the sphere. For the obtaining of the strongest constraints the 

detector balls and the centers of the sphere and of the cavity should lie in one plane orthogonal to the rotational 

axis (h = 0) with 0 = 0 (see Fig. 1). 

Here the constraints may be found by the Eq.(19), using for Q the expression (17) with the Fourier coefficients 

(13). As the calculations show the region of A for which the known to date constraints may be strengthened is 

0.3 cm .1 A 5.. 2 rn. 
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- 41 

—d 
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Figure 2.: The constraints on the parameters of Yukawa-type interactions which may be obtained 
from the proposed experiment (curve I — known to date; curve 2 — may be obtained by the use of existing 
setup; curve 3 — may be obtained by the use of especially designed setup of this kind). 

The results of the performed calculations are shown in Fig. 2. The permitted regions of (a, A)-plane lie below 

the curves. Curve 2 corresponds to the optimal position of the setup rotational axis giving the strongest constraints 

on ce, A (r 1  = 12cm, = 18cm, 8 = 0, see Fig. 1). The best strengthening in 400 times holds for . Pc: 6cm 

(a > 0). 

Let us now consider the constraints which may be obtained by the use of a specially designed setup under 

discussion. To shift a minimum point of curve 2 in Fig. 2 to the right (where the strength of the known to date 

constraints is moderately high) 

There is evidently a strong interest for carrying out the proposed experiment. 

Two of the authors (6 . L IC and V .M .M .) thank the Department of Physics of the Federal University of Paraiba 

for kind hospitality. C. Romero was partially supported by CNPq. 
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The (44  + oc096 )D=3 Model at 
Finite Temperature and the Tricritical Phenomena 

Gino N.J. Ai atios and N.F. Svaiter' 
Centro Brasileiro de Peaguisas Fisicas-CBPF 

Rua Dr. Xavier Sigaud 150. Rio de Janeiro, RJ 22290-180 Brazil 

The thermodynamics of the massive 4, 4  + ag6  model is analyzed at finite temperature in 
the two-loop approximation. The behavioi of the thermal mass and coupling constant. is 
discussed. We demonstrate in the two-loop approximation the existence of a tricritical point. 

1 Introduction 

The field theory with a Aso 4  self-interaction has been extensively studied in the literature. General expressions for 
Feynman diagrams at zero temperature have been calculated up to the four-loop order [1]. In the same way, some 
years ago the temperature dependence of the reiiornialized mass and coupling constant was analyzed [2]. More 
recently different methods have been used to study finite temperature quantum field theory [3] [4]. 

The purpose of this paper is to present a two-loop calculation of the (A a 4  + aw • -7- 6 ) D=3 model. For simplicity 
we assume that the dimension of the order parameter is one. We obtain the thermal correction to the square 
mass m 2 (j3) and coupling constant A(0). If the thermal coupling constant A(13) becomes negative (for positive 
square mass m 2 (13)) a first-order phase transition may occur. For negative square mass and positive A(g) we have 
a second order phase transition. The point m 2 (0) = A(Li) = 0 defines the tricritical point [5]. Some systems such as 
metarnagnas (antiferromagnets in the presence of a strong external field) or the He3  He' mixture exhibit such 
behavior. A tree-level discussion of the tricritical phenomenon can be found in Refs.[6] [7]. For a treatment using 
the Callan-Zymanzik equation see for example ref.[8] 

We compute r(2)(0) and f" ) (0) up to second order in perturbation theory and prove that the two-loop ap-
proximation is enough to obtain the tricritical point where a line of second order phase transition merges smoothly 
at this point with a line of first order phase transition. This paper is organized as follows. In section II we will 
review some general formalism. In section III the thermal corrections to the mass and coupling constant A(it)• for 
the two-loop one particle irreducible diagrams f (21 (0) and 0 4) (0) are presented. Conclusions are given in section 
IV. Through this paper we use h = c = 1. 

2 General formalism 

Let us consider the vacuum to vacuum persistence functional in the presence of an external scalar source 1/(i). 

Z(J) = J 1") ,,a exp 	d p x (E(so) 	.1(x)sa(x))) 

where 

I 	1 	G 

C OP) = 	ir* 	Tr  + 	
A 
 F7te. 

The problem we will study is to find a tricritical temperature 13 -1 (rn, A, a) for a set of values of m. A and a where 
the 1PI diagrams P (2) (0) and 04)(0) vanish. This point defines the tricritical point. Consequently let us examine 

• e-mail:nfuxsvaielcal.drp.c-bpf.br 

(1) 

(2) 
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the thermal effects over l'( 21 (0) and r(4)(o,0,0,0) = r(')(o). We will calculate explicitly the two-loop contribution 
to the renormalized thermal mass and coupling constant. The diagrams contributing to the two-point function are: 

-9- 
(a) 
	

(b) 	 (c) 

- 8 
(d) 

fig.(1) - The diagrams that contributes to the 1 PI two-point functions. 

The diagrams that contributes to the four-point functions are: 

>o< >co< >< 
(e) 
	

(1) 	(9) 

>5< 
(h) 
	

(1) 
	

(i) 
	

(k) 

(I) 

fig.(2) - The diagrams that contributes to the 1 PI four-point functions. 

It is possible to obtain the expressions for o2  1(o) and l' (43 (0). given by: 
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r 2) (0) = rn 2 + 	- 4A 2 (b) - A 2 (c) . - a(d) 

3 • 	3 r4) (0) = A - -
2

2 (e)+ 
4
-A-

.1 
 (f)+ 3A3(g)+ 

3 
 -A3(h) 

- 	
2 

2 

1 	1 

4 	
2 	1 

2 
-cr(i)+ -Acr(j)+ -Aa(k)+ -Aa(I), 

and 

( 3 ) 

where: 

dr)  q 
( a) = " 

	

z r )•-• Jr 	+ 	m 2) 

(b)= 	1 	 dpql 	dp q 2  
(2r) 2  D J (q? + m2) 	m '2 )2 

(c) = 
dp 

(2702 D 	(q? 	+ M2 )(q .:2!  + rn 2 )((g i + q2)2 + m2) 

I 	
dpq   (d) = ( ) 2 c2175 (q2 rd2)1 

I I 	dr)  q 
(0 =  (27r)i) 	(q2 	m 2 )-- 

1 j 	di)  q  (1) = V-2 ,r) D (q2  ni2)2  

1 	 dpg,IdDq2 (g) = 
(270-D 	ni-

„ 
 )(qi; 	rn-)((q, 	q2 )2 + m 2)2 

1 	dp q i 	di)  q 2  (h) = 	 
-( 27 ) 2D J (q? + in2 ) J (q::: + Tn2)3 

I 	di)  q 
(i) = (2 7 )D I ( q 2 	+ ,n 2) 

1 	d p qi 	f 	d p in  (i) = 	,, n 	, 
[Tr — 	tqi + na-) 	(qi 	► n 2)2 

(k) = 	
1 	 dp rildp q2  

(270 23)  f (q? m2 )(q3 + 71/ 2 )((g 1  + q2 ) 2  + rn 2 ) 

dpq i 	dpq.2  (1) 	(27)2D if )=  	 (16) (q? 1,1 2) I (id + m 2  )2 

2 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(12) 

(13) 

(14)  

• (15) 
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3 The tricritical phenomenon 

The aim of this section is to show that there is a temperature where the tricritical phenomenon appears. In order 
to regularize the model we can choose among a plethora of regularization procedures: Pauli-Villars, dimensional 
regularization, momentum cutoff, etc. We prefer to use a mixing between dimensional and zeta function analytic 
regularization. Therefore let us define: 

ifi (D,$)=1/0 E J 	 
n 

• Writing 112)(0) and r(4)(13) as a function of 16(D, s) we have: 

	

ro)(o) = rn2 
	

2 
	
-

A + -A/0(D,1) - 	•/0(D.1)/0(D,2) 

- - A 2 (c) - - a (10(D, I )) 2 , 

	

6 	8 

and 

r(4)(o) 3 	 3 , 	 3 .1 = A - 
2

- A -10(D.1)+ 
4
-Al/p(D, 202  + 3A3 (g) + 

2
- A"/0(D, 1)1,3(D, 3) 

2 	

2 
-

I

c r113(D. 1) + -
1

Aa 1 0(D, 1)1 0(D,2) + 
3
- Acr(k) 

1 

	

+7
2

Acr/p(D. 1)1 0(D,2). 	 (19) 

Using the analytic extension of the inhomogeneous Epstein zeta function it is possible to obtain 10(D, s); 

m D - 2, . 
/0(D, s) =  	- 

D 	E
( 
 2 2_,

h  7-) + 4--7 	 (20) 
(2/ri)Dr(s) 	2 	n=1 nin°

) 
 

where K v (z) is the modified Bessel function of third kind [9) 
It follows that there is a set of values of the parameters ril 2 , a and A for each temperature which leads to the 

vanishing of the thermal physical mass m 2 (g) and coupling constant A(0), i.e., the critical line in the parameter 
space. Note that the basis of all considerations above assume that the sunset and related diagrams can not modify 
the tricritical behavior. 

A straightforward calculation gives for 10(3,1), 4(3,2) and 10(3, 3) 

10(3, 1) = — 

	

 
2 /r 	2 E

(  I )e-mo 	 (21) 
mn n=1' 

1 	1 
10(3, 2) = 

	

16irm 
( 

2 	ern 0

1 

 - 1 
	) 	

(22) 
 

and 'finally 

=— _ 
(17)  

(18)  

I 	1 	1 
18(3 ' 3 ' = 16m3 ( 2 + emo - 1 E frnnme -rnni3 

n=1 
(23) 

To evaluate the sum in /p(3. 1) we use the following trick 

no 
 1 	-rand 

 

, 	cv 
1 E( mnii )ei3 = 

rni  
 =_ — 

rn 
Mt 1 e 

.?  
n=1 	 ' n=1 

Eq.(32) can be written as 

—r Li) 	 (24) 

I 	1 	1 	 e - '"p 
4(3 ' 3)  = 16m3 	e'13 - I +1"13 (en'3  - 1 ) 2 ) 

(25) 
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The idea is to define the quantities x = mO, y = r+, and .-: = a. lw the space. .(x, y, z) the condition' 1' 2 (0) = 0 

defines a surface. The same happens for 1 4 (0). The intersection of both surfaces defines a tricritical line. (See 

fig.( 3)). 
The effective potential as a function of the vacuum expectation value of the field and rn$ can be ploted. The 

temperature is the parameter that allows us to interpolate between the two configurations: a metastable state at 

< >= 0 in the low temperature regime with first-order phase transition and a second order phase transition in 
the high temperature regime. (See fig.(4)). At some intermediate temperature the tricritical point appears. 

In the high temperature regime it is possible to write 

(26) 
k-1 

and 

4( 3,2) = 7671171 	0  (112L-:2 k ) 
!( ,70 ) 2k - 	 (27) 

where 13„ are the Bernoulli coefficients. 
A possible method to deal with the system in the high temperature regime is dimensional reduction (DM). This 

approach has been used by many authors [10]. 'Ilie basic idea is that in the imaginary time formalism the free 
propagator has a form (w. + p 2 + ni 2 ) -  I  . The Matsburara frequency act like a mass so that in the high temperature 
regime the non-static modes (n 0) decouple and we have a three dimensional theory after the integration of the 
non-zero modes. Of course this effective model will describe the original model only for distances R >> W. 

4 Conclusion 

By studying the (44 + aco6 )D=3  model at finite temperature we have obtained a well known result. We proved that 
for each set of values of m, A and a there is a temperature f3-1 ( rn, A. a) where the physical thermal mass m 2 (Q) 
and coupling constant A(13) vanish. One remarks should be made. The existence of the tricritical point can not be 
modified with the inclusion of the sunset and related graphs. The inclusion of these graphs will only change the 
temperature of the tricritical point. 

A natural extension of this paper is to calculating the decay rate of the metastable state 
< 99 >= 0 with nucleation of bubbles in the low temperature regime [11]. F'opmf3 > mfl. the solution < >= 0 
is a unstable minimum of the potential (the false vacuum), and it is possible to evaluate the probability per unit 
time and volume for the false vacuum to decay into the true vacuum of the model. To calculate the decay rate it 
is necessary to evaluate the instanton solution and a gaussian integral around the instanton. This subject is under 
investigation in this model. 

Acknowledgment 

We would like to thank Prof.A.P.C.Malbouisson for several helpful discussions. This work was supported by 
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CN Pq. 

References 

[1] A.A.V1aditnirov, Thcor. Math. Phys. 30, 732, (1978), F.M.Dittes, Y.A.Kubyshin and 0.V.Tarasov. Theor.Math.P.hys. 
37, 879 (1978). 

[2] K.Babu Joseph, V.C.Kuriakose and M.Sabir, Phys.Lett 115B. 120 (1982), 0.J.Eboli and G.C.M argues. Phys.Lett 162B. 
189 (1985), H.A.Weldon, Phys.Lett 174B, 427, (1986), K.Takahashi, Z.Phys. C26, 601 (1985), T.Alther, Phys.Lett 
B238, 360 (1990). 

[3) N.Banerjee and S.MaIIik, Phys.Rev.D 43, 3368 (1991), M.E.Carrington, Phys.Rev.D 45, 2933 (1992). P.Arnold. 
Phys.Rev.D 46, 2628 (1992), R.P.Parwani, Phys.Rev.D 45, 4695 (1992), R.P. Parwani and 11.Singh. Phys.Rev.D 51. 
4518 (1995). 



Gino N.J. Atianos and N.F. Svaiter 	 487 

[4] J.Frenkel, A.V.Saa and J.C.Taylor, Phys.Rev.D 46, 3670 (1992). F.T.Brandt. J.Frenkel and J.C.Taylor. Phys.Rev D 
44, 1801 (1991). 

[5] M.Blume, V.J.Emery and R..B.Griffiths, Phys.Rev.A 4, 1071 (1971), E.Eberhand. K.Riedel and F.J.Wegner, 
Phys.Rev.Lett. 29, 349 (1972). J.C.Le GuilJou and J.Zinn Justin. Phys.Rev. Lett 39, 95 (1977), D.Boyanovsky and 
L. Masperi, Phys.Rev.D 21, 1550 (1980), H.Haznber, Phys.Rev.B 21, 3999 (1980) and R.Pisarski, Phys.Rev.Lett. 48, 
574 (1982). 

[6] C.ltkykson and J.M.Drouffe,"Statistical Field Theory", Cambridge University Press (1989). Cambridge. England. 

[7] K.Huang,”Statistical Mechanics", John Willey e Sons, Inc (1987) New York. 

[8] C.A.Aragio de Carvalho, Nucl.Phys. 119. 401 (1977). 

(9] N.N.Lebedev, "Special functions and their applications" Dover Publication. Inc. N.Y.(1972). 

[10] T.Appelquist and R.D.Pisarski, Phys.Rev.D 23. 2305 (1981). S.Nakarni. Phys.Rev.D 27, 917 (1983), ibid Phys.Rev.D 
38, 3287 (1988), A.N.Joudine, Ann.Phys. 155. 305. (1984). R.F.Alvarez Estrada Phys.Rev.D 36. 2411 (1987), 
K.Farakos, K.Kajantie. K.Dummulcaienen and M.Shaposhnikov. Nucl.Phys. 8245, 67 (1994) and E.Braaten and 
A.Nieto. Phys.Rev.D 51. 6990 (1995). 

[ll] A.D.Linde, Nucl.Phys. B216. 421 (1984 E.Weinberg and A.VVu. Phys.Rev.D 36, 2477 (1987). M.Gleiser, 
G.C.RMarques and R.O.Ramos, Phys. Rev.D 48. 1571 (1993). 

•• 
\‘, ..\ 	\d"....4.41.11tr.....ird,ft 

Unger 41.N.1•• skor 

'',\X 	

.... Agra, aiviir  Qr., 
• .4■414■40•1■.., 

, v,„,..\.,\ 	
. . w.. ... ....................... ..... ft.„... 

•')•., 	• 

	

4.40. 	 'ft.  - 

...11.71...7. ...rd.,  '......./ al.  ...... 	 ...z......  

\ 	
.. 

..1741 	''''.46,,,.....,47.0,45.47,741.4t746:174,17 :::::: %,- y.,.., airy  Mr, di., 41.4! 'ar.:,...,.."..:•ft. a.m. 
.., ....... Alm, 4/..... air,. ■•■•, •••. 	•.., ft., ...• 

„s":11,4,47.. '. 41.4.7., ............11'..........r.r.r.:"..11, 
4.....ZVN 

....r• 	 .., N, 4s.... .1.41.2, 	 .... ..... 4..... W.. W.. .1.... ..... 4.• ....4 
...t..7.7.7:::f. . . . . ..F.,..f.;:lf, • _. . . : . . ...: . . . 

dm,. '..,.....‘,. ......2....■_ • .4..:i 7;ft:f...  f.  .. . . . . . ., .....,. . .. . . ., 4  , ft.  . . .. . .. . .... ...- . . ......t.  ....:. . ... . ... .: . ... . . . .....7.  . ....4  ...... .. .. . .. 2  .. ..e; :7.:  .. .. ......■.,...... .............,$.....:............4............7...........1%.1Larft......47., .Z..-.±:". '........r... ......a....4......, ....±......... 
"%7:••••'"..... ..4"...-Z4:"'-...."..."-4'..r.Z.:- 

	

.... -...... ..... ..-,. 	w-__ .... -. •••• ........7.z....,................--,........- 

	

..... ..... .... 	.... -. ........z.. ,.., ...„ 

0.001 

0.001 

0.0002 
0.02 

0.005 

y 0.006 0.003 

Figure 3. The two surfaces F (2) (0) = 0 and r(0). 0 in the space z = mi3, y = m and .z = er. 
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Figure 4. The effective potential as a function of the vacuum expectation value of the field and mft3. In the low temperature 
regime, there is a metastable minimum at < >= 0 (there is a true degenerate minimum outside the origin that does not 
appears in the figure). Increasing the temperature appears the tricritical temperature a:'. in the high temperature regime 
there is only a second order phase transition. 
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Vacuum, Chiral Symmetry and Condensates in 
two-dimensional QCD 
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We analyse the chiral symmetries of flavored Quantum Chromodynamics in two dimen-
sions and show the existence of chiral condensates within the path-integral approach. Our 
results put forward the question of topological issues when matter is in the fundamental 
representation of the gauge group. 

1 Introduction 

In order to understand the complex structure of the QCD vacuum (11 one should analyse possible mechanisms for 

chiral symmetry breaking and the formation of fermion condensates. Vacuum expectation values (v.e.v.) of quarks 

composites can be understood as a result of the condensation of pairs of particles and holes. These quantities are 

particularly useful in the understanding of both spontaneous and dynamical symmetry breaking as well as in some 

fundamental aspects of Quantum Chromodynamics such as its topological structure. 

Two-dimensional models like QCD., are prefered frameworks to discuss these phenomena since they present the 

basic aspects of the four dimensional theory such as the existence of non-trivial topological sectors and chirality 

properties and. moreover, exact results can be generally obtained. 

In the present work we analyse the chiral symmetries of the QCD 2  vacuum by means of fermionic local corre-

lators. Extending the analysis of the Abelian case presented in rel[2] here we calculate vacuum expectation values 

of products of local bilinears kT)(z)tp(z), in two-dimensional Quantum Chromodynamics with flavor. Using a path-

integral approach which is very appropriate to handle non-Abelian gauge theories, we show that multipoint chiral 

condensates do not collapse. However, the elementary mass term has a zero v.e.v., a result which is compatible with 

a vanishing isosinglet chiral anomaly and is consistent with Coleman's theorem. The topological structure of the 

theory is especially considered and we show the crucial role played by topological flux sectors in obtaining non-zero. 

 correlators. 

2 Topology 

In two space-time dimensions it is generally assumed that the vanishing of the homotopy gioup n,(SU(N)). implies 
that QC D2 exhibits only a trivial topology when fermions are in the fundamental representation of the gauge group. 
Hence. no vacuum degeneracy is expected to occur. In contrast. when adjoint matter is considered. the relevant 

symmetry group becomes SU(N)/Z,v rather than SU(N). This is responsible for the appearence of N topologically 
different sectors and instanton effects become apparent. 

Nevertheless, by handling fundamental fermions it can be easily verified that gauge field configurations lying in 
the Cartan subalgebra of SU( N) generate non-trivial topological fluxes. Thus, one should include these topologically 
charged configurations in the path-integral domain also for fermions in the fundamental representation. 

Concerning this last aspect, let us stress that in two dimensions the role of instantons is played by vortices. in the 

Abelian case, these vortices are identified with the Nielsen-Olesen vortex solutions of a spontaneously broken Abelian 

'Electronic address: hugollicbpfeul.cat.cbpf.br  
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Higgs model [3]. This should be contrasted with QCD 4  where four-dimensional instantons are regular solutions 

of the gauge field equations of motion when fermions are absent; in the. two-dimensional case, either Abelian or 

non-Abelian, no regular solutiOns with topological charge exist unless complete symmetry breaking is achieved via 

Higgs fields. When these scalars are included, the resulting static, axially symmetric gauge field configurations give 

a realization in a two-dimensional Euclidean theory, of regular gauge fields carrying a topological charge. These 

classical configurations are then identified with two-dimensional instantons, to be used in non-perturbative analysis 

of a Maxwell theory coupled to massless fermions [4]. The same route can be undertaken in the non-Abelian case 

since the analogous to Nielsen-Olesen vortex solutions have been shown to exist, again for spontaneously broken 

gauge theories [5]. It means that, in the spirit of the path-integral approach to QFT one has to take into account 

these configurations in the measure of the theory without Higgs fields. Once regular gauge field configurations 

carrying topological charge are identified, the associated fermion zero modes can be found [6]-[7] and then, used to 

study the formation of fermion condensates. 

Our approach starts by decomposing a given gauge field belonging to the n gh  topological sector in the form [8] 

.4;',(x)= AV"^F 
	

(1) 

where Ar is a classical fixed configuration of n lh  flux class and a u  is the path-integral variable which takes into 

account quantum fluctuations. a l, belongs to the trivial topological sector and can be then decoupled by a chiral 

rotation which implies a Fujikawa jacobian. 

Topological gauge field configurations and the corresponding zero-modes of the Dirac equation play a central 

role in calculations involving fermion composites. As in the Abelian case, two-dimensional gauge field configurations 

.41:1 ' carrying a topological charge n E Ziv can be found for the SU(N) case. The relevant homotopy group in this 

case is ZN and not Z as in the U(1) case [9]. Taking g„ in the Cartan subgroup of the gauge group we can write a 

gauge field configuration belonging to the n th  topological sector in the form 

4" )  = 	g;' ap g,, 	 (2) 

where = 	iz i  and z = za  — ix i . 

Zero-modes of the Dirac operator in the background of such non-Abelian vortices, have been analysed in [7]. 

The outcome is that for topological charge n > 0 (n < 0) there are Nn (NInI) square-integrable zero modes ra 
(r)R) analogous to those arising in the Abelian case. Indeed, one has 

071,0i _ 	:" 
FIR 	— 	0 

0 
ri L 	= (3) 

with 

= exp(0 ( " ) (1:1)M), 	M = -A71  diag(1,1,....1— N) 	 (4) 

and 95 is given by 

) (1z1)= /11:1) • 
	 (5) 

Here i, j = 1,2 	1■1 and m = 0,1, ..., Inl — I. The pair (rn, 0 labels the, Ain I different zero-modes while j 
corresponds to a color index. 

3 QCD2  with Flavor 

Let us consider two dimensional SU(N C ) Yang-Mills gauge fields coupled to massless Dirac fermions in the funda-

mental representation of the group in Euclidean space-time 

L = 
, 

.4 ),, a tr" 7„)0 + — 
49 2  

Here the labels a = 1... 	— 1, and q = 1... NG  are summed over, and the partition function is 

Z = Dti/DODA, expl— d 2  x exp 

(6) 

(7) 
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In order to compute fermionic correlators containing products of local bilinears ti/b(z) it will be convenient to 

decouple fermions from the a m  field through an chiral rotation within the topologically trivial sector. The choice of 

an appropriate background like 

!it
n = 0 	 ( 8 ) 

is crucial in order to control the zero-mode problem. Let us start by introducing group-valued fields to represent 

Oil and a, 
a +  = ia -, a+ 11 	 (9 ) 

	

a_ = id(t9_1 ,-1 )d -1 	 (10) 

.4 1 " )  = 	 ( 11) 

In terms of these fields the fermion determinat can be suitably factorized in an arbitrary gauge by repeated use of 

the Polyakov-Wiegmann identity (12], resulting in 

	

det fo[illn )  + a] = At det gt(A ( ' ) ] x exp(Se ff 	v; At" )]) 	 (12) 

where 

seff [u, v ;  A t"}] = + Mt)] + 	trcid2 z(u -1 0+ u)d(va_v -1 )d -1  

1 

	

+-
4

tr, f d 2 z ( d -1 8+ d)(t10_ 	). 

Here W[u, A ( n )] is the gauged Wess-Zumino-Witten action which in this case takes the form 

W[u, A ( ' )1 = tiqui + —tr, J d^ x(u-'04.u)(cla_cl-1) 
4r 

and W[u] is the usual WZW action. 
• Once the determinant has been written in the form (12), one can work with any gauge choice. The partition 

function shows the following structure 

Z = Edet (P (21(n)] )  f Da, LIFT b(F[a)) 

exp 	Se f f[A(n) au] - 4g
1 	d 2 xFp2v [A ( " ) ,a„]) 	 (15) 

where :If-T.0FM) comes from the gauge fixing. 

.Correlators in the non-Abelian Flavored Case 

As it happens in the Abelian case, the partition function of two dimensional Quantum Ghrornodynamics only picks a 

contribution from the trivial sector because det(01/4 1, " ) )) = 0 for n 0 (see eq.(15)). In contrast, various correlation 

functions become non-trivial precisely for n 0 thanks to the zero-mode contributions when Grassman integration 

is performed. 
In order to find a wide expression for general correlators let. us just. work with the gauge choice (8). Now, the 

Dirac equation takes the form 

0 p[A(n + a] ( qi+ 	- 	
dud -1  D_(A 1  - 	 " 	0 	 ) 	

(16) 

where ( is defined by 

	

5 +  = dvd - '{ + , tb_ = 	 (17) 

Thus. the interaction Lagrangian in the nth flux sector can be written as 

(13) 

(14)  

fl 

L = 7[a + A ( "]0 = 	+(:4. P A-4° + 	 (18) 
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which we will write (6[A ( " ) ](. In terms of these new fields, the elementary bilinears 'be' take the form 

ilitk = 	udvd-1 (+  + (4. dv I  d - I  u -1 (_. 	 (19) 

Concerning the jacobian associated to (17) it is nothing but the effective action defined in the previous section by 

ecl.( 13 ). Hence, an explicit expression for arbitrary non-Abelian correlators reads 

(ocz])•••ocii))=E D up!,  App 6( Flap)) exp[—.5,1, (A ( ' ) . u, v)) 

fDON ex P( 	D  (0101 i80+  )() 

BciPl (x i ) ... if"' (x i ) C.` 91 ,4.' (2.') 	C .24"C; (.r') 	BgiPi(x')... 
B -19,12, (2.1 )(:11. (v (j.1 )...(441 (pi (2: 1 ) 	ByrIpi (.t') 

B -14r -1 P` - ' (2.1-1 )B -i" (x l ) (_"`C 141'(x l ) • -.(4" 1-1 (P
' -e 

 Gr i-I )C.;91 (rTr i ) 

+ 
	

(20) 

where the group-valued field B is given by B = wive'. Notice that we have obtained a general and completely 

decoupled result, from which one sees that due to color degrees of freedom, the simple product that one finds in 

the Abelian case becomes here an involved sum. 

The introduction of a flavor index implies additional degrees of freedom which result in N1 independent. fermionic 

field variables. Consequently, the growing number of Grossman (numeric) differentials calls for additional Fourier 

coeficients in the integrand. Dealing with N1  fermions coupled to the gauge field, we can use the fermionic jacobian 

computed for one flavor to the power N1 , while the bosonic measure remains untouched. As we have previously 

explained, the Dirac operator has InIN, zero modes in the Fl ih  topological sector, implying that more fermion 

bilinears are needed in order to obtain a non-zero fermionic path-integral. Moreover, since the flavor index comes 
with a factor N1  on the number of Grassnian coeficients, the minimal non-zero product of fermion bilinears in the 

IP' sector requires of InIN,Ni  insertions. 

Since the properties of the topological configurations are given by those in the torus of Sli(N,), one can easily 

extend the results already obtained in the Abelian case. In particular, the chirality of the zero modes is dictated by 

the same index theorem found in the Abelian theory, this implying that in sector n > 0 (n < 0) every zero mode 

has positive (negative) chirality. In this way, the right (left) chiral projections of the minimal non-zero fermionic 

correlators can be easily computed. 

Let us consider N, = 2 and N1  = 2 in order to present the simplest illustration of expression (20). The minimal 

fermionic correlator then looks 

E( tir,+1.11 0+1,11_1 k_7.1,2 /1,2, 	1, 72 1 , 	2,1, 	2 ,1 	„ 

i w + 	t'r
2 
 /V+ / 
	

ty ) 0-+' tP4--.2 01-
2

1 1 11  = 
1,11 

zo)  E ni DuDvJB e
_ "'„,../i(u 	

D 
1 	 ( 0 

P.V.r.s k=1 (-3 F 

Nc=2 2. 	 ,v.d) ..n i,p q  , k, ..2r, 	k 
k I X  1"k (Y ) X 

J NO:0(k ef Zh 5 1 A(1)1
C ► 
 7P.i: -4, 1  k :r k - k 

	

C+ C+ (X ) (1. (+3.  (Yk  )- 
	 (21) 

where 

81. P' 1 '(x)= iii"(x)(dvd -1 ) 41 .(x), 	 (22) 

(. 4. = 	and -opt ( " )] stands for the Dirac operator as defined in eq.(18). We have used the notation Z ( ° )  for the 

partition function since it is completely determined within the n = 0 sector, see eq.(15). We have showed every color 

and flavor indices explicitly indicating suns and product operations. The GF subindex stands for the gauge fixing. 
The action 	 l St") i  (ti 1 1 	 WZ v d) = N, S 	w(u. v. d) Sm azwe ll(u, u, d) is given by the full gluon field A ( ' ) (d)+ a(u, v), B e   
and yields a high order Skyrme-type lagrangian [14 
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„.The.fermionic;path-integral. can. be  easily done, amounting to the product of eigenfunctions discussed in the 
sections above, as follows 

. -., 1 1)k .DI:k Cf ' 61A(1)1(1  (,ft: k  ak  (t k  ) ..;.k  c I  ' t  (y k  ) = deti(b[A (1) ]) x 

k ( 2)r 
- q+ 	n+ 

( 0 . 1 )4.k 1,  k (0 

	

, - ,,0,2)/ ,k k f y  ) + 111 /pk (0 	k +0,, .2}9. (?) 
n+ 	. ..la' /r1+ 	n+ . 	 k 	 n+ 

	

7(+0,2)r,k 
11+

(0,1),,k 
l
i 

Y 
k ,

/ — 
-(0,2)P,k (0 	

l
,1)q,k, 

z 
k , 

g
-(0.1)r,k (0,2),,k I  k i 

	

7+ 	r/4. 	 i.i. 	fli. 	al / 

+)(0,2)p,k 
r 4 

(0,2)4,k 
 ( X)77+ 

kx-(0.1)r,k 
74

(0,1)s ,k.  (V )) . 

	

. 	. . - 	. (23) 

Here .det i(ii[A (1 1). is the determinat of the Dirac operator. defined in 'eq.(18) omitting zero-modes and (e.g.) 

11(0 . 1)4 .k(?) is a non-Abelian zero-mode as defined in section 2, with an additional flavor index k. Concerning 

the bosonic sector, the presence of the (Maxwell)'term crucially changes the effective dynamics with respect 

to that of a pure Wess-Zumino model. One then has to perform approximate calculations to compute the bosonic 

factor, for example, by linearizing the U transformation, see [14 

4 Conclusions 

We have presented correlated v.e.v.s of an arbitrary number of fermionic bilinears in multiflavour non-Abelian gauge 

theories in two space-time dimensions. 

Using a path-integral approach we have shown how topological effects give rise to non-trivial correlators. These 

results make apparent that the topological structure found in QCD2 for matter in the fundamental representation 

is indeed very important. The gauge fields lying in the Cartan suhalgebra of SU(N) have to be taken into account 

to find significant outcomes for fermion condensates. 

As a byproduct, our approach gives (t.74) = 0 in any flux sector. This is consistent with Coleman's theorem 

which prohibits the spontaneous breakdown of the chiral symmetry in two dimensions. In contrast to the Abelian 

case, in QCD 2  there is no (isosinglet) axial anomaly to give rise to a non-zero mass like condensate (t/nP). Our result 

is in agreement with numerical outcomes and independent analytical calculations based on dispersion relations and 

duality. However, in contrast to ours, these last have been only performed in the trivial topological sector with 

the (additional) assumption of cluster decomposition. Notice that only for an infinite number of colors (large N 

limit), the Berezinskii-Kosterlitz-Thoules behaviour [13] of such a fermion correlator is compatible with a non-zero 

outcome (in the bosonized theory, a la Mandelstam). Nevertheless, for any finite value of N, the axial anomaly 

dinamically breaks the (global) SU(N) A  symmetry allowing the existence of non vanishing correlators for a larger 

number of points, see e.g. eq.(2I). 

In contrast to the alternative approaches mentioned above, our treatment enhance the crucial role that topology 

plays in the QCD vacuum and for this reason it is a suitable scheme to analyse these issues. In particular we do 

not need of a cluster d ecomposition ansatz, nor of the large N limit approximation. 

Acknowledgements 

The author is grateful to Centro Brasileiro de Pesquisas F'isicas (CBPF) and CLAF-CNPq, Brazil, for warm hospi-

tality and financial support. F.A. Schaposnik and J. Stephany are acknowledged for enlightening discussions. 

References 

(1] see e.g. E. Shuryak. Rev. Mod. Phys. 65 (1993) 1. 

(2] II.R. Christiansen and F.A. Schaposnik. Phys. Rev. D53 (1996) 3260. V. Steele, A. Subramanian and I. Za.hed, Nucl. 
Phys. B452 (1995) 545. 

(3) H.B. Nielsen and P. Olesen, Nucl. Phys. B61 (1973) 45. 

[4] S. Coleman, The Uses of Instantons, and references therein. 



494 	 H. R. Christiansen 

[5) H. de Vega and F.A. Schaposnik. Phys. Rev. D14 (1976) 1100. G. Lozano. M.V. Manias and F.A. Schaposnik, Phys. 
Rev. D38 (1988) 601. 

[6] R. Jackiw and P. Rossi. Nucl. Phys. B190 [FS3] (1981) 681. 

[7] H. de Vega, Phys. Rev. D18 (1978) 2932. L. Cugliandolo and G. Lozano, Phys. Rev. D39 (1989) 3093. 

[8) K. Bardacki, L. Crescimano, Nucl. Phys. B313 (1989) 269. 

[9] H. de Vega and F.A. Schapckcnik. Phys. Rev. Lett. 56 (1986) 2564; Phys. Rev. D34 (1986) 3206. 

[10] E. Fradkin, C.M. Naon and F.A. Schaposnik, Phys. Rev. D36 (1987) 3809. 

[11] D. Cabra, M.V. Manias, F.A. Schaposnik and M. Trobo, Phys. Rev. D43 (1991) 3508. 

[12] A.M. Polyakov and P.B. Wiegmann. Phys. Lett. 131B (1983) 121; Phys Lett. 141B (1984) 223. 

[13] V.L. Berezinskii, Sov.Phys.JETP 32 (1970)493, 34 (1971) 610. J.M. Kosterlitz and D.J. Thotdes, J. Phys. C6 (1973) 
• 	1181. 



XVII Encontro Nacional de Particulas e Campos 	 495 

Negative Dimensional Integration Method 
and Massive Feynman Diagrams 
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A constructive method is proposed to solve a class of massive Feynnian integrals within the Negative Dimensional 

Integration Method. The results are compared with the ones given by known positive D methods and expressed in 

terms of dimensionally and analytically regularized integrals. 

The Negative Dimensional Integration Method (NDIM) was first devised and considered by Halliday and Ricotta, 

[I], to evaluate Feynman diagrams. It is based in the following integral 

J dU q 
on TD/2 pi + ‘..k 

t 1'1 	Wra+Di2,0• 
	

( 1 ) 

Since by assumption n > 0, necessarily D < 0. One possible way of checking this result is to consider the familiar 

D-dimensional Gaussian integral, 

I Oil e-A"? (r/2 
	

(2) 

which is notably an analytic function of the dimension D. Considering an analytic continuation to negative D, we 

can expand the LHS of (2), projecting out the powers of the exponential function in the integrand. We have 

Ls ( — A)" D 	n 	A . D12 n!d g (g - ) = 
n =o 

which can be satisfied if and only if the power of A is n = —D/2. which results in the integral (1). 

Thus, by applying the method to compute Feynman amplitudes with propagators raised to some powers, we 

end up projecting out powers of Gaussian integrals and summing finite series, truncated by the negative powers of 

the propagators. 

Let us now consider the Gaussian-like integral 

/r„= 	eqe'q7- `3" -192-n121 = E(---1) wl-c} 13j  f dp q(e) i [( q p) 2  
i.j 

E(-1)'+j 
o tO 

J(i.i:P,m). 	 (4) 
e.1, 

Notice that the integral J(i, j; p, ru) is a ,D-dimensional massive Feynnian integral when D is positive and i and 

are negative. By solving directly the D-dimensional momentum integral we get. 

irn = 	

TD/2 	
e 	-r 2 +am 3 	D/? C 

	

(a + )9)D/2 	 = 
D 	

( 	
".+14 	(P2  ) r  (m 2 ) Y  

	

r.y 	
3r+D/2 y! 

(5) 

( 3 ) 
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Now, the binomial term is given by 

(a  + Q)-z-D/2 = 

a,b 

"■-.01  

a+b=--z— D/2 

- D/2)!  °Q° 
a!b! 

so that, inserting it into the previous equation, we have 

= 7D/2 

Ian G. Halliday et al. 

(6) 

(-. -  D/2)! 02. 4_,,, r3,+1, +6  (p2 ): (m 2 )v 

a!b! 	 y! 	 (7) 

a+b=—r— D/2 

Thus, in order to evaluate J(i, p, m) we compare powers of a and i3 of equations (4) and (7). The comparison 

gives us constraint equations on the sum indices 

i=x+a ; j=x+y+b ; a+b=-x- D/2. 

which can be rewritten in a more convenient way as 

i= x+a ; j=z+y+b ; crE.27-1-y=i+j+ D/2. 

We have, therefore, altogether four summation indices x, y, a, and b with three constraints, such that the solution 

for the J(i, j; p; m) will be given as a single sum. This remnant sum, of course, can be constructed in four different 

ways, namely, 
4! 

C4 = 	=4 
1 	l!3! 

In principle, all this four sums are possible, namely. sums either in x, y, a, or b. For each of these sums, there will 

be a specific possible external momentum and mass relation. If we leave the summation index z we obtain 

y=a-x ; a=i-x ; b=j-a 

and the momentum ratio is given by 

(p2 )2 (nopr = (p2 r(m2y-s = (m 2 ) 0 ( 12;yr  

The solution for J(i,j;p, m) is then 

( _ z. ) 1)/2 (..... in2 ) 0 (1 +01 -a-D/2 	(-1) t (1 - D/2)-r (P 2  irn 2 )z  
(I + A-0 	+ 0-x(1+ - tr -x(1 	)-r 	z! 

I 	/_ D/2.„2Na (I + CO—o—D/2  —% ( - 0r( — c)r  (P2  im
2

)
z 

1—"77 	(1 + j) _o r (D/2)rx! 

+ cr)-0-

-

D/2 
(-1111)/2(—.m2)7

(1 

( 1  + 
	 2F1(—i, -a; D/2; p 2  /m 2 ). 

.i) 

On the other hand, if we leave the summation index y we obtain 

x=a-y ; a=i-a+y ; b=j-a 

and the momentum ratio is given by 

Y  (p2 )r (m 2 ) V  = (P2 ) ° "( 771 ") Y  = (P2 ) °  ( 172"12 ) 

The solution for J(i,j;p,m) is then 

j2  = (_ oi+j iu!rn/2(p2j0 E(_iry  ( — I — D/2 + y)! ( m2/192? 

(i - o+ 	- a)1 (a WV .  

.11 

(8) 

(9) 

(10) 
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Also, if we leave the summation index a we get 

z=i-a ; y=cr-i+a ; b=j-e 

and the momentum ratio is given by 

02 ):( nri: = (p2 ) i- a (rn a)°- +a = (m 2 ) 0 ( 7/2  y ( 2\
1
1  2 	p2 

In this case the solution is 

Ja = (_ 	D 	 - D/2 + a)! 	(m 2 /P2 ) a  
m- 

	

	 a!(j - a)! 	(i - li)!(cr - i + a)! a 

We note that the system cannot be solved in b, so that the solution given in terms of sum in•b, is the empty set: 

r=0 ; y=0 ; a= 0. 

Thus, we have three non-vanishing ways of writing the solution for J(i:j;p:m). Two Of them, given by (11) and 
(13), have the same mass-momentum dependence in the sum. 

Here we propose the following construtive method: the solution for J(i, j; p, rn) will be given by the linear 

combination of the sums with equal external mass and momentum dependence. In other worth', 'the solution for 

J(i,.iiP,M) will be either J(i, j; p, rn) = J1 or J(i,i; p, m) = J2 + J3, i.e., 

- 	 ) (p2 /m yr 
J = 	j;p;m) = (-1)1+i i! j!TD/2(rn2)° E(—I)e 	

D/2

cr)! sqa Z)! 	
(14) 

or the linear combination of the two left solutions that have the same momentum dependence, i.e., 

J = 
oprD/2 (p2 ) 0 	_ s,  (-cr - D/2  + y)! (m2/172 )y 

 

(i 	+ 11)!(i - cr)! 	- 
(15)  

	

iv 7D12( n 2 )0  (P
2 	

E(
_ jr .(—i— D/2 + a)! 	(.171 2 p 2 ) 0 

	

► n 2 	 a!ti - a)! 	(i - a)!(cr - i + a)! 
a 

Now we have to express all the factorials in terms of Pocchhammers symbols. in order to do the analytic continuation 

to positive dimension D. We get 

J = Ji = (-7)1312(-n
„

)- 
(1 + 0 )-0-Dri ‘---1/4 (-I )z(1 - D/2)-r (P 2/m2 ) 1  
 (1 	+j)„, 	F 

	+ 

	

(-7r)D/2(- ►
2

)° 	
cr)- 0-012(-0A-a): (P 2im 2 ) 1.  (16) 

(1 + j)„, 	4-,  (D/2), 	Z! 

	

(1 + a)-°-D/2 ,H 7r )D if2(_ rn 2 )a 	
2F1( 	D/2 i p2 /m2 ) 

( 1  +./)-a 

and 

(1+  a) °_D/_ 
	

, F1(i _ a D/2. -a'; 1 + J = .12 + 	(_D/2(70 	T,2).7 	 D/2 -cr . 	cr; rn 2  /P2 ) 
r 	( 1  + - (I + j) - a 

+(_ 11 )/3/2( m2 )0 ( 	y ( I 	Cr )-0-D/2  2 F1( _ i.1 	Dp2 ;1 	or:m 2 iip2) 

The analytic continuation for D > U and i. j < Gis then straightforward, 

J AC 	.D/2 ( _ m 2 ) 0 	 
2F1( 	D/2;P2/M2) -6 )a+D /2  

(12)  

(13)  

(17) 

(18) 
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and 

j Ac = rD i):4-1)°  2F1(1 — a — D/2, —a;1 + i — m 2  /P2 ) 
( —Cr)2474- D/2 

" •  4-7rD12 (—m 2 )° 	 (—j) 	7 F1(—i,1 — — D/2; 1 — + a; m 211,2 ) 
m 2 	(i + (7)0+D/2 

These are exactly the results given by any positive D method,see for instance [3). Notice that equation (19) is the 

analytic continuation of (18). 

What remains to be done is a generalization of the above proposed constructive method to other massive cases. 

The main idea is to sistematically project out powers of the Gaussian-like integrals for any massive Feynman D-

dimensional integral. Such projection leaves us with constraint equations on the summation indices that have to 

be solved for all the possibilities. We are then left with different mass-momentum dependence solutions, like in 

(9)-(13), such that the final answer will be the linear combinations of the solutiOns having the same mass-momentum 

dependence. 

We have evaluated all the possible massive two and three point functions, including the cases where the masses 

in each propagator are different or some.of them are zero. Our results are in perfect agreement with the ones given 

in reference 131. 

References 
[1] I. G. Halliday, and R. M. Ricotta, Phys. Lett. 8193 (1987) 241 
[2] R.. M. Ricotta, J.J.GiambiagiFestschrift, ed. by H.Falomir et al., World Scientific, Singapura, 1990 

[3) E. E. Boos and A. 1. Davydychev, Theor. and Math. Phys., 89 (1992) 1052 

(19) 



XVII Encontro Nacional de Partici'las e Campos 	 499 .  

A Note on Moments of Gaussian Grassmann 
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The path integral methods has played a central role in many branches in Physics. Among 
the physical quantities that can be written as a path integral, we have the grand canonical 
partition function for self-interaction fermionic system, whose path integral expression is: 

Z(0, p) = 	 r)Diki,r)e - 

f dl fa  tki,r)8,0(1,7),_ 	dr K 	
(1) 

where ti)(1, r) and tki, r) are anticommuting variables with continuos label i and r, sat-

isfing anti-perodic boundary conditions in the temperature parameter r. # is the inverse 

of temperature (3 = 1/kT), and K = H - pN, where H is the hamiltonian of fermionic 

system, t1  the chemical potential and N the total number of particles operator. The varibles 
of functional integral, r) and C.F, r) are generators of a Grassmann algebra. The in-

teraction part of H, introduce in the exponential of expression (1), at last, one power term 
of variables of degree bigger than two. Due to our inability to calculate integrals beyond 
the gaussian approximation, the contribution from the interaction terms of hamiltonian to 
the r.h.s. of equation above correspond to the moments of the gaussian Grassmann integral. 
Formally, these integrals are calculated by introducing an external Grassmann current and 
taking functional derivatives with respect to it. 
Using the anticommuting nature of generators of the Grassmann algebra, we show that the 

moments of gaussian Grassmann multivariable integral are related to the cofactors of the 
matrix of the gaussian exponential. 

1 Moments of Gaussian Grassmann Multivariable Integrals 

It is a known result [11 for a Grassmann algebra of dimension 2 2P;  , composed of the generators {rh, • - - , IN; Tll. • - • , ITN}, 

that 

JFf 	dyhdt e*.)°' 	= det(A), 	 (2) 

where 	are the entries of matrix A and are commuting quantities. 

We will show in this article that the moments of integral (I) are co-factors of A. 

We first consider the case where we have one product Filth in the integrand of the gaussian integral (1), that is, 

'E-mail: IRAZIETOIF.UFF.BR  
SMARTINSOIF.UFF.BR  

t E-mail: MTTOIF.UFF.BR  
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M(!, k) = fl &Of); ►llnk 
N 	 E thAiifh 

(3) 
i=1 

where 1, k are fixed and 1 < 1, k < N. 
Due to the fact that for all Grassmann generators we have: ?).' = 	= 0, i = 1, • • -,N, the only non-null terms 

in eq.(2) are the ones where the integrand has N products of the form: kni• Eq. (2) becomes: 

1 
M(1, k) = f n  dnicIfieqzrir (N - 1)1 	E 	.4.„, 

1'ii2 17i3 • 	Rix—a 
	 (4) 

and the indices are such that in  0 1, n = 1. • , N - 1, and jn 	k, n = 1, 	N 1. Once the product fn.ni. is a 

commutative quantity, each term in the sum of (3) appears (N - 1)! times. 

The (N -1)! distinct terms in (3) can be generated by fixing one configuration for {i 1 ,12 , - • • , iN- 1 } , for example, 

we choose: {i 1  = 1, • • • , = 1 - 1 , it = 1 + 1,- • = N}, and, taking all the terms coming from the sum over 

the indices jn , n = 1, • • • , N - 1. Therefore. it1(1, k) becomes 

Af (1, k) = 	drhdfliqlqk 	E 	A11, " As- 	At+1,j, - Asi N_,x 
1=1 

X fil qi, 112%2 	• Ill-1 %i - 4.4 	ITN I7i N - II • 	 (5 ) 

Renaming the variables: ji 	 1i+2, • • • 	— ix, we have that: 

N 	 N 

	

M(1, k) = I n d„,df„f„„„ 	E 	.41i , " .A,_,...„,_,A,+ „ ii ., • ...4,„„x 
1=1 	 )1. -. ./1-1. 1. 

11+1. - .1N. 1  

x dlRi , 1)2%, • • -11t-ii/11-1 	 111 N • 

Defining the matrix B(1, k) as: 

A ii , 	if i 	/ and j 	k 
Bii(1, 	= bil aik,  if = or j = k 

and i,j= 

Using the definition of matrix B(1, k),the expression of M(1, k) is re-written as: 

M(!, k) = i n 	E 	B111  - 191_ 14 ,_,Bi,j, • • • BNi, x 

	

i=i 	N=1 

X filth 	 • 	 N • 

Integrating over in, and using the definition of determinant {2, 3}, we finally have that 

P4(1, k) = detB = (-1) : + k  A(1,k), 

(6) 

(6) 

(7) 

(8) 

where A(1, k) is the minor determinant of matrix A, when the line I and the column k are deleted. M(1, k) is the 

cofactor of matrix A. 
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Using an analogous procedure, we now consider the case of moments of the gaussian Grassmann multivariable 

integral when we have m products: 

71k, ill, fik, • • • fn. 

in the integrand of (2), where in < N. 

Consider the fixed sets: L = {11,12,- • ,l rn } and K 	k2, • • ,k„,}. We define M(L, K) as 

ti E 

	

M(L, K) 	 • . • 

and the products are ordered such that: 1 1  < 12 < • 	in, and k 1  < k.2 < • • • < 

Using an analogous reasoning, we obtain 

	

M(L, K) = n 	E Bo, • • • 131-1j,_, Bij, • • • BAN N  X 

	

i=1 	j1,•,/N=1 

x • • 	• • fievrei, = deeB(L, K), = (—I W I +12+-44' 1+(ki +k2+-+" ) A(L, K), 

where the matrix B(L, K) is defined as: 

.4ii, 

	

Bii(L, K) = 	6 iii 6ikt. 

if i 0 /1, • - • • i n  and i $ ki, 	kn - - •  

if i = II or i = k1 (11) 

b1l,,,i5jk,,„ if i = in, or j = k m , 

and i, j = 1,2. - - -, N. 4(K, L) is the determinant of the matrix obtained from matrix A by deleting the lines: 

{ 1 1, 12, • - • in}, and, the columns: 0:1, k2, • - -.k,1). 

In summary, we can say that the effect of the presence of a product i)(qk within the integrand of the gaussian 

integral (2), is to replace the line 1 of matrix A, , by dik, and its column k. Au, by Si,. In their turn, 

the determinants of matrices B(L, K), eq.(10), arc easily written in terms of determinants of matrices of smaller 

dimension. Hence products of Grassmann generators cut down the dimension of the matrices the determinant of 

which we are to calculate. 
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Expansio a Altas Temperaturas para Sistemas 
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Exploramos a natureza gressmanniana das variaveis envolvidas na expressio da integral 
de caminho da funciio de particii° gra-canonica para modelos fermiOnicos autointeragentes 
para mostrar, em uma dimensio espacial, uma relacio geral envolvendo os termos dessa 
expansio no limite de altas temperaturas e unia combinacito de co-fatores de uma matrix 
adequada formada por quantidades comutantes.. Aplicamos esse tratamento para calcular 
os coeficientes exatos, ate ordem fr, da funcio de partici.° gra-canonica para o modelo de 
Hubbard em d = (1 + 1) no limite de altas temperatures. Os resultados encontrados sao 
validos para qualquer conjunto de parametros que caracterizem o modelo. 

1 Motivacao: 

Devido a natureza anticomutativa dos carnpos fermiOnicos é comum a utilizacao de diferentes tecnicas de bosonizacito 

para trati-los. Eases resultados dependem da decomposicao utilizada para os campos auxiliares e, portant°, apre-

sentam ambiguidades, quando utilizamos teoria de perturbacio. 

0 Model° de Hubbard (1],que descreve eletrons interagentes, apesar de ser muito utilizado para o estudo de 

magnetismo itinerante em uma grande variedade de dimensees espaciais, apresenta resultados exatos apenas para 

o caso de uma dimensio espacial e temperatura zero. 

Exploramos em urn traballho anterior (2] a natureza grassmanniana dos campos fermionicos para estudar o 

comportamento a altas temperaturas da funcio de partici° gra-canonica para o oscilador anarmOnico fermiOnico. 

Este modelo tern dimensio espacial zero e uma extensio natural e o estudo do modelo de Hubbard unidimensional. 

Em um artigo recente [3] calculamos o coeficiente exato ate primeira ordem em = rir) da expansio da funcio 

de partici° grii-canOnica para o modelo de Hubbard unidimensional no limite de altas temperaturas. Utilizando 

o metodo proposto nesse primeiro artigo, os calculos sat) realizados pars uma rede espacial contendo urn pequeno 

;Amer° de sitios espaciais e tem que ser extrapolados para uma rede contendo urn mimes) de sitios quaisquer. isso 

gera algumas dificuldades numericas, que sao eliminadas atraves de uma simplificacio dos calculos,levando a urn 

resultado valid° para uma rede formada por N pontos espaciais, onde N é qualquer. • 

2 Integrais Mtiltiplas e Momentos: 

E urn resultado conhecido que para uma algebra de dimensio 2 2N temos que: 
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detA = f ri  dtd,„ez„, E 
	

(I) 

onde Ali 	os elementos da matriz A e sae'  quantidades comutantes. 

Mostramos em urn trabalho recente [4] que: 

E lin 	= ( -1 ) 1+k A(1, k) 
	

(2) 

1=1 

onde A(1,k) é o co-fator da matriz A, apos o torte da linha I e da coluna k. 

A dimensio da matriz A esta associada a dimensio da algebra. Portanto, para uma matriz A nao diagonal, a 

dimensio da rede espacial que pode ser calculada corn esse metodo ficara limitada. 

3 Novo Metodo: 

Estamos interessados em estudar o caso em que a matriz A tern a seguinte forma: 

A =  

1 
0 
0) 

1 

—1 
1 
0 

0 

0 
—1 

1 

0 

CD 
CD 
CD 

1 

(3) 

dim[A] = M = nN onde n representa o ntimero de sitios de temperatura: N representa o ntimero de sitios espaciais 

e I a matriz identidade de dimensio N x N. 

Exploramos a estrutura de blocos da matriz A, diagonalizando-a atraves de uma transformacio de similaridade 

dada por: 

onde: 

D = 

P -1 AP = D 

	

a l l 	(D 	0 

	

0 	A ? 1 	0 

	

0 	0 	A31 

	

0 	(1) 	CD 

(I) 
(D 
(I) 
 ) 

ari l 

(4) 

(5)  

corn Ai, onde i = 1,2, ..., a, sendo os autovalores da matriz A. Cada autovalor tern degenerescincia N. Como a matriz 

A nao 6 hermitiana, alguns deles sao complexos. Ape's essa transformacao, os indices associados ao sitio espacial 

nao sao misturados pots a estrutura de blocos da matriz A 6 conservada tambem pela matriz de transformacio P. 

Utilizando essa transformacao de sirnilaridade, as integrals mtiltipias sao reescritas como: 

nN 	 nN 

= J 	dtchh[fig]t[PInkezpi E 
1=1 

(6) 

0 calculo de I se reduz, de acordo corn a eq.(2), ao calculo de cofatores da matriz D, que 6 diagonal. 
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4 Aplicacio ao Modelo de Hubbard unidimensional 

kexpansio a altas temperaturas para a funcao de particao gra-canonica é dada por: 

Z = Tr[e -BK ] = 	- filq+ b12-2- Tr[K 2 ] - 33 Tr[K 3] -1- 
	

( 7 ) 

onde K= H 	H é a hamiltoniana do sistema, p é o potential quimico e N e o operador ntimero total de 

particulas. 

Utilizando a algebra de Grassmann, o traco para qualquer operador fermiOnico pode ser escrito como: 

2nN 

Tr[K n] = I II c iiiidthe2 '2." 14''' 	 0) x 
i=1 

x 	 = 	x 	 n - 1) 

para o modelo de Hubbard unidimensional temos que [3]: 

104 1117(X1. 1-0, 71o(X1, 1"v)) = 

= E E(Eo + crAn - P)iy(zi, Tv)r1o(zr, 74,) + 
1=1 o±1 

+ EE 	rp) 710(zr+i, rv) + 	r0 11a(zr-i Tv)] + 
1=1 0±1 

+ E thj r (zr,r,,)ri i (zr, 7-0111(zi, ri,)71 1 (z i , r„), 
1= 1 

Observa-se que esta é a expressio exata do coeficiente fin da expansao a altas temperaturas da fungi° de particio 

de sistemas fermiOnicos. 

Utilizando a transformacio dada pela matriz 11 , os geradores podem ser reescritos da seguinte forma: 

n—1 

= E q..07„,N+, 
	 (10) 

n-1 

th,N+1 = E 

Corn a utilizacao dense novo formalismo, mostramos (5] que o numero de integrals a scram calculadas a bem 

reduzido. Alem disso, as integrals sae muito mais simples, pois estamos trabalhando corn uma matriz diagonal. 

Grande parte das integrals sao nulas devido as propriedades da matriz diagonal. 

a) Exernplo de integrals Nulas: 

Para n = 2, uma das integrals possiveis tem a seguinte forma: 

2N 	 2h' 
= 	diovnii,+ierpf E 

1=1 

Usando a transformacao de similaridade para n = 2, podemos escrever: 

I 1 
	+ -I I 	 -I 

	

111071+1 = rhrit fi 	risTIN+1+1 	'1N+0114-1 	71N+1 7/N+141 

(8) 

(9)  

(12)  

(13)  
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Esse resultado corresponde. para qualquer valor de 1, ao cilculo de determinantes,de matrizes que possuem 

linhas e colunas identicamente nulas. 

b) Exemplo de lntegrais Nio-nulas: 

Para n = 2, uma outra integral possivel tern a seguinte forma: 

2N 	 2N 

= J 	dihdlhfitrile X PI E vhAum) 
i=. 	,,,=, 

Usando novamente a transformacio de similaridade para 

n = 2, podemos escrever: 

Intn = ►4 11; + 14. 17114:+1 + 	+ q'tv+trYN+, 

Para qualquer valor de I esses resultados sio difcrentes de zero. Mostramos tambem que esses resultados 

independem de I. 

Utilizando esse novo formalisrno obtivemos os coeficientes exatos para 132  e para /3s  da expansio a altas temper-

aturas da fungi° de partici° gra-cam:mica para o modelo de Hubbard unidimensional. Para /3 2  obtivcmos: 

u2 
Tr[K 2] = 2 2N 	

I
[N 2 [(En - p) 3  + (E.0 - jig/ + --) 

16 ' + 
A' 

+ 7[(Eu - /1) 2  + (Eo - p)U  + (A/)7  + 21 2  + 

3 
+ 3 U 2 ]] 8 	. 

(16) 

c para 

32 	 3 
Tr[K 3] = 22N  [NI( Eo - p)3  + Eo /WU + 76 (Eo - + 1+  

+ Af 2 [-3  
(E0 - p) 3  + L-(k0 - 0) 2 U + 

2 
 (Ea - p) + 

2 	 8  

15 	 , 3/ 2 U 3UA 2B + 9U 3  I+  
• 3/ 2(E0  - p) 	(E0  - p)U -  + —4  + 8— + ,71  I+ 

3 	. 	3 	 . 	3/ 2 	 3UA B  
+ N[g(Eo -11 ) 2 U + 	-plU" + -T( Eo - 	8  + 

3t 2 U 	3t1 3 11  

	

4 + 32 " 	
(17) 

A partir dessas expressees(exatas). podemos calcular a energia livre de Helmholtz, e obter entio, expressees 

para quantidades fisicas, tais como: energia media por sitio, magnetizacio quadritica media por sitio. etc. 

5 Conclusoes e Perspectivas: 

Obtivcmos resultados exatos para cada ternio da expansio a altas temperaturas da funcio de partici° gri-canonica 

para urn sistema fermianico descrito pelo modelo de Hubbard unidimensional e periodic°. espacialmente. Esses 

resultados si.o vilidos para qualquer ntimero de sitios espaciais e qualquer niimero de particeies na t.emperatura. 

Ni o ha nenhuma restricio guava() ao modelo fermionico a ser analisado. • 

Os cilculos de termos de ordens superiores estio sendo realizados. alem do estudo da possibilidade de analisarmos 

o modelo de Hubbard corn dimensio espacial maior do que 1. 

(14)  

(15)  
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Violacao de Desigualdades Quanticas 
corn Campos Classicos 
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and 

Adonai S. Sant'Anna; 
Departamento de Matematica - UFPR 

Deceinber 3, 1996 

I Esquema Experimental 

0 esquema experimental usa duas fontcs classicas a l (0 1 ), corn fase 0 1 , e a 2(92 ), corn fase 92, e uma terceira fonte a 

ser estudada, u(0), corn fase desconhecida. A configuracio experimental tern duas deteccoes homodinas, (Di, D2) 

sendo uma e (/33, /34 ) a outra. A geometria do esquma a mostrada na Figura. 

Figure 	Configuracio Experimental Proposta. 

II Funcoes de Correlacio 

Nesta secio iremos computar as funcoes de correlacio que violam as desigualdades. A intensidade no detector II 

pode facilmente ser calculada como 

• E-mail: aCacioafisica.uljf.br  
1  E-mail: assOockharmatanford.eciu 
1  E-mail: adarkaitagausa.rnat .ufpr.br  
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T 

T 11( 0) = 	co T 0 

I 
— 	cos(cat + 01 + ir/2) + 

— 	2 

4— # cos(wt + 0)] 2 dt. 

que 
1 	1 	 1 

/ i  (0) = —#2 	—
8

al.3sin(0 — 0 1 ) + 
8
-0-

.,  
. 	 (2) 

32  

De maneira similar, calculamos as intensidades classicas para os outros tres detectores. Estas intensidades six) 

condicionais na varitivel 9. Para obter as intensidades incondicionais, assutnimos uma distribuicao uniforme para 9 

e integramos as expressOes para todos os valores possiveis de O. 

As intensidade incondicionais I 1 , 12, 13, e 14  pars os detectores D1. D2, D3, e D4 SIO 

I I 	'' /I = = 13 = = 3-2 /32
8

cr• 

Agora comecarnos a computar a covaritincia entre intesidades nos detectores homodinos. A covariimeia que nos 

interessa é entre (ft — /2) e (13 — 14). 

Cov(1 1  — /2,13 — 14) = 

E simples mostra que de (2) e (4) temos 

1 	21 [(// (0)- 12(9)) x ( 13( 9) - /4(0))Y10 
2r fp  

1 i 2T  
— 27r io  (/,(0)— 12(9))d9 x 

f2 * 
2 1r 

x 	(13(9)— 14( 0 ))(10. (4) 

I 	.1 

Cov(11 — 12, — 14 ) =
32

13-0 " cos(9] — 92). (5) 

Para computar a correlacito, temos que saber a variancia das variaveis aleatorias (./1 — /2) e (13 — 14), que sao 

definidas como 

WW1 — /2 ) = )— 
0 
 MR) — /2 (0)) 2 d0 — [

21r 0
—I 

 1 
j 2t U i (0)— /2(0))r10] 2  

..7r  

1 	'1 	'I C1-13 -  
32' 

Var( /3 — 14 ) = 
	

(7) 

Finalmente, podemos calcular a correlagao entre as duas variaveis aleatorias (1 1  — 12 ) e (/3 — /4). Isto é feito da 

trianeira padra.'o, simplesmente dividinto a covariincia pela raiz quadrada das variincias: 

P(ii 	— /4) = 	
Coy(/' — /2,13  — 14)  

V Var(1 1  — 12) Var(/3 — 14) 

e temos a seguinte expressio para a correlacio: 

(1) 

(3) 

(6) 

(8) 

Alt — 12,19 — 14) = P( 91. 02) =, cos(Oi — 02)- 	 (9) 
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III Violagio das Desigualdades de Bell 

Agora podemos mostrar que as desigualdades sac, violadas. Podemos escolher lases 0 1 , 02, Bi, e 0; tal que obtemos 

imediatamente para as quatro correlacOes p(01.02), P(01,0f,), p(0'1 ,02 ) e p(0 11 ,012 ) uma violack das desigualdades 

de Bell na forma dada por Clauser, Horne e Shimony [7], escolhendo quatro ingulos tal que 

0 1  — 02 = 	— 9Z = 60°, 	 (10) 

01 — 	= 30° , 	 (11) • 

Ol — 02 = 90° . 	 (12) 

Em particular, 

P(ei ' 02) — p(BI.G) + p(0 1i  .02) + p(01,0;) 

4 + 	1- T  < —2. 	 (13) 

111.1 Localidade 

lremos mostrar nesta sec -a° que o esquema apresentado neste artigo a local, nurn sentido preciso.Seguimos [12]. 

Localidade requer o seguinte: 

E(X101,02.0) = E(X10 i . 0). 	 (14) 

E Obvio que (14) é obtida imediatamente subtraindo-se as intensidades de cada detector homodino, e observando 

que o resultado nao depende dos angulos fixados no outro detector. A equacio (14) diz simplesmente que qualquer 

que seja o resultado de urns. medida num detector homodino, este resultado tern que depender somente de 0, a 

variivel oculta, e da fase associada a este detector ern particular, e nao pode ser influenciada pela fase do outro 

detector. 

1-V Comentarios Finals 

Existem varios comentarios que temos que fazer pare clarear alguns pontos. 

• Quando usamos campos classicos, o namero de futons é extremamente grande. Por outro lado, as desigualdades 

• de Bell, nao sio suficientes para mostrar que nao temos uma distribuicao conjunta para campos clissicos. 

• Podemos argumentar que se carnpos classicos violam as desigualdades de Bell, entio, como des sio classicos, o 

Teorema de Bell tern que estar errado, e devemos mostrar porque into é o caso. Contudo, tudo que mostramos 

neste artigo a que campos classicos nao tern uma variavel oculta tipo Bell. 

. Agradecimentos J. A. B. agradece apoio partial do Lafex/CBPF, e em particular ao Dr. Nelson Pinto Neto. 

J.A.B. tambern agradece a FAPEMIG por apoio financeiro. A. S. S. agradece ao CNPq por apoio financeiro. 

References 

[1] A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, (1982) 1804. 

[2] A. Aspect. P. Grangier, G. Roger, Phys. Rev. Lett. 49, (1982) 91. 

[3] J. S. Bell, Physics 1, (1964) 195. 

[4] J.S. Bei!. Rev. Mod. Phys. 38, (1966) 447, 

[5] N. Bohr, Phys. Rev. 48, (1935) 696. 

[6) N. Bohr and L. Rosenfeld, Det. Kgl. Danske Videnkabernes Selskab., Mat.-fys. Med. XII, (1933) 8. 



510 	 J. Acacio de Barros et al. 

[7) J. F. Clauser and A. Shintony, Rep. Prog. Phys. 41, (1978) 1 881. 

[8) A. Fine, Phys. Rev. Lett. 48, (1982) 291. 

(9) .  P. W. Holland and T. R. Rosenbaum, Ann. Statist. 14, (1986) 1523. 

[10) M. Loeve, Probability Theory 11, 4rd edition, (Springer Verlag, New York, 19781. 

[11] A. Peres, Quantum Theory: Concepts and Methods, (Kluwer, Dordrecht, Holland, 1995). 

[12) P. Suppes and M. Zanotti, in Logic and Probability in Quantum Mechanics, ed. P. Suppes (Reidel, Dordrecht, 1976), p. 
445. 

[13] P. Suppes and M. Zanotti, Synthese 48, (1981) 191. 

[14] S. M. Tan, M. J. Holland and D. F. Walls, Opt. Commun. 77, (1990) 285. 

[15) S. M. Tan, D. F. Walls, and M. J. Collett, Phys. Rev. Lett. 66, (1991) 252. 

[16) D. F. Walls and G. J. Milburn, .Quantum Optics, (Springer-Verlag, New York. 1994). 



XVII Encontro Nacional de Partici'las e Campos 	 511 

Hamiltonian Structures for the Generalized 
Dispersionless KdV Hierarchy* 

.1. C. BruneMI 
Universidade Federal de Santa Catarina 

Deparearnento de Fisica - GPM 

Campus Universitcirio - Trindade 

C.P. 476. CEP 88040-900 

Plorianopolis. SC - BRAZIL 

We study from a Hamiltonian point of view the generalized dispersionless KdV hierarchy of 
equations. From the so called dispersionless Lax representation of these equations we obtain 
three compatible Hamiltonian structures. The second and third Hamiltonian structures are 
calculated directly from the r-matrix approach. Since the third structure is not related 
recursively with the first. two ones the generalized dispersionless KdV hierarchy can be 
characterized as a truly tri-Ilamiltonian system. 

An interesting class of nonlinear equations are the so called dispersionless Lax equations which are the quasi-

classical limit of ordinary Lax equations. This quasi-classical limit corresponds to the solutions which slowly depend 

on the variables x,/. Taking the .KdV equation 4u t  = fiuur  and dropping out the dispersive term (through 

the substitution 7, -. 	 and e —.0) we end up with the Riemann equation 

3 

	

= - tiny 	 ( 1 ) 
2 

Solutions of (1) can be written through the implicit form (1) u = f(x — ut) and this dependence gives rise to the 

hreaking of the wave shape leading to a transition from conservative to dissipative behaviour [2]. As it is well 

known the balancing between the dispersive and nonlinear terms is responsible for the soliton solutions and the 

integrability of the KdV equation. What is interesting is that the Riemann equation, at least before the breaking 

of its wave solutions, is a integrable Hamiltonian system much like the EdV. As point out by Olver and Nutku [3] 

equation (1) has an infinite sequence of zero order conserved charges 

. 
H i  = 	u 	

4 
H3 = -

1 
I thr , H5 = 	dx u 3 	 (2)  

and has three first-order Hamiltonian structures given by 

DI = 	, 	= ua + ou, 'D3  = u 2 0+ au2 	 ( 3 ) 

These three Hamiltonian operators are compatible in the Magri's sense [4,5] making (1) a tri-Hamiltonian system, 

i.e.. it can be written in three Hamiltonian forms 	 • 

6H r, 	r, /I3 	3 	6/f t  
lit =1-11— 

1)11 	
(Cu = 41'3 

6u 	
(4) 

However, it is important to point out that since D3 D•rDE the Hamiltonian operators are not trivially related. 

Therefore, the Hamiltonian structures (3) make the Riemann equation a truly tri-Hamiltonian system. From Magri's 

theorem [4.51 the Hamiltonians (2) are in involution with respect to any of the three Poisson brackets 

6

6r1 	b

11 	6H 
dr 	"1), 	= 0 	1 = 1,2,3.... 	 ( 5 ) 

u 
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Whence, (1) is an integrable Hamiltonian system. 

Although we have Lax representations for the Riernann equation we do not know how to use them for an inverse 

scattering problem or use the pseudo-differential operator algebra to obtain its Hamiltonian structures through the 

Gelfand-Dickey approach 16). However, Lebedev (7) has notice that for the case of Benney's equation an alternative 

Lax representation is possible. This Lax representation is called dispersionless Lax equation and was also considered 

by Krichever [8] in his studies about topological minimal models. 

. The dispersionless KdV equation (1) can be obtained directly, bypassing the dispersionless limit of the KdV 

equation. Let Et, be the polynomial of degree n in p [8] 

pn u _ ipn- 	uopn -2 + • • + Ein-2 = E un_i_2pi 
	

(6) 

where u_ 2  = 1 and the polynomial coefficients ui are functions of the variable x and various time variables i f 
 (k = 1,2,3, ...). We denote A+  and A_ the parts of the Laurent polynomial A containing nonnegative and negative 

powers of p respectively. The generalized dispersionless KdV hierarchy is given by the Lax equation 

E„ 
 = {(EE 7")+. E„} = (En , ( 	'1 )4 	 (7) 

Oi k 

where the bracket is defined [7,9) to be 

{A, /3} = ap A 0,8 - Op B a,. A 	 (8) 

and Enk1 " is the kth power of the Laurent polynomial e l  satisfying (en )" = En• 

Now, for general Laurent polynomials of the form A = Et- ai(x)pi we define its residue as the coefficient of 

the p'• term (FtesA = a_1) and the Adler trace [10] as Tr A = f dr ResA. 

Let us note from (7) that we can write 

0EV'' = i(Enk in ) + , ETI n i (9) 

 

k 

for an arbitrary integer m. Taking the trace of (9) and after using TrIA, B) = 0 we obtain ihryr(E,",47) = 0. 

Thus, we define the conserved charges as 

- 	= L Tr (Errinin ) , m= 1, 2, 3 . . 	 (10) 

It is easy to show that a  0„, i.e., the flows given by (7) commute. Therefore, the hierarchy of equations 

(7) has an infinite number of conserved laws (10) and an infinite number of commuting flows and can be formally 

be considered integrable. 

Let us illustrate these results for (6) with n = 2 and u_ i  = U. We obtain for E2 E E = p2  + u and uo = u 

I 	I 
EI/2 =

2 -3 	I a ii 	4 	7 — 
PA- ";)-1 — l u P  + -Ir P 	128 ti P  + .- ' 

E312  = 	3 3 	3  2 -1 p + .7., up + VI P + - • • 

15 , 	5 3 
E512  = p -s  + vip -3  + i  u`p + 7t, p

_ i 
 +... 

E7/2 = 	7 7 	36 	3 35  3 	
35 4 P + tIP

5 
 + —8- u

2 
 p + -- II P + -=- u P - I + • -. 

2 
 

16 	128 

From (9) we get .the hierarchy of equations 

au 
= Ur , 

en1 

au _3 

' 

au 	15 2 . 	an 	35 
— = --u 	; 	= —u3 Ur  , ..•. oi, 	8 	• 	atr 	16 • 

(12) 
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The conserved charges from (10) are 

1 
1/1 = 	u 	H3 	- 

4 	 8 	 64 
d.r. u 2  , 115  = 	dx u 3 	117 = — 	dx u 4 ,... 	 (13) 

Thus, from (12) we get the Riemann equation as the first nonlinear equation in the hierarchy. Also, the charges 

(13) are exactly the Hamiltonians (2). We call (12) and (7) the dispersionless KdV (Riemann) hierarchy and the 

generalized dispersionless KdV (Riemann) hierarchy, respectively. 

We can derive in a systematic way the first Hamiltonian structure associated with the generalized dispersionless 

KdV hierarchy of equations (7) following the Drinfeld and Sokolov approach [II] as in [12] for the usual KdV 

hierarchy. Starting from (7) we get 

- I 

kTr k,'„Q = E 	
15Hr,+fr 

dy'rr Eo(lii(x,Y),Q(.1 )} (suTi _ i _ 1(y)  
i=1 

where 	y) E 6(x -Or' and Q = ET:= 	 is the dual to En . Here the q's are assunied to be independent 

of the u's. This yields a linear functional 

- 

'Fr F.„Q = J dx E un _ i_2 qn_i_2 
i=0 

If we want to write (14) in Hamiltonian form as 

a 	 - I 
(51-/ n .f k 

otk 
Tr En Q = {Tr E„Q, 11„.Fk}i = E f dy 	E„Q, Tr E„ } 16un_i_i(y)  

(where we have used that Tr Er,Vi(x.y) = u„_;_ i (y)) we get. after comparing it with (14) 

{Tr E,Q,Tr 	= TrE„{Vi,Q} 	 (17) 

In this way, the dispersionless Lax equation (7) can be written in Hamiltonian form with respect to the first Poisson 

bracket 

(Tr En Q,Tr E„1.1  = Tr WV, Q} 	 (18) 

for any dual Q and V relative to E„. 
As an example let be E, E E = p2  + u_ i p + uo with the duals 

, = u_ p - + uo p - I , Q = q_i p -r tin p I (19) 

We get that 

Tr E{ V. Q } = 2 j dx (1 0 4 	 (20) 

Tr EC2 =i dx (U_ I ii_ i  + uoq0) 

'Fr Eli = 	dx (u _ It: - 1 + uovo) 

Now, (18) yields (constraining E2 to E = p:' + u. where u E uo and u_ i  = 0) 

in(x)- n(Y))1 = 2 06(x - y) = Dib(r - y) 	 (21) 

which is the first Hamiltonian structure for the Riemann equation (1). 

We can try to write the dispeisionless Lax equation in other. Hamiltonian forms. However. we can use the 

algebraic structure behind the dispersionless hierarchy and apply the r-matrix formalism to obtain the other Hamil-

tonian structures. It is well known by now that the so called first Hamiltonian structure of integrable models is 

(14) 

(15) 

(16)  

i=1 
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the sympletic structure of Kostant-Kirillov [13] on the orbits of the coadjoint representation of Lie groups [10,14]. 

For dispersionless equations given by the Lax representation (7) the corresponding Lie algebra is given by the asso-

ciative algebra of Laurent polynomials endowed with the bracket (8). The Hamiltonian structure (18) can also be 

obtained from this result. Semenov-Tian-Shansky [15] has shown that the multi-Hamiltonian nature of integrable 

equations could be explained in terms of the so called r-matrix. Let g be an abstract associative algebra with a 
non-degenerate trace form Tr: g 	R. In this way we can identify g with its dual g• by (441B) = 11-AB. Also, we 

can use the natural Lie algebra structure obtained by [A, B] = AB - BA on g. The linear mapping R: g 	g is 
a classical r-matrix on g whenever the modified bracket [A, Bin = [RA, 8) + [A, RB) satisfies the Jacobi identity 

[15]. This gives us a second Lie algebra structure on g. The modified bracket satisfies the Jacobi identity if the 

modified Yang-Baxter equation holds. The important result for us is that the new Lie product endows g = g• with 

new Poisson structures. The first one is 

{Tr EQ ,Tr EV} = 72.1 Tr E (IQ MEV)) + [R(Q E), V]) 	 (22) 

where Q and V are duals to E. This expression was given by Semenov-Tian-Shansky [15] and it is the analog of 

the second structure of Gelfand-Dickey [6]. In references [16] a third Poisson structure was introduced 

{Tr EQ, Tr EV ) 3  = Tr E([Q, MEV E)1 + [R(EQ E), V]) 	 (23) 

and it was shown that the Kostant-kirillov structure (which gives (18) in our problem), (22) and (23) form a 

compatible tri-Hamiltonian system. i.e., the three structures are compatible in Magri's sense [4,5]. 

For Lie algebras that call be written in the form g = g +  e g_ the r-matrix on g is given by R = P+  - P_ where 
P±g = g±  are the projections onto the subalgebras. For our particular case of dispersionless equations it is clear 
that g +  = 1/1.1. E0.0  ai(x)pi and g_ = {A_ = a_i(x)p -9 with trace already defined for the Laurent 

polynomials and bracket given by (8). So, the Poisson brackets (22) and (23) assume the form 

{Tr E„Q,Tr E„V ) 2  = 

= 	En(fo (EnV)+} - {Q,(EnV)4 + {(EnQ)+ V } - f(En(4)_ , V)) 
	

(24a) 

{TrE„Q,TrE,V} 3  = 

= Tr E„ (IQ , (E";;V) +  - {Q,(e;;V)_} + {(E;;Q) + , V} - [(EZQ)_ , v)) 
	

(24b) 

Let us again use the Riemann equation as an example. Using E2 and (19) we get, after an straightforward algebra, 
the following Poisson brackets from (24) 

lu_1(x),u_ 1 (y)} 2  = -285(x - y) 

{u_1(.0,uo(Y))2 = -0a .-145(x - y) 
	

(25a) 

{uo(z).uo(b)}2 = (10 + Ouo - 	 y) 

{u_1(x),u-1(Y)}3 = -2 (nod + atio) 6(x - 
ite-1(4 uo(Y))3 = 	(2ausu-1 + 	tau- 1) 6(x - y) 	 (256) 

{u0(x), tio(Y)}3 = (48 + aug - _ L auo u_ - uo u_ jou_ ) 45(z - y) 

In the second and third brackets (25) u_ 1 	is coupled to itself and 10 uo. 	From 
{n71 (.0, u_i(y)) in (25) it follows that u_ 1  = 0 corresponds to a second class constraint and we•have to use 
the Dirac reduction. We then obtain 

{u(r),u(y)) 2  = (u0+ t)u)S(x - y) = '1: 02n(z - y) 	 (26a) 
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{ u( z),  it(y)} 3  = (u 2 0 + 0u 2 )15(2. - y) = D36(x 	y) 	 (26b) 

where we have set u = us. These are exactly the Hamiltonian structures in (3). 

Finally, the kth flow in the generalized dispersionless KdV hierarchy (7) can be written in Hamiltonian form as 

au614+„ 	6Hk k(k -2) bHk, 
= 	= 	 (27) 

k 	Su 	Su 
= 

( k 1)2D Su 

where k > 1 and u = (u-1, 	un-•). The Hamiltonians H„ are given by (10) and the Hamiltonian structures 

7)1, D2 and D3 can be obtained from the Poisson brackets (18), (24a) and (24b) respectively. For n = 2 we obtain 

from (27) the dispersionless KdV hierarchy of equations (12). 

With our results we can study the higher Hamiltonian structures of other interesting dispersionless systems. For 

instance, the classical dispersionless long wave equation u, + nu, + h r  = 0, h t  (tih), = 0 can be derived from the 

Benney's system [17) of equations. It. is not difficult to check that it. has a simple dispersionless nonstandard Lax 

representation g {E, (E2 )> 1 ) where E = p + u + Ihrl and the bracket is given by (8). Here (E 2 )>1 stands 

for the purely nonnegative (without p° terms) part of the Laurent polynomial obtained from E 2 . For dispersive 

systems the nonstandard Lax representation was introduced by Kupershmidt in [18] and the generalization of the 

Gelfand-Dikii brackets was performed in [19]. The derivation of the Poisson brackets for equations with nonstandard 

dispersionless Lax representation is an interesting and relevant problem and is under investigation. These algebraic 

techniques can also be applied in the study of the classical limit of %V-algebras [20], which are related with the second 

Poisson structure (22). Also. in the study of the dispersionless KP an d dispersionless Toda lattice hierarchies [21] 

the usual quasi-classical limit from the ordinary KP and Toda hierarchies can be bypassed using the algebraic setup 

described in in this work. 
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We examine the problem of the Dirac monopole in the light of Serre-Swann's theorem 

identifying the space of sections of (complex) vector bundles over the sphere and the pro-

jective modules over the algebra of complex-valued functions. These modules are defined 

by projection operators classified by 7r2(.5 2 ) Z. On these modules we construct hermitian 

connections with values on the universal differential envelope. The Connes-Lott program 

is applied using the Ililbert space of cotnplexified inhornogeneous differential forms on the 

sphere with its Atiyah-kiihler algebra structure. This Hilbert space splits in two minimal 

left ideals of the Clifford algebra. providing irreducible representations for it. The Dirac 

(kahler) differential operator D = i(d — 6) preserves the splitting. Both ingredients induce 

a representation of the universal differential envelope. lit order to recover its differential 

structure, a quotient with the "junk" is taken and yields the complexified de Rhain exterior 

differential algebra over the sphere. The subsequent steps of the Connes-Lou. program al-

lows to define the fermionic action, and the field action is obtained using the Dixmier trace 

once the connection and curvature are reduced to de Rham forms. 

A similar treatment. to describe the instantons using the algebra of functions on S 4  with 

quaternionic values is in progress. 

1 Introduction 

Non commutative geometry is an attempt to introduce new geometrical contents by taking as primary entities 

associative algebras instead of the customary spaces. The relation with the usual treatment is provided by a 

theorem of Cel'fand and Naimark that. associates the space of irreducible representations of C*-algebras with a 

topological space [1]. For the algebra of functions on a manifold, the resulting space is homomorphic to the original 

manifold. 

In recent years, Connes 14 applied these ideas looking for a geometrical setting for models in elementary particle 

physics. One of the most interesting results is that. the liiggs field may appear as a component of the connection in 

a generalized algebraic structure. In his work with Lott [[2]] where this result was first made explicit, they wrote a 

recipe for the construction. In full generality, the procedure is quite elaborated and many corners of it arc not clear 

enough. In this work, we propose a rather simple application with well known physical and mathematical features, 

in which we display the main operations necessary with a rather modest mathematical apparatus. 

This brief report condenses a longer version which will be submitted for publication elsewhere [3]. In the next 

section we sketch the procedure which leads to the construction of a universal differential envelope for the algebra 

of C"'-functions on the sphere, when this surface is stereographically projected on euclidian charts. 

The next section is devoted to the formulation of the projection on algebraic modules, and we show how they -

are classified by the homotopy group 7,-,(5 2 ) Z. The connection and curvature are calculated, and the role of the 

topological properties is made explicit. 
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The last section is a short description of the construction of a 'spectral triple" a la Connes. We introduce, at 

variance with the usual procedure, a Hilbert space formed by the inhomogeneous differential forms, endowed with a 

Clifford product. The analogue of the usual Dirac differential operator is its version proposed by Eahler [41, which 

reads D = i(d — 6), where b is the codifferential operator adjoint to d within the natural inner product in the space 

of differential forms. 

The results are analogous to the ones provided by the study of the Schwinger model on the sphere (51, and they 

are applicable to the study of Dirac's magnetic monopole, since the configuration space for it retracts onto the 

sphere. 

2 Differential Geometry on the Sphere S2  

The sphere of radius r is defined as S 2  E {p = (x,y,z) E R. I .r 2  + y2  + : 2 } ; its stereographic projection on the 

equatorial plane is given in the austral chart 11,., 	{p E S2  1:: < r) by: 

HA —• R.2  : (X. Y. -;) 	q). where 6, 	, = 	 ( 1 ) 
r—. 	r — z 

whose inverse is easy to find and the analogous projection on the other chart, PB, too. 

A complex coordinate for the plane, (A = 	lib is related to the usual polar and azimuthal angles through 

	

(A  = cot(0/2) exp(iv) . 	 (2) 

and corresponding expressions are obtained in the boreal chart for the complex coordinate 

region, HA n HB one has (A(B = 1. 

Differential forms (k dri) and the zweibein (0. 0") are related through 

	

= —2 	or/ = 1-(111 

	

f A 	1.4 

with IA = 1 + I CA 12 • The metric on the austral chart is inherited from the euclidian metric in R 3  and is 

= 	0 et +O? 0 0" 	 (4) 

1 
= 1 (OA`Q-')OA +OA 00A c ). 	 ( 5 ) 

with O A = 	ir and A c  its complex conjugate. 

A local basis for the space of differential forms on the sphere, :r.(s2) is given in HA by { I, eg,04 ,c4)}, with 

= 	A 0". 	 (6) 

the oriented area element. 

The Levi-Civita connection reads 

	

D OF = —V 0? — 710( 	0" • 	 ( 7 ) 

and an analogous expression for 0". 

Through the Hodge duality operator, a. 

* : :Fir ) (.5 2 ) — P 2-1 ' ) ( S2  ) 
	

( 8 ) 

one defines an inner product in the space of p-forms. :Pr ) : 

	

< Q./3 >= f a AO. 	 ( 9 ) 

Besides, 

CB- On the overlapping 

( 3 ) 

a A *0 = g 	0)‘..) 	 (I 0)' 
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where g -1  is the inner product with values on 

On the Grassmann algebra of differential forms a Clifford product is introduced for one-forms: 

0V0=0110+g -i (a,#). 	 (11) 

The Clifford algebra must be complexified in order to have non-trivial solutions for idempotents: 

1 

= 2 
-(1 iw) (12) 

that projects on its two minimal left. ideals. The Dirac-Kahler differential operator, defined as 

= i(d 	45) 	 (13) 

where b is the adjoint of the exterior differential d with the inner product defined as above in PP ) , preserves the 

minimal left idealsTf L , and the Hilbert space completion of .F'(.5 2 ) may be written as the direct sum of the Hilbert 

spaces generated by each minimal left ideal (with a suitable inner product). 

3 The Projective Modules over C°°(S 2 ) 0 C 

The universal differential envelope of an algebra A is defined as a graded differential algebra 

12„'(A) E- (6)12,, (k)(A),4), 	 (14) 
k=0 

with i1."})  = A and du  is a formal differential [1, 6]. 

A right (left) module of an algebra A is a set of elements of the algebra that transform among themselves by 

right (left) multiplication by all the elements of the algebra. The universal differential envelope defined above, 

11„*(A) is a bi-module, and its tensor product over A with a A-module M is well defined. Given a connection in 

v M 	Q u i I)(M ) M 0 fl u ( I) (A) , 	 (15) 

it can be extended to the whole of 11„ . (M). On a basis Ei, i = I... ,N for a free module, the connection is given 

by an N x N matrix with entries - in Ou ll) (A): 

v = Ei 0 	 (16) 

The curvature v2  of the connection is a module homomorphism. 

A herniitian projective module of finite rank. Mp, over A. is obtained from a free module (the algebra itself or 

a finite tensor product of it) as the image of a projection operator P, P 2  = P, Pt = P. In our case, the algebra 

A = C`°(S 2 ) p C, and it. is enough for our purposes to consider the unidimensional projection from A 0 A which 

can be written as 

P(77) = 1(1 + n'cro ) , 	 (17) 

where the components n° are real functions on the sphere and are normalized to unity, and au  indicates the 

three Pauli spin matrices. The projection so constructed is then given by a mapping 57  52 . The mapping is 

characterized by the second hoinotopy group, 7r2(5 2 ):=:-  Z. 

Choosing as a representative for a class [ff.] the mapping which preserves the southern pole, (1.0,0), is given, on 

the austral euclidian chart H 

, if [ffi = k 

vA = KA`) 1k1  .if 	-k 

where k E Z+ and I/ A is the complex coordinate of E 5 2 . 

} 

	

(18) 
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A connection pp on a projective module Mp = PM is obtained from the one in M, p, by 

OP= P 	: Mp — Mp.0A IL (1) (-4), 	 (19) 

and, correspondingly, a curvature is obtained which keeps track of the non-trivial topology content of the projection. 

It is the contribution inherited from the projection which prevents to write the curvature as a differential of a globally 

defined connection one-form on the sphere. 

4 The Spectral Triple {A, H. D} 

In the sense employed by Connes [2] the spectral triple in our case has the following components: 

• A = Cw(5 2 ) C 

• 7-i is the Hilbert space obtained by the completion of a minimal left ideal,I + E . using a convenient (spinor-like) 

inner product. 

• 7) is the Dirac-Kahler differential operator restricted to H; it is self-adjoint and has a compact resolvent. 

On N there is a faithful *-representation 70 of A on the bounded operators, C(H): 

	

71 0  : A — £(7-1) : f — = 70(f) 

	
(20) 

(j tb)(x) = f(x)111(x) 	 (21) 

The universal differential algebra is mapped in C(fl) as an extension of 71 with the help of the Dirac-Kahler 

operator: 

	

7 :1"2,, '  (A) — 	: thu 	T(Ou) 
	

(22) 

where 

r( fad. f 	du fp) = fo [71  D. Id -  • •[ 1 	ipi • 	 (23) 

The resulting set, however, is not a graded differential algebra. which is obtained by taking the quotient with 

the ideal formed by Ker(r) + d(K er(a)). At the end, we recover the de Rham algebra of differential forms on the 

sphere. This allows to obtain the lagrangian for an abelian Yang-Mills field via the Dixmier trace [1, 2]. 

To proceed with the Connes-Lott program one needs to construct the matter field lagrangian. In our case, this 

matter field is represented as a vector of a new Hilbert space obtained via the tensor product over A of N and the 

projective module Mp. 

xF =MP0A N 
	

(24) 

This allows to introduce a covariant. differential operator, D v , which contains the interaction with the Yang-Mills 
abelian field. 

Minimization of the lagrangian results in a curvature for the Yang-Mills field 

p = cbc + 	 (25) 

where is a globally defined one-form and p,„ is a monopole field which in the cartesian chart HA is 

= 	
1 	

di, A  A duA c  
(1+ 1 l'A i 2 ) 2 

	 (26) 

and an analogous expression in the other chart. These results are in agreement with those of Jayewardena [5]. 

For the matter field, minimization leads to the covariant, Dirac equation of Senn and Tucker [7]. 
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The Virasoro algebra of a 1+1 black hole model 

J. F. Comes, F. E. Mendonca da Silveira and A. H. Zimerman 
• 	Instituto de Fisica Teorica - UNESP 

In this work, we study a model of the conformally invariant non Abelian Toda type with 

presents a black hole structure, according to a Hamiltonian reduction procedure. Based on 

the work of Bilal (A. Bilai, N tic. Phys. B 422 (1994) 256-288). we follow a WZNW formalism 

to construct a single black hole action with interacts with the Toda type fields, through a 
particular choice of a grading operator that acts on a so(S) Lie algebra. for the example of 

a spin 3/2 model. We study also the symmetries, generated by the remaining currents of 

the above Hamiltonian reduction. with satisfy an algebraic structure of the Virasoro type. 

Finally, we are able to express the currents algebra in terms of free fields. 

The so(5) Lie algebra has two simple roots. Lets call them, as in the Weyl-Cartan basis, o i  and 02, and write 

them as 

rte = r. i  — C2 

and 

CV 2 = 	• 

where e l  and e.2 are typical elements of the Clievalley basis. 

These elements satisfy the usual scalar product relations 

e -e1 = 6if 

with 

(1)  

(2)  

(3)  

j = I , 2. 	 (4) 

If we define a grading operator as 

2(0 1  + 0 2 ) • If 
Q = 	

(o + 0 2) 2  

where the operator H is related to the Cartan generatores h1 through 

20i • II 

	

— 	o 
 

then we can write an arbitrary element. g E SO(5) as the Gauss decomposition 

g = N13.41, 

where we define 

N = exp(tbi Ep, + th2E0L+u, + 11 ,3E„, +2„,), 

13 = exp(t6 E., + 6(01 +02) + PQ + XE-03) 

(5)  

(6)  

(7)  
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M = exp( 	E- 	+ x 2 E_o, + x3E- a z  - 20,1 - 
( 10) 

If we impose the constraints 

J_0, 1  = 1, (11) 

and 

1_ 0 ,_ o , = 0 (12) .  

Lai -2E12 = 0, (13)  

On the J current components in the direction of the elements with negative gradation and the gauge fixing 

fh, = 0, (14) 

and 

Jo , = 0 (15) 

Joi +2 o 2 = 0, (16)  

on the J current components in the direction of the elements with null gradation, we will obtain the expressions 

for the non-physical fields 

= 0_ o - 0_ p. 	 (17) 

x 2 = a- x x(0-p + 0_ 0)- x=a_ oe - o- P 	 (18) 

and 

(19) 

The gauge fixing 

.4 2  = 0 	 (20) 

leads to the black hole condition for the model 

a_p+ x0_ ti,e - °-  P = 0. 	 (21) 

The remaining currents read as 

= 	tbf 	P . 	 (22) 

Jo, = 0-Xi + Xi + 20- tbe -st-P 	 (23) 

and 

	

Jai +u2 = 0-x2+ xix2 — 	 (24) 

	

The Polyakov-Wiegmann term can be writen as Tr(B Eo , 	with furnishes the Lagrangian density 

L = a_08+6 + a_ pa+  p - e -26  28_o8+ 	 (25) 
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The proposal of the coordinate transformations 

= tVe." 2 	 (26) 

and 

X = XY12  

leads to the expressions for the black hole conditions and for the constrained Lagrangian density 

-P = 	  • 
1 + . .7 0'x'e -  

(:)+P = 
1+ ki' l Ve? -4.  

and 

a_ Li/ a+ x i e.-0 
L = 	 + (1)0+ 0 + 2 	1  

1 + thlyie - c' 

with furnishes the canonically conjugate momenta 

20, 	 (31) 

20+'  c - 
a,,,.. = 	 (32) 

I + 

and 

Z 
v

■ = 	 
1 + 4.VJx`e - ° 

28_ ti/e - 	
(33) .  

The usual Poisson brackets for the physical fields 	and x, together with the Dirac brackets for the non-local 

field p leads to a Virasoro algebra for the remaining currents. In fact, 

{Li -02(a),..1-.2(ff i } 1 = -..1-02(a) ,1 -02( 61 )1): 16 (cr - 	1. 	 (34) 

{J,„,(cr),4,,(al)} = -6'"((r - as) + 2J,•,,(cr`)b 1 (a - 	- 4,,,(cr')6(cr - a') 	 (35) 

and 

iJa1+a2( 1 ), Joi+,.2(ef i )) = 21  Jui+.3(cr)Jc.,+0,2(ce)(9 : 16 (cr - 
	

(36) 

Finally, if we consider the coordinate transformations 

= 	— th` 
	

(37) 

and 

= pi + 	 (38) 

and define the free fields as 

- ti/0+  x'e 

(27)  

(28)  

(29)  

(30)  

ti7 = 1+• 	 (39) 
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x = f- e°° , 	 (40) 

4' =f1 
	 (41) 

and 

P' = /2.   

together with the ansatz for the comutation relations for these free fields 

(42) 

(43)• 

	

{fi(a),fi(o')} = - 8a='a(a - a'), 	 (44) 

	

= - 8= 'b(a - a'), 	 (45) 

	

= —a:'l( a — a'). 	 (46) 

{ j(a), f.(a')} = j_(a' }o='b(a - a'). 	 (47) 

	

= -2 f+(a')i ^= b(a - a'),.. 	 (48) 

	

= -f-(a)f-(a')8_'6(a - a'). 	 (49) 

	

; -f+(a}f+(a')v='b(a - a`) 	 ( 50) 

and 

{f-(a), f+(a') = f-(a)I+(o')a= 1 b(a - a') + 1b(a - a'). 	 (51 ) 

we will be able to reproduce the above Spin 3 /2 Virasoro algebra . for the corresponding remaining currents. 
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Asymptotic Dynamics in QED 3  

J. L. Bo1do7 B. M. Pimenteltand J. L. Tomazellit 
Instituio de Fisica Teorica 

Universidade Estadual Paulista 

Rua Pamplona. 145. 01405-900- Sdo Paulo. SP • Brazil 

in QED the method to deal with non-stationary processes as electron scattering by an external potential with 

the emission of a finite number of low-energy photons, using the S matrix expansion in powers of e 2 , leads to 

divergences in the probability amplitudes for such processes. These divergences in the low-frequency region are 

known as infrared divergences. 

The pioneering program of taking into account. the collective effect of low-enegy photons was accomplished by 

Bloch and Nordsieckill in the late 30's. They showed that the probability of emission of a finite number of low-energy 

photons is zero instead of infinite, as predicted by perturbation theory. On the other hand, when the transition 

probability is extended to all possible final states one gets a finite result. 

One can attribute to the infrared divergences an incorrect choice of the asymptotic states which can be compared 

with the experimental data besides the ill definition of the scattering operator, where the asymptotic dynamics 

is not taken into account. Murota( 2 ) was the first to incorporate the exact contribution of low-energy photons 

in the definition of the S operator. Later Mulish and Faddeev 13] proposed in addition to the redefinition of this 

operator a modified space of asymptotic states. The Kulish-Faddeev model is based on early arguments, mainly 

those of Kibble [4] . where the Fock space representation of the Hilbert space. containing a finite number of low-energy 

photons. is replaced by a coherent-state representation for an infinite number of these photons, in such a way that 

matrix elements of the Dyson S operator between these states are finite and nonzero. 

The investigation of the infrared problem in four-dimensional gauge theories can be extended to the tridimen-

sional case. where a more careful analysis is required( 5 i. This study can still be justified if we bear in mind that some 

physical phenomena, sush as the quantum Hall effect and the high superconductivity, can be better understood 

in the context of quantum electrodynamics in (2+1) dimensions. 

Consider a quantum system described by a Hamiltonian H constituted by two terms 

	

= Hn + V (1). 	 (1) 

where H o  is the free Hamiltonian and V (I) is a short-range interaction potential 

	

lim V (1) = U. 	 (2) 

This implies that asymptoticaly the scattered particles are supposed to he free. Thus, since in scattering processes 

the particles are observed only in asymptotic regions (I — ±c*). the asymptotic states are eigenstates of Il a . 

Using these ideas, one defines the S operator in perturbation theory assuming that the asymptotic dynamics is 

given by Ho: 

 

S = (3) 

'Supported by CAPES 
t Partially supported by CNN 
I Supported by FAPESP 
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where Wi n  are the wave operators 
••• 

(4) .  Wi„ = hilt if (1,0) i  e -ill° • 

and 

Using (5), one rewrites the S matrix as 

U 0.0  = 

iH I 
S = lirn e - - 0 	(L 

11. ■ .■ 00 

From this definition the physical meaning of the S matrix is the following: an asymptotic initial state so, taken 

at. t = 0, is evolved to s 	-oo through free dynamics and then evolves from -oo to t 	+.x,  via U(t,$) and, 

finally, from t 	-Eoo to t = 0 through free dynamics. The transition probability from this state to another final 

asymptotic state tb is given by 

i(01.5 14 .2 : 	 ( 7 ) 

where the asymptotic states belong to the Fock space. 

Solving the equation of motion for the tithe evolution operator, the S matrix can he rewritten as a time-ordered 

product 

• S = Texp 	•11/  (1)dt} . 	 ( 8 ) 

where V/ (1) a is the potential in the interaction picture. If the interaction potential vanishes in remote regions, 

such that I + 
ds 	(s)II < 'z'• 	 (9) 

then the Dyson series for the S operator (8) is absolutely convergent. Thus, the S operator is unitary in the Fock 

space. provided the particles have free dynamics in asymptotic regions. 

The above method is not suitable to describing scattering processes when we consider long-range potentials such 

as the Coulomb potential. In this case, even at far regions this potential cannot be neglected. 

. In order to ilustrate the method employed in the construction of the asymptotic operator U,,, (t) let us consider 

the scattering of a charged particle by a Coulomb potential in two dimensions. The Hamiltonian of the system has 

the following form: 
2 

H= — g In r = Ho + It 

	

2in 
	 (10) 

where in is the mass of the scattered particle and y is the product of the charges of the particle and.the scattering 

center. 

' First of all one constructs the potential shape in the asymptotic region in the interaction picture and then one 

obtains the wave packet which will represent. the scattered particle in this region. For this purpose one considers 

the observables 7 and i; as the position and momentuni operators in the interaction picture. •  In this representation 

these operators satisfy the following equations of motion: 

(IO = 
i 
- [01. 11 0 1. 	 (II) 

tit  

Using the Hamiltonian (10) and the above equation. we see that the momentum of the scattered particle is a 

constant of motion: 
- 

dp = 1  
dt 	

, Ho] = 0. 	 (12) 

Similarly, the equation of motion for the coordinates 

• dr. 	 I [- „ 	P 
- 

	

= 	= — 	 (13) 
dt 	r 	 tit 
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whose solution 

.r (1) =r + P-1. 	 (14) 
171 

describes the time evolution of the coordinate operator of the scattered particle is identical to the classical trajectory 
of a particle in uniform rectilinear motion. From these results one can obtain the shape of the interaction potential at 

large distances, assuming that in this region the particles behave as classical particles with well defined trajectories. 
Thus. for Ill — 

V (1) g In (-1) . 	 (15) 

This potential. which describes the interaction in the asymptotic region 	oo. is not absolutely convergent and 

its contribution to the asymptotic dynamics cannot be underestimated. In other words, the asymptotic dynamics 

is not governed by H o  but by the operator 

H., (I) = Ilo 	(f) 	+ g ln (-11 1) . 
79 

(16) 

With this Hamiltonian describing the asymptotic dynamics and taking into account that 1. 1„, (i) in the interaction 

picture is the same as in the Schrodinger picture, since 

[va , (1.). H a j 	0. 	 (17) 

the wave function which describes the behavior of the particle in this region is obtained by solving the Schthdinger 

equation for II„, 

i —

d 

In. t) = 1-1,„ Mk} .1) . 	 (18) 

where la, 1) is the physical state of the scattered particle. In the momentum representation the above equation 
becomes 

-

I. 

(1;,t) = [-L +gip 1) I 	( 	, 
2rn 

tis 

 

whose solution is 

Cr, t.) = —
2

17 I d 7; 40 (T. O r' T.7  

— _ 	)= —
2

1
,r  d p el" c (p 

_., 

	

. 	
1 — ig 11n 

P 	 'r
4 	 rn

i 	 i  x exp — 

	

	 d t  _ I) 
- 

to l 	ld t  0 — 1)1y r — n 
11 2in 

The choice of this solution is due to certain initial conditions for equation (19). These are determined by considering 

that the time variation Of the coordinate and momentum distributions for the particle represented by the wave packet. 

(20) for lil oo must be governed by the classical dynamics. 

The wave packet (20) can be written as 

4' (I) 	= 	( ) 	• 
	

(21) 

= C -11101 exp {—iy [t In (-7)1 — I -- t o  In (—' i o  — I 

The previous example shows that the choice of the Hamiltonian which describes the asymptotic dynamics 

depends on the physical origin of the problem. in contrast with the usual definitions in the formal theory of 

scattering, where Ho is taken as the asymptotic operator in the wave operators. 

(19) 

(20)  
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We then redefine the wave operators in the following way: 

W i„ = lint 	(1) 
0u1 1 

	 (22) 

In (2+1) dimensions, the potential which describes the interaction between electrons and positrons with the elec-
tromagnetic field in the asymptotic region is given by 

y1, (I) = I  id I 	dP 	L' p (I)) ta„ 	 + aim  CO () VI 	 (23) 
(27r) 	 v2w Po  

d 	3.0 	i.,t )[au 	e -iwr 	at ( 7) eiwt] 
(27r) 	12/—.,: k  as  k 	 1,1/4 

where 

(k,i) =f p"c i  14LP f  p (7)) " 	 (24) 
P°  

is an operator that has the shape of a current. distribution of a particle with charge density p (p) and uniform 

velocity In In fact, the eigenvalues of the operator (24), acting in a space of charged particles, are classical current 
densities due to the motion of these particles, showing that, asymptoticaly, the scattered particles behave as classical 
particles. 

As in the non-relativistic case, the Hamiltonian that describes the asymptotic dynamics is given by 

//,.. = 110+V (1)• (25) 

where 110 is the free Hamiltonian. We can obtain ki,„ (1). by solving the Schrodinger equation for the time evolution 
operator 

	

i —

d

I/ (I )= H(1)U(1). 	 (26) 
di 

where H is the Hamiltonian of the system. In our problem II = 1-1„, and, therefore. the above differential equation 
must be satisfied by the operator U„, (t). In analogy to the non-relativistic result, we look for solutions of the above 
equation of the following type: 

	

U., (I) = 12 -"1" 1 7. (1) . 	 (27) 

Substituting this operator in equation (26). we obtain the following equation of motion for (1) 

: (T Z(f) = 	(1) 7,(1), 	 (28) 

where Val, (1) is the asymptotic potential operator in the interation picture, namely 

1 ic (I) = 	1•n, (ociffoi 	 (29) 

The solution of the above equation is the time-ordered product 

(1) = T ex p {–i 	( r ) di} , 	 (30) 

whose solution can be simplified if we note that the commutator of potentials at different. times is a c-number: 

[1;,,1,„ (II ) , Vac OA] = c.-nunther 	 (31) 

• and, consequently, 

( 1 ) 	( 1 	(12)H = 0. 	Vt.t i .1 2 . 	 (32) 

.• Then, the solution for G (1). with time ordering. can he rewritten as an ordinary product 

Z.(I) = exp { —i 	1/‘,/,•( r) dr exp – 	 ds 	(r) 	(s)] 	 (:53) 
en 

exp {ft(f)}exp{i0(t)). 
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where 

B(1) = 	VZ, (7) dr 
	

(34) 

and 

: = — 	f dr 1 7  ds [V I  (r). tic!, (s)). 	 (35) 
2 ' to 	ro 	" 

From this result we see that the asymptotic operator consists of two factors that. commute. The first involves 

photon operators. The second is a phase factor which can be written as 

4
-

1
7r d —q 	d; pVio p 	p Cq) 1[1 — In (2 

I) 
po 

q 

qo 

showing that this is a relativistic generalization of the above mentioned Coulomb phase. The eigenvalue of this 

operator acting in a space of charged particles gives the Coulomb interaction among all the particles of the system. 

With Z(1) defined in (33). the asymptotic operator is rewritten as 

ce.„  ( 1 ) = 

and, following the non-relativistic generalization. the operator S is expressed as 

S 	lim Iit„ 
`-' 

(37)  

(38)  

This definition differs front the Dyson S matrix. given in (4). by the substitution 

— ► c.1 	( I 	 (39) 

showing that the infinite range of the Coulomb potential destroys the behavior of free dynamics in asymptotic 

regions. in contrast with the Dyson S matrix definition. 

The new definition of the S matrix. taking into account the asymptotic dynamics. leads also to the conclusion 

that the space of asymptotic states consists of coherent. states instead of those belonging to the Fock space. 
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1 Introduction 

High-energy physics was the first to perceive the necessity for a Relativistic Quantum Field Theory. and later other 

speciality physics found a powerful tool in it. Undoubtedly the Quantum Field Theory has obtained its best sucess in 

the Quantum Electr odynamics (QED). All Quantum Field Theory is fundamentaly of perturbative aspect. So, the 

quantities with the greatest physics interest, the Green Functions. are constructed by means of perturbative series. 

However, in all its perturbative aspects it. has heavy divergence problems. The treatment of these infinites continues 

to be one of the most challenging problems in Quantum Field Theory. The mathematical nature of the problem 

is clear. Divergences occur in perturbative computations because two distribui tions can not be multiplied at the 

same point. Several methods have been proposed in order to eliminate this problem. However, only in Quantum 

Eletrociynamics has it been possible to eliminate these infinites consistently and in a physically meaningful man tier 

by absorbing them into the bare parameters of the theory. 

A quantity of considerable physic importance is the vaccum energy density which is associated with interesting 

physics effects, such as, Lamb Shift and Casimir Effect, which occur because of vaccum fluctuation. Nevertheless. 

there are several variations o n the concept. of vaccum energy in CO1111110111 circulation, among them the minimum 

of the effective potential obtained from the approach of functional methods from Quantum Field Theory is largely 

used. Effective potential principal application is associated with Spontaneous Symmetry Breaking. It is obtained 

from a nonperturhative method as a series in loop (h). Since in the classical limit, which is the tree approximation, 

the effective potential becomes the same as the classical potential, therefore it i s the classical potential plus the 

quantum corrections. It also suffers from .the same divergences problems. 

The usual procedure in order to deal with those divergences has been to employ a regularization method 

(Dimensional, Cut-off. etc) so as to isolate the divergences and to become the finite theory making use of a regulator 

and afterwards using a renormaliz ation prescription, subtraction of the poles or addition of counter-terms, to 

eliminate the isolated divergences and to restore the theory with the eliniination of the regulator. Since the 

substraction of the poles or addition of infinite counter-terms. al though well-founded in flat. spaces. become dubious 

in curved spaces. The Zeta Function Method for the minimum of the effective potential gives only finite amounts, as 

recommended. However, it is obvious that implicitly in the Zeta Function Method there mu st takes place cancelling 

of the divergences. 
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The paper is organized as follows. In Section 2 we explicitly show the cancellation of the divergences in the 

Zeta Function Method. In Sections 3 and 4 we point. out that. terms from divergent part of the sum over zero-

point energy and scaling parameter or normalization constant. pr. respectively. although they are present in the 

renormalized minimum of the effective potential. they are not present, in the observed energy. Indeed, they are not. 

observed. This takes place because the energy is a relative qt, amity and it. is not an absolute one and therefore 

differences of energy can only he observed. 

2 Cancellation of the divergences 

In the approach of the functional methods from Quantum Field Theory. the vacuum energy density can he 

found by computing the minimum of the efictive potential 11-7). The energy density found of that manner is a loop 

expansion (or equivalently in powers of /1). that. is. its classical amount plus quantum correction. 

Let (12(x) be a single real scalar field in a Minkowski space-time. subject to the potential V(0). The minimum 

effective potential to the first order in the loop expansion (or equivalently in powers of h) is given by 

- 	h 

	

j(¢) = Vd(P) -F - 	 del  	Vd(6) 11 ( ,Tc;), 

	

2 	66(x)66(Y) - 
	 ( 1 ) 

where cf) =< o > is the classical field. S[6] is the classical action. Q = VT is the volume of the background space-time 

manifold and in the classical potential 1 1,1(o) is included mass and self-interactions terms. 

Making usual analytic continuation to the Euclidian space-time [2.4]. the classical action can be written as 

S[c] = f (1 l'r) ei„cie)„0 + t:. 1 (a)]. 	 (2) 

where an euclidian summation convention is imderstood for repeated int exes. From eq.(2) we get the matrix 	y) 

of the quadratic variation of the action 5[0] 

6` S10) 
m(x, y) E 	 = 6•1 (x - 	 v.-7(6)). 	 (3) 

AO(r)ho(Y) 

Now, M is a real, elliptical and self-ad • oint operator (because of the Euclidean analytic continuation) and for these 

kind of operators we can define the so-called generalized zeta function. Let PO the eigenvalues of the operator 

rn(z,y). The generalized zeta function associated t.n .1/(x. .ii) (In — .11 = ) is defined by 

( r 

	

(.11W = 	 (4) 

where we have introduced a unknown scale parameter 	with the dimensions of (length) -  or mass in order to keep 

the zeta function dimensionless for all s. The introduction of the scale parameter or also normalization constant 

can be best. understood when we observe that a hidden division of the divergent integral there is in the proceeding 

of zeta function regularization. that is, a separation of the divergent and finite parts of the V.,./(o) (in N. pag. 208 

and in [5]. pag 88). It is well-known the relation 

d( if (0) 
In det A/ = 	. 

Now, effective potential to the first. order in the loop expasion can be written 

	

_ 	I Ir th.: 31 (0) 

" 	'20 	(12. 

We know that the evaluation of the effective potential given by eq.(6) is finite quantity. that is. without divergents 

terms. This is because the generalized zeta function as definided in the eq.(4) is regular ai 	= 0 [2. 8]. 

Or alternatively we could have used the relation 

1111 I et [M(X. y)] = 	 y )1 
	

(7) 

(5)  

(6)  
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and got [4] 

„II) 	LI I d4 k 	[ 4  

— 2 	F27w- In 	+ 1., "(ci)1. ( 8 ) 

where kE is the quadri-moment and the lower suffixes E denotes euclidian space-time. As can be seen the integral of 
the eq.(8) is dearly divergent and so we need a regularization procedure in order to isolate the divergences. Of this 

we conclude tha t. the evaluation of the effective potential using the zeta function, eq.(6). must hide the cancellation 

of the divergences in some manner. 

In order to explicitly point out how the cancellation of the divergences occurs, we write the eigenvalues of the 
operator m(x, y) as 

= f.a 7  + 11;1 . 	 (9) 

where hi are eigenvalues of the hamiftonian operator // and w is a continuous parameter labeling the temporal part 
of the eigenvalues of the operator m(x.y). 

Generalized zeta function associated to the operator Al (T. y). definited by eq.(4), can be written, using the 
eq.(9), as 

du) 
(At (s) = 	— E 2r [ 	+ 	• 7' 	 (10) 

27ris- 	27/4 2  

Using the relation [9] 

(k 2  + 	d'" 
rif(s 	tri/2) 

cs,  

we can perform the above integral in di.) and get 

= 	r(s)  (1 - ) 	. 	 (11) 

Cm(s) = 	
1 - 1/2] 

 1/2)T, (12) 
2 	tr ,/- 

(Os - 

where (H(s - 1/2) is the generalized zeta function associated to the hamiltonian operator H and it. definited by 

hi: 	1/2-s , 
(1/(S — 1/2) = 	2 E 	

) 	
(13) 

It is well-known that ( m (s) is analytic 	s = 0 [8.10- If]. So, (m(0) is finite. Therefore either (H(s- 1/2) is analytic 
at. s = 0 and (m(0) vanish or (H(s - 1/2) is not analytic at s = 0 and in this ca se (H(s - 1/2) must have the same 
structure of the simple poles as the gamma function Rs), so that (m(s) is analytic at s = 0. Then, after some 
regularization procedure, the generalized zeta function associated to the operator H can be written as 

(As - 1/2) = F(s) + D(s)f(s), (14) 

where F(s) and D(s) are analytic function at s = 0. Note that s is the regulator used in specific regularization 
procedure. 

The eq.(14) is evident when we employ the Laurent series expansion 

(H(s - 1/2) = 	+a o  + a Is + a2s2  

a_ i 2Vrr 
(Os - 112) 	 1(s) + ao +als+ a2s2  + l'(s - 1/2) 

where Ms) and F(s) are self-evident. Since 	(8-1/2) only has a simple pole the expansion is univocaly determined. 
Now one differentiates the eq.(12) and using eq.(14) we obtain 

r(s  - 1/2)T  [ 
Cru(s) = 	 11.(s 	1/2)F(s)+ 	- 1/2)D(s)r(s) - 11)(s)F(s)+ 2,/iFF(s) 
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–0(s)r(s)D(s) + F'(s) + D1 (s)r(s) + D(s)tb(s)r(s)]. 	 (15) 

Observe that. the terms in boldface are divergent.s. yet they cancel them-selves. Finally we find 

G(0) = –(F(0) + tb(-1/2)D(0)+ LY(0)1T. 	 (16) 

The reult above explicitly show how the divergences are cancelled in the evaluation of the effective potential using 

the eq.(6). So. it is clear that. hidden in ( 1m (0) there is a renomalized prescription, the analytic continuation. Th e 

method of evaluation of the effective potential using G is completely equivalent to the renormalized prescription 

employed by Salam and Strathdee [12]. as one can see using the relation 

2 V711.s1 _ 1 

– 1/2] 

in the eq.(12) and extracting the finite part one multiply by s and after compute the derivative with respect. to s 

= 0 in order to get 

Cii = 	-1  (0) 

3 Terms from divergent part 

Still we can observe that the last two terms of the right hand side of the eq.(16) depende on the divergent part from 

(1/(s – 1/2). as one can see from eq.(14). Therefore they must not he observed. In order to prove this affirmation 

we recall that d ifferences of energies are only observed. Another concept. of vacuum energy in commoin circulation 

and most intuitive than the minimum of the effective potential is the stun over zero-point energy. defined as 

2 

where h1 are the eigenvalues of the Ilamiltuniana operator. 

Using the generalized zeta function defined in the eq.(13) 

hT 
r. = —hinKhr(s --

2S-2 3-0 

Now. let c° 1w the vacuum energy density in the free space furnished 

4.0 = !if 	lini[d(N 
2f2 

with 

(11(s — 1/2) = F°(s) + 

of form analogous to eq.(14). 

The observed energy will be given by the difference between 

(Sc = 

From eq.(s) (20). (21). (11). (22) end ('23) we obtain 

h 
[F(0) – F° (0)] + 2T.1  

It is well-known that the substraction procedure (23) cancels 

D(s) – D° (s) 

_AT 	
Iv. 

we write 

1/2)]. 

by 

– I/2 )1. 

D°(s) F(s). 

c arid 

– Do(s0 r(,)]. 

the poles becoming finite (5c. So, it is clear that 

= 0. 

(19) 

(20) 

(21)  

(22)  

(23) 

(24) 

(25)  

(17) 
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since D(s) and D°  are analytic at s = 0 by definition and so their substraction to have a pole structure like 1 (.5) 

[II]. From eq.(25) we get 

D(s) = 00 (5) 	 (26) 

and 

Dls) = D°'(s). 	 (27) 

What. Finally yields us 

6c = 
hi 
—[F(0) - 	(0)l. 

in the same manner. using the eq.(22) in the eq.(16) we write 

df (0) = -(F° (0)'- tb(-1/2)D ° (0) + DcP (0)1T. 

1  (4( 0 )  
2 S2 ds 

being the effective potential in the free space. 

Now. the observed energy is given by 

= V,f - 

which results. using the eq.(s) (5), (16). (29) and (30). 

1 
Wei  = iri [F(0) - F° (0) + trb(-1 /2)D(0) - ii.(-1/2)D ° (0) + Di(0) - D°1 (0)]. 

Taking into consideration the results (26) and (27) in (32) 

I 
= s=.2 {F(0)- Fu(0)]• 

As we hoped it is exactly alike the result of the eq.(28). The eq.(32) explicitly points out. the cancellation of the 

terms which come from (Af(s 	1/2) divergent, part. in the observed energy. 

4 Scaling parameter. p. 

As we have already pointed out. the evaluation of the effective potential using the derivative of the generalized 

zeta function associated to the operator of the quadratic variation of the action, eq.(6), involves regularization and 

renormalization proc edures. eq.(18), of a implicit. manner. We know the regularization procedure (isolation of the 

divergences) introduces a scale paramenter or normalization constant, jt, with dimensions of mass. It has been 

introduced for us in order to keep the generali zed zeta function dimensionless for all 5, eq.(4). It is also well-known 

physics quantities must not depend on (in (1), pag. 329 and in (5], nag. 96, as for exemple). Now we shall show 

explicitlly how the scaling parameter is cancelled in t.h e observerd energy. 

. 	In the definition (4) of the zeta function we have performed a scaling transformation of the operator 

Now. 

with 

(28)  

(29)  

(30)  

(31)  

(32)  

(33)  

(34) AI = 
27rp 2.  

in order to keep the zeta function dimensionless: The eq.(5) can be written as [2, 8] 

In detklf (x. y)] = 	(0).= 	(M(U) In(27rp.2). 

rn 

. 	(35) 
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with (,,.,(s) defined as 

(„,(,)=E 	 (36) 

In agreement with the eq.(10) we write 

(.(s) = 
1 Fis - /2]

(h(s - 1/2)T, 
21Tr 

wit.h.(h(s - 1/2) defined 

i/2).-E(h? • (38) 

Observing the eq.(12) and (37) we can see they are formaly identical, therefore allowing the same anterior consid-

eration about the poles structure of the function (h(s - 1/2) and in a agreement with the eq.(14) we write 

(1,(s - 1/2) = f(s) + d(s)f(s). 	 (39) 

Observe that f 	and d(s) are independent. of it whereas F(s) and D(s) are dependent on ir. Using the eq.(39) in 

the eq.(37) we get 

(m (0) = -(1(0)7'. 	 (40) 

Now. substituing eq.(40) in (35) and after in (6) we obtain 

11 •  ) 
	hr 	

(0 	
1 hT 

- - - — L 	 - —d(0)111(27p 2 ). 
2 SI - "1. 	2 Q 	

• 	 (41) 

Since (,71 ,(0) is indendent of p, it only stands by in the coenfficient of the term (1(0) which comes from divergent 

part. of (h (s - 1/2) and it must not be observed as we have already asserted. 

From eq.(21) and (22) we can write .  

1 11T
= —11in[Ch(s - I/2)]. 

2 12 

and 

with 

1 hT 
f° = 7 — 	 1/2)). 

•CP,(s - 1 /2) = .ru(s)+e(5)1'(s)- 	 (44) 

From same foregoing consideration we find 

d(s) = 	(s). 	 (45) 

The observed energy is given by eq.(31) 

f 1 ) 	N' 	 1 ra• 
t5V -  = (0) - 0 	

2 SI 
:(0)1 - 	[d(U) - AO)] In(2rp 2 ). 

2!0 	"  

where 
(1) 	1 hT 	1 hT domin(27,12).  

ti
e/ 

= --
2 

—(„(0) + - 	 (47) 
2 12 

From eq.(45) we can see that the last term in the eq.(411) vanish. so  one cancelling the 1i  dependence. 

Theµ dependence in the renormalization energy becomes clear when we substitute the eq.(44) in the eq.(43) 

and we employ the renormalization prescription used by Salam and Strathdee. obtaining 

1 h 	n 
( 0 = 

2 1' 
_[ p ull 	do (0) 	(10(0)111(271d ) 1 .  

which is the Coleman-Weinberg potential when 

. 	1 
1;(6) = -1./ 2 o 2  + 

2 	4 

(37) 

(42)  

(43)  

(46) 

(481 

(49) 
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5 Conclusion 

The regularization procedure of the minimum of the effective potential using zeta function method provides us 

finite result without. the necessity of subtraction of any pole or addition of infinite counter-terms. 

This is owing to zeta function is regular at s U. In this manner dubious proceedings used in order to obtain of 

a finite result for the minimum of the effective potential are avoided, since as we explicitly showed the divergences 

are implicitly cancelle d by zeta function method. 
It. is important to point out finite terms come from divergent part of the sum over zero-point energy must not 

be observed even if they be present in the renormalized potential. Finality we showed that the scaling parameter 

or renormalized constant it rn mist not he observed. too. In other words. observed energy must riot depende on p. 

_ This occurs because the energy is a relative quantity and it is not absolute one. In order to best understand this 
we note that p realizes a similar hole as the refer ncial point. (ro) for which one determine a arbitrary value for 

classical potential, as it. is well elucidated in [13). One become clear that the observed result must not depende on 
Ir as the referncial point does not. depende on p. 

It. is also important point out in spite of p to be present in the renormalized effective potential. the effective 

potential does riot depende on p in sense that it is invariant. under a scale transformation Of p' = Ap) because 

one is absorved by others parameter of theory. 
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Estudo das Ressonancias em um Cilindro 
com Incidencia Obliqua 

J. P. R. F. de Mendonca.- UFJF e L. C. Guimaries - UFRJ 

Introducao 

o escudo do espalhamento de campos eletromagneticos por certos obsticulos permite estudar as propriedades de 

campos evanescentes e assintoticos. Neste trabalho estudarnos o espalhamento de ondas planas por microcilindros. 

0 nosso interesse a estudar o papel do ingulo de incidencia na localizacio e larguras das ressonancias. Estudamos 

tambrim a propagacio do campo eletrico ao longo do microcilindro. Wait {I] foi o primeiro a resolver o probiema 

do r.spalhamento de ondas planas por cilindros dielkricos. Corn o intuito de ganharmos uma visio fisica sobre as 

ressonancias, utilizarnos a conhecida analogia optica-mecinica entre o indice de refracio e potential. Assim obtemos 

ulna equacio identica a equacao de Schrodinger independente do tempo onde o potential efetivo tern a forma de 

urn pogo cercado por ulna barreirra de potential que suporta a existencia de "estados quase ligados do campo". 

Dividiremos este assunto em 4 secoes. Na secio I nos obtemos os potenciais de Debye para o caso de urn cilindro 

dieletrico. Ern seguida encontrarnos uma equacio transcedental, a qual contem toda a informacioessobre as posicoes 

e larguras das ressonancias. Na secio 2 desertvolvernos ulna teoria semi-clissica para os modos ressonalites. Esta 

t.eoria permite dar urea interpretacao fisica dos modos ressonantes e caracteristicas do espalhamento ressonante. 

Na secio 3 dicutimos a dependencia da posiciio c largura de ressonancias corn o ingulo de incidencia. Finalmente 

na secio 4 fazetnos urn resumo dos principais resultados do nosso trabalho. 

2 Os Potenciais de Debye e a Equacio Transcedental. 

Considere um cilindro cujo o eixo de sirnetria esti na direcio z e o vetor de onda k incidente faz urn ingulo 0 corn 

o eixo do cilindro. A polarizacio da onda espalhada a relacionada corn a polarizacio da onda incidente. Quando o 

carnpo eletrico incidente esti contido no piano de incidencia (piano que contem ki ne , e o eixo-z) teremos o chamado 

caso I e na outra situacio (campo ntagnetico incidente esti contido no piano de incidencia) o caso ii. Trabalhando em 

coordenadas cilindricas (p.0.:) tendo o cilindro raio a, indice de refracio a N e admitindo cilindros nio magneticos 

(u = 1 em todo e esparto) e para urn vetor de onda incidente k in , = k(cosox + sin 02) temos que. os potenciais de 

Debye (solucoes escalares da equacio de onda) sio dados por: • 

yn 1= exp (i(w 	nO – hz] ft  (( ,P
)
) (1) 

corn h = koscw.) , e as funcees f(p) e g(p) sat isfazem a equacio diferencial de Bessel radial. 

d2f 	1 df 
+ 	– —" 12,1f =0 	 (2) 

P -  

Utilizando os potenciais de Debye que descrevem o comportamento assintotico e no interior do cilindro corretos 

temos respectivamente que: 

i) Para o meio extrerior (meio I corn indice de refracio N = 	= I ) 

a„ 
nn 	= FilJn(k P) + 	„(1: p) 	bp,  

n  
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ii) Para o meio intrerior (meio 2 corn indice de refracao N, = N) 

onde 	= k7 hr , 	 N-k 

	

• 	J 

11 " 	F„,I„(k2p){ d" 	z 
Tr, 	 (3) 

ti n (x), J„(x) sao respectivamente as funcOes de Hankel e Bessel cilindricas e 
an , 	e d,1  sao os coeficientes a serem determinados usando-se as condicaes de contorno na interface, isto 

, conservacao das componentes tangenciais dos campos E e H na interface (p = a). Fazendo isto obtem-se urn . 

sistema de quatro equacoes lineares que nos permitem obter os coeficientes da expansao acima [1). Ressonitocias 

estao relacionadas corn os polos desses coeficientes que sao os zeros da equacao a seguir: 

1 	I y 

	

(13)ZA 	— [A 51110 	— 
1/ -  

onde definimos os parametros de tamanho 0 = ku , v = Ocos rb enquanto que as funcoes XA(/3) e ZA([3) sao dadas 

por, 

	

la(13) = 	A  
In H" ) (v) 	In JA (u) 

v 	r2 

In 11 A" ) (v) 	,In JA(u) 
la(13) N -  

11 

aqui In representa a dcrivada logaritmica corn respeito no argument° de JA e HA. Para urn dado moment° angular 
A 7  = (n — 1/2)(n + 1/2) e angulo de incidencia ch os zeros da equacao transcedental acirna sao complexos e podem 

ser escritos como a = — iw onde f3 e a posicao da ressonincia e w a sua largura. 

3 Teoria Semi-Classica para as Ressonfincia.s 

A equacao 2 pode ser re-escrita como 

, 
— 

	

	+ UeigG = kg6 
dp 2  

onde U,f(p,0)= 	— k .8(1C1 2  — 1), .A7 2  = N 2  — sin 2 P e A = (n — 1/2)(n + 1/2). Note que 7 c equivalente a equacao 

do Schrodinger indepenente do tempo sujeita a urn potencial efetivo Uef e -energia" kS. 

Assurnindo que nao ha absorcao (Im(N)=0) e Re (N) > 1 o potencial tern a forma de urn poco cercado por 
ltma barreira de potencial, o que suporta a existencia de estados quase ligados do campo. Corn esta escolha para o 

indice de refracao os campos convergem para o interior da superficie cilindrica, podendo gerar causticas [21. Note 
quo para uma dada energia kg > 0 os estados ressonantes envolvem urn problema de cspalhamento corn 3 pontos 

do retorno classicos, urn interno p i  e os outros dois sendo urn o prOprio raio do cilindro u enquanto o outro mais 
externo e denotado por p2  de tal forma que p i  < a < p2. 

As ressonancias &leas estao relacionadas corn alto valor de moment() angular A e neste caso a solucio da 

equacao 4 e nao trivial, levando urn trabalho computational tremendamente instivel. Assim, para resolvermos 

nuincricamente a equacao transcedental (eq. 4) precisamos de urn born input initial. 0 calculo deste input pode ser 

dado atraves da aproximacao WKB, onde vamos admitir que Analisando a equacao 4 vemos que o termo 
dominante a XA(0)Z A  (0), ou seja. 

	

In .  ff (A 1) (1.) = 	In JA(u) 	 (8) 

onde 

	

f 	j = 0 Casol 
Ci = 	,V 2  j= 1 C:asoll 

Dentro da aproximacao de mais baixa ordem WKB a equacao acirna pode ser escrita corn: 

(4) 

(5) 

(6) 

(7) 
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ti2  
( 1  ic2* ) = 	 tan (V — 7114 ) ("j) Ci 

Onde y = 	 — A cos -1  (t) e a fase de Bohr-Sornmerfeld enquanto que exp (241) e a transmissividade 

da barreira. As solucoes da equacio acima sao complexas. a part.e real dessas solucoes nos fornece a posicao 

de uma dada ressonancia enquanto que a .partc imaginaria nos fornece a sua largura w. Usando Os resultados 

WKB como input iniciais podenios ntimericanietlLe os zeros da equacao transcedental = U e obter os resultados 

exatos (numericos) para a posicao e largura de ressonancias. COM  estes valores podemos est.udar o comportamento 

ressonante dos campos espalhado e intern°. 

4 0 Papel do Angulo de Incidencia 

Nossos resultados mostram uma extrema seiissibilidade a variacoes do angulo de incidencia tanto para a posicao 

corn° para a largura da ressonancia. 0 valor da posicio da ressonancia cresce quando o cresce revelando que a 

largura efetiva do poco de potential diminui quando 6 cresce. Por outro lado, a largura diminui quando Q cresce, 

rnostrando que a expessura da barreira a ser i.indode cresce quando 6 cresce. Observamos lambent que a eticiencia 

gerar modos ressonantes c limitada por um angulo critico 6, = sin -1  ✓ NI 	+ 1) 1 / 2  - (N 2  - 1) a partir 

do qual basicamente a energia se propaga atraves Lie ondas de superficie. 

5 Resumo 

Alguns pontos chaves devem ser destacados nester trabalho a saber, e possivel controlar o tempo Lie tneia viola do 

photon dentro de uma libra variando-se o angulo de incidencia 6 ulna vez que a largura da ressonancia c uma funcao 

decrescente deste Angulo. alert] disso existe urn angulo critico Ø.  etnc deli ► ita a propagacio entre niodos guiados e 

(Judas de superficie. 
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Acoplamento Interplanos e Propriedades Magneticas 
em Supercondutor a Alta Tc 

L. C. Malacarne, R. S. Mendes and P.. R. Veroneze 
Dep. de Fisica - Fundaydo Univ. Estadual de Maringd 

Au. Colornbo 5790. 87020-900 • Pr - Brasil 

Desde a descoberta dos supercondutores a alta temperatura, tern havido urn grande interesse no entendimento 

do mecanismo que explique os altos valores de T. Vitrios modelos foram propostos para descrever estc mecanismo, 

entre des gostariamos de ressal tar aqueles que levarn em considerac -a° pianos supercondutores interagentes. 

De especial interesse sac) aqueles interacoes que previlegiam o tunelamento interplanos de pares, pois isto favorece 

o aumento de T,[1, 2, 3], quando comparado corn o rnodelo BCS[4]. 

Por exemplo, nas referencias [1, 2] os autores enfocam, essencialmente, interacoes independentes do moment() 

transferido. ja em [3] o comportamento anisotrOpico e explorado. 

Neste trabalho varnos verificar se, alem do aurnento de 	 interacio, que previlegia o tunelamento de 

pares, reproduz algumas propriedades caracteristicas dos supercondutores na presenca de um.campo.magnetico. 

Para tat. vamos usar urna Elamiltoniana, suficientemente simples, que mantenha os aspectos qualitativos principais 

da interaiao entre pianos via pares. 

Alem disso, empregaremos o metodo de integracrio funcionat[5] para obter as equaciies de Landau-Ginsburg[6] 

(LG) na presenc.a de campo magnetic°. A partir dessa.s equacoes, verificamos quc o modelo empregado apresenta 

propriedades esperadas para urn supercondutor. Pnr exemplo, quantizacio do fluxo magnetic°, efeito Nleissner e 

possibilidade das existe.ncia de von ice e rede de vortices. 

0 modelo que estudaremos neste trabalho, para o caso de dois campos, tern sua dinitmica regida pela Hamilto-

niana 

 

1-/ = 	+ 712 + (1) 

onde 

1 	...,.. 	 ,.. li,..idti E 0:- 2  

	

[_(v— icA) 2 — pjltb,j — gi ti5:1". 0+. 7,11.  • tb i  , 	j = 1, 1 .  { 
,...11 

	) 	 ) 	 ' ; 	rir 

 

 

71 , 
= — I d1/[43 r61-1  LI]  0120 1 2 + g;11.1-2  Ill iti lki 1 ll ' i 'T .-. (2)  

As partes 	e 	representam as llamiltonianas para dois modelos BCS e o termo 7-ii dim a interacito entre 

	

des. Os campos 	dizeni respeito aos eletrons; 	dita a interacao corn o campo externb; pi sio os potenciais 

quirnicos; g i , 92 e g3  sir) as constantes de acoplamento que regem as interacoes. 

No caso da teoria BCS usual, urn campo auxiliar é introduzido[5] representando os pares de Cooper. do modelo. 

Neste trabalho, generalizarnos este .procedimento introduzindo mais de urn campo auxiliar. A funcito de partick 

usando estes novos pares de Cooper generalizados 

21= 	 dr/ dV(Co + C. + Lb) 
	

(3) 

onde 

a 
co = 	[57. 	real) -  — pi ] osi  , T„ 	E 	

'"Ti 



z=f11 
[

"Dx;D:Vi exp — E ir In Mi + E , ; (u+ a u )„,„ . 
i 

( 7 ) 
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e Cs = E(°; — E 4.07,07,0(ai - E ciopit 	_ 
	 (4) 

1 

Na expressio acima, as constantes de acoplamento gi i  silo os elementos da matriz envolvendo as constantes de 

acoplamento (y11 = gr, 922 = g2, 	= g3 e g.21 = g;). 
Os coeficicntes cii sac) escolhidos de modo a eliminar os terinos quarticos. Alem disco, é convenience definirmos 

novos carnpos auxiliares, x i  = Ei  , que representam os novos pares de Cooper generalizado. Isto nos possibilita 

expressar a fungi° de partiria° nurna forma mais simplificada. 

a 
= f 	 exp — r dr r (111(C0 + Cr) ( 5 ) 

C0111 

= - E(X;kblitl'ri + xiTritTli) + E k:(ti+g,iu),-ixi • 	 (6) 

tI é a matriz unitiria quo diagonaliza g, e gp a cornposta pelos autovalores de y, isto e, Yr) = U+0.7. Observe que 

a generalizacio destas expressoes para o caso de N ca.madas a imediata, o que passaremos a considerar doravante. 

Na expressio (5) podemos efetuar as integracoes nos campos e resultando em 

a menos de termos independentes de A. A.; e Ai. 

Onde a matriz Ali é dada por 

-
r

— 	— ie 	—1,J1 	—x; 
—.; 	 —[—z—k,(t+ie,)2-11j]) 

Para o tr lu M1 ernpregaremos a mimic re hi 	= In Mu, Ec7, = , 	— .4/0,)] .  onde 

A/1 corn A = 0 e A:; = xi = 0. 

Para obtermos as equacOes de Landau-Ginsburg, que descreve o comportamento da teoria perto 

T. consideraremos somente os quatro primeiros termos da serie em (7). 

Primeiramente examinaremos o caso cocorn= Ii. Os termos corn n impar sio identicamente 

estrutura matricial de M07 1 (Mi — M0•  ). 

A coraribuicao para o termo corn n = L, usando a representacio dos momentos, e igual a 

Mo, é a matriz 

da temperatura 

nulos, devido a 

(8) - 	x;(u) 1 ,k 1 )11i(wi,e)xi(wr.V) , 

onde epos alguns cilculos podemos escrever 

(fli(0.k)= —pi(0)In 
27 As  ) 	

24/r2 
+ 	

m
3,1/2)k 2  . 	 (9 ) 

Corn 	Te D„ pi(0) e 03,1/2) representam a constants de Euler. energia de Debye, densidade de estados na 

supericic de Fermi e funcito zeta de Riemann, respectivamente. 

0 termo com n = 4 vein a tier 

- 	x ; ( a,;, 14)xi( 	(4. 14).\- 1 (4 — ur!, + wl,k 13  — 	+ 
w' ,k's 

x Ti(tv;, 	k;. tv'3 . ki3 ) 	 (10) 

onde 
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F
r
i(U)

1
i3

{(3. 1/2) . 	 (11) 
17r-1 ; 

Finalmente, usando (7),(8),(9),(10) e (I I) podenios escrever as equa(oes de Landau-Ginsburg effetivas para o 

niodelo 

aiV 2Xi + b:•i + 	xi)xi + E(U + gi)  I  U )iixi = 0 . 	 (12) 

corn as constantes ai,b; e 	sao dddas por 

	

ai = 
02PiPi(0)

((3,1/2) 	= -MO) ln( 
2113wpi   ) • ci =  MVP  C(3,1/2) . 

247=m 	 8r= 

Vamos analisar as equad(oes do Landau-Ginsburg homogeneas corn dois campos. Observemos primeiramente 

que. g12 = g; i  = 0 reduz o 'modelo a duas teorias BCS desacopladas. Neste caso, o modelo tem ulna simetria global 

U(1) x U(1) e dai dims temperaturas criticas de transicao de fase de segunda ordem. Se gi2 = 0 0, vemos de 

(12) quo xix 2  = Xi. . isto 6, as faces de At  c x 2  sa° iguais a rnenos de urn sinal. Este fato faz corn que a simetria 

continua do modelo seja reduzida de U(1) x U(1) para U(1). Consequentemente, a quebra desta Ultima simetria 

levy a cxistencia de tuna tinica temperatura critica para a transicao de lase de segunda ordem. De fato, se urn dos 

parametros do ordem, xi ou x2, for nulo, as equacoes (12) implicam que o outro tambem sera. 

Quando os parametros correspondentes aos dois carnpos forern iguais, b t  = 62  = b e cl = c2 = c, as solucties das 

equacoes (12) quo minimizarn S sio x i  = 2 = • o  para d < 0 e x i  = - x 2  = x o  para d > 0, onde x;3' = (-6+ I d 1)/c. 
Estas solucoes nos conduzern a teniperatura critica 

e3cP 	p(10) det(g) 	degt 3(y) 1)] 

	

.7wo 	 Yi = 

Passemos a considerar a variacio espacial dos parametros de ordem xi e x 2  no caso de urn supercondutor semi-

infinito (contido na regiao > 0). Para o caso pararnetros iguais (b i  = 62  = b e c i  = c• = c). as equacees (12), corn 

x i (x) = xofi (x) e x2(x) = x0f•(x) (-x 0 f2 (x)) para d < 0 (d > vent a ser 

	

+ bfi + ( - 6-1-  C d !)ft -  l d If2 = 0 , 1 — 2 	 (14) 

Considerando que longe do x = 0 xi dove tender para solucbes Itomogeneas e para x = 0 xi 6 nulo. obtemos as 

condicOes de contorno f t  (0) = 12(0) = 0 e fi(ao) = 12(co) = 1 para as equagoes (14). A solucao para este problema 

de contorno d fi(x) = Mx) = , onde = VGA -b+ d I) e o cornprimento de coerencia. 

Vernos que as solucoes sac) as mesmas de tram teoria BCS, porern o comprimento de correlacao d modificado pela 

presenca dainteracao entre pianos. 

A energia Iivre de LG corn A 0 0 6 obtida introduzindo ulna contribuicio de energia magnifica, 	e fazendo 

a substituicao V — V - 2ie.4 , quo pode ser verificada atraves de urn calculo direto. 

Portani.o, as correspondentes equacoes de LG sao 

V x 	= 	 (15). 

	

- an (V 2icA.) 2x + 	+ (7. x. 	+ E(MigL I M)n ix, = 0 . 	 (16) 

onde 

	

= -21eE 	
„ - 	 - Se 2 (E ara;:iin):1 . 	 (17) 

Pi 

O efeito Meissner e obtido diretamente de (15) e (17) ao empregarmos as solucees homogeneas para 1 n , VZB = 
A - =B. No caso de dois campos lermionicos corn parametros iguais temos A -2  = 647re 2a(-b+ I d 1)/c para o 

comprimento de penetracio. 

A quantizaca.o do fluxo magnaico,43, pode ser obtida a partir da equaci .u° (17), empregando uma condicao de 

contorno conveniente e a unicidade de x„. Escolliendo Arm contorno onde j = 0, B = 0 e I x. I constants• obtemos 

7 a • 	V•  
j43  = 	'too; 	(1)0 

E n  an I to
.(18) 

(13) 
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onde ni = 0, 1,2,3... . Quando especializarnos esta expressio para o caso de dois campos, a parametros iguais. 

recaimos na qoantizacio usual do fluxo magnetic°, (I)= (D o rs. 

Consideremos, agora, uma soltscao tipo vOrtice para o caso de dois campos com parametros iguais. Usando o 

= 0 A8 = . 4 (r) , XI i=1 X2 1= f(r) e para as correspondences fases de x i  e X2, tr = 9 2  = nO quando 

d < 0 e 9 1  = — rr -1- pj = ne quando d > 0, obtemos de (15) e (16) equacoes que sio maternaticamente iguais 

aquelas que winos para a supercondutividade usual. Concluimos, cacao, que no presente caso temos solucoes tipo 

vortice, porem coin os comprirnento caracteristicos diferentes. De maneira analoga, podemos verificar. tambem, 

que possivel obter uma rede de vortices. 

A partir deste modclo simples verilicarnos (pie. akin de gerar inn aurnento de T c , a introducio de interacio 

entre pianos via pares preserva propriedades fundamentals de um supercondutor, como a quantizacao do liuxo 

magnetic°, o efeito Meissner e rede de vortices. Estes resultados mostram que a arialise de interacoes mais gerais, 

por exemplo, niodelos corn constante de acoplamento anisotropica. poderia fornecer inforrnav5es mais ricas sobre o 

comportamento de supercondutores coin alto T c . 
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Algebra Super (147c,2 ED W1 t200)  no Modelo de 

Super-Autovalores 

L. 0. Buffon l , D. Dalmazi 2  and A. Zadra' 
Institute de Fisica. USP; 2  UNESP. Guaratingueid 

1 Int roducao 

Os modelos de matrizes aleatOrias saw importantes na Fisica porque sao modelos exatamente soltiveis. 0 modelo 

discreto de uma matriz hermitiana descreve, no limite continuo, a familia (p, q) = (2,2k — 1) de modeles conformes 

minimos acoplados a gravidade 2-D [1]. A lunch° de particao deste modelo satisfaz a urn conjunto de vinculos 

que podem ser obtidos a partir das equacoes de Schwinger-Dyson (S-D) associadas aos geradores da algebra 

de Virasoro [2]. Estes vinculos sae denominados de vinculos de Virasoro e sao suficientes para resolvermos o 

modelo. Os geradores de Virasoro podem ser escritos em termos dos autovalores como os operadores diferenciais 

/„ = — x7+10, , n > —1, onde sao os autovalores da matriz Eles satisfazem a algebra de Virasoro 

[in ,1„,] = (n — 	 Em analogia aos inodos de Virasoro que surgem em teorias de campo conforme, vamos 

associar o spin s = 2 ao gerador c ao vinculo de Virasoro. 

Contudo, podemos estender es.sa algebra introduzindo operadores diferenciais de ordens superiores 

, 	s > 1 	. 	 (1) 

A ordem da derivada — 1) correspontle ao spin (s) do operador. Para s=2 reobtemos o gerador de Virasoro: 

•114 2)  = —ihrn+ 1 0. Por conveniencia, abandonamos os indices i dos autovalores e introduzimos a constante de 

Planck h, que sera util para estudarmos o limite classico fiestas algebras. Os operadores em (1) satisfazem uma 

algebra WI 4.„,„,: 

[WV , 14f,(, 3  = —ih(— ih) k  C,''„(k)1411  

	

m"+n-k2—k) 	 (2) 
k>O 

onde Crnrin (k) sao constantes de estrutura. Estas algebras de comutadores serao posteriormente denominadas de 

algebras quanticas. Atuando corn os geradores (1) na funcio de partici° do modelo obtemos vinculos de spins 

superiores (s > 2), mas que sat) redutiveis aos vinculos de Virasoro [3]. 

No modelo de duas matrizes estes vinculos de ordem superior Ili° sao redundantes e as algebras W ro  associadas 

sao necessarias para resolver o modelo. 

A extensio supersimetrica N=1 do modelo de urea matriz hermitiana e o chamado modelo de super-autovalores 

[4]. Ele descreve no limite continuo, as teorias superconforines minimas ((p, q) = (2, 4m)) acopladas a supergravidade 

2-D. Sua funcao de particao obedece a urn conjunto de vinculos associados aos geradores da algebra de super-

Virasoro N=1. Em terms dos autovalores xi e de seus companheiros supersimetricos Oi. esses geradores sao dados 
por 

a 
gn+1/2 = 	 — 	, 	Ili = 	, 

i=I 	 09; 

ins _E (41-10; 
(n + 1)

40,f1,) 
2 	

, n > —1 

quc satisfazem a algebra superconforine N=1: 

iga+1/2,gm+1/21+ = 2/Ths+m+1 	 [/r;, cis ) = (n — rn)1„5+ ,, 
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(7) - 1 - 2m)  
[itst Yrri+it2J =-

2 	
fini-rn+10 	 ( 5 ) 

Podemos associar a estes geradores os spins cotrfornlcs s=8/2 c s=2. re:spectivamente. Para os geradores fermionicos 

o spin é a ordem da major derivada mail 1/2. Os vinculos associados aos geradores (3) e (4) sao denominados de 

vinculos de super-Virasoro e sae suficientes para resolver o model° de super-autovalores. 

No trabalho 0], calculamos os vinculos de spins superiores ['este modelo e mostramos que ekes sae redutiveis 

;ups vinculos de super-Virasoro. E tambem quc des estao associados corn os geradores bosonicos da algebra super 

(141  e WL±). 

Nrts sec -ries seguintes vamos mostrar corno obter extensoes supersimetricas das algebras wp, bosOnicas. Primeiro 

faremos isso no caso chis.sico corn parenteses  de Poisson no super-espaco de Ease, e depois no caso quantico atraves 

de comutadores. 0 super-esparto de fase é definido polo par de coordenadas (.r, 0) coniutante e anticomutante e 

seus momentos canonicarnente coujugados (p, El), respectivamente. A algebra quantica e obtida pelas regras usuais 

de correspondencia entre os momentos c os operadores diferencia.is: p — —m )/8° c o limite 

classic° a dado por: h — 	e 	.J 	•}. Para maiores detallies do calculo das algebras que vamos apresentar 

vet a referencia [6]. 

Uma possivel aplicacao dessas algebras super IV„ é na solucao da extensao supersimetrica do model() de duas 

matrixes. 

2 Algebras super-w, classicas N=1 

No caso bosOnico a algebra tv, classics 6 equivalente it algebra de Poisson dos difeomorfismos quc preservam areas de 

superficies suaves no espaco de lase (.c, p). Estes clifeomortismos sao transformacoes canOnicas 	f +cif . p(x p)) 

geradas via parenteses de Poisson f r. phy(x . p)) (;if. ì4f; 	 , que preservam a area (w = dxAdp). A funcao 
rs) 

geratriz bode ser expa.ndida conic, p = E,.„ppro ,„ 	. tie forma que os elementos da basc 	= xn+Ipi -1  

satisfazern a algebra w, classica 

tu (r; ) 	= R s - 	+ I) 	(r 	1 )(il ± 1 )] lil=2) 	 (6) 

A extensxo supersirnetrica N=1 dcssa algebra chissica 6 obtida a partir da algebra superconforme classica N=1: 

J g C.1/2) 	13/2 9 1; i3/21) 4. - .2 idr,+/ ri+ I  

1 
31 12j . idn2) ) = 19L On + 1) - pt + I ) 1 g(,,31+2„)  (7)  

{ w („, I. rt7 1,:-' ) } = ( m - n )w (m2+)  n 	. 

onde assurnimos os parenteses de Poisson gradnados: ix . p} = 1 . (0. 11) +  = -1 . 

A realizacao main geral desks geracioriN 6 

g (n3/21. (1) 	= .r"+ 1  (Op - 11) + 2,1(11-1- 1)xn0 	. (8) 

ti4,21 (A) 	 p + (it + 1).0 (A + 
011 	

. . (9) 

nnde 1 e constante. Para obterinos a extensile da algebra part spins superiores, toma.mos as seguintes liipOteses: 

i) 0 spin niais baixo e s = 3/2. 

ii) Existe o gerador feriniOnico corn spin s = 5/2. 

iii) A algebra de Poisson dos geradores fermionicos ohedece a seguinte regra 

i g (r) g(sli + 	iti(r+s-1) + spins  nienores 

iv) No gerador 	o spin e n representa a dimcnsao conforme. 

Corn isso toinarnos a Ansatz rnais geral para o gerador g2/2)  

grn(5,12) = 	07)2 	cm.r m p hi 	dm .r m - iii 	enriz rri- 20 	 (10) 



(11)  

(12)  

(13)  

(18) 
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Impondo o fechamento da algebra podemos calcular os possiveis valores de A, cm , d m  e 	Fazendo isso, obtivemos 

duas algebras w, supersimetricas: 

Tipo 1: Corn os geradores: 
9(k +3/ 2 = rri + I pk (Op 

1.) 	,i+1 	• _ (n 4.1)x n p..-20n  ton  = 	p 
2 

forrnamos a algebra-w, : 

( gfinr 1 t 	 )) 	

- 

2u,r(nr:rir'+-111 

{g!.,; ) , win3) ) = [(s - 1)(rn + 1)- (r 	1)(n + 1)] g(„:::,-2)  

), Ons')} =( s —  1)(Tn + 1)- 	

- 

0(n+ ojtv;:::: 2)  

onde r, r' = 3/2,5/2, • 	e s. s' = 2,3,4. • • •. 

Tipo 2: Temos quatro familias de geradores somente corn spins pares no setor bosonico: 

gin2
1

+3/ = t ri+I p2a(op 

 - 

II) 

1n(2a-1-1i-F3/2) = z n-1-1 112a-i-1(O p  + 11) 

(2E1+2) 24141 = n+1 p 	+ (n + 1 );r" p =a0f1 
2 

k -2 0 +2) = x n+I p24- a1 011 L  

formando a algebra super w, par: 

YLe., Y'nr  ))+ = 2 w (tyr,+-1- 7r:FI I  

{gin;) . wins 1 1 = [(s - 1)( rn + 1) - (r• - 1 )( n + 1)) 	 • 

fuy!,.; ) ,u1:' ) } = (( s' - 1)(rn + I) - (s - I )(n + 1)) 	2) 	• 

{grin 	
) 	= 	2  w  (mr ++,,r'+-.1 1) 

{ri(nri ), Ev ii: ) } = 	- 1 /1"1-1-  1/- (• - 1)(n + 1 ))g1,71,::1-2) 	• 

(y ((r ) ,Vir, 	1 }+ = 2 [(r'  - 1)(rn+ 1) - (r - I)(n+ 1)1k mir  ++rr: -21  

{.41; ),  k!,$) } = Yanr1+%-+ 11 )  
{Fit' )  k n  ")} - Iri-s—li 

gm+n+! 	• 
(k2 ) . 	= 0 , 

{k,(4 ) .wc,:' ) } = ((s' 	1)(ni + 1)- (s - i)(n + I )1k,„11 .4.,: )  

Esta segunda algebra e totalmente nova e sera charnada de algebra super w„ par. Podemos notar clue as duas 

algebras tern uma sub-algebra comum formada pelos geradores wa+3/2) e  que sera charnada de algebra 

super pois seu setor bcrsonico corresponde a urn truncamento para spins pares da algebra w„. Ambas as 

algebras estao rclacionadas corn transformacoes que prescrvam a area no super-espaco de fase (w = drAdp-dllAd8). 

Entretanto, a funcao geratriz dessas transformacOes nao é mais arbitraria corno no caso bosonico. Para a algebra 

super w„, (13) ela a da forma: 
ell 

PA = c5( x 	p)+ (Op 	11)0(21, p) 
p 

e para a algebra super w e., par (18) temos: 

811 
Ps = p6(z + 72-1, , p- ) + OnP(P(x.P 2 )+ (OP - )0( P2 ) + (OP + 11 )P71(E. P2 ) (20) 

onde 	e T1  sao funcoes suaves. As funce)es geratrizcs pA  e. pH formarn dois subgrupos invariantes do 

difeomorfismo. Sea funcao geratriz for arbitraria p(x,p,0,11), a algebra super wen, que surge é N=2 M. 
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3 Algebras super-Woo  quanticas N=1 

0 gerador bosonico de Virasoro pode ser escrito ria forma mats geral 

	

14/7Y 1 (A) = - ih(2." 1  + A(n + 1).r") 	. 	 (21) 

Vamos impor a seguinte condicito sobre os gerador es da algebra 

[ WV ,  MI) ) 1 	(co Wr(„r++rst 2  ) C VI  M+11 —2 

que permitira obtertnos truncamentos para spins pares. Tomando urn Ansatz para W4,3) , obtemos as solucoes : 
A = 1/2 para a algebra 14 714.,.., (s > 1) e A = 0 para a algebra 14;,„ (s > 2). 

Para  obterrrros a extensio supersimetrica N=1 da algebra quantica Wc.,,,, tomamos umaserie de hipoteses analogas 
as que usamos no caso classic° e seguimos o tuesmo procedimento. Entretanto. rmste caso encontramos somente 

uma algebra supersimetrica consistente, formada pelos operadores: 

GIN 2)  = (- ih )3:"+ 1  (Oa - ad , 
(;(5/2) = (—M) :  (x" -F' moo, + (79) -1-, (n + I ).r n  ae) 	. 

('4i7/ 2)  = (- ih)3  (.7: n+1  a2(o(1 – ()8 )-- 20, + of at), – n(71+ ox—' de) 

G(,9/ 2) = (–th)' (,"+' a 3(oa + 09) + 3(n + 1 V oa3 + 3n(n + I )z" -1 9.9 2  

+(n - 1)n(n + 1).r" -2a8) 

1•1/n12)  = (- ih) (x" +1 0 + ( ► i + 1):r"088) 

ix- ,cizi = ( _ im2e-1-10090  . 

ti ,v , = (
– ih)3 ( r" } 1173 + .)( 7, + 1).0(9 2 + ....[ no, + ox„_ 1 0  

-:;(n 	1)z n i9 2 890) 	. 

K iV ) = ( ... 11,)1 (1.11+ I #3 + ( n + I ) .c rit)2 ) NO 

(

14,46  i = ( L ihr x n-1- 1 ..)5 + (n  + I ).r Fi eyi + 270  + I )x ,-1. 0.3 

1 
+

72
(n - I)n(n + 1):7!" -2 0 2 (1 + do0) - ! (n + 1).r n 04 880) 

K„' )  = (-ih) 6  (.rn+ 1 05  + 2(11+ 1).c"0 4  + n(71 + 1)x" - ',93 ) aeo 

(23) 

que formarn a algebra quantica: 

[Gi, 312 ' (743/ 2 	= 2ih10 3)  - n 	 111-1-11+ 

[6'( / 2, . tv 2 1 = ihum + I) — -
1
(n + 1 ))C;(r,; /4_2u) 

 [W,V) • 	= ih(Tti 	71)11/43.2)  .1_„ 

[G2123 . Gt„312 1+ = !h(17! - 3n - 	+ -ih) 2 (nt - n )<2. 1i. „ 

[C; ( 1112),  h12)] = 	 ( - jA) 2 (n + 1  )G1;r3.+22 • 
[K,In2) , 	= ( -ih) 2 (n - 17t)li ,„(2  +1  „ 

[1414,2)  , 	= ih(rn - 71) K,(,,2  „ 

[0,512) ,1414 2) ] = ih(rn - -3 n - )0 5, /÷n)  + 	+ 1 )G2I+2„) _ 1  2 
5/2) 	-(2) 

[G m h n ]= 	C  —ihCr y7
72) 

 1+
/

71+1 + 2 ( - .1 .6 ) 2 ( Irt + I )G,7, +n)  + (-ih)3 n(n + 1)G(„„,3 .4./2n)_, 

(22) 
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0 setor bosonico 
outra isomorfa 

(1470. a) 	) k 	-5- 	. 

IG 1,75,/ G!,5 / 2 1.1. = -2ihW;;;L +1  - 3( -ih) 2 (n(n + 1) + m(m + 1))K,(2.:„. 1 

 +2( -ih)3 ((ri + rn + 1)(n + In + 2) - 3(n + 1)(m + 1))147„,(21,„ /  

[0.,7,3/ 2) , W4 41] = 	- fim 	5)C;(,,71+2,2) 

+(-ih) 2 (n(n + 1) - 3(rn + 1)(m + n + 1 ))G2 1+ ,i)  

+(-ih)3  ' (rn(nz + 1)(3n + 2,n+ 1) + n(n + 1)(n - m - 

formado por W. e K2 r)  se desacopla em duas sub-algebras. uma isomorfa a algebra W 	e 

algebra 	Assim, concluimos que o setor bosonico da algebra Coda sera chamado de algebra 

4 Conclusoes 

Construimos as extensoes supersimetricas N=1 das algebras 	A nivel classic°, encontramos duas algebras de 

Poisson que sio as super w„, e super w,, par. No caso quantico, encontramos somente uma, a super (144 (-3) 1.i/Ltp t ). 

0 limite classic° (h — 0) desta algebra é a super w„,, par. Lima questa° em aberto é se existe alguma algebra quantica 

cujo limite classic° seja a super w,„ (13). 

Analisando os operadores quanticos (23) disponiveis, encontramos formas compactas para os operadores bosonicos 

e fermionicos, respectivamente dadas por K,V e  0.8+1/2; = ps-L =n+l9p +  rzni-lpe-1 H. A 

questao aqui é se existe algum ordenamento especial que determine ester operadores quinticos a partir dos geradores 
classicos. 
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Sobre o Modelo de Chern-Simons na 
Frente de Onda da Luz * 

Leon Ricardo liruraiiy Manssur 

Centro lirusilein) dr l'efsquigas •isica..1-C.VPq 

Sao revista-s algumas propriedades de sistemas fisicos a duas diniensOes espaciais, corn enfa.se 

na possibilidade de existencia de spin c estatistica fracionarios ( anyons), c na relacio disto 

corn o modelo de Chern-Simons abeliano. 

Na ref.11], cuja leitura é recomendada, Dirac afirnia que os 10 geradores do grupo de Poincare (ern 3+1 

dimensees) usualmente sao: as hamiltonianas. relacionadas a evolricao dinantica do sistema no espaco-tempo; e 

os geradores que sobram (simples. on einenariticos) se relacionarn corn um sub-grupo do grupo de Poincare: ekes 

mantern invariante a hipersuperficie escolhida para a quantizacao. Naquele artigo. a discutida a formulacao canonica 

(la teoria quantica nas formal instantinea (tendo coino suporic a superficie T°  = constanle), sobre o hiperboloide 

(dado por = cons:ante). e sobrc a frente (le onda da luz (dada por .r+ -. -E r E (.0±.0)/Nti = constante). 

Poi notado que na frente de onda temos urn gerador cinematic() a mais. Alem disto, nao ha raizes quadradas na 

Ilamiltoniana da eq. de Dirac. o que evita o problema de energias negativas. 

Nas coordenadas convencionais. dois pontos do hiperplano .r 0  = cons!. tem em geral separacao tipo (paco, quc 

se Lorna tipo luz se c sotnente se estes pontos coincideur. Na frente de onda. dois pontos do hiperplano r+ = cons!. 

tan-them tem em geral urn intervalo tipo espaco. has este intervalo pode se t.ornar tipo luz, se os dois pontos 

pertencerem a reta onde o hiperplano tangencia o cone de km. Logo, podernos, neste hiperplano, ter intervalo tipo 

luz para dois pontos nao-coincidentes, ao contrario do caso anterior. No momento em que quantizamos a teoria. o 

principio de causalidade microscopic° faz apareccr a nao-localidade: requer-se que o cornutador 

1 .4(.r + ..r - ,z 1 )./.1(0)1,-+ =. 0 . 

onde 	= (x °  ±r 2 )1..r -1-  = 	, .r 2 ), se armlet quando o intervalo (r.) 2 1.,+=a = ( 2 x + x -  - 	 = 	11  
for tipo espaco. Logo, o cornutador a proporcional a 6 2 (x 1 ) (e seas derivadas), e nao ha nenhuma imposicao de 

localidade emir .r - : usaudo a representacao especiral de Lehman para o campo escalar, mastra-se [3] que, na frente 

onda. 

( 0 1(15 ( x + , x - •x l ), ,X 0 )1 , -, = 010)= -s`(r 1 )(( x - )- 
	 ( 1) 

Na quantizacao, resulta que o vicuo a rnais simples na frente de onda. Ocorre que, para utna particula massiva 

ern sua camada de ma.ssa, os momenta k± sao positivo-delinidos e portant° a conservacao do moment° longitudinal 

total nao perrnite que haja exeltaciks de tais quanta no vicuo da frente de onda. 1st° oferece vantagens para 

crilculo de cfeitos nao-perturbativos, c pode esclarecer aspectos do vactio da QCD: no formalism° convencional este 

inclui termos de condensados fermionicos e gltionicos, que nao potlem comparecer 110 view) da frente de onda. 

Em 2 dintensoes espaciais, o grupo dr. rotaceres tern Ulna estrutura peculiar: as rotacoes comutam (o grupo 50(2) 

e abeliano). e nao ha a priori nenhunta razao para que o moinent.0 angular seja quantizado. Lspera-se mita° quc a 

finicao de onda para urn sistema de n particulas satisfaca 

tP(••••qi.••,q;••••)= 	 (2) 

qi denotando o conjunto de ntimeros quanticos da i-esima particula, e t1 o parattictro de estatistica, um.ntimero 

real qindquer (a menos de um inteiro). Os casos particularcs de bosons e fermions sao dados por f7 = 0 c a = 1/2. 

*Tese de MesLrado defendida no CBPF ern abril de 1996 
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respectivamente. 0 caso geral a chamadode anyon. Como esperado, neste caso o espectro do operador de moment° 

angular tern valores diferentes de inteiro ou semi-inteiro. 

Para obter este efeito a partir de primeiros principio .s [11], por exemplo, em Mecanica Quintica nao-relativistica, 

bastes notar que no espaco de configuracoes de urn sistema de particulas temos que assumir que os vetores de cada 

uma delas sao sempre diferentes uns dos outros, isto é, elas nao podem ocupar o mesmo Lugar. Do contrario teriamos 

necessariamente estatistica bosonica. Ao excluirmos estes pontos, apenas no caso de 2 dimensoes espaciais, o espaco 

de configuracoes deixa de ser simplesmente conexo. Entao, ao calcularmos, por exemplo, amplitudes de transicao, 

as trajetorias na integral de caminho sio inequivalentes, e tern urn peso segundo a classe de equivalencia• a que 

pertencem. Resulta [16] que surge urn campo rnagnetico proportional a. densidade de particulas. Portant°, a titulo 

de ilustracao, podemos interpretar a interacio neste sistema como tubos de flux° magnetic° de raio infinitesimal 

acompanhando cada particula. Pole-se mostrar que a introducio do termo de Chern-Simons tambern leva a este 

resultado. Na passagem a uma teoria de campos relativistica, encontramos dificuldades e pouco a conhecido no 

moment() sobre estatistica e spin nao usuais. 

Este modelo tern sido usado para tratar problemas de fisica da materia condensada onde o movirnento é confinado 

a urn piano, como por exemplo, a supercondutividade a baixas temperaturas e o efeito Hall quantizado (vide 

[12, 13, 15, 14]). 

1 Campo escalar carregado 

A teoria considerada aqui é definida pcla seguinte densidade de lagrangeana: 

= (DP  4)(t1,46. ) 4'ir c P "ApavAp 
	

( 3 ) 

onde w é uma constante. 4 e urn campo escalar complex°. A p  é urn campo de gauge abeliano e 

• 	D„ = (a, + ie..4,) 
	

(4) 

	

= (O p  — icA m ). 	 ( 5 ) 

Os campos de calibre tern que satisfazer condicoes de contorrio anti-periodicas no infinito ao longo•de x - , pois 

se nao, isto tornaria nula a carga conservada do campo 4. 

A hamiltoniana na frente de onda, obtida usando o metodo de Dirac para sistemas vinculados, a entao 

= f ez(D10)(i) 10 . ): 	 • 	( 6 ). 

corn A l  dado em terrnos de 4  e 0'. Notamos que ela é mais simples que a hamiltoniana a tempos iguais, por 

exemplo, a da ref. [8]. Entretanto, agora temos nao-localidade. 

Concluimos que sobram apenas os campos m e coma variaveis independentes, em termos dos quais a dinarnica 

de todos os outros é descrita. Calcula-se facilmente os parenteses 

= {0'.6*}D =0 	 ( 7 ) 

{0.4)1D = {O .  , 	= K(z — y) 	— Til f(x - )6(x l ), 	 (8) 

que reconhecernos como sendo Os parenteses de Dirac na frente de onda obtidos por um argumento geral na eq. I. 

A I  c urn gauge puro: 

al A 

jd 2 Y r(z -  — 	)t(z i  — Y 1 ):7 + (W) tin 

Para elimina-lo, aparece urna fa.se•no campo de materia = 	o que resulta em 

H = J d2 x(03C5 )(0145. )- 	 (11) 
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Na teoria a tempos iguais[4, 8, 5], podemos analogamente definir urn the -L . coin 

A" - (x) = 	/(123/ e(x - Y).i u (Y). Ora 
	 (12) 

onde e(x - y) é o angulo entre o vetor x - y e o eixo dos ri, no piano (r I . x 2 ). Notemos que e e multivalente, 

e por este motivo na integracio temos que escolher um raino. fazendo urn torte. Este torte se traduz como 

urna descontinuidade cm 0, e para cornutar derivada.s eni relacao a r e integrals ern y no intuito de obter uma 

hamiltoniana livre, obtemos urn termo nao descjado. Resulta quc 

0(x)0(9) -  e'ra0(Y)45(x) = 0 
	

(13) 

ckx)ii-(y)- e 	ir(y)(i4x) = i6 2 (x - y) 	 ( 1 4) 

onde = 0(y x) - 8(x - y) = r mod 2rir (n inteiro), que sao as conhecidas relacoes de comutacio graduadas, 

corn o fator de face multivalente [8]. E argurnentado que a tempos iguais ha uma descricao dual da teoria. 

Podcr-se-ia pensar que na cq. 10 ternos ulna outra maneira de representar o angulo 8 da forma instanta.nea 

(eq. 12), apenas mudando os nornes das coordcnadas, ji que as dcrivadas das duns expressoes dao essencialmente a 

delta. Mas a demonstrado no apendice de [0) que etas coincidem apenas para uma classe restrita de funcoes teste. 

Elas difercin nas condicaes de contorno no infinito que impomos aos campos de calibre: a tempos iguais, nulas; na 

frente de onda. anti-periodicas cm 

Entretanto, ocorre quc [0.61 0 0 e [A. Al 0 0. o que Lorna as relacbs de comutacao graduadas mais complicadas 

quando tentaimos escreve-las na frente de onda. Obtemos que 

ckz).3(9) 	- e l " (r41)- " 19 'z)l 'i(.Y)(-r) = f.'" I "ViAl29, e iA(Y)10(x)0(Y) + 
1 

+
2
- P Air/ c iAt°6(/..171 )0(0( I - e a( " ) ) (x ~ y)) (15) 

onde 

orp • • 	—
a 	

— y)c(r 1 - y'). 	 (16) 

e o ultimo termo a igual ao anterior coin r. e y permutados. Notemos que o lado esquerdo e analog° a mimic ,  de 

comutacao graduada a tempos iguais. eq. 13. mas as funcoes que aparecem nos expoentes tern simetrias bastante 

distintas. Alern disto. 6 é rnultivalente, o que nao acontece coin n. A conclusio a que, na frente de onda, nao se 

bode obter A multivalente Lai que a hamiltoniana seja livrc c o obedeca uma relacio de cornutaiao graduada como 

a eq. 13. dcvido as condicoes de contorrio. 

2 Campo espinorial 

Tentarernos repetir a analise da seeao anterior para o caso de campos fermiOnicos. Ern (2 + 1) dimensoes. as 

inatrizes garna de Dirac podem ser representadas por niatrizes de dirnensao 2: 

I 	• 
1

o 
= cri 1 = 1 473. 	= 	 (17) 

Definimos entio -y+ e 	da mancira usual. Notemos quc estas 3 matrizes juntamente cony a idcntidade formam 

lima base para as rnatrizes 2 x 2 e nao faz scald° definir 7 5 . 

0 campo ti' c urn espinor de 2 componentes. e define-se ti; E 	Nossa densidade de lagrangeana sera agora 
dada por 

r 
C = 	[Vic; (7°-rm 1,,d 1),0,3 — 15u 0:,(7` 1 7'1,-.0 0,31 + ac""Apa..4, 

Os Unicos campos independentes que sobrani sae 02 e lb; e, novamente, a distribuicao K(a- - y) aparecedevido 

condicoes dc contorno. c as observacoes anteriores se aplicani. 

A hamiltoniana na frente, de onda entao a cscrita 

11 1 . 1 	1 	ci x [th77(vio l ) 	(1:0 11.() )1b2] 1 

(18)  

(19)  
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De novo, a hamiltoniana tern urn aparencia mais simples que a de tempos iguais, mase nao-local e tern urn potencial 

de sexta potencia. 

Os parenteses de Dirac entre os campos resultam: 

'2. 02) D = {1,b; , 	D 

1 02, tb; }D 

{j +, ./ + }D 

= 

= 

0 

0 

452 ( x 

(20)  

(21)  

(22)  

Notemos que a densidade de carga coniuta corn ela mesina, a que a eq. 21 fornece urn cornutador local, contrastando 

corn que vimos anteriormente para bosons. 0 campo ri , 2  c definido da mesma maneira que p na secao anterior. 

Ohtemos que 

hi'z, 12,21+ = 0. 
	 (23) 

o que se fosse obtido a tempos iguais seria inequivocanienle o anticomutador de urn campo fermionico. Aqui, este 

resultado nao a conclusivo, pois nao sabemos o que significa urn anti-conrutador igual a zero na freak de onda. 

3 Conclusiies 

Foram estudados campos em 3 dimenthes rninimamente acoplados a termo de Chern-Simons nas coordenadas 

da frente de onda. onde 4 (e nao 3) dos 6 geradores do grupo de Poincare sio cinematicos. Resulta que na frente de 

onda sempre temos urn sistema vinculado. Obtidos os parenteses de Dirac, os campos de calibre sac) completamente 

eliminados. No caso do campo espinorial, sobra apenas uma de duas componentes e sua conjugada. A Hamiltoniana 

e nao local e o potencial é de sexta potericia. 

Tentamos obter indicios de estatistica nao usual (anyOnica), a qual a naturalmente proposta em 2 dimensoes 

espaciais. A construcao a tempos iguais [8] nao leva a uma Hamiltonianasem interacao para o campo transformado 

05, ao contrario do que c afirmado na literatura, porque ha no integrando uma funcao multivalente [10, 11). Ja 
na frente de onda, devido as condicoes de contorno, a Hamiltoniana é livre, mas nio encontramos o rotor de fase 

multivalente que alegadamente daria origem it estatistica fracionaria. 

Ainda, nas referencias encontramos afirmacoes de que a estatistica fracionaria nao aparece de forma natural 

numa teoria de campos relativistica porque a exclusio de pontos do espaco de configura46es e artificial [10 e que 

existe anomalia rotational independente de anyons [6]. Entretanto, nao podemos concluir ainda sobre a existencia 

ou nao de anyons, pois a teoria a nao-linear e nab-local. 
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During the early days of String Theory, the way to obtain the vertices for the scattering of a large number N of 
strings was to take a vertex for the scattering of a small number of strings (usually 3) and "sew" it to other similar 
vertices. Here we shall he concerned with the sewing of two vertices in order to form a third one. This has been 
done many times before, but we will use here the method developed by Neveu and West (Comm.Ma.th.Phys. 119. 
1988). We will also be concerned with sewing the strings when we include ghosts in the theory. 

We shall start with a review of how to do the sewing of two vertices at tree level without any ghosts. What we 
must do is sew two legs of two vertices. one leg from each vertex. What we have in the beginning are two vertices 
1.71  and V2 with N 1  and N• legs, respectively (figure 1). 

We now sew leg E from VI  with the adjoint of leg F from V2. What we have now is the substitution of the two 
sewn legs by a propagator (figure 2). When this propagator is written in parametric form. it is an integration over 
one of the variables (in order to cancel one spurious degree of freedom) and a conformal factor which contains 
terms of L n  's acting on leg E only. 

	

Fig.l: two vertices to be sewn together. 	 Fig.2: two vertices sewn together. 

So the resulting vertex V, (called the composite vertex) has the generic form 

	

V,. = 	P t':; 
	

( 1 ) 

where the hermitian conjugate of b, is for the sewn legonly and 

P f dx 

where x is a suitable variable. In what. follows. we shall often write P instead of P. calling attention to the 
integration when necessary. 

In the work of Neveu and West, vertices without ghosts were sewn together using some overlap identites satisfied 
by the vertices V1  and Vt. The result they obtained was that. two vertices can he sewn together as long as the 
conformal factor P has the form 

'P=V; 	 (2) 

	

where IV and Vt• are conformal transformations and 	= 
When we introduce ghosts, the vertices are now surrounded by a "cloud" of ghosts and, in addition to satisfying 

the previous overlap identities. they must also obey some overlap identities with the conformal operators b' and c', 
given by 

= 
c.) 

E L, en-2 
u—siSt 

0=— 

= E  ci n cr,4-1 
tii 

n= — co 

    

'Work developed under a CAPES grant, in King's College London. and supported by CNPq. 
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where 4, and bin  are ghost anticommuting oscillators with anticommutation relations 

birral = 6n 	• 

These operators have, respectively, conformal weights 2 and —1. 
The overlap identities for a vertex V with these operators are given by 

-1 
V [b iVi) (11-) 	o 	v kvi )— ( d*j. ) civi l = 0. 

We shall be working here with overlap identities for the physical vertex U. which has the correct ghost number. 

instead of the overlap identities for vertex V. The physical vertex is given by 

N N cc 

= V n E E eir!bj. 	 (3) 
j=1 n=-1 

$13,b,r 

where a, b, c are any three legs of the vertex and the matrix e:;i is given by 

where the cycling transformations are now defined on the complete generators 	of the conformal algebra of the . 

bosonic oscillators and of the ghost oscillators. These vectors e'd have the following property: 

ill 
= vE 	riicJ .„ „ 

j=I n=—I 

. (4) 

In order to derive the overlap identity for the physical vertex U. we must multiply the overlap identity for V by 

the same factor as in eq. (??), and pass it through the overlap identities, obtaining 

= 0 

(dd:.; 
)'&j .1 +v 

N 	 N 	N c' 

E ( -1 ) 1. n E E c ki b i  
4 4 

r=I 	i:=1 	1=1 q=-1 
p*a,b,c 	k$rt.D,c 

k $p 

(5) 

X nE. 
c 	- I  

n +1 	 erj cn+ = 0 
./3 (6) 

From (??) we can see that there will be an anomalous term in the (7' overlap of .the physical vertex U unless 

both legs i and j arc precisely those legs (a, b or c) that do not. have any ghosts attached to them. These ghosts 
which are attached to all the other legs are responsible for the anomalous terms. 

By careful analysis of the ghost number and of BHST invariance of the composite physical vertex 14, resulting . 

 of the sewing of the two physical vertices, we can conclude that we need to add some extra ghosts during the sewing 
procedure. in the same way we added the conformal term 'P. These extra ghosts are given. by 

cv 

L 'T&!1 
j=i 11=-1 

where a (a 	1,2) is one of the legs of vertex U 1  that does not have ghosts attached to it. 

The composite vertex tic  is then given by 

Ut = U1GP11!.  
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Making the necessary insertions is a long and difficult task. The resulting composite vertex is given by 

N1 +N:1 
UYI  = 	;01 exp 

i=i 
i$E,F 

+ N2 cv.) 	c‹: 

E E E c!, E,,,,i (my I li &Im.  
i.j=I 	r1='2,7 ■ =-1 
i$j 

Ni-l-S7 

X 11 	E Er s Vi)bis 
r= — I j=1 3= — 1 

j$E,P 

x E E cn Enrn (V0; 1  Vi)bj. + E c! Em „  ( ,'OF' V.1) 
1=1 Thai= —1 	j=1 	 j=1 

,$8,c 	 j$E 	 :1$ t.  

c% 	N, 

E 	E f"nF  Erin, ( 41O-F1  Vi)  bin + E c 12 E ni,n(V7i 1  4i) 14„ 
fl,Pii=— I 	1=1 	 j=1 

j$E 	 j$F 

  

This result has been verified by explicitly sewing the physical vertices U1 and 1/1. 
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The one loop measure in String Theory: 
the case of two finite fixed points 
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Institute de Fisica - Universidade de Sao Paulo 

December 3. I99( 

In String Theory, we can represent. the scattering of an arbitrary number N of bosonic strings in first order 

of perturbation by a Riemann sphere with N strings worldsheets attached to it (figure 1). Using the conformal 

invariance of the theory, these worldsheets can be reduced to points on the surface, parametrized by the variables 

— I 	N (figure 2). 

3 

N -1  I 

Fig.1: scattering of N closed bcoonic strings. 	Fig.2: scattering after conformal transformations.. 

In the case of higher orders of perturbation theory, the Rieman!' sphere is substituted by Riemann surfaces of 

higher orders. The total scattering amplitude will he the sum of all the diagrams, represented by all genera of 

Riemann surfaces (figure 3). 

Fig.3: all orders of perturbation theory. 

Each of these Riemann surfaces can be continuously deformed into Riennann spheres (for closed strings) with 

"handles" attached to them (figure 4). Each handle is parametrized by a group of three complex numbers. vr , 

r = 1.2.3. 

'Work developed under a CAPES grant. in King's College London, and supported by CNN. 
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Fig.4: parametrization of a handle. 

So, the scattering of N bosonic strings in some particular order of perturbation is represented by a Riemann 

surface of genus g, parametrized by N complex variables zi and 3g complex variables y r  (figure 5). 

lg + 1 )-tli order of perturbation. 

In the Group Theoretic approach to String Theory, developed by Neveu and West (Phys.Lett: 193B, 1987), the 

scattering amplitude of an arbitiary number N of bosonic strings can be calculated in a systematic way. It consists 

of two parts: the vertex and the integration measure (measure, for short), integrated over all the variables zi and 
vr , except three of them, that must be fixed in order to gauge fix the conformal invariance of the theory. 

In order to calculate the measure, one needs to use functions that change some of the variables v r  by an 

infinitesimal amount bv,.. In the one loop case, we can parametrize the three v r  variables by a, 0, and w, where a 

and (3 are called fixed points and w is called the multiplier. We may fix the two fixed points and one of the variables 

zi so that we only have now the multiplier w and the remaining variables - ..7; as variables. The functions that change 

the variable w on a certain covering of the Riemann surface by an infinitesimal amount 6w . are given by 

,i J„ KJ) = 	— 	 — 	• 	= 1,- • •, to 
w 	 COri)  

where vi  = 1n(4;  — a) — In(—a) and ((v1) is the WeierstraB (-function, given by 

vi 	 ( 

vi 1 

V; — tvi 	tvi 	Iv( 

with periods wil = in w and w1 2  = 2iri. The fact that there are N of these functions is that each one has to act 

on a different covering of the Riernann surface. These coverings are needed in order to avoid singularities at the N 

points zj. 

Using this function, we obtain the following result for the measure: 

cu 	 —24 

= I/J -2  n ( 1_wn) 
n=1 

This measure is independent of the number of strings that are being scattered. 

In higher order of perturbation theory, it is impossible to fix all the fixed points of the theory, so it would be 

useful to see how the inclusion of fixed points will change the value of the measure in the case of just one handle. 

(1)  

tv,00 

(2)  
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So, we now fix three of the variables zi and leave the three variables a, /3 and w free. We now have to analyze 

the effects of functions that change the two fixed points by infinitesimal amounts. The functions that change the 

multiplier w are still the same as before, and the functions that. change the fixed points are given by 

rw,c 	 3)! 
— 	c 	 

and 
6110 — ) 2  

e (ti — 8)2  

respectively. 

The measure that results of the inclusion of these new functions is given by 

(3)  

(4)  

(5) 

The measure depends now on the number of strings that. are being scatterd. 

Actually, the most general functions that change the fixed points n and 1.3 are written like 

	

6

c 

n 	I 
./.(„ 11(f,j ) = 	— 	0)2  [co 	" 	— 	— (4.5 — /1 ) 2 1 • 

	

JIV ) = 
6 

(r 	02 	• b a (j 	(1 )() 	(j 	(I) - ) 

	

where c„ and 1'0 are constants such that c0 	Li/n and cd 	n/j. For cn. A 0. cd 	0. these solutions imply the 

measure 

{ f = (ci Ø) ,v -1  (0 — 1.0 - ' N+ 1 )(C„0 — g)(C./3/3— (k)w -2  11(1 — W " ) 
ra=I 

This dependence of the measure on arbitrary constants is not yet understood. and may be fixed by some yet unkown 

feature of the theory. 
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Solutions of Einstein vacuum equations, for a static pseudospherically symmetric system, are 

presented. They describe a naked singularity and a singular solution with many resemblancts  

lo the Schwartzschild solution hut. with two major differences: its static region. lying inside 

the null horizon, sees the singularity, and its effective gravitational field is repulsive. We 

shortly discuss on the phenomenological plausibility of this last solution as a self-consistent 

system living on a space-time domain, and discuss some features of particle geodesics in its 

gravitational field. 

As a fundamental physical theory. General Relativity is well known for not imposing any constraints on spacetitne 

geometry just but a Lorentzian-manifold structure and Einstein field equations. In specific problems. it may be 

appropriate to impose additional model-dependent. constraints, such as a specific symmetry or asymptotic conditions 

on the geometry. Thus. the study of Einstein equations and their solutions have attracted so much attention from 

the point of view of numerical analysis [1] as well as exact. solutions coupled to matter [2. 3], solutions in diverse 

dimensions (4], solitonic solutions (5]. etc. 

In this contribution, we shall assume the existence of a region in the Universe having spatial pseudospherical 

symmetry. This region could he thought of as a kind of space-time domain possibly originated in an anisotropy 

occured at. the Universe expansion. In any case, we shall solve under this hypothesis the Einstein vacuum equations 

inside the domain. reaching fairly interesting results. We obtain two possible singular solutions depending upon the 

sign of an integration constant 

(i) < 0 leads to a naked singularity, while 

(ii) > 0 gives rise to a singular space-time with a null-horizon and a repulsive gravitational field. The static 

region lies inside the horizon and, thus, sees the singularity. 

We shall analyse these singular solutions, study particle geodesics in the background metric of solution (ii), and 

argue on the self-consistency of the resulting effective repulsive gravitational field. 

Let us start by considering the Einstein vacuum equations in a space-time domain with spatial pseudospherical 

symmetry. The solution we shall develope, choosing a pseudospherical gauge, is based on the following metric 

tensor. 

Yriv = diag (e", —e A  —r 2 , —r = e -' e ). 

In spite of the fact that u and A are arbitrary functions of r and I, as in Schwarzschild's case (6], there is 

a coordinate system where the metric tensor is static. in other words, the universe is stationary for a privileged 

observer that detects no change in the intrisic geometry of the space. Concerning 0, it is a pseudospherical parameter 

valued in the interval (—oo.0] (7]. In such a coordinate system, the solution of Einstein vacuum equations reads 

ds2  = (1 — :=7 ) di 2  + 	1  	dr 2  — r 2(02  + e 29 d¢ 2 ). 	 (2) 
I — 74 

A naked singularity rises up whenever the integration constant W is negative. We shall consider, in the following, 

as a positive constant to be determined from continuity conditions on the boundary of the domain'. In this 

•CONICET 
'Note that as our solution is valid on a bounded region of spaceLime, there is no -Newtonian" restrict' 	 on the sign of co. 
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case. it is easily seen from equation (2) that there are pathologies at r = tv and r = 0. In order to clarify about 

the physical significance of these divergences. let us compute the non-vanishing components of the Riemann tensor. 

They are simply 

Rlr 1r = Roo e4r, = -17  and Ha = 	= Jiro  r  = 	" = — 
r 3   (3 ) 

showing that an imaginary test observer aproaching front infinite must encounter infinite tidal forces at the origin, 

independently of the route he uses to reach there. This is obvious from the curvature invariant I 

1 E RA„ Pv Rgiv Ari  = 12 — • 

r 6  

	

On the other hand, the Riemann tensor is completely regular at r = 	Moreover. the proper distance from r = 

to an arbitrary point r, is well defined in the interval 0 < r < cc., as is shown in the following equations 

+ 	InI(L 
 Jr
–(4/2 1 a_ 	 2 

lgrr I I 2dr – [r(r 

when r < 7) whereas 
7.. 	

1/2 

1/2 
igrri ll2 dr = 	arccot.  	[r( *.r.. 	r)] 1 / 2  

7.)  

when r > 7. It is worthwhile to point out that at r = w we have a reversal in the roles of t and r as tirnelike and 

spacelike coordinates. The spacetime breaks into two parts. resembling the standard, positive mass. Schwartzschild 

solution: a time-like static region with the Killing vector in the time direction and a dynamic region with three 

space-like symmetries: the boundary between these regions. at. r =.7). being a null-horizon. One major difference 

with the Schwartzschild solution is that. the static region of the pseudosplierical singularity is in the neighbourhood 

of the origin and. therefore, sees the singularity. 

In order to get a deeper insight into the psendosplierical solution. it. will be interesting to study the orbits 

followed by particles inmersed in its gravitational field (2). The particle geodesics in this background metric will 

reveal several interesting features of the pseudosplierical singularity. We shall choose the coordinate system in such 

a way that. the radial projection of the orbits coincide with 0 = 0. In this oriented coordinate system, the particle 

will have zero momentum in the 0-direction. The: invariances t — f + :11 and 0 —a + ,a0 define two Killing vectors 

which we shall identify with the conjugate momenta pa  E (particle's energy) and p o  a L (an angular momentum-

like vector). We will use these conserved quantities. usual, to obtain a first integral of the equations of motion. 

Consistency with the equivalence principle, demands test particles to follow the same world line regardless of its 

mass. Hence the quantities relevant for the motion of particles are: the energy per unit rest mass E = Elm and 

the ratio L E L/m. Taking this into account. the on-shell condition of the particle can be written as 

+ I –  (dr )2 
f 

I – 	1 – r2 	I  = °' 
or. equivalently. 

(dr 
= 	— tcrt-r, 

dr 

with the effective potential given by 

1;1 = ( .17  – 1) 	 -L2  + 1) 

f-r  

(4)  

(5)  

(6)  

(8)  

(9)  

= 0 while, contrary to the usual cases, 

the effective potential. We will come back 

Interestingly enough, enough, we see that. the effective potential is repulsive for 
the "centrifugal" term of 1, 1,14 gives rise to an attractive contribution to 
to this striking point. later. 

The turning point R. can be obtained by setting d•/dr = 0. For a give 
motion (i E 0) this results in 

n energy Eo , restricting ourselves to radial 

(10) 
+ 

Then. the proper time can be simply expressed, from eq.(8). as 

rr dr ( 1 

7j 1 / 2 	r 
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This integral can be evaluated using the suitable change of variable.s 

r = —R ( + cosh ri), 	 (12) 

in such a way that the 'proper time' it takes a particle to travel from r = R to r = 4ro 2  is a finite quantity given by 

r = .7 
R. r:,. 

arccos 
{ 

h ( 8=  — 1) + 4 \1E (:17' — l) 1 . 	 (13) 
R 	R 

In .  fact, this quantity should be referred to as a proper distance, being calculated inside the dynamical region. In 

order to compute the 'coordinate time' taken by the particle to reach the null-horizon, it will be useful to introduce 

appropriate "tortoise coordinates" [8) 

dr 	- dr' 
= 	+ mln(= r)j such that. — E 

dr 	dl 

It is easy to see from (9) that E 2  — lie2fr  a E. 2 near r = =. Then, after (8) and (14). dr-/dt 	1. Thus. 

r• 	+ .01n(= — r)) 	=111(=— r). 

or, equivalently, 

r = 	— 
	

(16) 

with C = constant. It can he seen from equations (9) and (14) that. the approach of 1:'', 21T  to zero as r 7) is seen 

to be exponential in r'. In the same vein, equation (16) shows that. it takes infinite 'coordinate time' to arrive at 

r = 

Let us briefly discuss, at this point., about. the repulsive nature of the pseudospherical solution. It. has certainly 

appeared from the lack of a 'Newtonian' restriction on the bounded region of space-time given by the spatial 

pseudospherically symmetric domain. This domain can be thought. of as a kind of structure that might have 

appeared in the early universe generating a disconnected region, still unobserved, with pseudospherical geometry. 

It is important to stress that this symmetry could be generated by a mass distribution external to the domain. 

This fact is not forbidden, in principle, by Birkhoff's theorem which does not apply whenever symmetries are not 

spherical. The boundary of the domain could be inside the horizon, this leading to the appearence of a naked 

singularity. 

The main challenge posed by this singular pseudospherically symmetric solution should be to find a matter 

system that would be able to generate this odd gravitational field. and to carefully study how it smoothly glues 

with regular solutions outside the domain. This is, of course, a hard problem that should be fulfilled in order to 

give complete consistency to our pseudospherical solution into a 'Newtonian'-like universe. The study of this issue, 

as well as a complete analysis of particle geodesics in the background metric of the pseudOspherical singularity, is 

being completed [9). We hope to be able to give an answer to the matching-conditions problem in the boundary of 

the domain in a forthcoming work. 

We would like to thank Hector Vucetich for a critical reading of the manuscript. 
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The implications of a manifestly covariant formulation of relativistic quantum mechanics 

depending on a scalar evolution parameter. canonically conjugated to the variable mass, is 

still an unsettled issue. In this work we find the harmonic oscillator solution in the above 

mentioned formulation. and we briefly continent on some models where this solution could 

be applied. 

In a line set of papers. Dirac introduced the idea of elevating the time coordinate .r 0  to the rank of operator [1]. 

The proper time formalism introduces an absolute evolution parameter (related to the proper time in the classical 

limit), which parametrizes the dynamics of the quantum system [2]. The basic idea of these works. which have 

probably fallen into oblivion because Dirac himself did not insist on it in his celebrated paper of 1928 [3]. shortly 

returned to view with Feyninan and Stiickelberg antiparticles interpretation as particles moving backward in time 

[4, 5]. Since then, various works have appeared in the literature [6. 7. 8. 9, 10. 11]. but the precise interpretation 

of the additional parameter. posses a puzzle to physics which is still unresolved. We shall adopt here, the Collins 

and Fanchi (CI') formalism [8]. In this scenario, we work out the harmonic oscillator solution of the Klein-Gordon 

(KG) equation. 

We hope that this generalized quantum relativistic mechanics for spiniess particles could he applied to current 

problems in contemporary physics. such as the production of charmed mesons in the frame of Color Transparency 

[12] and a bound systems of two dyons [13]. Quantum mechanical features of Color Transparency have been 

studied considering the non-relativistic evolution of a cc pair produced. as a small wave packet. inside the nucleus. 

The interaction between the pair of quarks has been modeled by using a harmonic oscillator hamiltonian [12]. 

Since relativistic effects are important in this phenomenon, we think it is interesting to apply the scalar time 

parametrization of the Klein-Gordon oscillator to the non-relativistic model. A similar treatment could he applied 

to the case of hound system of two dyons which has been studied in [13] with a non-relativistic quantum isotropic 

oscillator. 

Let us briefly sum up the characteristic of the formalism. The square of the amplitude of the wave function 4 , 

 must be interpreted as the probability of an event corresponding to the position of a particle at a particular time. It 

is worthwhile to point out. that the latter interpretation differs from the usual one due to that there is a probability 

distribution associated with time. Therefore. for each I there is a probability that a particle may or may not be 

found somewhere in space. This seems to he reasonable, since particles such as mesons have finite lifetimes. Then. 

the mean value of the position operator x. can be written as 

< .r" >= f .r"p &I x 	 (I ) 
JJ s• 
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where p is a distribution on the spacetime manifold satisfying the two following conditions: 

p > 0 	and 	 pdi r= 1 Z7' 
with integration understood in the Lebesgue sense. over the entire spacetime manifold. 

Taking this into account, the on-shell condition must be understood as the expectation value of the pr' p 9  operator. 

As shown by CF, the aforementioned operator is proportional to a/dr. and the light-cone constraint identifies r 

with the classical proper time [8]. Thereby, the free particle equation, in natural units, is given by 

i 2 711 Th7  = H 
Ot 	

(2) 

here H = pi-gm, and rh is defined as the classical limit of the pop, expectation value. 

Our purpose is 10 work out the relativistic spinless harmonic oscillator in the frame of the formalism we have 

commented. The hatniltonian for the relativistic harmonic oscillator was studied by Moshinsky and Szczepaniak 

[14]. They proposed a new type of interaction in the Dirac equation. linear in coordinates and momentum. The 

corresponding equation has been named "Dirac Oscillator" because in the non-relativistic limit the harmonic oscil-

lator has been obtained. This kind of interaction was introduced in the Klein-Gordon equation [15. 16]. To get a 

closed form for the extended relativistic harmonic oscillator hamiltonian. we present. first. the Klein-Gordon oscil-

lator developed in the Bruce [15] formalism together with the Sakata-Taketarri approach [17]. The latter selection 

determines the following KG equation 

( ❑ + rn 2  w 2  r 2  — 3 In w 	7:1 2 ) 	= U 	 ( 3 ) 

Now, we want to work out this equation in the frame of the scalar time parametrization taking into account. 

the above definition of the pPp„ operator and considering a probability distribution asociated with time. To solve 

this equation we shall consider the wave function tli(z i,.r) as an element of the space of exponentially increasing 

distributions A o  [18]. The Fourier transform space in the variable r, is defined as a tempered ultradistribution Li 

[18, 19, '20]. We can define (1 2 ih6)I/ 2  operating over a A,, distribution as follows [21]: 

a ) 1 1 , 
(i 2 tit— 	1(r) = Y -1 {n 1 / 2 /(o)} 	 (4) 

where 

f(u) = f{f(r)) 

With all these requirements eq. (3), takes the form: 

0 1 '  

	

0 + 2Miu..
.
,-  r` 

a 
— 3w ( 	

2
2ifii-,.) 	+ 2im— kV = 0 { 

r 	 ur 	 ar 

Thus. taking into account the Fourier transform, equation (6) could be written as follows : 

(0 -f-w 2 r2 rt &Jo l t' o) kl;,(x„,o)e - ireda = 

where 1' is the usual path which surrounds all the singularities of t1i, placed on a 2 A wide band that encircles the 

real axis. The path I' runs from -oo to co along Ini(z) > A' and from oc. to -oo along lrn(:) < -K . Defining the 

operator 

	

0 -1-w 2 r 2 0 - 	" 2  n = L 
	

(8) 

equation (7) reads, 

(5)  

(6)  

(7)  

= cg.r.,„ct) 
	

(9) 



fo 
+c. 

XVII Encontro Nacional de Partici,las e Campos 	 565 

where u(x„, a) is an entire analytical function in the variable a. Thus, 

4;c(xp,0)=.te(r o ,0)+ L -1  u(x,,o) 
	

(10) 

with ic  a general solution of the homogeneus system, 

Lic(xm, 0 )= 0 

The boundary condition we shall impose is to set the entire analytical function (a(x in  a)) equal to zero; with 

this condition we ensure that for a fixed n > 0 we obtain the same energy spectrum as in the usual KG formalism. 

Therefore we obtain, 

(0 + w 2 r 2 o - 34,0 1 / 2  + 0) Mr,. o)e -  i:qr do = 0 	 (12) 

On the real axis this expression takes the form, 

L
/1-03 

R0 + u.7 2 r 2a - 	+10) 1 / 2  + n) h..(x„, 0 +10)- 
. 

(C1 + 	- 3co(o - 10) 1 / 2  + o) h(..r p . - 10)] e - e r rin = 0 	 (13) 

If we impose to h to satisfy the equality 

ro 
[(o + i0) 1/2 /c(z,,a + 10) - (o - i0)1/2.fc(zp,tt  -10)1 c - i+. T dot = 0 	 (14) 

equation (1:i) reads, 

(❑ + La 2 r 2 o - 3wo 1 / 2  + n) [h(x„, n + 10) - (x,,. o - 10)] 	ii*T 	+ 

	

(0+w 2 r2 n +0) th(x„, cr + 10) - jc (x, • o - 10)] 	 0 
	

(15) 

Next. we define as in ref. [19, 18] 

j(x,. 	f,(x,,. + i0) - 	„,o - i0) 	 (16) 

Bearing this in mind, our system can be reduced to 

(0 + 4, 2 7. 2 n - 	+ (1) j(xp . ) = 0 0 > 0 

(0 +co - r - f) + 0) f(r. , ,. n)-U o < U 
	

(18) 

which is solved using the standard procedure of quantum mechanics. Thus. introducing f = 	1'71 	eq. (17) 

bec.orties 

(- 	+nu....2  I. 2  - 3(1 1 / 2 4..+( ■ ) 	= 	 (19) 	. 

The eingenfunctions that satisfy the last. equation are: 

=  

x 	 27) 11„,(VolOw y) 11, 3 ( c 2: a :) 
	

(20) 

where 11N, i = 1,2,3 are Hermite polynomials and E satisfies. 

E 2  - 	+ A:2 + N3 )!r1/-•° + n = 0 
	

(21) 
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with Ni E 	(natural numbers) (i = 1,2.3). 

Finally we obtain for 

ti$ 	 = 	 e,---ia / 2 Fir cik:(a,NI,P12,31( e -1 r' + y' + z' ) li? 	/'' 
o N, N2 N3 	 n N1 N3 N3 

XHNC ( i11.,3 (c 1- 	z) 

with A Ni N2 N3 the normalization constant. given by 

(22) 

A . N. N., N3 

I / 2
:■.; 

 

(23) 

 

V'21-i17 2(M + N3  + 	)/ ( N I ! .Al2 ! N.30 1 / 2  

We now turn to the calculation of %It in the case a < 0. The equation (18) is now 

( — 	+ a cv 2 	+ a ) 	= 
	

(24) 

This equation has the following eight independent solutions: 

 

y. = 

✓y 
y 

r 
r. 

Y 
y 

l Ei(X) ' I' E2(Y) 4DE1(:) 

EI( 17 ) 	1::2(1) (1)1  E3 (:) 

(I)  F.: 1 (r) 	E3(Y) 4) 11:%(:) 

E I (.7!) 41" E7(Y) 	E0(:) 

E g (X) (1) E j (Y) 	E,(:) 

4)1  Ei(Z) (1) E7(Y) c' i,( :) 

(1)'  le 1 (z) 	E2(Y) CI>  E3(:) 

E 1 (2) (i) ?  E:, (p) 	E3 (z) 

(25) 

with 

   

( 3 	i ( E7 — ) 3 
i'E l a(z) = ` 1) 	17 + 	 

4 (—or) 1 / 2 :..7 *  2  
i ‘,/-- a c.,  x 	 (26) 

i ( r..1 — 5.,i) 	3 
(i) Evr ( Y) = ( I) 	.:: + 4 	(_,01/2 .... ' 2 ' i .‘,/i 1,, y2 	 (27) 

: 	
i (1--;?; —  i) 	:1 

i'E,0(z) = `1)  ( a: + 	 ' 2 . i N.Tru., .: j ) 	 (28) 

ci' l E,,,(x) 
= . ( : 

 

.1(—(.0 112 :..... 2 ' if=7""r2 	
(29) 

E,0(1i) = 0  ( 1  + ii  (( E2,., — 2i). ' 1 i \i."' Y2 	
(30) 

	

clvE3„(:) = (1) 	
I+ 
	4 (_,01,(2,.... 2  . i \/..e:.,.: z 2 ) 	 (31) 

where (1)(a.0,$) are the degenerate hypergeometric functions [22] and E:f + E22  + EZ = £ 2  are real numbers. Thus 

we obtain for 'V the expression: 

Ci It r I' 2 FIT C — i E g  

X 	r
— i( r".  + y 2  + : 2  ) vi -744 2 ci2  

with 

A„,E7E, = (1E111E211E31) 
r ( 1  + "If'-' 3.-) ..C) I IP

7/2r03/2 1/

I 	+ 
(33) 

2 5 7( —a )3/41'  

(x. Y. -7 ) 	 (32) 



j+c, 
do 	d /C i  dE2dE3C. 	e  - i VE1 2 + E? -!.- EA ' t 

- co 
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This functions can be normalized to 

- 	- 	- /... 2 )(5(E3 	L',13 ) 

Finally the general solution is given by 

-
El CINI .V.21V3

e
-1 el r / r7 e - .r + y + 	v o 

-i err / 2 	 + :2  I N./ X e 	 C5 0-E EzE,3 (1 ' Y • 

Summing up, with the help of tempered ultradistributions and their inverse Fourier transform space (exponen-

tially increasing distributions), we have presented the complete set of eigenfunctions for the harmonic oscillator 

KG equation in the proper time formalism. h is possible to select a(x„, 0) = U to obtain for fixed a > 0. as a 

particular case. the energy spectrum which coincides with the usual KG harmonic oscillator solution, identifying 

m = 0 1 / 2  (being m the mass of the oscillator). This can he deduced from the dispersion relation (see eq. (21)). 

The eigenfunctions given by eq. (20) are the same of those for the usual KG harmonic oscillator. Contrary to the 

usual KG formalism, in the proper time model. solutions for negative values of a do exist. These solutions represent. 

tachyonic particles. On the contrary to the usual quantum field theory. solutions with < 0 are well-behaved in 

the sense that they are oscillating ( as for a normal bradyonic particle), instead of exponentially increasing. 

Ve are grateful to L. Epele, H. Fanchiotti and C. Garcia Canal for fruitful discussions. We also knoweldege C. 

Nthn . S. Perez Berglialfa and D. Torres for insightful comments and critical reading of the manuscript. 
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More on Renormalization Ambiguities: 
Effective Action and Mode Summation 
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The one-loop effective action is formally equivalent to the summation of the energies asso-

ciated with the vacuum fluctuations of the quantum field. However, renormalization effects 

may introduce an anomalous scale dependence in the one-loop effective action. and also in 

the summation of zero-point energies. Recently, it has been argued that these two methods 

lead to distinct results for the Casimir energy. We show that the one-loop effective action 

is completely equivalent to the zero-ptiint energy summation. working in a regularized way 

since beginning. Hence, we clarify some statements made earlier in the literature. 

In 1948 Casimir [1] showed that two neutral perfectly conducting parallel plates placed in the vacuum attract 

each other, due to zero-point oscillations of the electromagnetic field (field strength fluctuations). His starting point 

resembles an old idea of Euler arid Heisenberg [2]. They used the zero-point oscillations of the Dirac field (charge 

fluctuations) in an external field to define an effective action to the electromagnetic field. The common feature is the 

summation of the energies associated with the vacuum fluctuations of the constrained quantum field to define the 

vacuum energy and the effective action. Later, the notion of effective action was elaborated, first as the generating 

functional of [PI Green's functions, and nowadays as any effective theory which reproduces the full theory over 

sonic energy (distance) scale [3]. Indeed, the effective action at one-loop order is formally equivalent to the older 

definition of Euler and Heisenberg [1]. and so the vacuum energy calculated from it. is also formally the same as 

that embodied in the Casimir argument. 

However, due to renormalizat.ion effects the complete equivalence of these two definitions is not straightforward. 

Recently (5), it has been argued that the effective potential method is more reliable than the mode summation 

(MS) approach in the computation of the vacuum energy. Myers pointed out that in some cases the MS approach 

neglects a scale dependent contribution. Almost. at. the same time. another group [6] stated the opposite: that the 

vacuum energy calculated from the MS approach is more general than the effective potential calculation. In this 

paper. we use the scalar vacuum energy example to show the complete equivalence between the two definitions of 

"effective action" (one-loop IPI and MS). working in a regularized way since the beginning. llowever, the proof is 

general and can he extended to other situations. as for example external field calculations in QED. 

1. Let. o(r) be a real massive scalar field, with a Ath 1 /4! self-coupling'. The one-loop effective potential is given 

by a hosonic determinant =' 

0 ) 
1 1( 11 (6) 	— 1n detk 	 (1) 

/12  

where 0(ci) = 	— Al 2 , Al 2 	rn 2  + 	is a constant background field. and ;1 is a mass scale used to normalize 

the determinant. The determinant iu ( 1) is meaningless, unless some regularization is adopted. We will use the 

generalized zeta function technique (7], 

cianeliolrsnfma2.if.uap.br  
m 17 = ri 	I. flat apace-time with signature (+, 	—1. 
2 Note that In det 	= Tr In Az , y = ftD Trk In Ak. Where OD IS a D-d - 	!visional normalization volume. and k denotes "moment tun 

space-. 
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where 

'cleti (= 
ir 

= 
0)  

exp 

= (// 2 ) -‘:c.1°) exp 

. 
[ - v,02.()1,.o 

- D-1.1s- C.c., (s) I,=o [ 

E 	„ti 

Luiz C. de Albuquerque 

 (2) 

• ( 3) 

(4) 

is the generalized zeta function associated with the D-dimensional operator O. whose eingenvalues we denote by 
A. For instance, taking Dirichiet boundary conditions (DHC) in x i . o(i. LI = 0) = 0 = 6(i. rt = L). we have the 

discrete set kl = plus plane waves in the other d = D - I dimensions. 

The minimum of the effective potential gives the vacuum energy density. Since in' > 0, this is given by 3  

i 
CAL) = V 11) (t; = 	= ---(D(.5 44 )1,=0= 2- G(0) -1- (DMInii2  • 2 as (5) 

In the specific case of DBC, the generalized zeta function reads 

1){•c; = (27) D i. E f 
p

2 	 
—c"c  

where ddk = dkodk2. - dkd, and k2  E 	- 
The representation given by (6) is valid only for a definite range of the complex parameter s. However, an 

analytical continuation to the whole complex plane is possible. and indeed must be done before one takes the limit 

s - 0. One major virtue of the so-called zeta function method [7) is that (D(s) is analytic at. s = 0 for most. 

interesting operators in Field theoretical problems. In particular. for an elliptic, positive second-order operator. 
(D(s) is a meromorphic function with only simple poles. Thus, ,!:0(L) defined in (5) is a finite quantity. 

Let us integrate over k o . This gives 

CD(8:it)= (_)1/2- 	\Fri' 	Ills - h/ 2 ) x-'`' l dki 

= 

El + ( -az 	1" 	" 
L 1 -  + In-  I  / 2- " 

— 112:01 
o=0 

associated 	with 

(7) 

(8) 

the 

Using now (5), we obtain for 6.0(h): 

1 	a 	{ 	I 
£o(L) = 

(2
, 	

.7)dj., r( 	 ) 

_ 	1 	•'") 
/, 

n=1 

nr - 

(nii-2) a 

. 
ra=1. 	— C‘3 

eigenfrequencies 

/12 

[ 

r-To f(s10( ,  
{ 

—
s 	

—
I(s)

./(6) 

F(s - 1/2) 
I(s) 2,fir 

where 	An 	a 	 ( 

(2 7 )d-i. 

are 	the 

d-dimensional (reduced) operator O. 
For a function F(s) analytic at s = 0. we use the approximation 1/1(s) 	s 	-/N 2  + O(s3 ) to deduce that 

1.1 Fla) 771, =0 = F(0). Hence. suppose that. (d(s - 1/2;,i) is analytic at s = 0: Then. we will obtain (f(0) = I. and 

1 
t:0(L) = 1 / 1  (d( -1 / 2 : li) = 

 

3 The simplified notation is: &C G (3) 	CD (0:14 

1 -  (6) 

Wu. (9) 



XVII Encontro Nacional de Particulas c Campos 	 571 

This is exactly the non-regulated MS expression for the vacuum energy. written as a sum of zero-point energies. Of 

course. (8) is only another way to write (5). However, formula (8) is also a regularized expression for the vacuum 

energy in a MS like form. The UV divergences, associated with the high-frequency modes in (9), manifests as poles 
in (d(s - 1/2,p) when we put s = 0. Thus, in general, (d(s - 1/2:p) is not regular at s = 0a . 

To see this :  we make a Mellin transform to relate the generalized zeta function to the trace of the heat kernel, 
Y(I) E tr e -tc'" -2 . As is known [9], the heat kernel possesses an asymptotic expansion for small t. Using this 
expansion, we get the pole structure of (d(s: p) [6] 

00 
1 	 Cj  

 ( ■17r)dr2 F(s) 	o  s - (d/2 - j) + i(s)}. 	 (10) 

f(s) is an entire analytic function of s. Hence, we see that (d(s; p)  is a merornorphic function of s. having only 

simple poles with residua given by the coefficients Cj. 

In particular. coming back to eq. (8). we obtain 

t70(L) = 
{ .7.7 

/I 	e) 	I Cli  
2(470D/ 2. /.),,, Rs,, 	

E . s—(D/2—I)±f(s - 
1/2) + CD/2 

,*Dr, 
 

= tea{ L} 	Is 	, i  1r 	, 

:2(z17)D/2 "
, 

' it- :D/2til). 	 (1 i) 

One conventional choice is to define the Casimir energy (density) as [8] 

= 4( 1-) - t:o( 	 (12) 

where L 0  is some "normalization" set. (sometimes. L 0  — cc'). 

The Casimir energy defined by (11) and (12) will. in general. depend on the scale p, when CD/2 	0. For 

conformally invariant theories in flat space-time and flat parallel plates. CD/2 = 0 and p disappears identically. 

Even in the massive case. however. the definition (12) can remove this dependence. But in general we expect a 

dependence on p in the Casimir energy. For example. in an ultrastatic space-time with ds2  = (dx 0 ) 2  - 

we decompose the differential operator 0 E g+'° p +, p„ = (do )2  - Ad, so that the equation (8) also gives the vacuum 
energy, provided that A„ = A n (Ad)• 

The principal effect of this scale dependence is that the usual scale behavior of the total energy may be violated. 

The scale p can be interpreted as a free parameter which takes into account the physics associated with boundaries. 

curvatures. masses, and couplings [6]. 

Let us see what. is the effect of a change of scale. /1 — 	From the definition (4), we gel. 

CD (s: o' 1 = (

i 

II 	
(D(s: ti). 

Using (5), (8) and (13). we obtain 

= e0(1 1 1 	0 70,0/ 	1:012(p) 	- 
	 (14) 

The scale dependence is logarithm ic. and proportional to the coefficient CD/_, [6]. 

2. We have just proved. in a rigorous way. the complete equivalence between the MS definition for the vacuum 

energy and the effective potential at one-loop. Using the zeta function definition of the determinant, we arrived 

at. expression (8), which is a kind of regulated MS expression (perhaps a strange one). However, unlike others 

regularizations, the zeta function regularization embodied in (8) already contains an infinite renorrnalization of the 

4  However, the entire expression on the RHS of (8) is analytic at 5 = O. 
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theory. Note that the expression (11) for the vacuum energy is finite: (d(s) possesses only simple poles, which 

combines with r(s) in (8) to give a finite result. This is expected. since (D(s) is analytic at s = 0 (see (5)). The 

arbitrariness of the renormafization process is manifest through the scale p. In general, the dependence on the scale 

is logarithmic. 

3. However, others regularization prescriptions for the MS definition are possible, and indeed are fairly used (8]. 

In particular, starting front the unregulated MS formula (8). one could use the following regularization [6] 

	

eo(s) = 	(A n ii -2 ) 112 - i 	
2 2 	

= 	C.d(s - 1/2:p). 	 (15) 

In this case, the pole in s = 0 do 1101. cancel against f(s). Thus. the coefficient CD 12 turns into an obstacle to 

give a finite Casimir energy. As properly emphasized in [6], the total energy is finite, because of its effects over 

the gravitational field. and so the hare action must contain a term proportional to CDp. The renormalization 

prescription which removes the pole. on the other hand, is not unique. This entails an ambiguity in the Casimir 

energy. In particular, in the minimal subtraction scheme employed in [6] , the pole is simply removed. and the 

Casimir energy is defined by (PP=principal part ) 

	

l i nt 
	{  

	

:.- 0(+s)+ eo(-.5)). 	
1
2 
 PP(d(s - 1/2:p). 

s-o 2  

Using this definition. Blau et al. [6] derived the formula (14) for the scale dependence of the Casimir energy. 

4. Instead of the generalized zeta function . we can use the Schwingers formula (SF) for the one-loop effective 

action [10] as a definition of the functional determinant, in (1) (see [II] for elementary applications). We proved in 

[12] the equivalence between the SF and the MS expressions for the vacuum energy, first in a formal way. and then 

using a regularization prescription. We will repeat only a few steps of the argument of [12]. but now introducing a 

scale. 

The regularized SF reads [13] 

w  _ (I) - - f ec  di 1 1-1 Tre - e mi t ,-3  - 
2 0  

(17) 

where s is large enough to make the integral well defined. In this approach. we first compute the integral, then 

make an analytical continuation to the whole complex plane of s, and finally the limit s — 0 is carefully taken 

(sometimes appropriate subtractions have to be made ). 7i = /12  - p',7; r ►i= is the proper-time Hamiltonian. After 

evaluating the trace, we take a derivative with respect to ► n= on both sides of (17), to obtain 

03 
ai.1' _ _u.., T _ 2 	d d i: 	c."'  (if re _i ii  _i2 +  =...., 1.... + ,,,2 , i,_, 

ro  - 2 P L 	0 	
. 	 (18) a  

n=1 	
(270d  

Using the definition of the Euler Gamma function, the integration over t is readily done. Then, we integrate over 

ko .to obtain 	 , 

.,, 	,.. n 	,  :-,._. 	k + t  --r  ) + m- 
i - v :a 1( 

2 
)1 (if + -

2
)p- 	i 1  E 	dk, 	- 	 (19) 

C7771 - 	- . 4 - 	 P2 . nr..-.-.3 - • c•= 

Integrating on ► n:1  and identifying e,, = _G. we finally obtain (apart from an irrelevant additive constant) 

2  J  27r)d-1 	ii

„K 7 4- 113 2 i " .Y 
4(0= -IA-As) 7 	 (20) 

2 	• 1--,. 	( - 	 • 
n-i• • 

whe re we defined C(s) = `' I. - .1-4-1)  ( G(0) = 1). Thus. for a general ultrastatic Manifold. we write 1 	- viv 

f 
Eo(s)= - 

2
p 	( 	 2- ii). = -IL t.d.•5 - - 1 / • 

2 

(16) 

(21) 
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which is just eq.(15). This is yet another and more transparent way to derive the rigorous equivalence between the 

1 P1 effective action. at one-loop and the MS definition. 

Conc lusions 

We showed by two ways (using the generalized zeta function and the Schwinger -s formula) the complete equiva-

lence of two particular definitions of the vacuum energy. e.g. the l PI effective action at one-loop for constant back-

ground fields, and the summation of energies associated with zero-point oscillations of the fields (MS approach)". 

Of course, different renormalization schemes leads to different expressions for the Casimir energy, when CD/2 

however, the scale behavior (14) is a general feature in any definition of the Casimir energy. But in no way is one 

approach (MS or effective potential) more restrictive than the other. as stated in [6. 5]. In particular. the last. au-

thor called the discrepance between the naive MS formula (without the scale factor) and the (-function regularized 

expression (with the scale dependent factor proportional to CD(0) = CDp. see (5)) of - zero-point anomaly". In fact.. 

the anomalous behavior of the path integral measure under scale transformations is responsible for the conformal 

anomaly factor (which is proportional to .41 Dp) in the energy-momentum tensor (Hawking. ref. [7]. and [H]). but. 

there is nothing new in this remark. In others words. the concept of zero-point anomaly is a misnomer. Anyway, 

there is no real difference between the two approaches. with regard to the scale behavior of the Casimir energy: 

in the general case. the Casimir energy develops an anomalous logarithmic dependence in the normalization scale, 

proportional to Cop. 

I,CA would like to thank Adi!son 3. da Silva. Carlos Farina. N1arcelo Gotnes and Marcelo Mote for reading the 

manuscript, and also to the Mathematical Physics Department for their kind hospitality. This work was partially 

supported by UN Pq (Brazilian research agency). 
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We compute the mass correction and the coupling constant at. finite temperature and with 

Dirichlet boundary condition in an interacting scalar field theory in D dimensions, at one- 

loop. Some peculiar results of odd D are noted. Namely, the self-energy is scale-dependent, 

and the mass counterterm develop a dependence on L (the distance between the plates). 

Field theories defined on manifolds not horneornorphic.s to RD displays a lot of appealing features. such as 

dynamical mass generation. vacuum instabilities and symmetry breaking or restoration [1]. This is the case also in 

finite temperature field theory (rrcpm. The Casimir effect [2] also illustrates the effect of global constraints on 

the dynamical properties of the theory. In fact, external boundary rondilious (13C) (Dirichlet, periodic, Neumann 

or any other) affect not only Feynman diagrams associated with energy calculations, but. all diagrams: diagrams 

with and without boundary conditions can have finite numerical differences. So. other physical quantities (such as 

masses, coupling constants, anomalous magnetic moments, etc.) could. in principle, be affected by these external 

BC. 

Usually. calculations are done with periodic BC. In this letter. we will investigate time case of Dirichlet BC on a 

spatial sector, plus periodic BC in the imaginary-Lime. We explicit compute the mass correction and the coupling 

constant at one-loop in a A0 4  theory. This generalization reveals unusual (but not quite surprising) properties of 

the Dirichlet, BC. 

The Lagrangian is (Euclidean space) 

1 	I 	., 	A 	1 	 1 	. 	I644 	 C(0) = - -00th - -m-0 -  - —0 4  - -6Z60th - _bm202 
 - _ 
	4.  

(I) 
2 	4! 	2 

where the dots indicates counterterms of the form C"0" (n > 6) necessary for the rettormalization of the model 

in D > 5. We adopt the imaginary-Lime version of FTQFT - the field is periodic in the Euclidean time xo. with 

period Li := = kb = c = 1). Hence, k o  = 2rTl, 1 = 0, ±1.±2..... Also, imposing Dirichlet BC in xi 1,  we have 

that k i  = !Ls. n = 1,2, .... 

The lowest order contribution to the Casimir mass conies from the I loop self-energy function 

dill = + 
2 	 11, 

I (1' 2 k 	 2r1 2 

;3L 	' 	
(2) 

ri=it=-00 

where k = (k2 ,...,kp_ I ), rn is the renornialized mass. and 14 is a mass scale introduced to keep 1: 01  with the right 

dimension. We will use a mix between dimensional and analytic regularization. based in the analytical continuation 

•e-rnail: claudioesnfma2.if.usp.br  
to-mail: fariruseif.ufrj.br  
'In this Casimir type situation, the plates are located at xt = 0 and x i  = L. where the field vanishes. 

_1 
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• . of certain Epstein functions. In eq. (2), w replaces D; after elimination of the ultraviolet divergent part, we take 
the limit ca — D. The mass and coupling constant counterterms are defined by imposing the limits 

lim
D 

 Ip2  + m2  +6m 2  - r'“ )) 

Jirrk)  [- A - + 0 2 1 

be finite [3], in a minimal subtraction (MS) squerne. 

Integration of (2) leads to 

2Ave-w 	0 	2 	 4w2 
i(1) = 

	

(4)42Lf/
r(2 -

4. 	 ( 
Em 2 - —) + 2E7 2  (2 - 2

L2  

	

2 	I 	2 L 2  	02  

where we introduced the modified inhomogeneous Epstein function [4, 51 

co 	c 	co 
s; al , a2, aN) := E E E 1 .  

(5 ) r 

	

La 	+ + 	+c 2 [1' • ri,=1 n3=-1 	n N=11 

where a t  ,...aN, c2  > 0 and N is an integer. The above series converges for R s > 

Using the analytical continuation to the whole complex s-plane of the modified inhomogeneous Epstein function 

with N = 1, namely 

2vc 

	

Es) 	+ _) r 	+ 2  (_ 	 - 1/2 Ku2_, 	 (6) ; 	a 2 	 1 
 'Fr l'(s 
	 'fir ca 	°° 

2 	2 a 	f(s) 	 T 	
r(S)  14-..4=1 	

a 

as well as a recurrence relation between Epstein functions, we obtain for 1,'" 

A 	vi,  Mw-3  3 - W 	//1"' -2 	W ml 442- 1 
1:( I) = _ 	p D -4' ...._ r( 	 )+ 	r ( 1 _ _) + 2(_ 

(4v)42 	 2 	L 	2 	2 	2 	L 
. 

x E n 1- 1K1_1(2mLn) + 4 V.17 	
[  12/(2T)2 	

K (-02.0 2/L 2  + 	m2 )}. 
n=1 	 no1=1 

(rn) 242 	 T + in 2 	-5-   

• ( 7 ) 

The divergent contributions to 1: 41)  is given by f (1 - ti. ) (poles for w = D even), and Ir(') (poles for (= D 

odd). Expanding these terms around the simple pole in ca = D, and using (3), we obtain the mass counterterm to 

the order A. 

b m 2 	(-- ) D /2-I 	A 
- 	  (0/2 - I)! (4/r)D/2 

rn D-2(13 

	

btri 2  = (-I)(D-3)/2 	n1D-3  
((13 3)12)! (4 7 )/3/2 	L  (D 

Note the relevant fact that the counterterni depend on L for odd D. 

The•renormalized mass to the order A is (see (4)): 

M 2 (T, L) = rn 2  - 1: 11 1,1 )(T, L)1,4) • 
• 

The contributions independent of 7' and L may be dropped: these arise even when T = 0 and L 	co, and could 
be discarded by. a finite renormalization 2 . Then, we have 

?However, we will keep the logs. Besides, we made a change of scale 0 2  - n2 /4r. 

(3) 

(9) 

-1 	. 

(8) 



CO 

(410 D  1 2  
(rn, L — co) + 2(2mT) 13 / 2-1 E n1-4 K D I  T n)  

r1=1 

Af 2 (T) = M2  + (13) 
A 
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m 2 (T, 	= 
flora,  + 267

,10/21 Eni-iKi_1(2mLn) 
' + 

(4 

A 

r)D/2{ 	 71=1 

4,/Tr cx.- 	121(2T)2 	K D _ 3  (1 	VO:MP/L. 3  + P112 ) -a- -r  L 	(rn) 2 //.. 2  + 	 T n,/=1 

(10) 

g(m, - VT,F1D -3  ri  3 - D )  

2L 	2 

(....1)(D-3)/2 virrnn-3 
ff(m,1) = 	 

	

((D 3)/2)! 	L 

( -1 ) Dr2-I inD-2 in ( ) 

	

(0/2 - 	rn / ' 

+ l er(  

	

17/ ) 	2 	2 	) 

Note that f u (L — co) = 0. For finite L, however, the renormalized mass develops a scale dependence for D odd. 

This is a bit unusual since, as is well known, in dimensional regularization (for flat unconstrained space-time) the 

renormalized quantities do not develop such a scale dependence for I) odd. 

To compare our result with the known one', we take the limit L 	oo. Hence, using t  Enc‘L I  f ((IF)
2
) = 

f d  f(k 2 ), and the integral (6) 

.1
ro  

0  dz (: 2  + 1) -42  Kr,(af:-. 2 	= 	2u K.-1/.2(a)- 	 (12) 

we obtain the pure thermal correction 

This result was also given in [7). 

In the same fashion, taking the limit. T = 0 we isolate the pure Casimir correction, 

It1 2 (L) = m 2  + (470D/2  A 	1 it(m. 1,)  + 2
fin D/2-1 ET.1-3k 9 _, (2mLn) . 

'1=1 

CO 

Of course, the result (14) agrees with the known one (D = 4, cf. - Toms in (I)). 
The first perturbative correction to the coupling constant is given by the four-point function at one-loop, 

r(2)  = 	E E 	1 	Irt) 	27r1 	
-2

QL (270"' 2  [I:- ( T)2  + ( -3r)
2

+ Yid . 
3 	

co co 

n=1 1=-cc 

As is clear, we will do this calculation for zero external momenta, for simplicity 3 . 

I .(2)  is computed in the same way as FP ). We will only state the results. The coupling constant connterterm is 

(_ 0D/2- 2 A2 	D  

(D/2 - 2)! (4 7r )D/2 
	-4 (0 	 ) -1 ‘  

)(D-S)/2 	A2 
=

((D 5)12)!(4101)/2L
MU 5 ( - 	 (16) 

There is no coupling constant renormalization for D = 2,3. 

After a finite renormalization, the renormalized coupling constant, defined by (see (4)) 

• 3 As we are mainly interested in the thermal and "cumpactification lenght" dependence of the paranteteis. and not in scattering 
process, this is a reasonable approximation. indeed, this choice arises naturally when computing the effective pntential for constant 
background fields, and is equivalent to the definition of the renormalized parameters in the special point p = 0. however, we have to 
kept m 0. • 

(14) 

(15)  



( 18) 

(19) 

• 
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A(T, L) = A - rti;t2) (T, L) 	 (17) 
• 

is given by 

	

A(T, L) = A 	3A 	 D12-2 	n 

(oar) 	 {g 11(m. L)  2 
rn
T 	 - 2; 2rnL) 

(47 2 

4 \Fr 	2 D - 

	

- 0 	, 2  ' 
" 	 , 47r -T ) 1 + . 

	

(D/2 - 2)! 	in  (:Til ) 1  

	

L) = 	 I'(5/2 517'D-5 	
D/2) + (-1)D/2-2  

2L 

	

fit (rn, L) = 	DI)  
In(LI 	?fir 

• 

In the special cases of D = 2.3 only the first term in the RIIS of 41  contribute. We see that. A.also develops a scale 

dependence for odd D. 
Again, taking the limit L — 00 we can isolate the pure thermal correction 

2  
A(T) = A 

	

(4 7 )
3A

D/2 	L 	C'C') 2(2rtiT) P / 2-2 F(TD  - 2,7) . 	 (20) 

Exactly as done before. we obtain the pure Casimir correction to the coupling constant taking the limit. T = 0. 

A(L) = A - 	/1:2 	re On L) + 2( 111)/2-2 1.'(—Z)  - 2.277-10 [ 

(470D/ 2  ' 1 	. 	L i 	2 

To conclude, let us discuss our results. 

Dependence on the renormalization scale is expected in calculations involving one-loop physics. In fact. the 

renormalization scale reflects the ambiguity inherent in any renormalization process, and in this case summarizes 

the effects associated with the boundaries and with mass and coupling constant renormalizations. Thus, p can 

only be fixed by an additional condition. Guided by Casimir energy calculations, we can dispose any contribution 
independent of T and/or L. Using this condition, we obtain a definite expression for M(T, L) and A(T, L) in the 
case of D even. However, in the odd D case this condition cannot lix the scale. 

A closely related issue of odd D is that the counterterms depend on L. It is known that if a theory is renormal-
izable for a given space-time manifold, then it is also renormalizable in the manifold obtained by the identification 

of certain coordinates [8], with the same counterterms. However. Ae is not renormalizable for D > 4, and so in 

this case there is no reason why the counterterms could not depend of T and/or L. indeed, in the thermo field 

dynamics approach to FTQFT, the analogy between FTQl."1' in imaginary-time and field theory on a multiply 

connected space-time is lost. However, Matsumoto et al. [9] proved that if a theory is renormalizable at T = 0, 
it is also renormalizable at T # 0. As stressed by these authors. this statement do not exclude a possible thermal 

dependence of the counterterms. Nevertheless, explicit calculations shown that the counterterms are temperature 

independent. Taking. the case of finite 1' (or periodic BC in a spatial coordinate), it is easy to show that at 

one-loop in flat space-time the amplitudes can be expressed as the sum of the zero temperature contribution plus 

thermal(-quantum) contributions [10]. The zero T part. is renormalized in the usual way, while the finite T part 
is automatically regulated by the appropriate statistical distribution function. Using this method in the case of 

Dirichlet BC, we found that besides the usual (vacuum) divergence (i.e. the second term in square brackets in 

(7)), there is another divergent piece. which is exactly the first term in square brackets in (7). This contribution 

originates from the difference in the eingenvalues of k 1  for Dirichlet BC and periodic BC. 

(21) 
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O(p2/m2 ) Corrections to the Aharonov-Bohm Scattering* 

M. Gomes, J. M. C. Malbouissontand A. J. da Silva 
Institute de Fisica, Univeriidade de Sao Paulo, Caixa Postal 66318, 

05315-970, Sio Paulo, SP, Brazil. 

November 21, 1996 

• In this work we shall determine relativistic corrections to the Aharonov-Bohm (AB) scattering [1]. Due to its 
connection to the physics of anyone [2-4], this process can be described by a nonrelativistic (NR) Lagrangian (5), 

	

£NR = Tr (iDe + 
2 
—D2 ) ;1) 

4 	2 

	

0) 2  + Ot A x A – eAov x A . 	 ( 1 ) m .  

Up to one loop, the 2-particle scattering amplitude,calculated in the center of mass (CM) frame, is 

2e2 	
8ff 	

4e 4 
 M2e2 	

N2  R  
ANR = –u0 – i—

me 
 cot 8 + —m  (1)2  — 	

A 
2 	 (2) p 

where ANR is a nonrelativistic ultraviolet cutoff . The renormalization is implemented by redefining the self-coupling 
constant, vo = v + 6v, so that the total renormalized nonrelativistic amplitude is given, up to order e4 , by 

2e 2 	m 	4e
ze42 	

,i2 
ANR = –v – 	cote — 1/3 	Eln 	2-) + i .7r1 , 	 • ( 3) m8 	87r 	m 	 (— 

where p is an arbitrary mass scale, introduced by the renormalization, that breaks the scale invariance of the 
amplitude (6]. 

We observe that at the critical values vt = ±2e 2/mIel, scale invariance is restored and by choosing the v: 
value, corresponding to a repulsive contact interaction, the amplitude reduces to the Aharonov-Bohm amplitude for 
identical particles which is given by [1, 6) 

•Fae(IPII 9) =IPI 
	

isgn (a)) + 0 (a3) , 	 (4) 

where a = e 2 /2709. 
This work is concerned with the question to what extent the relativistic corrections preserve such criticality. 

Using an intermediate cutoff procedure [7), which allows the determination of the iplim expansion of the quantum 
amplitudes, we calculate the 1-loop particle-particle CM scattering amplitude, for low external momenta, up to order 
p2 /m2 .. The leading term of the Iplim expansion coincides with the above result, as verified in Ref. [8], whereas 
the subdominant parts do not vanish at the critical self-interaction values and so represent relativistic corrections 
to the Aharonov-Bohm scattering. 

To obtain the relativistic corrections, we consider a charged self-interacting scalar field in 2 + 1 dimensions 
minimally coupled to a Chern-Simons gauge field (9) described by the Lagrangian density 

= (D0 0)* (DP c3) – rn 3 	– LI:4 (r 0) 2  + -;E„,,AQ 8" A' – (814 2  , 	 ( 5) 

where Dp  ,= 49„ icAp  is the covariant derivative, e„, is the fully antisymmetric tensor normalized to 	= +1, 
the Minkowski metric signature is (1, -1, -1), the units are such that h = c = 1 and repeated greek indices sum from 
0 to 2 while repeated latin indices sum from 1 to 2. The choice of the Coulomb gauge fixing, the same used in Ref. 

'Supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) e Fundaciio de Amparo h Pesquisa do Estado 
de Sao Paulo (FAPESP). 

tOn leave from Institute de Fisica, Universidade Federal da Bahia, Salvador. 40210-340, Brazil. 
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virtual gauge field propagator which is independent of k° and totally antisymmetric in the Minkowaki indices with 
the only nonvanishing components given by 

, 	1 	j 
Doi(k)= -Dio(k)= 6 tik71 	 (6) 

where cii = coif. The free propagator of the bosonic matter field is the usual Feynman propagator 66(p) = 
i [p2  - m2  +1€1 -1  and the vertex factors are -iA for the self-interaction vertex and -ie(p plo and 2ie 3ew 
for the trilinear and the seagull vertices that always arise from minimal coupling with a scalar field. 

In the CM frame, with external particles on the mass shell, one has p i  = -Pa = p Pi = -13; = 	and 
p? =ps = pc°  = p12°  = wp  =171/77-1- p2  . The tree level particle-particle amplitude is given by 

2 	 P A(C)  = -A - 8e T1 1/1- p3  cot 	-A - i 
8e2 

 m ( 	
2m

3
2 

1 + —) cot 0 , 	 ( 7) 

where B is the scattering angle and m is the renormalized mass of the bosonic particle. One sees that, by definiteness, 
we take the amplitude as being (-1) times the 1P1 four point function. This choice is only to facilitate the comparison 
with the nonrelativistic case discussed in ref.[6). 

We shall calculate the 1-loop order scattering amplitude, for low external momenta and up to order p 2/m2 . The 
contributions arising from the insertion of the vacuum polarization and vertex corrections into the tree level gives, 

A(a) 	2e4 rn { 13 	19 p 2  
re2 	6 	10 m2  

Diagrams that admixes particle self-interaction and gauge field exchange, do not contribute, due to charge 
conjugation and the antisymmetric form of the gauge field propagator. The most important, one loop particle-
particle scattering comes from the diagrams shown in Fig. 1 where it is also presented the routing of external 
momenta used in the calculations. 

The group (a) is the finite self-interaction scattering, which can be exactly calculated [7-8] and to order p 2/m2 
 is given by 

(8) 

The IpI/m  expansion of the more involving CS scattering, the (b) and (c) groups of diagrams of Fig. 1, will be 
calculated. employing the following cutoff procedure [7]. First of all, we integrate over k° (the frequency part of the 
loop momentum k) without making any restriction in order to guarantee locality in time. The remaining integration 
over the Euclidean k plane is then separated into two parcels through the introduction of an intermediate cutoff Al 
in the Ikl integration satisfying 

i„.1 	A  
i) Ipl < 	< m and (ii) (IL')

2 
 (=)

2 	

m 	
, 	 (10) 

A/ 	m 	 • 
which defines ri as the small expansion parameter. The auxiliary cutoff A/' splits the space of the intermediate 
states into two parts, the low (L) energy sector (1k1 < A/) and the high (H) energy one with lkl > A/. In the L 
sector all the spatial momenta involved are small (IpI/m , IkI/m 4 1) and so one can perform a 1/m expansion 
of the integrand while, in the H- region, 1k1 1p1 and the integrand can be expanded in a Taylor series around 
1p1 = 0 and then, in both cases, integrated term by term (a regularization scheme has to be used if the graph is 
ultraviolet divergent). This procedure permits analytical calculations in every order in !I, produces Al- dependent 
results and further expansions in Adm may be necessary to get the 1plim expansion of the L and H contributions 
to the amplitude, up to the desired order. Certainly, for sake of consistence, the A1- dependent parcels of the L 
and the H contributions of each diagram cancel identically. This process has been explicitly verified to produce the 
correct 1pI/m  expansion for the self-interaction scattering (a) [7]. 

Consider the 'right" box diagram corresponding to the direct exchange of two virtual gauge particles, the first 
parcel of Fig. 1(6). Following theFeynman rules, one has 
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itlp; + 	AV; + 	

▪ 	

lit4.11;] 

V =1  

Figure 1: One loop order particle-particle scattering. In the momenta assignment shown, 8 = 	p2 , q = pl – 
and u = – p2 . 

Cl3 k 
– ie4  i — (2703 'UPI + k)" Dma(k – P1) (2P2 +Pi – k) °  61(k)' . .. 

A(Pi + P2 — k) (–k + pi + Pi + A) ° Dpw(k — PD (k + A) Y ) + V 44  p i3) 

— 

-62-fr 	 ) P 2  – k2  + je I.(k – 12) 2 (k – PT] + (1)1 44 —11  ' 
4e4 I 	

wk 

' (w2 
d2 k --a 	

1 	1  (k x pl(k x p)  
(11)

 where the k° integration was done as a contour integral. The angular integration in the last line above can be cast 
in the form i [cos 9 l o  – I2) where 

2r 
= 	dqi 	

cos  (ncp)  
0 	[2 cos(so – 0 / 2) – (2 cos(i,o + 0/2) – 

and /3 = (k 2  + p 2 )/(1kripl) . This integral can be done using the residue theorem and one finds 

A(b)dir = (to 	1  
d(k 2 ) 

ffe2 	 wk p2  – k2  + ie 
1k2_p2, (k,-p2 )  

+ (044 – 9) . 	(13) 
(k2) 2  + (p 2 ) 2  – 2 k2  p2  cos 9 

The remaining k2  integration is then divided into two pieces, from 0 to Al (L region) and from AI to AS 	oo (H 
sector). In the L part, using 

„,„ 	 r 	k 2 	3(k2 ) 2  
Wk 	

1 
—r- m(1 + L2-n: [1 – —

2m 2  + m4 
+ ...j 

and keeping terms up to order rI 2 , one obtains 

A ib)dir . 	P 2 
2e4  { (1 + 	) H 	m 

2Pm22  1n 2 sin 	+ sirj 

A(b)dir = 

(12) 

(14) 
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1 
- -

2 
cos e In ( 1 	9 ) P2  (1 - 2cos2  0) P4  7%1 f •1 + cos e m2 - 

In the H region, the integrand is replaced by its Taylor expansion around p 2  = 0 which is given by 

	

2m2  cos 8  1 p2 [2/700  - 2 cos2  9) 	2 cos 	11, 21- rri 
p

4 
+ 0(126 ) 

(k2 ) 2 i1c2  + m2 1 P 	(k2 ) 3  1c2  ♦ m2 	(k2 ) 3  

Performing the k 2  integrations one obtains, up to order q 2 , 

A H(Odir 
M {(1. - 2 cost  0) P4 

Adding (15) and (16), we get 

p2 
A(b)dir 	- 

 
ir2ee 2 M lf  (1 + 2-72 ) (ln(21 	el) + 	P - -r2  

cos 81n (J738  991 	) 

The k° integration of the twisted box diagram, the second in Fig. 1(b), gives 

e4 	 Wk Wk -a - AMtwist = 	wp 
WkWk-,(wk wk_,) ) 

[(k 8) 3 (p x 02 1 
(k - p) 2 (k -  

where s = p + p' and we recall that wk-, = ),/(k - 3) 2  + m2  . This integration has a rather non trivial angular 
part but the use of the approximation procedure before performing it allows analytical calculations and one ends 
up, after adding its final particles exchanged partner, with 

Anui" 0 and A( )twit  A(P`wi" 	
2_4 

_ - 	1.7) 	P
2 

Tre 2  { 2m3 

Thus, the total box amplitude, A(b) = A(b)dir + A( b)tw i ", is finite and, up to order p 2 /m2 , is given by 

2e 	 p 
A (b)  •••■• 	re2 rn (1 + 2r-

2
72 ) [ln(21 sin 81) + 	- P

2 

2173 2  

1 cOS 8 
In 1 + cos 8

8)  122 
m2 f 2 

(20) 

The third group, the seagull scattering, has to be treated more carefully since it carries the divergence of the 
four point function. One can immediately see that each of the k° integrations of the the gauge bubble and the 
two triangle diagrams would diverge if made separately. However, taking all the diagrams of group (c) together, 
the.  divergences of the k° integrations cancel out identically and the angular integrations, which again are linear 
combinations of In  , lead to 

e4 

	
d(k2 ) wP + wk  sgn(k2-P2 ) ( k2  - cos 8 p2  ) 

2ne2 	

2 	3 

1 	1_p22-p2) 
- d(k2 ) 

k2 

' wk [(k2 ) 2  + (p2)2 

1(k 

 - 2 k 2  p2  cos 0 	11 + (9 4+  - 9)  - 	
(21) 

Repeating the procedure exemplified with the box diagram one finds 

2e4 	n2 
7riiiirn 1(1 	[In 	- ln(21 sin Old + r1-77  

1 - cos 8 p 2  
-i4coseln ( 1 .4.3 0 ) m2

4 	A4 I 

A/  i6M4  
i(i — 2 coscos2 	+ 

(15) 

(16) 

(17) 

. 2,262 
d2 k 

+ [p1 44 - 131 
	

(18) 

(1 9) 

= wk 	(k2)2 (0)2 _ 2 k2 p2 cos 9  

(22) 
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A(;) 
2e4 	 p2 	( A2  

– ire2m 1 –  + 2m2 ) 	4r71 2 ) 

1 
– (1 – 2cost

9)Al 16m4  1 
	+ "7:1 (23) 

and, thus, the total.seagull contribution to the amplitude is 

A(c) = — 
2e4 	p 	4M7 
ire 3 M 	1 + 2T.

2
12  ) [In (--Tp 	– 	1 11(21 sin OD] 

1 	(1 
1 	i)) 

- C080) TO 
+ p

2  1 + 2e4  ,
0 	 (24) –1 + – cos 0 In 	 — - 

2 	+ cos m2  m2 	re2 
A 

 

The constant divergent term above can be suppressed by a counterterm of the form –lir  Ac,(0'0) 2  introduced in 
the Lagrangian density. We can also imagine that the bare self-coupling A carries a divergent part that just cancel 
the divergence of the four point function. In any case, we take the finite part of (24) as the 1-loop renormalized (e) 
contribution. This would be the result if we had used dimensional renormalizatiou. 

The pure CS exchange scattering, the sum A( 6) + A 1c), is given by 

A (cs) _ irti72e4  m {(1+ 2?12117  ) [In ( '4m2 ) + 	– 1 + "2- ri .2 I ' 	
(25) P2 1  

and it is noticeable that the cancellation of the B dependent terms of the box and the seagull amplitudes happens 
in both dominant and subleading orders. 

The total renormalized 1-loop particle-particle scattering amplitude, A(°) A(cs) +  A(p) A(°) , is independent 
of the scattering angle 9 and, up to order p 2/m 2 , is given by 

A 	m  ( nnA2 	2e 4 	4171 2  111 

	

kuirm2 	ire ) [n 1( . )1 + 

	

A 2 	2e4 	p 2 r ( 4.7 
–m  	

. 

	

(32rm2 r 	
,

e2) 2m2 1 12 	2 + "r  
+m 	A 2 	7e4 	 A2 	24e4  p2  

8rm2  3r 

m le 

e 2 ) 192rrm2  5re3  m2 

 The leading term of the above expansion, which coincides with the result of Ref. [8], vanishes if the self-interaction 
parameter is fixed at one of the critical values = ±8me 2  /lel but the subdominant terms do not. The implications 
of this fact will be discussed next. 

Prior to any comparison with the nonrelativistic case, the normalization of states has to be properly adjusted. 
In the relativistic case one takes (pip) = 2w 1,6(p' – p) while the usual normalization in a NR theory does not have 
the 2wp  factor and thus the CM amplitudes, calculated in the last section, must be multiplied by 

	

1 	
4 

41 	
+ 

1n2 {1 –

2 	
...] 

1.,p  

	

m2 	(27) 

The tree level and the I-loop amplitudes, equations (7) and ( 26), are then rewritten, up to order p 2/m2 , as 

(0)  A 	4m2  — 	cot 9 + [ 41-- .T7  7,(-3- cot 9 me  
	m7 	 (28) 

and 

m ( A2 	
4e4 ) [In ( 4m2 ) + id 

Sir 16m4 	m 2 e 2 	12 2  

	

m ( 3A2 	2e 4  ) p2 
[In ( 4p 1a2 ) + irri ____ gr, 32m4 m2e2) 2m 3 

	

4_  m( A 2 	14e4   \ m ( 	+ 25A2 	74e 4  ) p2  

	

s ir  k1/4 4m4 	3 m2e2) gr  1,1/4 96m 4 	15m2e2) m2 ' 

(26) 

A 111  

(29) 
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where calligraphic A means that the amplitude is written in the nonrelativistic normalization. 
Confronting the tree levels, of the relativistic and the NR scattering amplitudes, one sees that the self-interaction 

parameters are related by v = A/4m 2  and the critical values for which the 1-loop NR and leading relativistic scattering 
amplitudes vanish are also related by 

A

m2 
± 	' v± 	 —

2e 
= ±-

4n 
a sgn (a) , 	 (30) 4 	mjel 	m 

where the AB parameter is a = e 2 /2re. By choosing the value v:, corresponding to a repulsive contact interac-
tion, the tree amplitude reduces, after multiplying by the appropriated kinematical factor, to the Aharonov-Bohm 
amplitude for identical particles (4). The leading order vanishes at v: whereas the subdominant terms that survive, 
namely 

ASUb 4n 	 i 	p 2 	17 	, 
— a [sgn (a) + –

2 
cot u] — +  	a- 

m 	 m2 3 m  
3 [ 	 54 Tr 3 p 2  ir 	P —., ID

4m2 
+ — — — a -  m in. 	P 2 	5 m m2  (31) 

represent relativistic corrections to the Aharonov-Bohm scattering. 
Part of the correction of the tree level ( a) is due to the normalization of states and so has a pure kinematical 

origin, but not all of it since the scattering amplitude corresponding to the exchange of one virtual gauge particle 
depends on the CM energy as a consequence of the minimal coupling. The other corrections come from the 1-loop 
(e4 ) contribution to the perturbative expansion and are indeed relativistic. These kind of terms, proportional to a 2 , 
do not exists in nonrelativistic AB scattering (which exact result is function of sin a ) and then may be detected in 
experiments with fast particles. 
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Solugoes Tipo VOrtice em Eletrodinamica 
Escalar em D = 2 + 1 Acoplada a Gravitacao 

M. S. Cunha, A. Penna Firme, O.S. Ventura 
Depict. Campos e Particulas, 

Centro Brostleiro de l'esquisas Fisicas 

Estuda-se o comportamento da materia escalar carregada acoplada a urn campo de Maxwell, 

cm preserica de gravitasio, ern urn espaco tempo 3-dimensional. Apesar de nal) apresentar 

carater dinimicoem 3 dimenthes. os graus de liberdade gravitacionais sao introduzidos como 

urn simples background; as equa.coes de Einstein sao analisadas cm presenca da materia e 

do setor de gauge, e a solucao proposta para a nietrica é parametrizada levando-se em conta 

as restricOes impostas pela dinarnica da materia e pclas equagoes de Maxwell em 3D. A 

partir de dois Ansitze que caracterizam configuracoes de vartice em 2 dimensoes espaciais, 

sao analisadas as Numb-es nao-lineares acopladas que fornecem as configuracoes de campo 

e a solucao para a metrica. Possiveis solticOes. deperidendo das condicaes de contorno. 

sao apresentadas c scu comportamento assintotico é discutido. Procura-se, tambem, rela-

cionar o angulo de deficit, caracteristico da geometria associada a gravitaca..o em 31), corn 

os parametros presentcs na densidade de Lagrangcana do modelo. 

1 Descried° do Modelo 

Partiremos de urn Lagrangeano que, a construido acoplando o Lagrangeano de Einstein ao Lagrangeano de urn 

campo escalar complexo corn simetria de gauge U(1): 

ii { g"u( i), <P)i(Dv ,P)- .1
—g" qv°  F„,,F„,) — V(4)} 

	
(1) 

onde 	= V p . + e.4,(13 e V(4)) =It'( U — ri) 2 . 

Comporemos as duas panes real c inniagitiaria do cainpo 41' via (1) = I?e"' oride R e tbsao reais. 

Nossa analise sera efetuada cm urn espar,o tempo Lie diritensAo 1) = (2 + 1). Neste caso. a metrica mais geral 

passive! que apresenta simetria polar a dada por: 

ds 2  = e2"'"dt 2  — e 2qt + ' r) dr2  — e 2AU'rld4 2 , 	 (2) 

onde r e a coordenada radial c o e,  a coordenada polar. Devido a simetria do problerna. as funcoes definidas na 

metrica somente dependern de r e 1. keescrevendo o Lagrangeano, obtemos: 

1 
£ = 

2 	
R a, R + 

2 	 4
le' 	+ cA t4 ) 	+ 	— ( — — 9" 9v° 	Fad 

Assumimos aqui, que o ansatz para o campo .4, tenlia a forma: 

	

..1  = 	(P(r, I) — 1) 

Corn este Ansatz 0 tensor momento-cnergia tern suns componentes cxpressas por: 

(3)  

(4)  
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2 
{te 	Rti,2 	e  -2A + e 2v { e:  -21.1 R1 2  4.  R2 (e -2q tba 	e - 2.A [as, + e  pi 	) 	(5) 

V(R)+ r. -2( " +A) Pr"' 1
} 

Tr r = 1 	fe2 + re vy2 + e ...2A r 	+ i2 	e 2ri 
2 

_ c 	R2 + R2 	LO + -2v 	 -2v (6) 

— C 2A lt)oth + eP12) - 2V ( R.) + r - 2(v+A  ) P 2.1 / . 

Tir = kir + R2 1117.6 1  + C .-2A  i) i" (1) 

Too =  112(064/, + e p ) :: — e - 2v 1)2 4_ . 	r -21, pi= + f :::1/4 
2 

-2r, le _ e -ar,Ra + 
(8) 

R2 (e - 	tp 	e  - 2 17 71, 12  ) 	21/ 

'!id, 

Tro  

= 

= 

R 2.0(04,0 + eP) 

R 2 ;1/(06 0 	eA6) 

(9) 

(10) 

Como T„„ ,1). somos obrigados a impor que 44: = [0,01(r, t), o pie vincula o campo dependencia 

Oh(r. I). 

0 penultimo termo de (8) 6 proportional a 62 {e -2 v11 2  — e'')//'2 1 e, devido a dependencia de T„„ em 1 e r, 

escrevernos: 

c, -2"h 2  - c -2 `1 1i' 2  = 0 	 (11) 

Pela mesma razao o segundo termo de To r  implica 

= 0 	 (12) 

Concluimos, entao, gue o campo caracteriza a solucao tip° vortice. com  tir = 

Ao impormos pie o Sistenia seja estatico, obteillos cis resultados apresentados por Shaver(Shavcr, E., General 

Relativity and Gravitation. 21, 187. 1992). o que implica dizer que lrti equivalencia das solucos em D = (3 + 1) e 

= (2+0 polar, a.o eliminarinos a coordenada Tomemos amid a expansao uo Ansatz anteriormente apresentado, 

dada por: 

= 6u, 	± 	(P(r.t)- 1) 	
(13) 

Mantendo a independencia temporal em todas as funcoes, (Diner -nos BLS cornponentes nao nulas part o Tensor de 

Einstein: 

—e 2 w [r + ,v 2 1 
{.e rr 	= 
Goo 	—C 	—V i2  — 

0 fator e 29  foi absorvido na metrica atraves de ulna nindanca na coordenada r. Se impusermos 	= 0. a 

compatibilizacao da metrica plana Tiara o lirnite r 	..zio nos levy a v = mist fun v = 0. sem perda de generalidade. 
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Assim, as equacOes de Euler-Lagrange para os campos .4„ e R bem como as componentes da equacio de Einstein, 

sio apresentadas a seguir: 

P" – 	P' – e 2  re 2  LI =0 	 (17) 

wr  
x" + 	– c 2 R 2 x = 0 	 (18) 

R" + 	+ 14 2  – 	– d7= 0 	 (19) 

R 2  N:2  + 	= 2t 1  R) 	 (20) 

= 
( ) + () 

 4_  
(21) 

f 

 –87r{R.` 2 +2V(R)} (22) 
w   

EsLamos tomando e a  -= w. 

Na situack em que P = 0, as equacOes(20) e (22) fixam a forma do potencial cm: 

V(R) = 72-R1R– 7)) 2 e` 	
(23) 

Este potencial acresce urn terrno cuhico ao tradicionalmente usado. A6 1 . Podemos facilmente verificar que as 

expressoes (19) e (20) sac, agora equivalentes. 

ApOs a mudanca de escala r 	R /IR e x era, o sistema Loma a forma: 

w 
= –8xn 2 { fe

e 
 + R2 (l? – 1) 2 } 
	

(24) 

I?" + '‘Z RI  – R.2 (I? – 1) =0 
	

(25) 

Devemos supor que a metrica tenda is inetrica de Minkowsky coin um deficit angular quando r — co. Assim 

consequentemente 	 = or. 0 deficit angular C obtido diretamente da.equacao (25) e é dado por: 

= I – 87[11 2 	w(r) {1r 2  R2 ( R - 1) 2 }dr 
	

(26) 

2 Conclusao 

problema que nos recta é resolver as equacoes de campo e fixar as funcoes H, x e w. de Lai modo que as 

configuracipes do campo escalar. do potencial de gauge e do campo gravitational fiquem detcrrninadas. 

Corn as condicoes de contorno adotadas, a fun,* R. (pie determina o campo escalar, aprescnta solucao trivial 

c a funcao w indica ser o espaco-tempo piano. 

Portant°, a conclusao a que se chega. de acordo coin a resolucii° explicita die's equacoes dinamicas. a que a 

solucio de vortice procurada na° deve existir. a nit° ser que seja introduzido urn term() tipo Chern-Simons para o 

campo A,. A presenca de tal termo interfere diretamente sobre a funcao x c espera-se que forneca solucoes no,o 

triviais para P e w. Tal possibilidade, encontra-se em lase de analise. 
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Metodo de Gibbons para Funcao Zeta em 
Teoria de Campos 

M .V . Cougo-PilIto, C. Farina, A. Tenorio - 
Instituio de !Vsica, Universidade &demi do Rio de Janeiro 

estudo de awes efetivas a 1-laeo nos conduz ao calculo de detertninantes de operadores cujos espectros exigern 

que metodos de regularizack sejarn empregados. Uma das tecnicas de regularizack usadas e a da flinch.° zeta 

generalizada. definida como: 

((.s; H) = Tr H' 	 (1) 

onde H e urn operador e s 11111 mirnro complex°. Por meio da funcao zeta generalizada é possivel prescrever, para 

o determinante de uma ampla classe de operadores, urna expressio finita, a saber: 

(let H = expi— --Os; H)1 	. 	 ( 2) 
ds 

onde estao subtendidas extensoes analiticas apropriadas da funcao zeta no piano complex° s. Essa expressao 

regulariza det H, porque a derivada da extensio analitica da zeta e quase sempre analitica em s = 0; condi*, 

sempre satisfeita para o caso de operadores elipticos quando aplicados sobre variedades compactas e seal fronteiras. 

Urn ponto de partida arnplamente empregado no calculo dc Wes efetivas a 1-laco, W (  I ) , é a relack l  

rl 	
(1)  =  

Orn 2 	2 
(3) 

onde G d o operador de Green; ou seja, seu element° de rnatriz (xIGly) = G(x, y) e a funcao de Green. Essa 

expressk, em (3+1) dimensoes, entretanto, padece de divergencia.s ultravioletas. A fungi() de Green diverge em 

pontos coincidentes, fazendo-se necessario fornecer urn esquema de regularizack. 

0 metodo de regularizacao comuntente utilizado na literatura é a separack de pontos. Essa teenica consiste 

eni separar os pontos da furrcao de Green, realizar os calculos e, ao final, remover os termos que divergem no limite 

quando os pontos sio tornados coincidences itovantente. 

A proposta inserida neste trabalho e apresentar urn metodo de calculo e regularizacao alternativo a separack 

•de pontos, baseado na funcao zeta generalizada. ► essa abordagern. a regularizack do traco da furick de Green e 

implementada modificando-se a expressk original (3) para 

t mi t) 
Orn2 	

i rcr G 

i ((s; H) . 

Para recuperar a equack original basin calcular ((1; H), que contudo diverge. 0 imperativo, porta.nto, antes 

de tornar o limite s — 1. elimittar os cernios fisicamente espurios. Este metodo foi introduzido por Gibbons, em 

1975, a fin de cotnputar a funcii.o panic:kJ do oscilador harmonic° quantico; mas nunca foi utilizado no contexto 

da Teoria Quanciea de Campos. 

Corn a intensito de ilustrar esse metodo, vainos 	cut Bois exemplos na tentativa de reprodiizir resultados 

conhecidos. 0 primeiro d o calculo da pressao de Casimir para 11111 campo 4:scalar real massivo entre duas placas 

• e-mail: tenoriobif.ufri.br  
1 0 fluor a frente do traco pude ser (i/2) uu (—i/2), depenriendo do oat ureza bosAnica uu ferrni.Thica, respectivamente, do campo. 
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infinitas. No segundo exentplo aplicarnos o mctodo a Eletrodinamica Quantica. calculando a Lagrangiana efetiva a 

Mao corn urn campo magnetico extern° constants e uniforrne. 

Efeito Casimir 

O efeito Casimir 6 consequencia direta da peculiar estrutura do vacuo quantico. As flutuaciies quanticas de ponto-

zero dos cameos tem por resultado gerar urn estresse mecanico sobre superficies rnateriais que limitem urn dada 

regitio do espaco. Por exemplo, a interacao coin o vacuo eletrornagnetico provoca uma pequena, alas mensurivel, 

forca de atracio entre duas placas metalicas neutras e infinitas separadas por lima distancia a. Originaimente esse 

efeito foi previsto por Casimir em 1948; e oito anos mais tarde a pressao de Casimir foi medida experimentalmente 

pela primeira yes por Sparnay, em acordo coin as previsocs teoricas. 

A fim de aplicar o inetodo de Gibbons ao efeito Casimir. devernos relacionar a energia do vacuo E corn a a4ao 

efetiva a 1-Taco W (I  I. Pode-se mostrar a seguinte mimic) entre cssas duas grandezas: 

1,V(1) 	
( 5 ) 

onde T 6 urn intervalo de tempo tendendo ao infinito. 

Escoihemos computar a energia tie Casimir entre duas placas sobre as duals urn campo escalar real inassivo é 

nub, ou seja, obedece condicOes de contorno do tipo Dirichlet. 

Pela expressao regularizada para a ;Ka° efetiva (4), observamos que 6 precis° determinar a funcio zeta ((s; H) 

do Hamiltonian° H desse sisterna. 

H = 0 + In` , 	 (6) 

cujas autofuncoes rP  satisfazem condicks de contorno homogenias sobre as placas. ou seja, 9(x. y, c = 0) = 

9(x, y, z = a) = 0. A funcao zeta generalizada pode erica° ser escrita como: 

t f dkidk2dk4  [Tri 2 + L.? + k ...1 4- I::: + n2 72  C(S; 	 — }I) = iTL 2 	(27)3 	
( 7 ) a- 

rt=1 

onde T 6 o tempo, L 2  e a area das placas. n = 1,2.... e a 6 a distancia entre as placas. Note que na integral 

exccutou-se uma rotacao que levou k o  — ik4 . Dai, 

dic i lik 2 dk 4 	dc2 J k 2 dk: k 2  = 	+ k.1 + 
111 	 110 

2TL2 , n2 7 2  
((a; H) = 	E 	k 2 dk 772 2  + k - + ,, —a  

(27)2 	0 n=1 

A integral em k 6 conhecida (Gradsliteyn 	Hyzhilt, 8380-3): 

rcrw ( 	• onde Re(ct ) > 0; lic(# + 77) < I: e 13(x, y) = 	(r+ 	e a funcao beta de Euler. Identilicando os coeficientes. 

obtemos: 

, 	.2TL' c.°  1 	„ 	71-7r- 7 	(3 
(,(S; 11) = 	

r, 	
s — 

(2-70  2 	a - 	2' 	2 n=1 

Portanto. 
• 

,2  

87r Nirr 	 r( s ) 	( n 2 + ,2),-1 
11=1 

(8 ) 

(9)  

(10)  
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onde er = 	0 somatOrio na aquacao acima 6 simplesmente a definicao de fungi° Epstein-I: 

Er -  ( S.1) E 

ti 	

1 
0.2 

n=1 

cuja extensao analitica para todo a piano complex° pode ser expressada pela formula: 

1 +  ■/77 	2 Irr 

	

Ei (z. 1,1 = 	
1 

-r 	 E( ran): 	K )(27ran.). 
rt=1 

onde K 	6 uma funcao de Besse] modificada. Substituindo-a, cutao, na equacao (9), obtemos a expressao final 

para a funcao zeta. 

TL 2 N/7 3 	 T2') 	a 4-2' I'(' — 2 ) {(s; H) = j - —rn 	 + -m T2 	2 	 l(s) 	2 	r(s) 

+ 	 m •-  E as 2  _2(2arnn) 
1 (S) 

11=1 

A liar de analisar as divergencias qua acometern sabre a acau efetiva 1.1)" 1 , tomatuas o limite do regularizador 

s — 1.E importante identilicar as termos singulares antes de integrar ern rr1 2 . trio contrario o metodo pode gerar 

termos divergences que nao podem ser excluidos na etapa subsequence, como veremnos no nosso segundo exempla. 

Isla expressio (11) o segundo termo e singular; Inas, felizinente pude ser descartado por meio do seguinte argu-

ments fisico: ao observar sua dcpendencia linear em a. concluirnos que es.se termo esta relacionado a tIllia densidade 

de energia uniforme, contida no volume or, indepe.ndente da separacio das placas. Esse termo obviamcnte 

irrelevante para a interacao entre etas. 

0 primeiro termo da expressao (11). apesar de finito. tambeni (lave ser excluido. porque independe da distancia 

a, nao contribuindo para a forca. Esse termo pode ser encarado C0/710 a auto-energia das placas. 

Concluimos, portanto, que so o terceiro termo tern relevancia Fisica. A expressao para acao efetiva flea reduzida 

a 

a wr I 	 1: H 	ILL   

	

ehi,2 	 Ckzi — 	= 	 _ 	parmi)  
2 	 tlir 2 	fl 

ri=1 

Para efetuar a integracao em nr, usamos a segilinte propriedade: 

{r10 I 	 Ili 1 
- -, (2arnrI) = - 	 K _ 1 (2arnri) . 

orn 2  a 2  17 - 	 a ri 

Substituindo em (12), 

(:) [TL 2  In` c‘i  1.1   

Orn 2  87r 2  u (91, 7, 2  

e finalmente integrando, ellegamos a expressito para a densidade de energia de Casimir para um camp° escalar real 

► assivo, a saber. 

t:(a) 

L. 2 
 = - 	, 	K_ 2 (2artin) + ctc 

	
(14) 

r1=1 

onde cic c Irma constante tie nor ► alizacao. Essa constante pode ser determinada se lembrarmos qua a allergia de 

interacia dere ser nula no limite ern que a massa associada ao camp° escalar tende a infinito(m 	o ). Nesse 

o tempo de vida da.s particular virtuais Ian& a zero. nao existindo flutuacao quintica - no limite classic° 

nao ha efeito Casimir. Como a funcao de Besse! modificada K decresce exponencialmante conn resulta que 

a constante vale zero (etc = 0). 

No limite cm que a massa tende a zero (rn — 0), a energia de Casimir vale 

(a) 	••

- 1,140n3 

+ —
Mu 

+ Erril 
	

(15) 

(12)  

(13)  
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No limite de massa grande (am > I ), o resultado é 

e(a) 	1 ( rrt 

L. 2  	32 	L 
	

(16) 

Lagrangiana Efetiva na EDQ 

No segundo exemplo da aplicacio do nit-Redo de Gibbons a TQC, calculamos a Lagrangiana efetiva a 1-lago da 

Eletrodinirnica Qua,ntica para urn campo magnetico extern() constants e uniforine. Para Canto, partimos da seguinte 

expressao para a acio efetiva: 

VV" ) 	 —

2 	
log (ft` + 7,1 2 ) : 	ir2  = 7-,  + 

	
(17) 

onde Tr denota o trace funcional e matricial. Na sittracao ern questao o campo eletrico E = 0 e o campo magnetico 

B = B6. Logo, no tensor de Maxwell F"' so as componetes •' I2  = — P2I  = B sae diferentes de zero. 

calculando o traco matricial, 
2 

= 	Ei.r log [(— 1-3 + m 2  + 74 2 1 
j=1 

onde tr denota o traco funcional apenas. 1)erivando cssa expressio em relacao a 1,1 2 . obtemos que 

(18)  

a v. m  

am2 	= E tr H 7/  • 
; 	' 

;7= 1  

Hi  = (—)J e B + m 2  + 71- 2  (19)  

Em (3+1) dimens&es, ambers os traces quo aparecem na equacao (19) divergent, fazendo-se necessario regularize-la. 

Empregando o meted° de Gibbons, obtcmos: 

a7/1 2  
14;( = 	 (20) 

=1 

Para computar as funcOes zeta que aparecem na equacao acima, precisamos coribccer o espectro do operador rn 2 +7r 2 . 

Os autovalores dense operador sac 

(n + 1/2)2eB + rt1 2  — kg + 	. 

onde o [Miner° qua.ntico de energia rt = 0. 1.2, ... cletermina urn nivel de Landau. A degenerescencia de cads nivel 

n e (eB/27r) por unidade de area. 

o s ;  Hi ) = ( Tr ) E 
dk„dk4  

n =0 
	(27r)- 
	r eB + (2n + 1 )e B + m 2  + kg + k 

	
(21) 

ondc S2 = TL 3  e um volume no espaco-tempo. Integrando (21) de forma inteiramente similiar a integracio realizada 

na equacao (7) ern nosso primeiro exemplo, apes algurnas manipulacOes, obtemos que 

((s,H, )  = i_
16r2

( 2eB) - 	
r(s) 	

[71 + + 2 + (—I)j] 	. 
r(s 1)  E  

=0 

onde a = m2 /2cB. M as o somatorio na expressao acima corresponde a propria delinicao da funcao zeta de Hurwitz 

(22) 

1 
Ci(:: a) = 2 (ri + a)" 
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o que nos permite escrevcr: 

E
2 

P(s - 1)  

((s;Hj) = 167r- P(s) 
{(11(s - I; 1 + a) +01(s - 1; a)} . 

Usando a propriedade de funcao zeta de Hurwitz traduzida por 

(A.7; 1  + a) = 

podemos reescrever a equacio (23), de forma que 

2 

	

ni! = —,E,(s.H; ) _ac;:irli2e/3 ) 2's  	- 1:a) - 	. am ? 
j=i 

Na expressao acima a extensio analitica de funcao zeta de Hurwitz esti subtendida. Obviamente, quando s 	I, 

essa expressio ainda diverge, uma vez que nao fizernos nada Para sanar suas singularidades. A fim de analisar como 

a derivada da acio efetiva diverge quando s — 1, usamos a seguintc representacao para a extericao analitica da zeta 

de Hurwitz: 

[ 
1-2 	r 	1 a-2 	, 	_ 1 	i  ± 71. e  

1 	] ...,,,,,,_ idt  C,H(.7; a) = -72-- - 1  ..... 1-  r(z) 0 	e:  

valida para Re(:,} > -1 e Ite(cr) > 0. Dal. 

a 	 11, -W111  _ ,

• 

( 2cB) 3-1` 	•fr,ll ( s  - 1 ; a ) _ 
Oa ' 	87r 	 P(s) 	 2 1 

. 	B) • (2e 3- ' 
b7r- 	 (1 - s)(2 - 	 s) 

r[ 

• r

„ ) . , 
(25) 

Pode-se mostrar que a integral na expressio acima converge quando s = 1; portant°, somente o primeiro termo 

singular. Esse termo integrado em a vale: 

87r 2  (1 - s)(2 - s)(3 - s) 

Como podemos observar, ele riao depende do camp° magnetic° H. podendo ser excluido, apesar de divergir no 

limite s — 1. Logo, a expressao para a derivada da acao efetiva ern relacio a a. em s = 1, fica reduzida a equacao: 

i1n

I 	ie -at 
W(1)  = [ 	+ 	 dt . 

2r- 	jo  Let — 	 2 	t 

Usando a primeira identidade de Binet para log 1 .(z + 1) (Whittaker S.: Watson, 12.31), 

(26) 	• 

1 	 1 	
1 	

1 	1 e- °` 
log 	+ 1) = 	

2 
(.7 -) 	- + 

2
- log(27r) + 	[

et - 1 	1
+ 2 1 
  I 

obtemos finalmente uma expressao para a derivada da acio efetiva ern relacao a a que pode ser facilmente integrada: 

1 , ° 	
2;r 2 '" ' 

wci) _ 	i r y) 2 { log  [ 1.( `' ± 	 ft logo + 
2
- loga +al • 

F \ -2 

A firn de integrar a equaciio (27), usamos a seguint.c relacao: 

I 	 r 	[P(1 +y)  
01 (-1; 1 + x) = CR(-1)+ 

2
-(x =  + x) + I log 	 ]dy. 

1/2ir 

j = 1 
(23)  

(24)  

(27) 
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onde Cif (- I; a) e ( 1R ( - I ) representarn, respectivamcnte. as derivadas das funcoes zeta de Hurwitz e zeta de Riemann 

no pont° = -1 do piano complexo. Dai, integrando de zero ate o 771 2 /2cB, obtemos que 

. 
IN" 	

27r - 
) (B) = 	,t.1  (eB) 2  {log f a  [ 1.17  + ild-i.  - I 1-i.  log 7 + I log 7 + 11(17} + etc 

o 	% / Tr 	o 	 2 

., (el3) 2  {0.f(- I: I + u) - ( 1R (- 1)- 
2 

 --1  (logo - 
2
-1  

27r 	
)(0 2  - 0)} +cic, 	 (28) 

node cie 6 uma constante de normalizacao que pock- scr determinada se obrigarmos clue a acao efetiva a 1-taco seja 

nula quando nao existe campo magnetic° externo, 1/1 1. 1 .) ( B = 0) = 0. Quando 13 — 0. o — ..-.N.D, permitindo usar a 

seguinte expansio assintOtica da CH ( -1: a) para la' > I (Elizalde k Soto. Ann. Phys. 162 (1985) 192): 

a 	I  Of  (-1; a) = ( 7  - + T2 	
u - 	1

) logo - T  + 	+ 0(a -2 ). 

Substituindo essa expres.sao na equacao (28), observamos que todos os termos resulta.ntes entre as -haves sac) nubs 

quando B = O. Isso implica que a constante de normalizacao tambein e nula (de = 0). Portant°, a expresso final 

para a Lagrangiana efetiva a l--laco na EDQ corn campo magnetico constante e unifornic 

C (1)(B) = 
(e 1-3).' 	

(- 1:1 + 
2
—
cB 	

61(- I) - 

	

I
•. 	2 

	

[ log  ( m- 	-1 [( m 2 	 ► tz 2  )1} 
(29) 

2e13 	2 	2e13

) 

	2e13 ) 
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Factored coset approach to bosonization in the context of 
topological backgrounds and massive fermions 

m.v.Manias•,C.M.Naona'b. and M.L.Trobou' b  

° Dept°. de Fisica. Universidad National dc La Plata. 

CC 67, 1900 La Plata, Argentina. 

b  Consejo Nacional de Investiyoclonts Cientificas y Te,:cnicas, Argentina. 

We consider a recently proposed approach to bosonization in which the original fermionic 
partition function is expressed as a product of a G/G-coset model and a bosonic piece that 
contains the dynamics. In particular we show how the method works when topological 
backgrounds are taken into account. We also discuss the application of this technique to the 
case of massive fermions. 

In a recent paper [1], Theron et. al presented an alternative approach to hosonization in two dimensions using 

the path integral formalism. They obtained a complete derivation of the bosonization dictionary for both the 

Abelian and non-Abelian cases. In the Abelian case they started with the generating functional for current-current 

correlation functions of free Dirac fermions in two dimensional Euclidean space: 

Z = 	Di) DAP D A esp { — f d 2  [i) i0tir — j A ,]} 	 (1) 

where j, = 

In a general gauge, that is without fixing the gauge, the method consists in making a gauge transformation in 

the fermionic variables which gives rise to a delta of conservation of the fermionic current j, = Appropiately 

representing (5(0,j,) and making a chiral change of variables Z can be factorized in terms of a G/G-coset fermionic 

partition function, and a bosonic part which contains the dynamics: 

Z = f 	DIP D13,e -sq f Dc5DAp c -4" [4 . A PI 	 (2) 

where Sci is the action of the fermionic cosec. /./(1 )/U(1) model. 

This is one of the main achievements of the new approach. Indeed. in the standard decoupling technique of 

the path integral bosonization [2], Z1.4„1 is expressed as a bosonic partition function multiplied by the vacuum to 

vacuum amplitude of free fermions. In the framework of Ref.[I] the fermionic factor corresponds to constrained 

fermions, which are dynamically trivial (in the sense that both fermionic currents are set equal to zero). Thus, the 

bosonizing character of the procedure becomes more apparent. 

Taking this into account it is interesting to analyze the applicability of this new method to the study of other 

physical situations in which the bosonization procedure is known to be more involved than in the case of free 

massless fermions. In this work we focus our attention on two of such situations. Firstly we consider a model of 

fermions coupled to a vector field A,. allowing this field to carry a non-trivial topological.charge: A p riz" = —2nN 

[3]. One of the more interesting features of this model is the existence of the so called minimal correlation functions 

which, being zero for trivial topology, develop non-zero values when N # O. 

Filially we go back to trivial topology and briefly show how to extend the method of [1] to the case in which 

fermions are massive. This is an important point since much of the pioneering work on bosonization was done in 

the context of massive models [4]. 
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On the other hand, our discussion concerning this matter could also be helpful in order to use the ideas of [1) 

in the study of 2D statistical-mechanics models away from criticality. In this context tit* is the energy density of 

the system and m a (T 
Let us start with the generating functional introduced in Ref [3]: • 

Z = 	Dkli LA) DA„ exp{- lex 41 [0 + PP} 	 ( 3 ) 

with A i, = 	+ a m , where il,c,(N)  is a fixed (classical) configuration with topological charge N: 

i Ac,(N)d.rti . -27rN 	 (4) 

while a, stays in the topologically trivial (N = U) sector. 

Following the procedure developed in [1] to obtain a cosec model in a general gauge, we perform a gauge 

trasformation 

e  r 	 — We - ” cr ) 	 (5) 

in the generating functional (3). We then have 

Z =E 1311f LA; D exp {- d 2 x [WO* j„A„ + (0,j,)q]) 

This partition function is in fact q-independent so we can integrate over q: we introduce the identity as 

Z = 	J  mp DAY DA,6(0„ j„) expi- f ex [1:140111  + j„A„]} 

Now we represent 6 ( a„), )  in the form 

45(d4,) = I DB, DO exp.{ 	(1 2 .r. [B„j„ + B„c„0,6]) 

Introducing this expression in the generating functional and making the shift B' = B, + a m , we obtain 

Z = E 	DA„ DB0' DO expt- d 2 x OW „(.4r + Bps ) 

— —
1
a„c v i4,01) 

' 

In order to factorize out a constrained ferrnionic model we have to eliminate the linear term in U. To this 

end we make a chiral transformation with parameter cr in the fertnionic variables. This change yields a Fujikawa 

Jacobian given by [5]: 

J• = exp{ 1 c p „8„17(8 1 	1 ) - —00(7) 
	

(10) 

'['he generating functional becomes: 

(6)  

(7)  

(8)  

(9)  
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Z = > P)W Dtk DA „I. 11.1 1  DOe - 	 (11) 

where 

S = f 417 20 041  +(1.1:,+ .-1',,(N)  + („„0,c))„ + —I  i',„0,,OB t, — c„„0„,0a, 

— —i.„0„cr A' 	— —(„ 0 cr/-3 1  + —crlD(r) 
I 	 I 	 1 hv) 	

,..• 	, 
- 7r 
	 (12) 

Now choosing cr = 0. we cancel the linear term in 81t, and obtain 

I. =E 	 DA„ D14 Dere - s' 	 (13) 

with 

S = 	 (1 	
1 

•P  • 41 	+ 	+ 	Is 	( gm ..)v Cr 	 p1.11 	 . -4 i0111  (81 	l c( 	+ 	)i 	 1 + —crOu} 
	

(14) 

In order to write this generating functional as the product of a (11))  fermionic coset model and a bosonic part., 

like in Ref.(1), we make the shift B — et, — „,,d„cr. Thus we have 

Z E 	c -5cr f DcrD21„C S". ( Q. A !I:)]  • 1N) 

where 

	

4:4 	= f I 2 j. [ + 	+ A C N j 41, 
"".7.1 

and 

0 
Sb„,fa.21,J= 	

,1 
—kr 	— 	rf „I 	 (17) . 
a- 	2 

Let. us stress that in our case both the (•-• fermionic c.oset. factor and the bosonic one have a non-trivial utt) 
topological structure. 

. If we want to identify this result. with the one obtained in ftef.[3] we have to make a second chiral transformation 

in the fermionic variables, in order to decouple the 8„ field from the fermions [2]. In this way we recover a factorized 

generating functional Z = Zp er  X Z Hoj With Z Fer having the same zero modes problem which was studied in Ref.[3]. 

Calling the parameter of the transformation th, we obtain: 

z 	>2
J 
	exp.( — f d2 .1: 	A'cv  )yil x 

f DA„DaDdexpl Ti 	 — (70(7 + („„ai,thAc„.-
2 6061) 

	

F• er  X Z 11o., 	 (18) 

From this expression. one can conclude that only the N = 0 sector contributes to the Z, a well established 

result for massless fermions [3]. 

Now, in order to compute fermionic correlation functions we have to add source terms in the form: 

(15)  

(16)  
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ZpRdo s, = 	Dtlir /)/1„, exp.(— f (PI [ 4'0* 	+ 	 + PL. 	gir.] 
	

(19) 

so that. differentiating n it  times ( ► L) with respect to pH  (pL) we obtain the minimal correlation function in the 

n R  ( ► L ) sector, and making the cross derivatives nit times with respect to pR and Hi, times with respect to pi, we 

arrive to the non-minimal correlator in the I n it  — ui I topological sector. 

Let us consider the minimal functions in the a jt > 0 sector (equivalent results are obtained in the nr. < 0 

sector) as follows: 

< n  .R.R(z,) >= z-1 
n — I 

e=U 	 (cp„Gr0J••••6pR(xraft- l ) 

	

6""Z 	
(20) 

This expression can be factorized as the product of a fermionic mean value and two bosonic parts in the 

form 

PI ft —1 

< 	5:RXii(J. e) >fcr< 
i=1) 	 e=0 

7 R -1  3.0(so (21) 

where 1.3i = 2 for all values of i. and 

Li' = ty 120 	 (22) 

L o  = —
I

k 
'2

r— — („,i),,r1A 1 ,1 
7 

and 

. 
— 1 —[0 —o + t,„dp6/1„1 

rr 	9  

For simplicity we shall consider a distribution of the topological charge given by 

'I n -1 

(„d„.-l c, = E fli(X)6 2 (r — fi) 

i=0 

with 

ri14-1 

	

E 	= —27N 

1.11 

This distribution corresponds to a Nielsen-Olesen configuration [6], in which the vortex width tends to.zero 

(see•Ref.ril for details). 

For the fermionic part. we obtain 

	

F(X0, ••••1 X111) = det0(0 	fi g  }el—i=o 	 ni .,_ 	2  
r--taR — I 

i I 
	

(2T) 

i< j 

(23)  

(24)  

(25) 

(26) 
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while the bosonic piece (i.e. the product of the last two factors in (16)) is given by 

	

B(x0, 	xn R- = C 

	
(28) 

So, the minimal correlation function for the zip > 0 topological sector reads: 

	

N- 	 11 it- 1 

	

< n 	 deto(o+Aicv) n 	- sj i) 

	

1=0 	 1,.1 =01$ j 

This result is in full agreement with the one previously obtained in [3]. 

The computation of non-minimal functions is, though tedious, straightforward. The inter ested reader will find 

guiding lines in [7]. 

To conclude this letter, as promised in the introductory paragraph, we now go back to trivial topology and 

consider massive fermions. To be more specific let us examine the following generating functional: 

	

Z = J UW i)1expf-fd = r [40 (0 + m +A) 1) 	 (30) 

Following the steps of the previous case we make a gauge transformation in the fermionic variables and 

represent 6(0,j,) as in (8). Calling Eli', = B„ + 	we arrive at 

DW Dkii pl-3;,D0 exp I (12  x (111i0 + 	+ 

1 
781„(pmitO - 77 .4„c„„0,,01) 

We make now a chiral change with parameter a in the fermionic variables: 

Z 	D D D Bip  DO exp.{- J d 2 2: [410* + 	+ rne 2/5° 

I B;,c„„a„0 - -
1

A„c,„0,,0 - -14(.„„il y a + —crOcri) 
7r 	 27r 

Again in order to eliminate the linear term in B;, we identify a = 0. We then find 

	

Z[...1„1 =. I 	 Drr„ exp.{ - J (1 2 .* (10 + ine 2"° + 11 1 )x + 

	

1 	 1 
;. (cpvel,,rrA„ + -crOa)]) 

At this point we shall make a perturbativc expansion in the fermionic mass rn. Obviously, the building block 

- of this expansion is the following object: 

fl .E.) 17 21soir 	x  = .12 	+ 	v.20 (r ) A, 2 	 (34) . 

(29) 

(31)  

(32)  

(33)  

Using this explicit expression, Z„,[21„] can be readily written in terms of fermionic and bosonic v.e.v's in 

the form: 
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Zm[Ap] 	= 	Z F,Lro icoseilZ[A p ] n " 

E7 l =0 	
ii2 	

! 
j 

(i!)2 	
d'rkd- Y} < X'.;  Viki-)X1 X.2(Yk)>Per.coAri 

t=1 
e21ocrk)-0(y.)1 >  

Then, exactly as it happens in the massless case (Eq.(2)) the fermionic coset partition function can be 

extracted as an overall factor, but no complete factorization takes place. since every term in the mass expansion 

contains a fermionic v.e.v.. However, if one sets = 0 the r.h.s. of Eq-(30) becomes the partition function of a 

bosonic Sine-Gordon model, as expected (Ref.[4].[8]). This fact can be easily verified just. by evaluating the fermionic 

factor in the series, which can be done in a simple way using, for instance, the standard decoupling technique (See 

Ref.12)). 

In summary we have extended the factored coset, approach' to bosonization proposed in (Ref.(11), in two directions. 

Firstly we discussed the case of massless ferinions coupled to an Abelian gauge field with non-zero topological charge. 

We were able to show that the coset. factorization takes place exactly as in the N = 0 case, but with both ZFer  and 

ZB 0, containing the topological structure. i.e. the corresponding actions are dependent on N. Finally we considered 

the case N = 0 but. with massive fermions. As it. is well-known, the massive determinant cannot be exactly solved 

due .  to the chiral non-invariance of the mass term. This fact led us to make a perturbative expansion in the mass. 

COncerning this case our main conclusion is that no complete factorization is obtained because the constrained 

fermionic action enters the game through' the v.e.v.'s which are present in the perturbative series of eq.(35). 
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We study a relativistic electronic gas in two space dimensions in the presence of a uniform 

magnetic field and a random static gauge field. which is treated perturhatively. Electron-

electron interactions arc neglected. We compute, to first. order in perturbation theory. the 

expectation values of the current. (j„). and of the conductivity tensor, (gii). averaged over 

configurations of the random field with a gaussian weight.. 'The implications of our results 

for the theory of the integer quantum Hall effect (IQI1E) are briefly discussed. 

1 The system 

Let us consider a system of non-interacting relativistic electrons moving in two dimensions, in the presence of a 

uniform magnetic field perpendicular to the plane and of a random gauge field. The Euclidean electron propagator 

S(x, y) is the Green's function of the Euclidean Dirac operator. 

— 	 ndS(.r.y) = 	— y) • 	 (1) 

satisfying the zero-temperature boundary condition 	 5(.r. y) = Ii. The gauge field A = A + .4 comprises 

both the external field A = 	A l . A2). where p denotes the chemical potential and 	= B; and the random 

field = (In what follows we shall assume that there is no disorder in the magnetic field, i.e. 

A r  = A2 = 0.) The electric charge has been set to one. The Dirac matrices 'y,, (p = 0,1,2) satisfy the Euclidean 

algebra 47„,7„) = 2 b„. 
Once S(x, y) is obtained, one can compute many quantities of physical interest.. among them the current density, 

j„(.F ) = —Tr [7,, S(27, x (2)  

and the local conductivity tensor. crii(1! ): 

0  ij (F ) = i(1 	?I II io(J: . ll) llj 	- I 3 (3)  

ripfr(1- 0 = Tr ['fp S( 1 . 9)1v S01.4 - (4)  

All physical quantities must be averaged over disorder. Ifere this will be done using the probability distribution 

P[;1 0) = exp 	J (1 2 	)1 	 (5) 
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which, being gaussian, is completely determined by the one arid two-point correlation functions: 

(•40(i)) = 0; 00( 27) Ao(0) = b"(z — ( 6 ) 

Note that we are taking averages over static realizations of the random field, otherwise it. would be necessary to 
introduce a dynamics for A. 

Since S(x,y) is a highly non-local functional of 	we shall perform the averaging process perturbatively. In 
terms of the 'unperturbed' propagator So(x, y). which satisfies 

	

[Or  — i..71(x) — in] So (x, y) = 6 3 (x 	y) , 	 (7) 

and the same boundary condition as does S(x, y), Eq.(I) can be formally solved for S as (in matrix notation): 

	

S = So + So So + So So So + - • • 
	

(8) 

Now, the averaging can he done using (6) and applying Wick's theorem to evaluate the n-point correlation functions. 
The unperturbed propagator. So(x, y). can he obtained using Schwinger's proper time method[1] (for this and 

other methods, see also[2, 3]). The result is 

dp 
Sax, y) = 114 (i• 9) I 

3 

(2103  e 	
so(p) 

where (u.) E po — i/1) 

r te' 	di 	i  , 	 tank 1..ii 
So(p) = —i Jim i — exp •—‘‘,..- + III  )/ 

— p_.2 

c —.0+ e  cosh 81 	 B 

1 	pi 	71 +  p272  
X 	(La cosh fit — inr sink] B1)1 0  + 

cosh Bt 	
-I- Go sinh 131 — irn cosh BO} 	(10) 

and M (i, if) is a gauge dependent, translation-invariance violating term: 

Al 	g) = exp i 
J  F 

 ' 1 (4) (14 

the integral is performed along a straight line connecting g to i. 

2 Results 

Computing the averaged current density according to the scheme outlined in the previous section, we find, up to 
second order in g, the following results: 

(hue)) = 	( 1— 	 — to) — Eto(p— (n)— 0 ( - 1.1  cn)I 
ra=1 

(ii(E)) = ( i2(i)) = 0 	 (13) 

In (12), 	= 	17 -)  - 2n8 (13 is assumed to be positive) is the n-th relativistic Landau level. The result for the 
spatial components is expected to be exact, by rotation symmetry. For the averaged conductivity tensor, the result 
is the following: 

(au) 	(o-2.2) = 0: 

— (47 12) = 2; I —  
In ) 7

-  — 	— co — ) Epos  s —(n)— 0 ( —  —4,i)] • 
I 	q 	2 { I 

n=1 

As a matter of fact, (15) can be derived in a much simpler way, using the identity[2. 

 (0.21) = 	(J0) 

(9) 

(12) 

(an) ' = 

(14)  

(15)  

(16)  
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Besides bringing about an enormous simplification. this identity raises au interesting problem: since the Landau 

energies, c n , depend on the magnetic field, the differentiation of (j o ) with respect. to 8 will not only reproduce the 

result for (an),  it will also generate some extra terms: 

0 
OD \Jo/ — (a21) = 	( i 	fl In 2 - 0 . `l 

a 	 E (" (.7  (60A- 	- 6(—)r (17) 

..1 

 

This "anomaly" seems to be related to the fact that[6] 

line a9 1 (7') 	0.21(7" = ( 1)- T-0 
(IS) 

In fact, an explicit computation of the finite temperature Hall conductivity of the "clean -  (i.e. in the absence of 

the random field) system shows that the difference between the left. and the right side of (18) coincides with the 

right side of (17) (with g = 0). Apparently, identity (16) is correct.! 

According to (15), the Hall conductivity, (a n ), shows a staircase structure as a function of the chemical potential 

p and of the magnetic field /3. The height of the steps depends on the strength of the disorder. y. However, one of 

the features of the IQHE is the remarkable quantization of the hall conductivity in units of (= 1/2a in our 

units). even in the presence of inipuraics and defects(71. For our result to be consistent. with the observed accuracy 

of this quantization (at least one part. in 10 5 ), g would have to he extremely small and, so. one should expect the 

results of perturbation theory to be reliable. 

(We note, however, that the existence of a dependence of the plateaux values of (a n ) on g may be a feature 

of the probability distribution (5). We have computed the Hall conductivity, in the range — ( 2  < p < c 2 , using a 

probability distribution of the form 

P(A 01. exp 	P 2 .c [(t:A0 ) 2  m2 Ag ]1 	 (19) 

and, in this case, there is no 0(g) correction to the clean system value of (fn .) 

On the other hand, according to the established viewpoint, our results are not. enough to explain the IQHE. In 

QHE experiments in heterostructures, it is believed[7] that. jo  is kept constant while /3 is varied (however. see[8] 

for a different viewpoint). Comparing (12) and (15). we find (n21) = (jo)/B and, therefore, no plateaux. We are 

forced, thus, to conclude that if disorder plays a role in the IQIIE it. will necessarily be nonperturbative. 

Acknowledgments 

This work had financial suport from Proyecto FONDECYT. under Grant No. 1950794, Fundacidn Andes, CNN. 

and FA PER-1. 

References 

[1] J. Schwinger, Phys. Rev. 82 (1951), 664. 

[2] J. D. Lykken, J. Sonnenschein and N. Weiss. Int. J. Mod. Phys. AG (1991), 1335; Int. J. Mod. Phys. AG (1991), 5155. 

[3] J. 0. Andersen and T. Haugset, "Magnetization in 2+1 dimensional QED al Finite Temperature and Density'. preprint. 

cored-mat/9410084. 

[•] V. Zeitlin. Phys. Lett. 8352 (1995). 422. 

[5] P. Stieda, J. Phys. C15 (1982), L717. 

[6] S. S. Mandal and V. Ravishankar, - Activated resistivities in the integer quantum Hall effect". preprint, concl-

mat/9607173. 

[7] See, for example, "The Quantum Hall Effect - , eds. R.E. Prange and S.M. Girvin (Springer-Verlag, New York, 1987), 

and references therein. 

[8] C. A. Baraff and D. C. Tsui, Phys. Rev. 13 24. 2274 (19811. 



604 	 XVII Encontro Nacional de Particulas e Campos 

Chiral Decomposition For Non-Abelian Bosons 

Nelson R.F. Braga and Clovis Wotzasck 
Institute de Figiea. Universidade Federal do Rio de Janeiro 

21945. Rio de Janeiro, Brazil 

We study the non-abelian extension for the splitting of a scalar field into chiral components. 

Using this procedure we find a non ambiguous way of coupling a non abelian chiral scalar field 

to gravity. We start with a (non-chiral) WZW model covariantly coupled to a background 

metric and. after the splitting, arrive at. two chiral Wess-Zuinino-Witten (WZW) models 

coupled to gravity. 

1 There are indications that a deeper understanding of such issues as string dynamics and fractional quantum llall 

effect phenomenology can be achieved by treating the chiral sectors in a more independent way. However, coupling 

chiral fields to external gauge and gravitational fields is problematic. In a recent imperil'. we have discussed how the 

coupling of chiral (abelian) fields to external gravitational backgrounds can be achieved by diagonalization of the 

first-order form of a covariant scalar action. The theory reduces then to a SUM of a left and a right Floreanini-Jackiw 

actions[2], circumventing the problems caused by the lack of manifest Lorentz invariance. Proceeding along these 

lines, one can gauge the scalar action before chiral splitting. which is trivial, and thus obtain the correctly gauged 

chiral scalar action. This procedure was motivated by a previous article by Bastianelli and van Nieuwenhuizen[3) 

where the coupling of one abelian chiral boson to gravity is achieved by starting with scalar field coupled covariant!)• 

to gravity and then imposing a chiral constraint in the first. order Lagrangean. An earlier description of the coupling 

of chiral fields to gravity was given by Ilenneaux and Teitelboi411. 

In this Letter we extend the chiral decomposition scheme to nonabelian scalar fields and use this result to study 

the coupling with a gravitational background field. 

2 Let us extend the separability condition discussed. for the abelian case, in II) to non-abelian bosons. The most 

obvious choice would he to consider an action given. by a bilinear gradient of a matrix-valued field g taking values 

on some compact Lie group G, which would be the natural extension of the free scalar abelian field. This is the 

action for the principal chiral model that reads 

Spcm (g) = 	d- rt• 	i?Pg -1 ) 
	

(I) 

Here g : W• 1  — C is a map from the 2 dimensional Minkowski space-tittle to C. This action, however, puts some 

difficulties. First of all, by examining its field equation we learn that unlike the abelian case, it does not. represent 

a free field. More important for us is the fact that there is no simple way to represent this action in terms of 

TW.dual variables; as in the abelian case. Surprisingly though, we learn that it: is still possible to introduce chiral 

variables in a simple fashion, after the reduction to a first-order action. The reason being that chiral variables only 

appear as derivatives, unlike the 1: alie, of dual variables. The Jacohian of the field redefinition does not involve a 

time-derivative and can be reabsorbed in the normalization of the partition function. Let us write the PCM in its 

first-order form as 

SPCA! P) = I  I 11 2xtr(PgPg).± 	d2 .ctr(ar y I') 

d2 xtr (g -1 0,g g7 1 0,, g) (2) 

and redefine the fields g and Pin a way that mimics the abelian case 
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f 	A B 

E (11 -1 04.4 -1  - 30 13 -1 	1 ) 
	

(3) 

The action for the PCM now reads 

Span 	B) = Sr  (.4) + 	(B) 

E I (1 2  xtr [A - 	AD, B - 0, /10,. B) 13 -1 ] 	 (4) 

where 

Sr  (A) = f 4.1 2 .1317• (eV, A -  t),.4 - 	A - I  00 .4) 
	

( 5 ) 

We see that due to the non-abelian nature of the fields, the cross-term cannot be eliminated, so that complete 

separation cannot be achieved. However this picture changes drastically with the inclusion of the LVess-Zumino 

topological term, i.e., when we consider the WZW model. The topological term 

V w z 	
I 	

x( 1)  r tg -1 00 Y -10i fr i dkg) 
	

(6) 

under the field redefinition (3), splits as 

l'wz(AB) = l'itv.(21) 	l'svz(B) + 

+ 	J (12  xi,. [A -1  (0, 	13 - 	/3) /3 - I ) 
	

( 7 ) 

Next. we can bring results (4) and (7) into the Wess-Zuniitio-Witten (WZW) action[9], which is described by 

SW Z g • P ) = =SPC At ( g • P) + .17r  —1 'w z (g) 	 (8) 
Al  

We mention the appearance of au extra parameter, both in the action and in the canonical formalism, playing the 

role of coupling constant. In terms of the chiral variables. the WZW model reads 

Swzw (A . B) = 
I s,(..0+ 

47r
„,  r,(,01+ [Ic‘

.-` 
(m+ 	I'vvz(B)1+ 

LA 7 	 A 2 ` 

+r
11 \ 

+ .1-7r )id2 .rir [A -1 (0,..10,B-0,„.4a 7 B) 8- 1 
	

(9) 

We can appreciate that the separability condition is only achieved at. the critical points, as expected. but also that 

our choice of E is now dependent on which of the critical points we choose: 4rf = -a = n. The result is the non 

abelian version of the chiral decomposition. and corresponds to the sum of two Lagrangians describing non abelian 

chiral bosons of opposite chiralitics, each one having the form proposed by Sonnenschein[6]. We will see that a 

change of the critical point automatically switches the chirality of A and B by changing the sign of E. Indeed, in 

order to obtain separability. we must have either 

A 2 n 

.1r = 
	= 	 (10) (i) 

or 

	

, 	A 2 n 

	

(ii) 	= -f = 	 (it) 
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In the first. case we find die set of chiral equations as 

Or  (A - '0+ A) = o 

9_ (B -1 0,B) = (1 
	

(1 2) 

Now we are in position to consider the coupling of non-abelian chiral scalars to gravity. The coupling of a scalar 

non abelian field to a background metric rr can be described by the action 

, sw no g . 	76pcm  (y. 	-17  I wz(g) 

where 

S M(q. q) = f (12  E 	01"I.  Oggavg -1 ) 

The topological term 14 z (y) is not affected by the metric since the volume element tinies the antisymmetric tensor 

makes a covariant scalar. We can write the action for the Principal Chiral Model in a first order form as we did 

before. Introducing also the chiral variables defined in (3) we get: 

rr 
 [I S ( A C; ) 	— W 7  ( )] Sttrztv (A . 	= ' 	47T 

S_(li.(7 _c) 	-11. 14'7(B) 

) 	dl .r1• [..1 -  (d,;(), B — 0,21o, Li) B -1 1 

051 

In particular. we note that the separability conditions. Eqs.(10) and (I I). are not affected by the presence of the 

metric. Thus. at. the separability points. we get. two chiral non-abelian scalars coupled to gravity in the same way 

as in the abelian case. 

5 Concluding, we have proposed a way of splitting the action for the non-abelian boson into two chiral sectors, 

including the interacting case. '['his chiral decomposition is related to the holomorphic factorization of the WZVV 

model discussed in [10. 11]. If we go to Euclidean space our light cone coordinates J.+ and will correspond to 

the conformal coordinates and .7 and the chiral solutions B+ (z+ ) and A_(x - ) will correspond to holomorphic 

and antiholomorphic functions respectively. 
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Fungfio Particao Generalizada para Campos 
Quase-Periodicos corn Potential Quimico 

P. F. Borges; H. Boschi-Filhal e C. Parina: 
Institute de Fisica. Universidade Federal do Rio de Janeiro 

UP 68528. Rio de Janeiro, RI :21945-970. Brn:il 

Usando o fato de que campos bosonicos a temperatura finita 	= 3-1  sao periOdicos no 

interval° (0,0) enquanto campos fermiOnicossio antiperiodicos, nos discutimos a construcao 

de funcOes de partici° para campos quase-periodicos. isto e, para campos que obedecem a 

condicao r/., (E; 0) = ci 8 t1 , (1;13). Nos empregamos o metodo da funcao zeta generalizada para 

calcular o determinante associado corn a funcao Fi•k* para campos quase-periOdicos. 

Uma vez que nos qucrernos discutir a funcao panicao para urn gas coin densidade finita. ['Os 

incluimos o potencial quirnico it. relacionado a carga conservada pelos canipos. 

Nosso ponto de partida esti apoiado na observacao de (re em temperatura finita. 	= 11 -1  campus bosanicos 

sao periOdicos no intervalo (0, /3) enquanto campos fermionicos sao antiperiOdicos no mesmo interval°. Entio. ulna 

• extensao natural a considerar campos quasi-periodicos 

= c i° 0(.r; 3) 	 ( 1 ) 

A funcao particao para urn sisteina descrito por urea ilamiltoniana II coin potencial quirnico It bode ser escrit.a 

comb 

	

(!xP l -- 135 21 = 1r c —'0 1.--Vo) 	 ( 2 ) 

onde 	a energia 'lyre e At é a carga conservada do sisterna. Como 6 hem sabido para campos bosonicos carregados 

massivos. nos podernos expressar esta funcao particao como rim determinante [ 	on seja. 

exp.( -40 } = [diet( -U' + M")1,] - I  (bosons) 	 (3) 

onde. D' é o quadrado da derivada covariante Dv , incluindo o potencial quirnico.Dt, = ( -(00  + ilt). )e 1W é a 

massa do camp°. 0 indite P significa que os autovalores do operador -D" + M' estao sujeitos a condicoes de 

contorno periodicas e assim silo dados por 

	

= (Lc. + i/E) 2  + 4. 2  + A.!  2 	
(4) 

onde ton  = 2nalf.3 , corn nc 	sio as frequencias de Matsubarit[3] para cam pos bosOnicos e 	. 

Da mesma forma que para bosons. nos tanrhern podemos escrever a funcao partici() para fermions corno um 

determinante (por conveniencia IrUs usarcmos o operador de Dirac de segunda ordern iterado) 

exp{-13S .1} = Het( - D" + 	), I  i d"( f cern ion s) 	 (5) 

onde d e a dimensao da representacao do carnpo de Dirac e o subscrito .4 signilica que os auto-valores sao calculados 

coin condicoes de contorno anti-periodicas e portant.° dada.s por (1) corn w t , 	(271 + 1 )711/3 

'e- mail: pborges4kif.ufrj.br  
to-mail: boschi0if.ufrj.br  
le-mail: farina0if.ufrj.br  



1*(  
((s:A) 

-1-rsz 

x 
II= -CO 

2 	r(,) 

(27 

3 ) 
v)21--0-P--) 
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Nossa gcneraiizacao consistc crn calcular o deterininante deste operador, ['las agora submetido as condicOes de 

contorno quase-periodicas(1), ou seja: 

= [Jet(-D2  + .11 2 ) 6 1 „ 	
(6) 

onde o subscrito 9 signitica que a condicao quase-periodica e suposta e nos introduzirnos um novo parametro a 

capaz de reproduzir corret.amentc os casos particulares boseinico e fermionico. Observe que quando 0 = 0 c a = - 1 

nos reobtemos a fungi° de partici° bosonica. enquanto etuc para 0 = r e a = d/2 temos o caso ferrniOnico. Por 

generalidade, vamos calcular o determinante acinca em N I diniensoes espaco-temporais. Os autovalores neste 

caso sao: 

A n k e  [2nr + ip + 010] -  + 	+ 
	

( 7 ) 

0 determinante (6)6 uma generalizacio da versa° em mecanica quantica cm 0 + 1 dimensao (coin le = 0) que 

foi calculado usando funcOes de Green[4] e o ['lewd° da funcao Zeta[5]. Aqui. nos tambein varnos calcular este 

determinante usando o metodo da funcao Zeta gencralizada atravis da formula li;isica[6): 

-e) 
det A = exp 	 11 	= exp 

os 
—((s: A)}1 	 (8) 

..=0 

onde a Nina° Zeta generalizada e delinida por C(s. A) = 1rA -1  e army extensao analitica de ((s.A) para todo o 

piano complex° a tacitamentc suposta. 

Para o caso em moos a funcao zeta generalizada Pica: 

C(51 ,4 ) = 	 
(270A 

(1kliS-L( 
ee. k .R) 

 (9) 

onde V e o volume e S2 ,y e a area da hiperesfera unitaria em N dimensoes espacia.is, e nos usamos a relacio (7). 

Usando a formula in 

.10 
+ .r/ 2 )' = 	

T+ 
"' B(- - - r - /2 ) 

1 	, 	
(10) 

nos obtemos 

onde nos delinirnos Ch = 1/S-2N/(21.r)'': . v = .11M/27 e x = (ii.iri + 0)/21r. A soma (plc aparece na formula acima e 

tuna generalizacio da funcao de Epstein usual[8]. para a qual poile-se escrever uma extensio analitica em Lod° o 

piano complexo[9]: 

D(s, x) 	1 112 	(n + %)1-" ) 	 (12) 

ITr 	l'(s 	- 

- 
	 x 	  

1v1:7 E
cos(7rnx 

if  
2)(—r — 	5  k 	_ (27rrii.) 

	

1- (.s — L) 	
4
- ,..1 

onde K„(z) e a funcao de. Bessel modificada fh: ordem u. Tomando a derivada de C(s. A) ein rela4ao a s. no limite 

s = 0 nos obternos (a memos de urn termo irrelevante que linear cm 	independente cie p): 
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2,Fros r(!Y-)() N  
2 	fl 

+co 

x 

	

	
na-)-iov-") 

h_ ,i,v+1)(2rrtv) E cos(2-rnx)(— 
/.. 

 

0s
((s.A) (13) 

  

n =1 

llsando este resultado nos podemos encontrar o deterniinante generalizado (6) que interpola continuamente as 

funcoes de panic* ou de forma equivalente. a energia livre para urn gas relativistico de bosons on fermions corn 

potential quimico N 

0 (03 ii ) = Cr C iv (211011N+11- (1 3 =DICN+ 1 ) 
/71" 	 2 ' 

-Fec, 	 1 	0 s+1 i 

x E cos( 	
(- ) 

	 K D N+ I i ( OM) 
I / 

n=1 

(14) 

Se nos particularizarmos os parametros 0 e o aos casos hoseinico e fermionico, encontraremos precisarnente os 

resultados conhecidos rra literatura [101111] (ver tantb6Itt (1.1]). 

E interessante calcular as expansoes para altar P baixas temperaturas da energia livre para ciarificar o papel 

dos parametros 0 c c no calculo acima. Tomando o IltttiL.e de altas iemperaturas 0111 << 1 na eq. (14), nos 

encontramos: 

4-1 	
N + 	

+C 	 N-1- I 

1103.11) = 21/ a (I)
.V 
 r (— 2 ) E cos(  riO)cosh(n0/1) ( —

1 

n=1 	
PI ) 

No limite de baixas temperaturas, 3A1 >> I , nos temos: 

M , 	 4.  
MO ,  /I) = 	

; 	
CN: 

r 	E cos( riO) cosh(ni3),) ( 1)1
+14 

e -4 nd,51) (16) 
lT 	 =I 71 

r1  

Agora, nos mostraremos que da energia 'lyre (14). ou de forma equivalente. de sum expanthes do altas e baixas 

temperaturas. nos podemos extrair as temperaturas criticas da condensacao de Bose-Einstein para urn gas de bosons. 

Tomando O = 0 e cr = -1 e o Hittite de altas temperaturas. nos encontramos para a densidade de carga: 

p. _1
= 	

r  (A: + 1 \ N, 	rrN _ I  

der 	1 ..! . 	 2 

onde (( N - 1) e a fun*, Zeta de Riemann conim. Ent particular, se N = 3 nos temos a bem conhecida temperatura 

critica para a condensacao de Bose-Einstein (/i = M) [10]: 

(LY 
.11 

Analogamente, no limite de baixas temperaturas, Weis tenios:(it = AI) 

N l  (1'111\ 7  
r 

a qual implica que a temperatura critica para N = ( -1 [12] 

(15) 

(17) 

(18)  

(19)  

p 

. 11 	((fl 

I)as equagoes (17) e (10) nos podemos ver quo o •ondensado nao é definido tun duas dinionsoes espaciais (N = 2) , 

urea vez que a funcao Zeta de Riemann C(s) tem um polo ern s = 1 . De fato, coino a funcao Zeta r convergente para 

(20) 
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s > 1 nos encontramos quc a condensacito de Bose-Einstein para campos inassivos (nos !unites ultra-relativistico e 

riao-relativistico) ocorre para dimensoes espaciais N > 2, o que concords corn a literatura[10][13]. 

Para ver que fe:rmions se excluem a discutir o cornportamento geral da interpolacito de .  0 c er r  vamos reescrever 

a energia livre (14) como 

f v  
/ d' f Re {hi [1 - e id  c 1 ' - ' ) 1+ (ii — - )I)} 

. - 
(27)% 	2 

Din-  i di'.  k 
— {In [1 + r." 4 "-- " )  - 2 cos Oe'' ( ' -  "I 1 

lila  i d'y  f 
i — -Pi 

onde = 4-2  + M 2  . Como a condensacii° estzi relacionada ao estado de moment.° zero 	= O.) . nest' caso nos 

Lentos w — M. F.,ntio, nos podemos ver plc a equaccio acinia 6 bent delinida para todo valor de , exceto quando 

0 = 0 (ou 2nr, n inteiro) para o qual 1.1 = Al. di a here conliecida condic .aa de condensacio. Fntao, nos podentos 

inferir que nenhunia contlensaciio ocorre para qualquer 0 2rir (n inteiro). 

A filmic) de distribuicao de uma particula correspondente a cncrgia livre acirna: 

1 
 1 + 	- 2 cos 0e0"' 

(22) 

Desta funcio de distribuicito gcneralizada nos pot einos cncontrar o resultado usual que fermions se excluem, 

tomando 0 = ±7r, de mod° quc °Enemas a distribuicao usual de Fermi-Dirac. E claw que a intsmo ocorre para a 

distribuicao de Bose-Einstein quando nos toinamos 0 = 2nzr coin 71 inteiro. 

Uns poucos comentarios silo riecin;szirios aqui: Primeiranicnie. vale a pena dizer que o parametro interpolante 

0 discutido aqui cumpre o papel (le um campo de calibre topologic° constante .4„ = (.40,0.0.0), desde quc a 

condicao de contorno 0 para o operador de Klein-Gordon implicou quc — + 0/0, que pode ser vista como 

um deslocaniento no operador derivada temporal 00  — 00 + i0/3. discussao dos deterrninantes bosonico (3) e 

fermionico (5) corn urn campo de calibre topologic.° cons-tante, inns sear relaciona-lo as condicoes de contorno ou 

cstatistica interpolante, foi apresentada antes[14]. 

Ern segundo Lugar, nos decrevemos aqui ulna esp6cie de bosonizacii° (fermionizacito) pela inclusio de arbitrarios 

0 c v na fungi° partici°. Note que, nos mostramos que neriliuma condensacao ocorre para campos corn 0 0 2nir. 

entretanto urn campo fermionico iriteragindo cons urn campo topologic° OM corn 0 = r tambem condensara, desde 

que a Lase global adicionada a expil(w f )t) seja urn inteiro vezes 

Como ulna lernbratica final. \•amos inencionar pie nosszt abordagern pode ser ext.endida a outros espacos-tempo 

corn outran topologias. Naturalmente. estes res- ultados se red uzein aos nossos para urn espaco-tempo do tipo R N OS I 

 quando colocamos 0 = 0, -zr e is = d/2 cm nossa formula. 
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Action Principle for the Classical Dual Electrodynamics* 

PCR Cardoso de Mello ( " ;  S Carneiror" and MC Nernes ( I )  
I 1)  Departarnento de Fisica. Universidade Federal dc Minas Gerais 

CP702. 30000. I3elo Horizonte. MG, Brasil. 

(2) Instituto de Fisica. Universidade de Srio Paulo 

CP66..918. 05.989-970. Siio Paulo, SP. Brasil 

The purpose of this paper is to formulate an action principle which allows for the construction 

of a classical lagrangean including both electric. and magnetic currents. The lagrangean is 

non-local and shown to yield all the expected (local) equations for dual electrodynamics. 

One of the oldest open problems in the theory of elementary particles is that of the quantization of the electric 

charge. Although apparently very simple. this experimental result. has not yet found theoretical explanation in the 

context of the standart model of fundamental interactions. 

In 1931. PAM Diraci l l found an explanation for such quantization based on the lack of symmetry of Maxwell's 

equations in what concerns their source terms. 'lie presence of magnetic currents in these equations leads, at the 

quantal level, to the quantization of the electric and magnet it charges. 

Since the pioneer work of Dirac, other solutions to the problem have been proposed in the context of unified 

theories, as CaiT's 12 .31  and 1:Mina-Klein •heories0 M. However. all these proposals are shown to he connected to 

the existence of solitonic magnetic monopole:4 6 'i. 

A great obstacle to the development of an electrodynamics with charges and poles is the absence of an adequate 

lagrangean formulation. This is intimately connected to the difficulty of constructing a regular 4-potential in all 

space-time. There have been several proposals to circumvent this problem: the introduction of Dirac's string 11°I, 

of the double-valued Wu-Yang potentiali y t l. of the singular I3ollini-Giambiagi potential [121  and finally the use of 

non-local wave functions. proposed by Cabbibo and Ferrari 1131 . 11°1.i:ever, a lagrangean formulation which gives rise 

to the complete set of electromagnetic equations. without necessity of any subsidiary condition, is still lacking. 

The main purpose of the present work is to show that a non-local lagrangean can be constructed which gives a 

correct description of the classical dual electrodynamics provided we postulate the following variational principle: 

the dynamics of the system charge-field-monopole is such that the action presents a saddle point which is a minimum 

with respect to variation of the usual degree:, of freedom and a inarinzurn with respect to variation of the dual degrees 

of freedom. 

Following such prescription we construct the lagrangean density 

1 
C = C; + 	— F„„ 1:"" — j„A° + g " 	 ( I)  

where j„ e gm  are the electric and magnetic 'I - currents, respectively. Here we have introduced the Cabibh Ferrari 

generalized field tensorf" )  

"' E 0".4' — 4-e 	— f NVVC &Ad 	 (2) 

and the non-local potentialsill 

Jl je  = A" 	—
I

( PI"i3 
	8€ . 1 j3  (g-, 
	

(3) 
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Ao = 	- L- "-" °  f 0„Ad dl;-) (4) 
2 

with P and P defined, respectively. by the world lines Of the charge and pole. 

The first two terms in (1) correspond, respectively, to the free lagrangeans of the electric and magnetic charges, 

so that the Lagrange's function corresponding to (1) is given by 

	

L = L e  L g  Lmaxwen 
	

( 5 ) . 

where 

L,. = - m (1 - ti 2 )/ + 17 • 	Ao 	 (6) 

Lg = A1 (1 - 	- 	+ A o  

1 
e 	

. 
Lm.rweir = - 	fz 	" 

Here t7 and r stand for the charge and pole velocities. in and A/ standing for their masses. c and y  are 'their charge 

strenghts. 

In the absence of monopoles we can. using the gauge freedom["]. set .-1" = 0 and our lagrangean reduces to the 

usual lagrangean of electromagnetism. Also. in the absence of electric charges. by,setting = 0 we get, apart 

from an overall sign, the dual lagrangean 

1 - 	- 
C = 	- Fut, P'" - .4 " ( 9 ) 

where 

p ti P = (1 0) 

stands for the dual of the field tensor. 

From (2)-(4) and (10) we can show the validity of the relations1 17 1 

F"" = 	- iY1 	 (11) 

•ffilu = O"A". 	 (12) 

Variations of the local potentials - for given fixed particles's world lines - lead to variations of the non-local 

ones. Using (11), (12) and the identity 

= - 	 (13) 

it is a simple matter to check that the extremum condition for the action under such variations leads to Euler-

Lagrange equations which correspond to the expected generalized Maxwell's equations 

E1a F" = 

= _ y 1.1 

Variations with respect to the coordinates of the charge and pole give 

m dr = e (1)" 	- A') U0 

(7)  

(8)  
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= ' (0";443  - A") Vp 
dr  

where IP' and VP stand for the 4-velocities of the charge and pole and r is their proper time. Here, the derivatives 

of the potentials arc taken along the world lines of the particles. Thus, using again (11) and (12),•we obtain the 

correct Lorentz's equations 

dtiu 
err , = 	lio  

dVu 
M 	13  

dr 
= gi' 

 
We can see that the proposed lagrangean, although non-local, leads to all desired local equations of motion. 

Using the field equations it is possible to show that a change of the paths of integration in (3) and (4) corresponds 

to a gauge transformation of the non-local potentials. Because this result, it is not necessary to consider variations 

of these paths to obtain the particles s equations. 

It is important to note that (11) and (12) do not imply into the homogeneity of (14) and (15). It is due to the 

fact that the non-local potentials are not. regular, do not obeing the Euler condition. In other words, • 

(i)"ie - 	 ) A° 0 0 	 (20) 

and the same for Ac'. 
The irregular character of 	as a function of .r and P. is evident once one examines expression (3) in the case 

of a magnetic monopole at. ret in the origin. Any path which goes through the origin turns the integral into a 

divergent one over a semi-infinite line. Such singularity are essential, since they come from the intersection between 

the charge's world line and the monopole's one. and are already contained in the equations of motion derived from 

the lagrangean. In fact, Lorentz's equation (18) allows the charge to come indefinitely close to the monopole, over 

the line connecting them. But when the superposition occurs, the second member of this equation becomes singular, 

unless the relative velocity between charge and pole goes to zero. We note however that, whatever the charge's 

trajectory might be, the singularity of A" will always lie in a 4-hemisphere opposed to that of charge's motion. 

This discussion is valid also for the dual non-local potential. 

Let us consider the dual transformation 

(17) 

together with in — M. The lagrangean and action will change sign. As the equations of motion do not depend on 

the overall sign of these quantities, we can say that the theory remains invariant under such dual transformation. 

The sign difference between the free lagrangeans of the electric and magnetic charges (cf. (6) and (7)) may give 

the impression that the monopole would appear as a particle with negative energyM. This would be of course 

unacceptable at. the classical level. It. is possible to see that this is not the case by calculating the total conserved 

energy of the system charge-field- monopole. using the equations of motion obtained from the lagrangean. 

• 	This result apparently contradicts the hamiltonian formulation of the theory. However, the dual simetry and 

the very form of the lagrangean, obeing a saddle principle, lead us to a hamiltonian formulation which is internally 

consistent with the theory. In fact., the dual transformation (21)-(24), under which L e  — - 1.. g  and S e 	 - S y , 
transforms the momentum and hamiltonian of the charge 
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1L, 
Pe E 	= 	= 	, 

	

(Ir 	ou 	(1 — 1,2)s- 

dS, OL, 
'H, 	

01 	8u
11 — L. 	(rn' + (;7 --  eil-) 2 ) 4  + eAo 

into the momentum and hamiltonian of the pole 

	

0.5g 	OLs, 	F 
Py 

 
	 + (IA 

= — 	= 	= (I — 

	

'H9  == 	 9  
tiSg 	rg 	L = [M 2  + (p9  — gA)1 1  !frio 

, 

The above expressions respect the canonical form of Hamilton's equations. since the latter remain invariant 

under a simultaneous change of sign of ;7 and 71. It is also simple to show that (28) corresponds to the correct time 

evolution generator for the monopole. 

We should like to remark that our formulation does not. induce any modification for the particles's equations of 

motion in the gravitational field. 

Usually the action for a mass In particle subject to this field is given by 

S = — ft! I (15 	 (29) 

with 

ds 2  = 	 (30) 

In the case of a magnetic charge, however, one should consider the action in the form 

.7'=:1J
J 
 ds 	 (31) 

so that it presents, contrary to (29), a maximmn and so that. the Lagrange's function reduces to the correct one (cf. 

(7)) in the absence of the gravitational field. 

Since the equations of motion are given by 65 	0 t he sign difference between (29) and (31) will not matter. 

This is in complete agreement with the Equivalence Principle. Besides, the positive definite character of the.energy 

of the monopole guarantees that it will play the same role as any other particle in what concerns the generation of 

gravitational field. 

In conclusion, we have proposed an action principle which allows for the construction of a non-local classical 

lagrangean which yields all the equations of electromagnetism with charges and monopoles. without having to resort. 

to additional restrictions or constraints on the dynamics of the particles. 

The quantization of the theory remains a challenging open problem. The same can be said of its non-abelian 

extension. In the same way that magnetic monopoles can he obtained as solitons of non-abelian theories. we can 

think that electric charges would be given as topological solutions of dual theories to the firstil' 211 . This possibility 

suggests a unified description of electric and magnetic charges as configurations of bosonic scalar and vector fields. 

The difficulty lies, however. in the lack of a self-dual lagrangean which contains at the same time the bosonic fields 

and their respective duals, like in (1). The introduction of non-local potentials (non-abelian) May be a way to the 

construction of a saddle point lagrangean formulation. 
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Schwinger Model With Current-Current Interaction 
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In this work we discuss the effect of quartic fermion self interacting terms on the dynamics 
of the vector and chiral Schwinger models. We consider the operator treatment to obtain 
the fermion and vector fields solutions. The 0-vacuum structure of the vector and chiral 
models is displayed. This word complements the functional aproach en [I]. 

1 Operator solution 

Let. us first analyze to the vectorial case (the left and right couplings are equal) and let us avoid the anomaly keeping 

the gauge invariance in the bosonization of the model. The Lagrangian density will be in this case: 

1 	 1/ 2  
7  L = — — f' Fr,, +,t7, 	 - - 	 0 	-y, 1.4 	 (1) 2 

The solution of the Schwinger model in the Lorentz gauge is [2] 1,4; = 	: exp(i—a ]  — 62 + 

a3 ) — 	
OD 

 6 3  dy ') : and AN = -ko-av(a, + (1 2 ). Here o f  is a canonical scalar field with mass m = e/ a, 

63 is a canonical massless field and 6, the same hut with negative Metric while ,u  is an infrared regulator. The 

maxwell equation in the physical subspace is satisfyied with the current: P *co'dv(ct I  o3 ). These fields 

define the operator solution to the above Lagrangian in the interaction picture. To boost them to the Heisenberg 

picture while keeping the Lorentz invariance it is necessary first to verify the validity of the Schwinger condition, 

[e0(01,600(Y)1 = z(eoi + 001(0) ad(x — 

condition. The only nonvanishing term in the interaction energy-momenta tensor is kn ot = (2 ( jo)2 — b(Js) 2 ). 

Requiring the Schwinger condition we fix the value b= 11(g 2/7+ 1). Now we take the free hamiltonian expressed 

in terms of the fields o i  and their conjugate momenta Ili ( note that 112 = —62), add the interaction term resulting 

in a Hamiltonian that inspite of quadratic has crossed terms among all fields and all momenta. In the Heisenberg 

picture the new definition of the momenta can be obtained inverting the canonical equations (d r at = r71 1 , II). They 

are II = (1 + C) + (ci 2  — 63), = — (1 — ) + (61 — 63), and /I3 = (I + 63 — (6 7 + or). 
The original variables a ;  are now not. free fields. Let. us perform a generic linear transformation to new variables. 

Requiring canonical comniutation relations for these new fields we chose the transforMations as: a l  = 	61. 
2 

(1'2  = VI  + eh' 62 + 7412 14- 9 -,// 	 t+ st2/w Oh and 	= 	63 + 77- g 	(6i + 6,). Substituting these definitions v 	 I .4  
in the hamiltonian we see that 6 1  is a canonical field with mass equal to m(g) = m/1-1/7r, (b2 is a negative 

metric and 853 a positive metric canonical massless field. This mass coincides with the one in fn. The solution of 

the model is obtained from the free one uppon the substitution of the old phase space variables by the new ones. 

The result therefrom any correlation function may be easily computed is: 

8  thj  = N : exp vi  +%/7rg2/7r  7;,)  (91 ± 02 — 4' 3 ) —1 7)/7-  g2 J 4' 3  (gi• 	 (2) 

y) [3]. The Schwinger model hamiltonian is easily seen to verify this 
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= 	
1 

e'Yeh., (thi + 02) 
m(g) 

As in the Thirring model case we have to redefine the Jt component with a I/I -1\//2/7r factor. Only after that 

the current becomes vectorial and results in: ../ 4  = 	. 	("' ov(0 1  + (..62 — 63). This current can be also 

	

,Fr 	1-1-g 2 /. 

obtained computing the short distance gauge invariant operator product of the fertnion fields and normalizing them 

to have a vectorial field. 

We can verify that the Dirac equation becomes satisfied, iliDe = g 2./tie. The vector field satisfies the equation:0,Fuu-

cJv = 	1 . As in the Schwinger model the L" current.. 	= 	1 	04 '1),(63 — 62 ) . is a null metric field. 
VT. 1+9 2 /T 

The Maxwell equation is obeyed in the physical subspace where the expectation values of this current are zero. 

In order to obtain the spurious operators one can consider the operators that would result from a gauge trans-

formation: 1b ì  = thj  x cxp g2  f dy 1 ) : and .4 11' = — m1-7i covovoi. As the field 6 1  belongs to the 

operator algebra of the model [4] we can factorize its contribution out. of the fermionic fields. The resulting operators 

commute with the null metric current. L r, and have constant correlation functions. They define the two spurious 

operators after the introducion of the interaction: 

rfri  
( 

	

\It  + 9217 	(-0 ,  ± 03)— INF r 1\/'/7r 	03— 02) dil l  
(4)  

These operator expose the origin of the violation of the duster property. Iii order to restore it one shuld define 

the theta vacua. As in the Schwinger model this would lead to a twofold set of degenarate vacua. The spurious 

operators cr i  and oz differ from the ones in the Schwinger model as they are not chiral however. The effect of the 

interaction appears in their dependence at. the saute time of the right and left. light cone variables. On the other 

hand we could deal only with the operators present. in the algebra of fields of the model and avoid the introduction 

of the gauge transformation leading the pair of spurious operators. In this case the unique spurious operator will 

be cri a2  where the effect of interacion will show up in its ‘limension heeing changed. 

Let us now construct. the generators of gauge transformations of the model. Following [5] we take the generators 

of gauge transformation of the Schwinger model and boost them to the Heisenberg picture. We obtain the generators 

of gauge trasformations in the interacting model: 

	

T(A) = exp  	003 + 02) di My) — (c.53 + 02) aoA) 	 (5) 

Commuting with the fields we can ascertain that these are the correct generators of the gauge transformations. 

7' +.14.r) T -1  = riAlr)  tb(x) and [T. .1,(x)) = 	Op A(x)- 

	

Following [8] we define A_ Ii .j (e, ) = 	— y l 	.r - ) and A I/2 (y°. ) = 	 yl — x+). Taking 

( + g727),1 1/2  (y2 /270A_ 1 / 2  we see that this generator reduces to the spurious operator a l . while A2 = 

g 2 /27r)A_ 1/ 9 (g 2 /27).X 1/2  leads to the a? operator. As in the Schwinger model the screening is due to the 

Ilesapearence. after the switching to the tho.a vacua. of the physical states carrying quantum numbers associated 

to the generators of 17(1) and chiral ti (1) gauge transformations. The difference is that the basic. generators are 

not chiral any more. In any case looking at the true spurious operators obtained with the fieldss that define gauge 

invariant algebra of operators of the model. a-", rr2  we see that they are as in the Schwinger model functions of the 

scalar operator 6., and not of their chiral components. 

Let us note that alt.hought the vectorial lick' expression could be obtained directly front the Schwinger model 

vector field through a simple redefinition of the clet.ric coupling constant the ferrnionic field cannot be obtained so 

(3) 

0-i  = N x : exp 
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simply with the same transformation. The gauge invariant interacting two point fermionic functions cannot also be 

obtained from the ones in the Schwinger model through such a transformation. The effect of the interaction after 

quantization is to define a new class of models. 

	

The value of the chiral anomaly can now be computed. Taking 	= (PP J, we have 1),, 	= 	g).  ep„ F" = 
i+g-I 

f„ F". The spacial integral of JS gives not propperly the chiral transformation generator, Q5. To have 

[Q 5 ,0] = ;75  tk the current. should he multiplied by I + g 2 /7, reflecting directly in the value of the anomally. 

Let us turn now to the chiral case. The fermionic Lagrangian is[6]: 

Cr - 
L = -

4
- F' 	+ s +it 	+ 	— 

20 
0 1'1 (1 + 15) 0 1, (1 + 75) t!.• 

Where A +)  = -y° 8„ + 	A o (1 + 5) and it is convenient to define the coupling through G = 	a/T. In this case 

it. is more straighforward to bosonize directly the Lagrangian obtaining the equivalent model[7]: 

1.
a t'? 

= 4 + -Tho ei" + 	+ 000 AP + —
2z 

.1 	- — JP 

	

; 	2 	
1./7r 2 

In the operator aproach the bosonized expression of the current. depends largely on the regularization used on its 

computation. We choose the current that. would appear in the Maxwell equation in the g = 0 model. Namely 

• we take (I + -y5) 41' Ar• = ((ii„ + 0„)th + `14. A„). This regularization differs from the one used in the 

computation of the J„ AP term as the contribution of the very vector field to it is taken with different weight. 

We could have worked with this regularization without changing the main course 'of arguments but the expressions 

involved would be unnecessarily cumbersome to read. Substituting .1,, = a u x +0„A in the Lagrangian and changing 

variables to: cf; = 4)3 - 77.` (1 - C) at + .v and A = - x. results in: 

Tit 2  
L= Ox Ox _ 	0,,  v 	 r 

2 	 2 	• 	' 	P -3(  03   8„A i  aPA, 
7 

(8) 

Where the mass /11 9  = e N/1.-Cabla - 1 + (7,./ coincides with the one computed in [1). The solution of the higher 

derivative field x is well known [71 leading to y = (6 2  - 61)/ ► ri 9  where the field .  6 1  has mass mg  and positive metric 

while the massless field 6 2  is quantized with negative metric. The solution of the model is obtained expressing the 

free ferinionic field in terms of 0 and its momentum and substituting the later by (.% L. It. is'finally: ' 

Ao = --I  ( 1);,( 6:: - oi)  
r11 9 	 (a - I + t'.;) 

i);;(6.2 - di)) + auAl 

( 	

c. 

if'.,  = exp -a vri 63  + 	 rlyLe.,3  ,  

2\71 -; 
iii i  = exp ( /IT 653  + 	, 	 ( 6 '2 — 01) 

Va — 1 ± G 
rN 

4 163)) 
r 

The Dirac equation will read 	 0 and (0_ - 2.4_ - 	.L ) irt i  = 0 and the Maxwell equation will be 

O, F"" =.e( - C.;) J" 	e(1 - (;) I." where the current. is: 

(6)  

(7)  

2e( 1 — (,-;) 

.1, ((o, + 	+ 	 G 	- 61) 

+ 	 )) (13) 
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and the null metric current given by 

L , (1)" + 	) 	+  	5 ,CP, 
V7r 	 ■Al - 

7  (( „ 	+ G) 0„ — — G)e)), I )) 
	

(14) 

determines the physical subspace out of the complete Hilbert space. The physical fields turn out to be 6 1  and 

h = 63— '";" I  + It. is interesting to note that the introduction of the current-current interaction in 

this case can be accomodated in a redefinition of the parameters of the original (g = 0) Lagrangian. Indeed making 

e(1 G) and a — 4(1 — G) in the chiral Schwinger model' solution leads us directly to the interacting 

(y 0 0) model solution. This can be understood as a consequence of the fact that the interaction term J„JP would 

he naively zero if one used the quiral current expressed only in terms of the fermion fields. as this product. would 

be identically zero. What. makes this interaction different. from zero is exactly the ambiguity in the definition of 

the currents present in the chiral Schwinger model. This phenomenon has its correspondence in the functional 

formalism in the fact that the introduction of an identity. 1 = exp (< >). in the integrant' together with the 

ambiguities in the jacobian leads to the redefinition of the parameters of the model. 

It is important to note that in the chiral case we cannot define an spurious operator in terms of the algebra of 

operators that are observables of the theory. There is no the' a yarn'''. 
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I Introduction 

We studied the supersymmetry (SUSY) in non-relativistic quantum mechanics (QM) [I] involving two-component 

wave functions [2]. We show that the superpotential for the SCSI' QM with two-component wave functions is a 

Hermitian matrix. We point. out that. the respective supersymmetric Hamiltonian can be realized from stability 

equation for two coupled real scalar fields in 1+1 dimensions [3] arid for a bidimensional physical system in coordinate 

space associated to a Neutron in a static magnetic field [4]. 

H SUSY QM to two-component eigenfunction 

Let H_ be the bosonic sector Hamitonian for a t‘vo-comporient. eigenstate V+_. given by 

d .2  
H_ = -I— + V_(.r). 	= 

dr= 	 0 -.2(z) 
(I) 

where I denotes the 2 by 2 unit matrix and V_(r) is a 2 by 2 matrix potential which may be written in terms of a 

2 by 2 matrix superpotential W(x), viz. 

V_(x)= W 2 (x)+ W i (x). 	 (2) 

In general. from a Hamiltonian (H 1 ) for a two-component wave function in the following bilinear form 

H1 = A + A -  = 	+ V 1 (.0 
ri.rj 

we can find the supersynametric partner. viz. 

H2 = A - A +  = -1 7;5. + V 2 (s) 

A -  = -I
(1.r 
— + W(x). A+ = (A - ) 

We see that only when the hermiticity condition of the superputential is readily satisfied 

=W 
	

(5) 

we may put. H1 with the potential (V_(x)) given in (2). In this case H1 becomes exactly H_. 

This work was partially supported by CNN. E-rnail:rafaeliudljp.ufpb.br 

(3)  

(4)  
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III Two coupled scalar field 

The Lagrangian density for two coupled scalar field nonlinear system in the natural system of units (c = h = 1), in 
(1+1) dimensional space-time is given by 

1 	, 	1 
C(p,a.d op,d o a) = (d o p)" + (8„0)- 	, (p, a), 

where d o  = 	ZP  = (t, X) with p = 0,1, .c„ = n„.rP, p = p(x, t) and a = cr(x,t) are real scalar fields and 

rev is the metric tensor. The potential V = V (p, a) is any positive semidefinite function of p and a, which must 

have at least two different zeros, in order to present solitons as solutions. 

Since the potential V(p, a) is positive it can he written in the following square form, analogous to the case with 

only single field [5]: 

1 	1 
V(p. a) = 

2
-M 2(p,a)+ 

2
- N -9 

 
(P. a). 

The Bogomol'nyi condition of minimum energy associated with the static configurations [5] becomes: 

( 7 ) 

= - 	 = -:V (p, 0'). 	 (8) 

From the classical stability of the soliton solutions in this nonlinear system, which is ensured by considering 

small perturbations around p(x) and a(x) we obtain: 

71 

where 

	

(1 2 	j_ 	0 2  1 , 
= 

8 2  v 	CP 
0767 	d7r7  

We can realize the 2 by 2 matrix superpotential 

W 

But 

(w)1 

The SUSY algebra can be readily realized 

	

H susy  = 	C + 1 +  = 

susv 

' II = :441  , n = 

19 2  

0, 	1, 2, 	..., 

manner 

Ip=p(r),o=o(x) 

= —N. 

1-1 = (_ 
) X4 

= (Q + ) 2 , 

= 

= 
0 

Tin(x) 

0 
11 + ) 

(9)  

(10)  

(11) 

(12)  

(13)  

(14)  

CF75 
a V  

	

.frY7 	IP=0(z).0=alz) 

in the following 

	

 16M 	3°-,7 M 

	

`N 	IN ) Op 	Op 

= w 
da 

as 

	

A - 	0 0 	
A -  A+ 

= 0 = 

The supercharges Ch become a four by four matrix differential operators. 

Indeed the bosonic sector Hamiltonian of Hsr,se is given exactly by 1-1 treated in stability equation. 

IV A Neutron in Magnetically Bound States 

Consider an electrically neutral spin particle of mass M and a magnetic moment pi (a Neutron) in interaction 

with an infinite straight wire carrying a current 1 and located along the z-axis. The magnetic field generated by 

the wire is given by (we use units with c = h = 1) 13 = 21-- y} 	
) where .r and y are cartesian coordinates in the (z 

(8) 



d2 	l (1 	(d == p-  
dp- p dp 	dp 2p 

Htik± = Et.k±, 	tc k± 

I )
+ 

'.k+ 

Ok± = 	4± 	 (IS) 

(17) 

we get 

( (12  
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plane perpendicular to the wire. The Hamiltonian of the particle is - given by H = 	pe.ti,where ir = (p. t . cr 2 ; t73 ) 

are the Pauli matrices. 

The motion along the z-axis is free and will be ignored in the following. Thus we get a two-dimensional problem 
g 2 

with H = 	2/1, -(v.r°21+y ,12)  [4]. 

In the space of bound states we have symmetry under the SO(3) group while for scattering states the symmetry 

group is SO(2,1). 

.1ii cylindrical coordinates and because of the translacional symmetry in the z-direction we obtain: 

Using 

tb(11-- 
17177 {k+(P) 	( 01  ) 6"*"""-"°  (° )1 f-' i2-k; 	k =0,±1,• • • . 

1 
(15) 

where 

It .' 	(1 2 	„,,, I , 	 h 	d 
vil E -1 	11.=.,/=. -1 +  A . .4 1  = 	— + 	(p)• 	 (18) 

2A.1 dp- 	p- 	 ‘12N1 dp 

Note that W(p) is the 2 by 2 matrix superpotent.ial. :1 detailed analysis of this applications will be published 

elsewhere. 
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Introduclo 

Nesses tiltimos arms tern-se discutido corn grande interesse, canto por fisicos como por matematicos, trabalhos so-

bre a q-deformasio qu'a.ntica [1], que tern despertado estudos ern busca de sisternas fisicos reais corn q-simetrias. 

Recentemente varios traballios tem sido realizados sobre os sistemas de osciladores quanticos relativisticos unidi-

mensionais (ID) e tridimensionais (3D). us quais podern ser construidos via urn acoplamento nao rninimo da equasio 

de Dirac para uma particula livre [2]. A partir da e.quasio de SchrOdinger relativistica via o operador momento 

linear "diferenca" nos proporciona unia segunda possibilidade [3]. R.ecentemente. a q-SUSI tem sido implementada 

via o q-oscilador bosonico e q-oscilador fermionico e seus esta.dos q-supercoerentes [6]. Neste trabalho abordaremos 

a etrutura algebrica da supersimetria (SUSI) [4], implementando OR cornpanheiros q-SUSI em termos de operaclores 

diferenciais de "diferensas finitas" de primeira ordern. Considerando dual transformasoes SUSI sucessivas sobre 

urn q-oscilador relativistic° ID encontraremos urna classe de potenciais q-deformados exatamente soluveis. Nesse 

sistema o parimetro de q-deformasio é constante e os seus estados sao Mio degenerados. Utilizaremos o sistema 

de unidades em que m = h = c = 1. 0 q-oscilador relativistic° unidimensional ( ID) d governado pelo seguinte 

hamiltoniano[3]: 

- 2 
(cosh  () cosh ( 4i) cosh Qi d.„))  = P; 	v(x).  

■Cr  

cosh( 4̀ =, - 2 cosh 4 2 

onde o operador momento linear de diferenca finita 6 dado por: 

(1) 

2 	 d 
Pr  = 	sinh 	 (2) 

	

cosh(=x) 	2 dr 

0 sistema descrito pelo harniltoniano acinia a denominado de oscilador relativistic° pelo fato de que. no limite 

rikrrelativistico, obtem-se o operador hamiltoniano do oscilador harmonic° simples. ou seja, Pi. — 	h 
I di  w ' 2 z 2 . Na q-deformac4o quiintica o comutador pode ser definido pela seguinte relasao de comutasio 

generalizada: [A -  "1- 04  — No probleina considerado acima. o parametro constante de q-

defortnacao quantica torna-se: q = Leh .  IMC = c- 	pois 	h = e = 1. lisaremos a seguinte propriedade do 

operador de diferensa finita: 

sinh 
i d

(v(r)0(.0) = (sinh 	:14) y2(.c)) (cosh G-cid  ib(x)) + 

	

+ (cosh ( irdr )4"(z)) (sinh (
lc
T.d  OW)) 	, 	 (3) 
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a qual pode ser verificada fazendo as expansots dos respectivos operadores exponenciais que aparecern no operador 

diferenca seno hiperbolico. 

II Companheiros q-Supersimetricos 

Definindo os operadores Al na forma: 

A±  = 	sinh 	+ wx) = 	 sinh 
cos

L-  

	

 4.) X 	2 	dx 	 cos1(71+ + a )/2 /2 	Nfi u 

	
(4) 

o hamiltoniano do q-oscilador relativistico torna-se, 

	

= _1 .1. A- ..4+ 
	
= 4 1:.-44 A  - A + + e,.../4 A  + A  - = eu., /4 A  + A  - • + L cl o) 	

(5) 
• 

onde 0 auLovalor e a autofuncao de energia do estadu fundamental Sao dodos vela seguinte condicao de aniquilacao: 

A - 7/1 °) (x) = 	= 2 sin!' , 	7) 10)
(x) a e

_ 
"1-  . 

A equacao de SchrOdinger relativistica independente do tempo é a seguinte: 

117/ ( " ) (x) = 	I (x). 

0 compnheiro q-SUSI de 11 2  = h e sua solucio nao-normalizavel sac), respectivamente: 

112  = 	A+ + E101 . A+76.0)(31 = 0 	7/20) (x) 	e  

Agora considerarernos uma solucao geral nio-normalizavel de 11,, a saber: 

9 

	

7/(3(x) = 7/(20) (x) {1 + Et f c„,  17A°) (.0] 	di
1

. 

Note que quando a — . 0 	riG(x) 	r1.(,u1 (x). Efet.uando urna fatorizacao em terrnos desta solucio nao-normalizavel. 

i.C1110S: 

= c -»'14 13 - 13+ 	Eto) _ - / 4 A - A + 	1.)) 	

V2(z) = 112(x). 	 (10) 

onde o operador 8+ ti construido sob it condicao de aniquilacao da solucao geral rlc;( x ):  

13+ qG(x) = O. 	 (11) 

O potencial do companheiro q-S1JSI 	 /3+ 13-  +E10)  do 	dodo por: 

i.;i (x)= 	 [B -  .1319 . 	 . 	(12) 

O estado fundamental de H I  satisfaz a seguinte condicao de arliquilacao: 

/1 - 41 °) (7) = 0 	T/41 °)  = I (Is) 
TiG(x) .  

Note que 1:71 (x) 	111 (x)„-ts r1 — 0. Os novos potenciais sao isoespectrais (5] corn o q-oscilador relativistico 

imidimensional. 

Um trabalho cony tuna analise detalhada sobre a construcao dessa classe de potentials q-deformados exatarnente 

soltiveiS esta sendo preparado para ser subutetido a publicacio RUM periodic° internacional. 
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Abstract 

In this article we consider the Schvfinger model for gauge non-invariant. 
regularization (a 0 1), and study the perturbative behaviour of some relevant 
correlation functions. 

Now let us consider the Schwinger model defined by the Lagrangian density [1] 

C10,7), A] = — 1F,„ + e4 )0. (1) 

The vacuum functional can be exactly evaluated [2], considering Ap  as an external 
field 

eiMAI = f thing exp[i f 	+ e4 )1) I , 

e2 	 (Y'av 
W[A] = 	f dx 

1 
 (a + 1)Aµ  A"— 	A,1, 	(2) 

where a is an arbitrary real parameter related to different regularization procedures 
used for calculating the fermionic determinant. 

The generating functional for the Green's functions of the fields appearing in 
the Lagrangian (1) is 

Ji = idA m dilma exp [i fdx ( C[1,&,17, A] +TO + Tim + ANA"  )] , 	(3) 

for values of a 0 1 the theory is not gauge invariant at quantum level(with Au  
external). However, in order to arrive to a gauge invariant formalism [4] we proceed 
with Faddeev-Popov [3] method and introduce 

fdo A f[A]6(f[A 9 ]) = 1, 	 (4) 

where dB represents the invariant measure on U(1) , g = 	c U(1) , and f [A] = 0 
is the gauge-fixing condition. 

'casanaGcbPrau 1 .cat .cbpf. Lir 
ai I vanatecbpfau 1 .c at.cb pf.br 
tiaoOcbpfsu 1 .c at.cbpf.b r 



The generating functional (3) can be written, after inserting (4), as 

J] = fdA udlimb7d8 DI iA15(f [AD])  x 	 ( 5) 

x exp [ i fdx ( 	+ TAG + 	A„ )1. 

Under the change of integration variables A, 

Al' 
	1 

A, = + (6) 

dA„ is assumed to be invariant. Then (5) can be written as 

Z[ri, II, 	= IdA odtbdt,l;d9 A I{A]15( f IAD x 	 (7) 

x exp[i id . T C[0,711, Ag -  ] + .q1,1) +7n) + JP Af,  )] 

If we redefine the fennion fields 

7,0 = 	 (8) 
= Teie, 	 (9) 

the Lagrangian turns to the original form. However the fermionic measure is not 
invarian under (q) but generates the Wess-Zumino action 151 , a(A, g-1 ) 

did = the d 	ewitA. 9 	 (10) 

where a(A, 0 -1 ) = W[A9-1 ] — W[A], is found to be 

. (11) a(A,g -1 ) 	= 	fdx (-51  4,98.41 — ellep AP 

Now the generating functional (3) reads 

Z[007, J1 	= fdA odibdVde 	f[A]6(f[A]) e i*".g -I 	x (12) 

x exp [i fdx 	CRI; ,t , AT + lee  7,1) + -171)e - "ri + — ;1  081,J° )] 

We use the following gauge-fixing condition 

f [A] = -19µ A", (13) 

which gives the final form for the generating funtional (3) 

71, .11 = fdA“difidTPd9 e i'(A.9)  exp L i fdx clo,1,7, - (0.0 + 

+fie + 	+ .14 AP — 08,J° )] . 	(14) 

The calculation of the Am propagator from (14) is straightforward and yields 

(01TA,(z)A. (11)1 0) = 	 (15) 
dk 	1 	 _ ik .i= _ yi  (z  _ 

(27) 2  Lk2  — m 2  9'11' 	k2 	e2 (a — 1) k2  j e 

629 
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we can also compute the complete fermion propagator 

(01T0(x) 11(Y)10) = 	 (16) 

=i exp —27ri
1 
 (1 + 	-e2/7r ) [AF(0; m2 ) – AF (x – m2 )] GF (x 

a   

e  
m2  = -271. (a + 1) 	, 	i9GF(x – Y) = (5 (z 

(❑ + m 2 )6F(x – y; m 2) 	 – 11) - 

0.1 Perturbative Analysis 

0.1.1 Photon  propagator  

From eq.(14) we obtain 

(01T Ap(x)A.(Y)ro) = 	6.16:Z(Y1745' 141 j(xl  

fdripdtpdTP-10 [Ap(x) + 8„60(x)1 [A,(y) + 0„1/(y)1 e"". 9-11  x 

1 	. 
x exp i 	 r.(0-A) 2 )] . 

Let us compute separately the contributions for this Green's functions 

i)Term quadratic in Am 

(17) 

(18)  

(19)  

ovrie rr,,, = 	 + 
P Et 

p+ k 

+ 	 + . 	. (20) 
/1  

The fermion loop in (20) gives 

ic2 	 2pup, 
--111 ;,„(p) = 	[(a + 1)go, 	1  

so that the second order contribution to the vacuum polarization is 

1e2 
Pi,Pv 

– iElw(P) = 	 – —27 (a – 1) 
F- 

Po Pm = 

(21)  

(22)  



(?S) 
tem, = - 
p4  

As usual, eq.(20) is a geometrical series that can be summed to give 

ThiPv 	i4121+Pv r2.4.)0.11..r 	 1 2  — m2 9" p2 	p4 • 

U)  Term quadratic in 8 

631 

(23) 

= 	 + 

iii)  Mixed term 

2/1- 	i 
a-1p2 	p4 (24) 

ft 

P4  
(26) 

From (19) we obtain the photon (AP) propagator referring to the theory defined 
by (1)-(3) 

(01TAp (x)A„ (Y)10) 	= (27) 

dp [ 	1 PpPv 2ir 	MAN] = 
(2702  [p2  - m2  p2 	) e2 (a - 1) 	p2  

and we see that it coincides with eq.(15). We observe that the term e-2  is not 
obtained from the perturbative calculation. 

0.1.2 Fermion propagator  

From eq:(14) 

OiTlii(z)V(Y)1 0) — 	82 	ZIT!  ' Fi' .11  
611(Y)P(x) 

.= PA,dikktiTP coi( y ) e(A•11 1) x 

x exp {i fdz (C[0,77, - TE1  (8.A) 2  + 0(z)j(z, y) 	, 

(28) 
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where j(z,z,y) = b(z - 4 - b(z - y), we can calculate the fermion propagator to 
one-loop order 

  	 . (29) TOr 	P 	P p + k P 

The fermion self energy gives 

-in(p) 
_e2  f dk 	1 

j (27r) 2  / 	$ 
Vsp k,,1 

k 2 	k 4  j ' 
je z 

4

o 
V -- - 1). 	 (30) 

irp2  

The self energy is finite, which shows that the origin of the divergencies in eq.(16) 
is not perturbativc. 

If in eq.(28), we integrate the 9-field we obtain a divergency that can not be 
cancelled by the normalization factor Z(0, 0,01. This divergency coincides with the 
one found previously in eq.(16). 

In this subject we disagree with Z.Jian-Ge.d.al  [6] when they found a pertur-
bative divergency by considering, in the computation of the ferrnion self energy, 
the full photon propagator this can not he made, because the term which gives 
the divergency (e -2 )(a Proca-like behaviour for the propagator) is obtained non-
perturbatively. 

We use the Faddeev-Popov method in order to define the free propagators of 
the fields involved in the theory. The free photon propagator can not he defined 
because a theory is non-gauge invariant. The option is to enlarge the number of 
the quantum degrees of freedom or to consider carefully the contribution of the 
longitudinal parts. 
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We study bosonization ambiguities in two dimensional quantum eletrodynamics in the pres-

ence and in the absence of topologically charged gauge fields. The computation of fermionic 

correlation functions gives us a mechanism to fix the ambiguities in nontrivial topologies. 

provided that we do not allow changes of sector as we evaluate functional integrals. This 

removes an infinite arbitrariness from the theory. 

1 The model 

We will study quantum electrodynamics in two dimensional euclidean space described by the action functional 

S = fd= xI, (A„ • T. I..) 	(/'2 .r [ -1  F„, 	7th.] . 	 ( I) 

where the Dirac operator I) 

E 1 11  (Op 
	 (2) 

has N zero eigenvalues. the zero modes. which are closely related to the existence of classical configurations in the 

gauge field sector 

=  f. 
where the function f (x) behaves, at infinity. az: 

Iiin f 	—.1 In IX' 
C.J 

These configurations carry a topological charge Q = N. where Q is given by 

Q f  
,17 

and this allows us to write 

where a, has vanishing topological charge. Now we can bosonize the theory in this sector. performing the change 

of variables 

1.. 
	e X 1) (—ip 4. 0-1 7, ) I.•. 

where p and o are the scalar fields in terms of which (t,, is written. Taking into account. the Fujikawa Jacohian, we 

can write the generating functional in terms of the complete set 	eigenfunctions of the Dirac operator .. r.:1,'; /  as 

Z [J..q] 	E ida„] :s (a „ • 	 + (J" AO) 	 (3) 
N 	

11 

(N) X exp ((r1 S 	r1 	'D I NI 	(-,,v.,„(07 X 7:0(  7 )1 rl  
1=1 

•e-mail: tinoticbpfsul.cat.ebpf.br  and silvanci.grbpfsni.cal.chrfin 
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where 

= cxP (iP 	.'75)7/ 	 (4) 

= 	exp (–ip + 0-15 ) , 

and 
def.' D 

(a A(N)) 	
dee DON') IV [01 

with the term Ni.01 being cancelled by subsequent. computations. 

This ratio will contribute as an effective term to the action Now we finally have, in terms of the set of 

orthonormal eigenfunctions of the Dirac operator (.1) (: ) . the expression 

INI 
Z 	)7, = E f [da p ] exp (-LS + (JP 	+ (Gli`' )7/ 1 )) H 0'41;7') (44lv)tq) 

1=1 

where 

S = (- F„,, 	+ (up ] + r la„,.1;,N)1 +r 	, 

and 

[ap] 	—
c= 

f d2 .ra, (a (N)6 /,,, 	a„, 
47r 	 ❑ 

, 
[A;,N), 	 2 	2-7  I tf-SU P ( C1 ( N ) 6,. — aA" 

c-a(N)i 
d2 x ff T, [Avil 	 . 

The parameter a (N) was introduced during a regularization procedure. 

There is still the integration over a, to be performed. The change 

a = n –  (AF Lip+ fp)) 

9 = 	+fTe 2 	(rn;:r – y)(j + Y)) 

where 

	

(.r y) E D -1  – 	= – T71. In – YI 

and 

– 	1 0  ( 0  – p 2 )1 - I  (x. – Y) = – 	Ko [in IT yl] + In – YI) 
2i- in- 

puts the action into a diagonal form and where we also have defined A E 	– a (N)) /21r and rn 2  = (e2u (N)) 

Now we have for 3 plus the sources the expression 

—3sources = — 	❑ 

C 2 a N)) 
(P) + 2 ((i + ./ 1 ) 	(m) (./ +.1 1 )) + 2= 

—10 	
7r 

(I – (N)) 	I 	. 
(a ❑a) – 	((1n + j) Ab.  Li + i;,)) • 

. As we have already said, the scalar fields p and 	are such that a j, does not carry a topological charge in the• 

limit 1:1 — oo. So it is desirable that the new fields a and 0 behave like the old ones, going to zero at infinity. If 
this would not be the case, it. would be equivalent to perform transformations that change the topological sector, 

which would lead us to compute jacobians over noncompact spaces, what is very difficult to obtain. So. altough 

keeping in mind the general case, we will restrict ourselves to transformations which do not change the topological 

sector. 

(5) 

(6) 

(7) 

(8) 

(9) 
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In the case of the a field we have 

lim 	(x) = k li irtic., p(x)— 	Iril irna,  KA F  (a- — =) (jr +j , )) 

	

Irl -tu

hill 	E (Ink — xil — 	— Yil) 
27rA ix1-00 

itl 

= 0, 

once 	 p (x) = 0. in agreement with the conditions imposed. 

For the field co, we have 

lim y7(x) = 	lim f (.0+ lint 	 lim WI  (A (Yri;:r — z)(j+i)) 
1E1-03 

= —N In !xi d= 
 c- 

lint ((K o  [in 	— 	+ In 	— 	j 1 )) 
27rin- 

- N Ix ± Tha 	2  IN I In H 

	

once K0 is well behaved in the limit considered and 	 o(x) = 0. Here, the 	sign corresponds to sectors 

with topological charge N and —N. respectivelly. The assymptotic behavior of is then 

— elt'^'i
In lxi • 	N > O. 

N < 

which is singular unless we have 

	

(N) = 	N 0 U. 

2 Conclusion and remarks 

In nontrivial topology sectors, as we have seen. there is an infinite amount. of ambiguity in the theory, due to 

arbitrary choices of a (N) for each N. A simple criteriuni to choose a (N) seems to he the one which does not 

allow changes in the topological sector. it gives a value for a (A') which coincides with the one obtained through 

the requirement of gauge invariance. The connection between gauge invariance and preservation of topology is not 

completely clear and perhaps can only be clarified if one could compute the correlation functions without these 

criteria. It is our aim to explore also this direction in the near future. 
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Path-integral Computation of Multipoint Spin 
Correlators in 2d Statistical Mechanics Models 

V.J. Fernindezu and C.M. NaOn" 
°Depto. de Fisica, niuersidad Nacional de La Pinta, CC 67, 1900 La Plata, Argentina. 

	

6 Consejo Naci (((( al de 1 nuestigaciones 	 y Te'cnicas, .4 rgerrlin a 

We extend a previously developed technique for computing spin-spin critical correlators in 

the 2d !sing model, to the case of multiple correlations. This enables us to derive Kadanoff-

Ceva's formula in a simple and elegant way. We also exploit a doubling procedure in order 

to evaluate the critical exponent of the polarization operator in the Baxter model. Thus 

we provide a rigorous proof of the relation between different exponents. in the path-integral 

framework. 

In a previous work 11) one of us has shown how to compute 2-point correlators of 2D Statistical Mechanics 

models through a path-integral approach to bosonization [2]. In particular. the critical behavior of the ising spin-

spin correlation function was obtained. by using a slightly modified version of the identity derived by Zuber and 

ltzykson (3j: 

1- 2  

61 1! , x 2 ) =< (.1: )c(x2) 	=< exp7r f 	dz./0(z) > 	 ( 1 ) 
z i  

where J, is the Dirac fermion current and <> means vacuum expectation value in a model of free massless fermion 

fields. 

The purpose of this note is twofold. On the one hand we extend the above mentioned method to compute the 

2n-point correlator. On the other hand we adapt the "doubling" to  [4] which led to (I), in order to calculate 

the correlation function of the polarization operator in the Baxter model N. 

For the sake of clarity we shall begin by briefly summarizing the main points of the spin-spin correlator calculation. 

In refill the line integral in (I) was written as 

	

41.:Ja( z ) = 	i12 .c111 	 (2) 

where .4, is an auxiliary vector field with components: 

Ao(zo• :1) = 	 — x1)0( 1!.: — -71) 	 (:1) 

	

A11:0.-70= O. 	 (•1 ) 

This simple manipulation enabled us to express the squared spin-spin correlator in terms of fermionic deterrni- 

al l LS: 

+ 

	

r2 - (x1..172) =  	 ( 5 ) 

where the coordinate dependence in the right hand side of (5) is. of course, contained in A. 

Finally, one performs a change of path-integral fermionic variables which is chosen so as to decouple fermions 

from the background field A. It is interesting to note that, in this formulation, the desired 2-point function is just 

the square root of the Fujikawa Jacobian Jr.' [6] associated with the transformation of fermionic variables: 

F., ( 17 1: 1:2) =•x2) 4 	 (6) 
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As shown in (7), this Jacobian must be computed with a gauge-invariant regularization prescription in order to 

avoid a linear divergence. This procedure then leads to the well-known power law decay with exponent equal to .t. 

Let us now show how to extend the above depicted technique to the computation of the 2n-point spin 

correlation function at criticality. To this end, following ref.[8], we express the squared multipoint correlat.or as 

2n 	 r.+1 

2 (21, ..., X2n ) =.< 	a(ri) >2.< nexpr 	dZiO(Z) > 

1=1 	

.i . 	 ( 7 ) F2,1  

iodd 

where, as before, <> in the r.h.s. means vacuum expectation value to be evaluated in a model of massless Dirac 

fermions. It is now apparent that each line integral in (7) can he cast. in the form 

d:.10(z) = f 	 (8 ) 

where we have introduced the n classical singular potentials 

210(z; x i , zi + i) = 6(.: 0 )9(.7 1  — x 1 )0(zi +1  — z i ) 	 ( 9 ) 

A1(:;xi• 2 i.4.1)= O. 	 (10) 

Now, in order to rewrite (7) in a more compact way we construct a new vector field 13, as a simple superposition 

of A, -s: 

 

111 (z ) = 0. (12)  

Thus the 2n-point function can be expressed in terms of fermionic determinants 

det(i0 + If) 
F2n = 

de10 

exactly as it happens in the n = i case (See (5)), but with A replaced by B. This is our first non-trivial result. The 

next step is to write 13, in terms of scalar functions 4) and q as 

= cpva,A) + 0„ 7). 	 (14) 

Performing now a decoupling change of path-integral fermionic variables with chiral and gauge parameters, 4) and 

q, respectively, one has 

F2n 2 ( 1 1- -•-• .r2n) = 
	 (1.5) 

Solving the system of differential equations for (1 ,  and q obtained by replacing (14) in (11) and (12), and then 

inserting the result in (15). one gets 

(

11-u„, 1.r1i  

T•[ odd1.1 1) I 

	 (16) 

where i > j and even (odd) refers to a constraint on i+ j. We have also set an ultraviolet cutoff, which divides the 

coordinate differences, equal to 1. This formula exactly coincides with the famous Kadanoff-CevaS result [9]. 

(13)  

Let us now consider the Baxter model [5). which can he considered as two (sing systems interacting through their 

spin variables. As shown by Luther and Pescltel [10). the scaling limit of this model is described by the Thirring 
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[11] interaction: 

	

Ct„c = -1J„•1,, 	 ( 1 7  ) 

where J. is the Dirac fermionic current and the coupling constant A is proportional to the four-spin coupling of the 

original lattice model. The Baxter model is known to have two natural order parameters. the magnetization and 

the polarization < P >=< v;s; >, where a,, anu.l s ;  are tine spun operators of each icing system. In the continuous 

formulation the 2-point correlator for the polarization operator is given b y 

< P(.c)P(y) >a=< 	>.1 	 (18) 

where <>. means v.e.v. with respect to the fermionic model defined by (11). For II = 0 the above expression 

becomes the squared !sing correlator. This Suggests the following i.leutilicatiott: 

!t 

< I'(0)P(!t:) >a=< rxpa
J

r1.Jo(:) >A 

	

a 
	 (19) 

The r.h.s. of the precedent equation can he cotu1utt.cd by employing a slightly modified version of the method 

described above. indeed, it is easy to show that the introduction of an auxiliary vector field .1 F, through a Hubbard-

Stratonovich identity, allows to write 

< 1'(0)1(1) >A= 
In 
	 (20) 

l =
J

7t4 ;,r - f d'r 	id (i +(2A) t l = f>') 	 (21) 

%c  = r'^ ,.t ^ r - .[ d'I cfct (i + (2A) t!2 A) 	 (22 ) 

13 µ  = t;ipdv4'a +f)„tict 	 (23) 

.4 r, = r p1' P  ^ + 0t,rl 	 ( 14 ) 

4'!r = cp + 	
'A 

 (I ^ c 	 (25) 

T 

'Ut = r!+ 	
, ^ a

rlc• 	 (26) 

The classical functions III, and qc  are cletermitied exactly as in the Ising case. 

Performing now a decoupling chance of f'rinionic variables with parnmeters 4 and r!!r one obtains: 

< P(0)!'( I?) >a=< P(0)P(p ipG r^ J d'r$O
. 

where the first factor in the r.h.s. currespouds, of course. to the don hled Ising correlator, whereas the second one 
is a v.c.v. to he computed for a model of free scalars 4'. '['lie final result, is 

< P(0)P(I{)>.^
= (.) 2 P 	 (28) 

where a is an ultraviolet cutoff and ,p is the critical exponent tL5sf)c!a1enl 1.0 the polarization operator, for which 
we get.: 

!) = 1 	l 
41 + 

(29) 

with 

and 

where 
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Recalling the results for the energy-density a (12) (1) we get: 

= 1 A, 	 (30) 

which is the relation predicted by several authors [13] (14) and first. derived by Drugowich de Felicio and Koberle 

(121 in the operator framework. 

In summary, we have extended a path-integral approach. previously used to compute 2-point functions in 2D 

critical systems, to the case in which multipoint correlators are considered. In particular we rederived Kadanoff-

Ceva's formula. 
We have also obtained the critical exponent of the Baxter polarization operator. This allowed us to give a path-

integral confirmation of the relation between exponents first. shown in [412] within the operator formulation. 
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Sobre a Expansao Perturbativa 
do Modelo de Gross-Neveu (2 + 1)D 

V. S. Alves+, M. Comes, I.. C. Malacarne§ 

S.V.L.PinheiroT e A. J. da Silva 
Universidade de Sri° Paulo. Departarnento de Fisica- 	enritica, Institut° de Fisica 

sob lice:Ica do Universidade Federal do Pard 

§ liniuersidade Esladual de Marinpri 

Este trabalho consiste no cilculo da funcrto beta do riiodelo de Gross-Neveu ern (2+ I )D na 
ordem de dois "loops- . Apesar (10 modelo ser nao renorrnalizavel na constante de acopla-

menLo die sera tratado corno uma teoria renormalizivel no espirito de uma teoria efetiva. 

valida na regiiio de pequenos moneentos (baixas energias). 

0 model° de Gross-Neveu massivo a dada pela seg. trinte densidade do lagrangeana, 

	

= 7(i^y"0, – 11.1)1./. – 	 (1) 

onde M c a massa do fertnion, v e um rink° canipo fermionico de d eras componentes e g a constante de acoplamento. 

Ern tres dimensoes t . o operador (T:19 2  possui dimensao canonica igual a (plats°. maior que a dimensio do 

efspay-tempo, caracterizando UMa teoria 'Lao renormalizrivel inland° tratatla perturhativamente na constante de 

acoplarnento, apesar de ser renormalizavel context.° da expans5o l/N [I] (corn M = 0, o model() apresenta 

geracio dinimica de neassa corn quebra de simetria de. paridade [2]). 

Ent teorias renormaliziveis as funcoes de vertice proprias 4k ,V pontos, 11N1 , satisfazem a equaciio do grupo de 

renormalizaclio . 

( 0 

	

11 — 	 – 	NN )  u . 

	

i9/1 	
+ 6.1/ 

M 	
(2) 

Por outro lado, cm teorias Ira° renormaliziveis, o lado direito da expressio acirna ei urn polinOntio dos rnomentos 

externos. Mais precisarnente, sat) os contraterrnos que ruin podent ser ahsorvidos na redefinicOo dos parametros 

iniciais da teoria (conto a massa, o campo e a constant(' de acoplainento). No cumin°, iremos tratar a teoria descrita 

por (1) como uma teoria efetiva, na regiO0 de pequenos momentos (p < < M), tle maneira que us efeitos da 

nio renorrnalizabilidade nao seriani irn purtantes. Ultra inatteira de testar a consist encia clest.a proposta e estudando 

os pontos (ixos da teuria. Em particular. a origem dove ser infravermellto esuivel. para que a analise perturbativa 

fact' sentido. Tal analise a feita r.alculando-sc a furicAo het.a. (pre determina o comportamento da constante de 

acoplamento como lima fun coo da escala de> massa. Seer calcitic), que e:! obtido a partir das funcoes de Green de dois er 

quatro pontos, sera feita na order]) de Bois "loops" c o esquerna de regularizacho cinpregado sera o da regularizacho 

dimensional. 

Primeiramente reescrevernos (1) de ruancira usual canto, 

!./ C = 	– 	– 
2
—

.1/
it 

r ( 
 O

w) , 
 (3) 

Neste trabalho usarernos a seguinte represemac:14) pans as mat rizes der Dirac 

"To = 	
I 	U 	 (  

U — I ) 11  = 	0 ) 

e a metrica g„ = diag(i • - 1. - I). 

^r7 = 
	

) 
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onde p e o ponto de subtracao . A funcao de vert•ice 0 21  e definida corno segue 

•(2) 	- I(.(2)1 -1  = i(y5 - 	- 	. 	 (4) 

onde -iE e a auto-energia do fermion, que ate do's ' loops" possue a seguinte estrutura diagramatica, 

-iE = 	+ 	0 	 ( 5 ) 

( 5 ) 

Por outro lado, a fungi° de vertice l'" ) , ate dois loops - . tern a seguinte estrutura 

r(4) = (6) 

(6) 

A teoria descrita por (3) possui, para um dado graft° generic.° 7, um gran de divergencia superficial igual a 

d(7) = 3 - NF + V. onde %Nib- e o antler° de linhas externas fermiOnicas e V o n6rnero de vertices. Assim, embora 

os diagramas de 1-"loop" que contribuem para 1' 0} sejam quadraticamente divergentes, des sao finitos se usarmos 

a regularizacio dimensional. Enquanto que a contribuicii° de segmida ordem possui d(•) = 3, o que implica que os 

termos de subtracio sac) proporcionais a M 3 . M 2 /S. Mpg e pA, onde p e o moment() extern°. Observe que os dois 

primeiros termos contribuem para a renornializacio da inassa e do campo respectivamente. enquanto que Os dots 

tiltimos sao contra-termos que nao podem ser absorvidos 'mina reparannet.riza4ao de (3). I)esta fornia, o residuo da 

funcao de dois pontos, que sera representado por Res( '- ) , possui a seguinte decomposicao, °tide, condensadamente, 

estamos denotando por p quaisquer dos momentos externos, 

Res (2)  = b 1 :11 3 + b2111 2 yi + b3A1 	+ tip2 /5 
	

( 7 ) 

c portanto a expressao (4) a escrita como 

ig 	• d i"(2)  = ih 	- ..t1 p 3—  K 	,(2 In 1zRes(•)  + f init.()) . 	 (8) 
Al 

onde tie uma constante c utilizamos um esquertia de subtractio que remove os polos gerados pela regularizack. 

Semelhantemente. os unicos diagramas divergentes que contribtlem para a funcao de quarto pontos sao aquelei 

de dois "loops" (estes possucm d(-y) = 2)• ja tine os diagrarnas de 1--loop", apesar de serem formahnentedivergentes, 

sao tambem finitos quando empregamos a regularizacio dimensional. Portanto, o residuo Res(4)  possui a'seguinte 

decomposicao, onde, condensadamente. estamos denotando por p quaisqucr dos momentos externos 

Rest }  = a l  M 2  + a2Mp + a3p . 2  . 
	

(9) 

Note que o pritnciro termo da equaca° acima contribue para a retrormalizactio da constante de acoplamento, 

enquanto que os demais sao contra-ten-nos coin estrutura diferente daquelas encontradas em (3). Deste modo 

pOdernos escrever, omitindo por sirnplicidade os indices espinoriais, (pie 

• 3 ig 3—d 	 1 3-01 )/(p , 	) 	,77cii' 9  (3 I n  pRes(41  + finito) 	 • (10) • 
f.(4) 

2.44 	JIM - 

coin f(p, M) sendo uma funcio dos mornentos externos. 

Observe entio que no lirnite de pequenos monientos externos o terceiro e o quarto termo de (7) e o segundo e 

o terceiro de (9) sao despreziveis, de modo que i" (•)  c 0 4)  satisfazein a equacito clo grupo de renormalizacio (2), 

fornecendo o seguinte resultado, 
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6 	I 
2 

.3 = .y3 [ -
8

a/ + - (bi 	3b2)] , 

(5 = 2-
2

(b1 +b2) , 	 (12) 

.g .  7 = ; —b., . 	 ( 13) 
4 - 

Para o calculo de b i  e b•, precisamos da funcio do dois pontos. Dois diagramas contribucin para e s ta funcao . 

fortiecendo a seguinte expressio 

a 
2 I d3 k diq 

1(2)  = 4i112(3-d)( 	 ( 21 ) 31(71T3  [(fi :lf ir  (g 	M 	- 

+ - M) - ,w)(9 - - 	Al))] 
um calculo detalhado da amplitude acima. retendo apenas os ternios de pOlo, fornece o seguinte resultado. 

2 
2c 	ig n 	 207r 	2, 	647r , 2 	647r 

= - 	 ) it ZIT IS 	- - p 	(14 p- 	
, 1 

73" 	26 73 	2.1/ 	15 	3a 

de onde se conclui que 

bi 	
3i 

	

= 	 (16) 
llirr 2  

5i 

	

= 	. 	 (17) 
487 2  

- Para o calculo de a l  necessitamos da filitcOo de quatro pontos. Trinta e Bois diagramas contribuent para esta 

fungi°. Somando todos estes diagramas de quatro pontos, obternos 

Substituindo os valores de b1. b2 c at 

8 
a r = 	. 	 (18) 

;r- 
em (11) e (12) e (13) encontra-se quo 

(14)  

(15)  

(19) 

= 
1212 
	 (20) 

e 

5 	, 
1 

1927r 2g-  
(2 ) 

Note quo o sinai da funcio beta e positivo, portant° ela apresenta inn ponto fix° estivel no infra-vermelho. 

validando assim a expansio perturbativa fella em y para pequenos inomentos. 

0 presente trabalho serve tambern para complcmentar o tiso da interacao de Gross-Neveu na aproximacao ate 

g- como feito na referencia [3]. 
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Regularizagio de urn modelo tipo Aw4  tensorial, 
via"point-splitting". 

W.A. Moura Melo e 	lielayel-Neto 
Centro Brasdein) dr Pesquisog Fisicas 

Departamento de Muria do Campos c Prirticulas. 

December 3. 1996 

1 Introducao: 

Num artigo de 1934, Dirac [1] introduziu a ideia de "point-splitting -. para se evitar produtos de campos rto mesmo 

pontol ( a causa das divergencias ultra-violeta era versa° segundo-quantizada da tcoria). Esse "splitting -  seria feito. 

por exemplo, redefinindo-se os campos. presentees num rucsino vert.ice, cm pontos diferentes. 

Mais recenternente, Osland e Wu, numa s , .rie de artigos [2]. utilizaram essa id6ia dc "point-splitting" corn° 

metodo do regularizacao. Particularmente. obtiveram tnn Lagrangeano (generalizado) para a QED. cujos termos 

do interatio nao apresentavam produtos de campos no mesmo ponto. Por outro lado, este mesmo Lagrangeano 

apresentava problemas do nao-localidade. Mesino risen, estes autores obtiveram diversos resultados satisfatOrios 

corn essa formulacao. Corn base nessa inesma ideia, chegaram a outros resultados importantes. tais como as massas do 

Higgs (190 Gev) e do quark Lop (120 Gev), livre de divergencia.s. No entanto, nenhuma referencia a feita a respeito 

do como seriarn as novas transformatoes de gauge. apOs a introducao de "point-splitting' .  (que denominaremos 

transforrnaciies de gauge generalizadas e abreviaremos por 

Ern 1994, Gastmans, Newton c ‘Vu [3] provaram a existencia das tranformatoes de gauge generalizadas para 

o caso Abeliano 2 . Isto foi feit.o, introduzindo-se urn parametro de "point-splitting" (aqui, denotaremos por a) nos 

argurnentos dos campos envolvidos nas transforrnacocs de gauge usuais c impondo-se que a nova forma dessas 

transformacoes, satisfizessem k conditao Abeliana. Verificarani. assim, quo as g.g.t.'s assim obtidas, tomam a forma 

de tuna serie de potencias infinita (em sua forma infinitesimal) na constante de acoplaniento de gauge 3  (teorias 

que acoplam campos de gauge a campos do materia, como a QED). Nesse tnesmo traballio, sao apresentadas as 

lormas explicitas, ate 4 1  ordem na constante de aroplarnento de gauge. para as g.g.t .s, e para um "Lagrangeano 

Generalizado" da QED, quo e invariante sob estas transformacoes ate esta mesina ordem (devido a extensao de 

tais cxpressoes, nao as reproduzireinos aqui). Alguris aspectos importances (Jesse Lagrangeano sao: regularidade. 

nao-localidade o a presenta de LerlI1OS ifnagniarios. No entanto, quando fazemos tanto nesse Lagrangeano, 

quanto nas g.g.t's. recuperamos suns fornia.s usuais. 

2 0 Modelo de Avdeev e Chizhov: 

Num trabalho recente, Avdeev e Chizliov [5) proptiseram tun niodclo quo acupla campos tensoriais de ntateria (T„„: 

real, anti-simetrico e de rank-2; descrevendo-so. assini, particulas de spin-l) a campos de gauge vetoriais (AO, 

inclusive corn a presenta de ferrnions 	e t'). Diversos t.ipos 	interacao estito presentee na teoria. No entanto, 

1  Aqui. trabalharemos coin espaco- tempo quadridimensiunal; Mei rica etc Minkowski: diag(7),..) = (+, 	— ): = "P. 

2 No caao das transfonnacOes de gauge usuais, c 	 para a QED, elizernos (pm a transfornimmho ei Abeliana. se 0 corautador de duas 

transformacees distintas for nolo. 	entanto, quando se tram dm. 	ESSC! car/4er Abeliano deve ser estiniado ordem a ordem. la 

(pie tais transf. SAD series infinitas. 
Devemos salientar que as discuss/5es corn respeito h estruture de tais transformacoes remontam a Dirac (I] c a Sehwinger (4]. 
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Sorella, Lemes e Renan t6] mostraram, via identidades de Ward, que vertices do tipo 	geram anomalies. Em 

vista disso, nos estudaremos o model() na ausencia de ferr»ions: 

1 
EA.c 	= —4—  Fp. 	+ 	 — 	 — 2eA, 	7-1, [7'""0", — 	&To. 1 

+e 2 [ 2 (21ATm. ) 2 _ ( kJ". ) 2] _  [1 ( ,„  To . ) 2 _ 
.1 	2 

Lagrangeano c invariants sob as tranformaccks de gauge usuais:' 

A AI) = — 001(r) 

= — e 1 ( 1!)79i1v( 1 ) 
6 • ,,„(x) = +cA(r)Tpu(x) 

corn a definicao: tuv(x) 
der 

 t„„„07-°'3(.r:). 

Noutro trabalho, Sorella. Lemes Renal) [7] mostraram clue a equacao (1) pode scr obtida de: 

	

Cs(x) =
4 	

+ (Dp'e fr )( 1)"5:0.) I  

se impusermos urna condicao de auto-dualidade complexa 

	

y",„(1.) = 	 corn : 	 (4) 

que nos conduz a: 

,t„,(x)= T,„(x)— 

ondc Tu„ e i, J „ sax) reais e anti-sim4tricos. As derivadas covariantes sao dehuidas como: 

DmVa0(x) = (a„ + It:A11)7,00(x) 
(D1,v03) 1 (x) = ( ap — teilm )."7,„ 3(x) 

Claramente, o Lagrangeano (3) e invariants sob: 

6...1„(x) = — ap A(.r) 

<5.7-"„v (x) 	= 	-PreA(.):) ,,:-„,(.0 

69 tov (x) = —IcA(x)4,,(x) 

Observa-se. Lambert', a ausencia de termos de inzissa no modelo 	( I) ou (3)). Isso devido ao fato de que, termos 

de massa explicitos para T„„ c 7'„„. quebrani a simetria de Lorentz. Assitn sendo, para preservarmos essa simetria. 

tais campos so poderiam adquirir massa atravCs de outro inecanisino, corno quebra espontinea de sirnetria. por 

exemplo. 

Devemos enfatizar clue, para os nossos objetivos. o use da equacao (3) cm lugar do Lagrangeano original (1) 

diretamente. facilitara enormemente us calculos. dai o trimly° de toda a discussao prccedente. 

4 11i a setor Iivre deste Lagrangeano (I(3AT"") 2  — 2(n„T"') 2 ) pnssui invariincis conforms. Alem de teorias conformes (super-
gravidade conforme, por exemplo) tais campus de matl.tria amt lido utilizarlus em 1.unrXiso corn a teoria eletro-fraca padrito. Neste caso. 
a insergao de tais campos como parte de modelos eletro-fracos estendidos (8], Rode expiicar recentem aspectos fenomenologicos sabre 
os decrtimentos e K+ ;r 0 C+ v . limn estudo ts,Irica sabre a dinamica classica desse actor (9 .11, revelou alguns aspectos 
anteresEarttes: excitacaes longitudinais cum, as graus de liberdacle fisicos. lielicidade zero, dentre outros. 

(I) 

(2) 

(3) 

(5)  

(6) 

(7) 
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3 "Point-Splitting" para o modelo: 

Prirneirarnente, devemos salientar que os resultados obtidos por Gastmans et al. 131, corn mimio as g.g.t's, tern vali-

dade bastante geral, dcsde que as transformacoes de gauge para a teoria sejam Abelianas. Deste modo, vamosutilizar 

estes resultados, adaptando-os quando neces.sario, as nossas necessidades. A ta.tica de propor as transformacoes corn 

"point-splitting" diretamente cm termos dos tensores Tp „ e T„„, arnbos reais, revelou-se complicada ao ser aplicada 

ao model°. Tal complicacio surge devido a relacao de dualidade pre os envolve. Por outro lado, implementando-se 

tais transformacoes nos tensores cornplexos c,o,„ c 	obtem-se ulna forma mais simples para estas transformacoes. 

dada a independencia entre eles. Ale do mais, o estudo de invariancia do Lagrangeano Lorna-se muito mais siniplifi-

cado. Comecemos, escrevendo as g.g.t's (denotadas por tej ;  COM paranictro tie "point-splitting -  a) para 42 (,v e 

ate ordem e 2  (ji que a teoria e Abeliana, o "point-splitting -  nao afetara 	 = 6G ..4,(x) = 	A(.0): 

6Gcom.(x) 	-1-reA(1)v„,,(x + 2a) 

1 	.„ 
+:5(m) -  LAW+ A(3)] (1,3)v„,(3! + 4a) + 0(c 3 ) 

bc.ol,„(x) = --reA(-1)s,71,(x — 2a) 

. 
+-

2
( —10 2  1A( -1 ) + A( -3 )] ( -1 . 	 — 'la) + OW) ,  (8) 

corn as definicoes: 

r+rta—b 

►11. n) 	b_liron+  j (I r+rna+6  V :LAO 

A(±n) = A(.r f na) 

A partir das expressoes acirna, pode-se mcrstrar 

{ 'Pp V 

1 6G(I)T 6G(21]1% 2  

(corn [a, b] = ab — ta), que e. a condicfio Abeliana para as g.g.t.'s, ate ordern a (veja "footnote -  2). E facil ver quc 

no lim,,u, recuperamos as formas usnais (7). Para se obter as g.g.1.'s para T, , y  c 7p y , basta substituir (5) cm (8). 

Por outro lado, observernos que os termos de interacao presentes na eq. (3) nao scio inuarianees sob (8). 

Assim sendo, se querernos um Lagrangeano invarialite sob g.g.t.'s (ate dcterminada ordem), tcremos quc construi-lo. 

Lembremo-nos, no entanto, que nosso objetivo principal é chegarinos a urn Lagrangeano regularizado s . Para isso, 

teremos quc modificar a teoria original, dc forma que os tertnos de inter:Kilo nao apresentem produtos de campo no 

mesmo potato. Faremos isi.o, introduzindo "point-splitting': nos argumentos dos campos, da seguinte forma: 

(D,A0"(x))(D"'A..01) t 	
trs

(D„;omv )r.s(D"socirdps = 

[0„ ,,,'"(x)+ se 	+ (1)(•'(.r + 2a)1 10" 	— le..1"(x — a)coic,„(x. — 2a)1 	 (12) 

'ratt (.09"  ( 1 ) 4P 1 A (;r ) (PIA"  (.1!) 	
P.S 	

(9lat/72".?'1AVAP )P.S = 

( X — (09" 	(1)c71 ), (.r— (//2)s? P  (X + a/2) 
	

(13) 

Agora, ref.screvendo-se (3), corn o "point-splitting -  introdu•ido: 

epG. = — I'm F" v  + (Dp;"'" u  )P.s(D` 	— 	Vt. A VAP )P.s 
	

(14) 

505 termos quadriiticos (cineticos e de massa, quando houver). nao serail afetados pelo "point-splitting'. Termos de massa, por 
exemplo, COMO na QED, sao invariantes sob estas transionnacoes generalizadas (veja discuss; o en] [3]). Os termos cinet icos. geralineme, 

Ilia, sau invariaraes. Mas os novoes term* clue surgein atuacito ans subre eich, is %fio mstilarizadc*. 
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A partir daqui, para construirmos urn novo Lagrangeano. qua seja invariante sob (8), digo, ate ordarn c 2 , devemos 
faze-lo derativamente, ordem a o•dern. Para isso, aplicamos 6G a C ci°, 1,, a retemos os termos ate ordain e. Nota-

se, claramente, as novas estruturas qua possum asses termos. em comparac;in corn os originals. A tarefa consiste 

em encontrar (por Ansa1.:), termos proporcionais a e. tais qua, quando acrescentados a e p",. dando-nos um novo 

Lagrageano (411s ), este seja tal que: 

	

6G( f 	) = (:)( e"! ). 

on seja, epil nos di uma A•do invariance sob tic; ate ordain c. Itepatindo-se o procedimento act ordain c 2 . encoik-

trarnos: 

(I ( A(- 1) + A( +1)  ) 
L(;f )s(9. 9 1 ) 	CV: 1s 	-1 	{[(9 " 	k,A( -1)- A(+1) 	1 ' +1)2 ) 	+ 

+1.4„(x - a) + 	+ a)1(-1 .+1) + U-11+ [+1])(-1.+1),) 

[,,-},"(x + 2a) in4.9!„(x - 2a) - Yf  "(.r - 2a) Z)" ,,.,„„(x + 2a)1} + 

-(re) { {-2. +2}`,:;.1,1 0 (.r - a/2) ( i.4/ "(.r + a/2) + -3/2, +3/21;1, 

A 	.,1 [(A(+2)  + A(+4) 

• a)'/IN'c 
+r1)1 

 + 	(lc)-  2 	A(+2) 	A(+4)) (2.'1)  

- a) v"(x + 	 - l/2)'r"".3N(.r  + a/2) + 

+ - a/2) sc"(x + 3o/2) 	 + ai) + 

- + 7u) 	+ Ila/2)4,..^ A "(x + 13a/2) + 

- (4,„(x + 9a/2) 	+ 13a/2) vI A (z + a)c: A "(.r+ 6a)] 	+ 

+ - 3a ) v"(1. + 3a) 	- u/2) 	+ a/2)( -2, +2) 2  

(1(-2) + A(+2)) 
k A(-2) - A( +2)) 	1 9tigii (r.  - a) '7:"( 2: + a) 	k (.1! — 5a/2) 

( 3/2)  + Ik( +3/2  ) 1 
V AI- (:1! 5a/2)( -3/2. +3/2) 2  ek  • 

A( -3/2) - A(+3/2 )) 

- RA( -4)0,„(x - 5a);.:"(x + a) + A(+4)4„(.r. - a):,,"(z + 5a)) 

- a/2) .31`(.0 + a/2)) (-2. +2)2 (
A(-2) - A(+2) 

1  

- [(-3/2. +3/2)2 (
A(-3/2)- A(+3/2)) "I 

1 (.r - u)s.1;3P(x + a)] 

I A ( -7/2) :4„(.r - 9a/2) v"(./: + a/2) + A(-1-7/2) 	- a/2) 

• ( + 9a/2)] 	- 21 -2. +2 ) 1,', 1 -3/2. +3/2 ) 	. 

coin as seguintes definicoes (akin de (9) a (10)): 

= 	a) ± ( 00 : a)] 	 (16) 

(I, my' =lun 	 1."'"(n) 	 (17) 
6-414  1-1-1n-l-b 

	

..--1-.2-i, 	
t ( - ‘; + a - I 

J: {- fr. +n) 	= 	liar : 	 de."0„ [ . , f 	-I- - 	rat) 

b -1-1+  ir—rta+b 	 ' ' 	n 	n 
c 	„ _ 1 

( r3" .2- + -.r + Fla 	 file A A (1.11) 
n 	ri 	 . - co 

(18) 

)] 

(15) 
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E facil verificar que: litn a _ o  C (iP, = CS-(.r). C) Lagrangeallo atcitna, estO escrita em termos de 	e O. Para 

obtermos Cu., em terrnos de T e T, que 6 o resultado final a que queriantos cliegar, basta fazer use da expressao 

(5). Devido a sua extensao, nao a reproduziremos aqui. 

4 Conclusiies e Perspectivas: 

0 Lagrangeano gcneralizado obtido. eq. ( 15), possui a propriedade de reguiaridnde, on seja, setts termos de interacao 

ado apreseniam produtos de campos no mesmo ponio. Como consequencia. espera-se que evetstuais quantidades 

quanticas calculadas a partir dele, nao apreseutem problemas de divcrgencias ultra-violeta. 

Ent contrapartida, este rnesmo Lagrangeano 	 (caracterizado pela prescrica de variaveis de campo 

integradas no espaco-tempo). Pelo tine se sabe, a nao-localidade )rode acarretar problemas serios it uma versao 

quantizada da tcoria (por exemplo. o fato da nao-localidade estar relacionada coin a nao-causalidade). Mem do 

rnais, os caminhos que devern ser seguidos para se quantizar tima teoria ado-local. nao nos parecem bastante claros. 

Ontro pont.° importante. c que a diticuldade tecnica cm lidar conn a regularizacao de Lagrangeanos, utilizando-se 

o metodo estudado, esti diretamcnte relacionada cum a quanfidaric elc campos (principalmente Os de materia, dada a 

complexidade de suns envolvida nuns mesttio vnrt.ice. Noutras palavras, aplicar o proccdimento a urn vértice 

de 4-pernas, a tecnicamente ntais complicado que a °taro de 2-pernas. Ate' onde verificamos, a natureza dos campos 

em si (escalar, espinorial, etc.) nao nos leva a maiores complicacties. 

Dentre diversas questa- es iniportantes quo ainda deveni ser ehicidadas (pelo (Inc parece, em todo o context° dc 

regularizacao via "point-slitting"). gostariamos de citar: 

Como jit abordarnos, que cautinhos devem sear seguidos para guaniizarulos 47.51  e dai, calcularmos as quanti- 

dades de interesse fisico? 

(;raficos de Feynman: serial,' possiveis? Cflmo ficariatti? 

Ate que Immo a invariancia de C (2.5. soh 	ate order,' 	garanie - nos, de fato. a invariaticia de gauge? 

Os novos terrnos que aparecent em 	 presentes na model° original) sugerein novos tipos deinteracao". 

Teriam eles algurn interesse fisico? 
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0 Tensor Energia-Momentum do Campo de Radiagdo 
sob vInculos MacroscOpicos e o Efeito Casimir. 

Franz P. A. Farias*e Arthur M. Netot 

Abstract 

In this work, we determine the physically correct form of energy-momentum tensor 
from the radiation field by using a suitable redefinition of normal product. Next, we apply 
it in the calculus of Casimir's pression for a class of boundary conditions. The results 
obtained are present 

1 PRELIMINARES 
0 tensor energia—momentum (E—M) do campo eletrornagnetico Ti,„(s) envolve expressoes 
quadraticas dos operadores de campo A p (z). Os operadores de campo sao, do ponto de vista 
matematico, distribuicoes a valor-operador, e coma o produto de distribuicoes em um mesmo 
panto, a exemplo de A p (x)/1,(x), nao é definido [4], [5], surgirao, no calculo desses produtos, 
divergencias associadas corn as singularidades presentes nos mesmos (as distribuicoes). 

Historicamente tem-se tratado as divergencias de forma bastante pragmatica. Corn uma 
'motivacii.o.dada pela propria teoria quantica, que mostra que apenas diferencas de energias 
constituem elemento mensuravel, o que se faz é redefinir a grandeza fisica a partir . do valor 
divergente encontrado, valor este que esta relacionado corn a situacao do sistema livre (i.e., do 
campo estendido em todo o espaco). Essa subtracao constitni a mnormalizacao da grandeza 
fisica 161. 

Seguindo uma ideia originalmente colocada nas referencias [4] e 15j, propomos tuna definicao 
de produto de operadores que aplicada ao tensor E-M conduza a resultados fisicos livres de 
divergencias, sem o use da renormalizacao. Conseguiremos isto a partir de tuna definicao 
apropriada do ordenamento normal no espaco de coordenadas sobre a expressao, na forma de 
operador, do tensor E-M. 

2 0 TENSOR ENERGIA-MOMENTUM FISICO. . 

Desde que o tensor energia-momentum do campa eletromagnetico [3], [6] envolve produto de 
operadores de campo aplicamos sabre este a tecnica de separacao de ponto, em seguida desen-
volvemos os termos resultantes os quais fornecem, 

Tp„(x) = ling [GP‘,„"j (&o')  (A,(x)il,.(x 1 )), 	 (1) P A 

Depto. Exatas-Universidade Estadual de Feira de Santana, CEP: 44031-046. 
t IFUFBA-Universidade Federal da Bahia, CEP: 40210-340. 



Encontro Nacional de Fisica do l'articula.s e Campos 	 649 

PA" 
	

pfr 
	 — gprgal gpa  (gApycla gap9 Acr) bV 

_91,0 (g.,,y  T Cf 	g rp .C2 ) 15y . 	 (2) 

Como .4,(x) e A T (x') nao comutam, o sett prodnto (ordem) precisa ser hem espec.ificado, admi-
tiremos que este é feito a partir do ordenamento normal. Ademais, considerando as situagOes 
nas quais a separacao de ila (x) em panes de frequencias positiva A ct (x) e negativa . A;(x) pode 
ser realizada de forma covariante, temos para o produto normal, 

: Ac (x)Ar (x') := A0 (s). ,1,(3: 1 ) — 1A; (1), 	(x')] , 	 ( 3 ) 

A substituich.- o da eq.(3) na eq.(1) leva a, 

77,:,5 (x) = lien [G'01),`,"1 (07,00 (A, (x).4 ,(x 1 ) — 1,4; (x), AT  (x l )1) . 	 (4) 

Observamos que o operador 	esta definido inciependenternente da re-presentagio 
particular do espaco de Fock empregada. Adintiremos que a repre-sentacat'Et associada a sitatagao 
de campo estendido em todo o Epaco seja mail fundamental corn relacjio a qualquer outra e que 
a forma da eq.(4), assim obtida, (...onstitui a forma correta a ser aplicada nas oiitras situacOes. 
Corn A o (x) no gauge de Coulomb' [9] resulta ent.iio para. 

1111 f iS  (3.) = [CP,,A„"] 	Ac,(:E)A,(x 1 ) 

2 

— lim {GP!'„UT] (0;0) > Ii hir D,;(s — Xi  ), 
Wr  

1=l 

J 	
d3 Do  

(x — xi) = 
(27)"2k0  exi)(—ik (x  — xi)]  

Notarnos que o valor esperado de vticuo livre da eq.(5) a nub c:omo esperacio. 

3 0 EFEITO CASIMIR. 

0 efeito Casimir refere-se historicamente ao calcitic -) realizado por H. B. Casimir (1948) [11 que 
exibe a existencia cle tuna forca atrativa entre (Inas placas planar e perfeitamente condutoras 
quando estas se encontram imersas no catnpo eletromagnetico em sear estado de vacuo. A esta 
forca esta associala uma pressii.o sobre as placas que passoti a ser denominada de pressao de 
Casimir. Mostraremos 'testa secito que o metodo exposto anteriormente permite encontrar a 
mencionada pressao de forma direta. Realizaremos esses calculos para os segnintes vinculos, 

F" 	0 , 
	

P" I s --  0 
	

(6) 

0 primeiro vinculo em (6) transporta-se sobre os potenciais como a condica..o de contorno de 
Dirichlet enquanto quo o segundo vinctilo signilica a condicao de contorno de Neumann sobre 
os mesmos. As superficies de interesse sito cladas por tun (on Bois) plano(s) localizado(s) em 
x3  = 0 (enquanto que o outro en' x 3  = d). 

'Os vetores de polarizacao h' sao a transcricao dos 1.•etores de polarizacao e i  e e2 , no gauge de Coulomb, 
para o espaco de coorclenada.s. 

2 A metric-a utilizada tern assinatura -2. 

( 5 ) 
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3.1 0 .ViNCULO DE DIRICHLET NO PLANO X3 = 0. 
A pressao de Casimir sera obtida de acordo corn a definicao a seguir 3  

P(1)  == 1,5i  f(1)  (°°'nf. 	 = 5)  — 	13 	—6) ]1 /3wni- ) • 
	

( 7) 

A justificativa para a eq.(7) reside no fato de que temos campo presente tanto no interior quanto 
no exterior dos pianos e portanto, a eq.(7) fornece a pressao liquida resultante. De (5) segue 
para o componente T33" , 

2 
T fr(X) = UM [Girl [A„(x)A T (Z) E lec h! r  D6' (x — x') , 	 (8) 

L 

Realizando a eq.(8) para a representacao de A M (x) deste caso 4  19) e calculando o comutador 
resultante nesta representaca.o obtemos apos algumas manipulacOes, 

fi T a33 (X) = lim [r77-  + 1-7 + 

x Pl0 (x))1,(2): — (h 1,7 14. — h!h 27.) Do (x — x")] . 	 ( 9) 

Na obtencao da eq.(9) ternos utilizado as representacaes livre de Di e Dif" [9). A notacao x" 
significa x" = 	—x3). Segue da eq.(9), 

3 
(Odi I TB3 (X)1 	= lim 1E IT] (Odl 

i=1  
A c(x) 	

(11) 1 °d1)  = 	
(10) 

A estrutura de campo eletromagnetico é a inesma de urn lado e de outro do piano [9) sendo 
assirn, segue da eq.(7) que a pressao de Casimir é nula nessa situacao. 

3.2 0 VINCULO DE NEUMANN NO PLANO X3 = 0. 
Seguindo os mesmos passos que no item anterior conseguimos, 

fi T33 a 
 (X) = liM [11 7 	+ rn 

	

x Et A, (x)11 7  (x1) t + (14,11!. — h!h 2T ) Do (x — x")] , 	(11) 

onde 	denota o novo produto normal de operadores ern A p (x). Na eq.(11) temos utilizado 
as representacoes livre das funcOes Dl e D2 [9]. Pelas mesmas razaes colocadas em (10) segue 
da eq.(11), 

3 
(Ont T3fP(X)I 	= liM [E r7 7 1 	itAQ(x)Ar(xim Only = 0, 	(12) 

i=i 

e de (12) decorre tambem que a pressao de Casimir é nula neste caso. 

3A notacao para a na eq.(3.6) significa: .(t, x, y, 0). 
4 A introducfio dos vinculos conduz a espagos de representacito `distintos' para os operadores de campo. 



• –2. line 1003`1 	/3,,+  (a: – 

•

[co 

(0n2 I T:gs (x)1 0.2) 

1*(1 
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3.3 0 VINCULO DE DIRICHLET NOS PLANOS X3 = 0 E X3 = d. 

Como mostramos nos itens anteriores nas regiOes com apenas inn vinculo (Dirichlet ou Neu-
maim) a pressao de Casimir a nula. Por csta razao consideraremos, daqui em cliante, o calculo 
dessa pressao apenas na regio.o 0 < x 3  < d. De acordo cam (7), a pressao no piano em x 3  = d 
é dada por, 

P(x) = Ii9 (O./. I T3.;3 (x, Xi = d + (5 ) – 	:1; 3 	d 8)11 O. 	( 13) 

A realizaca".o da eq.(8) para a representacao de J1 1,(z) relativa a este CaS0 [9], apos as devidas 

simplificacoes, fornece o seguinte resultado ;  

ns(x) = Thu 	+ 17,T + 17.3 - ] (*A,(2:)A T (i1 )*) 

7r 

	

–2. liin [07.fafi  I E Do  (T. — 	+ ( 	 o) 

ipp 

3 

	

lt )— 	
7i- 

= 	1) 	 (14) 
8  (—) 2 4 940d4' /1.2 (14 1=1  

* * denota o novo ordename ► to normal e em (14) utiliza.mos as representacoes livre de acii 
e /Z2  [9]. A soma em (14) é a funcao Zeta de Iiieniann de valor (7 4 /90). De a,cordo corn a 

definicao da pressilo. os resultaclos (10) e (14) quando levados para a eq.(7) mostram que a 
mestna é independente das coordenadas (x o.  1 , u x.2 ) tenclo um valor constante sobre a mesmo. 

sinal em (14) indica clue a forca entre os pianos é atrativa. 

3.4 0 VINCULO DE NEUMANN NOS PLANOS X3 = 0 E X3 = d. 

Seguindo a mesma ideia do caso anterior resulta ;  

IT2 

(15) 
240d4 ' 

que concorda corn o obtido na eq.(14). Este fat.o mostra clue este resultado continua wilido 
•para est.a situacdo, i.e., obtemos o mesmo sinal e magnitude para a pressao de Casimir que 
encontrada no caso anterior. 

3.5 0 VINCULO DE DIRICHLET NO PLANO X3 = 0 E DE 
NEUMANN NO PLANO X3 = d. 

Os mesmos passos realizados nos itens anteriore.s conduzem neste caso a, 

c* 

(Odn 1 T:g s (j;)1 0d„ ) = —2. Lim [03'6:f] 	 d E(-1)'D0 	— x' ) , .,—. 	_co 
Igo 

(16) 
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2 3 
( -1 ) 1+1  (0-4 = (87 ) 24

7 

87r 2d4 	 Odu 1=1  
(17) 

onde a soma é a fiincao Zeta de Riemann de valor (7/8) (ir 4 /90). Podernos concluir de (17) que 
a pressao de Casimir para o vinculo misto vale (-7/8) daquela dada em (14), portant° .  tem 
intensidade menor e sinal contrario, o que indica que a fore a presente entre os plans a agora 
repulsiva. 

4 CONSIDERAcOES FINALS. 
0 vinculo da condicao de contorno de Dirichlet, pode ser considerada como uma idealiza o da 
situacdo fisica em que temos uma placa de natureza condutora. 0 vinculo de Neumann idealiza 
uma placa de natureza usualmente referida na literatura como permeavel. Nay situagOes corn 
dois vfnculos temos a combinacao correspondence as das placas. 0 nosso resultado para o 
vinculo de Dirichlet sobre os pianos x 3  = 0 e x3 = d concords corn aqueles obtidos por Brown e 
Maclay [71, Bordag, Robaschik e Wieczorek [2] e G. Scharf e W. F. Wreszinski [5]. Os resultados 
que conseguimos para os sistemas permeavel e misto concordam coin aqueles obtidos por T. 
Boyer atraves do metodo de soma de modos [8]. 
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Energia de Casimir em geometries retangulares 
d-dimensionais sob condicOes de contorno mistas. 

J. C. da Silva 
Centro Federal de Educacao Tecnologica da Bahia, 

Salvador, Bahia 

Hebe Q. Placid°, A. E. Santana , Arthur M. Neto 
Institute de Fisica, Universidade Federal da Bahia, 

Salvador, Bahia 

Abstract 

The Casimir energy and its temperature corrections are presented for the electromag-
netic field confined in a d-dimensional hypercavity. The expressions are derived consider-
ing Dirichlet boundary conditions for each pair of hyperplanes defining a confined direction 
(the homogeneous case); or yet, by choosing different boundary conditions (Dirichlet or 
Neumann) at each hyperplane of the pair (the mixed ca-se). 

1 Introducao 

Dentre os aspectos abordados em relacao ao Efeito Casimir[1] encontrados na literatura, é 

possivel citar a questa() do carater atrat.ivo on repulsivo do efeito, corn respeito ao ntimero de di-
mensoes confinadas versus a dimensionaliclade do espaco tempo[2,3] e as correcoes introduzidas 
ao considerar-se . o sistema temperature finita(4-6}. Em acrescimo, aborda-se neste trabalho, 
a influencia dasdiversas condicOes de contorno admissiveis para o campo eletromagnetico con- 
finado. Estes vinculos levant a modificacao dos estados estacionarios acessiveis ao campo no 
espaco-tempo ( d + 1) dimensional. Tomando-se o tensor totalmente antissimetrico para 
descrever o campo eletromagnetic:o, o confinamento por hiperplanos infinitos e perfeitamente 
condutores é representado por TIP 0; sendo Fril, o tensor dual e ni` um vetor do tipo espaco, 

ortogonal ao hiperplano em questa°. Outra condicao de contorno possivel e obtida exigindo-se 
que 0, situa(A0 aclequada para descrever superficies infinitamente permeaveis121. , 

Quando as condigoes de contorno sao homogeneas, vale dizer, somente hipersuperficies . 

condutoras, toma-se o primeiro dos vinculos para se obter as frequencias dos modos normais 
acessiveis ao campo. Contudo para o problema corn fronteiras mistas on seja, uma hipersu-
perficie condutora e antra permeavel, obtido pela aplicacao do primeiro vInculo em um hiper-
plano e do segundo naquele diametralmente oposto, impOe-se uma modificacao nas frequencies 
acima citadas(71. 
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2 .  Energia de Casimir em (d + 1) dimensoes 

Considere o campo eletromagnetico dcfinido em urn espaco (d+ 1)-dimensional, onde diag(gpv ) 
= (- 1,1,1, . . . L1) corn p, v = 0, 1, ..., d e confinado ao interior de urn hiperparalelepipedo , corn ,_....._., 

d-dim  
p lados de comprimentos 
para as frequencias associadas 

finitos L i;  ..., 1p  e d - p lados de comprimentos L 
aos modos acessiveis ao campo 

oo. Tern-se entao 

w(ki , k2, ..., kp , kii) = c ‘ik? + k22.  + ... + k;2, + aki , 	kri  = q+1  + kp+2  2  + ... + k:2i , (1) 

corn 
2 

k2  = (nt  + 91
) 
 7r  , i -= 1,2 	..., p , 	ni  = 0 ;  1 ;  ... , co, (2) [ 	

i i  

sendo k2  uma variavel continua. Os valores a-ssumidos por gi  sera° gi  = 1/2, para o caso II 
dos pares de hiperplanos confinantes estarem submetidos a condicoes de contorno mistas; ou 
gi  = 0 quando para eles tenham-se vinciilos homogeneos. Assume-se entao que o sistema se 
encontra em equilibrio termodinamico a temperatura finita. Sendo assim, a energia livre de 
Casimir associada a este estado do campo eletrornagnetico,e obtida atraves da energia Iivre de 
Helmholtz expressa por[61 

lic ( L 	
dd-pk1  [ 	 (ni +iigi) 7r)  21 	2 

Fd(T ii;P; gi) = 	T \ d-p  7 	 t + k li 
-cc 	{ni}=0 	i=1 

L d-p  " 

(-27r ) 	 f dd-Pkilfi -1  

x E In [1 - exp (-Mc 
{n i  }=u 

ti 
((ni  +  gi ) 7r)

)  

2 

+ kfl)1 , 	(3) 

onde {ni} = n,, n2 , ...; nr . Apos realizar-se as integracoes angulares12j e introdiizindo-se a 
variavel t = 	10 em (2.3), a expressao para Fd é reescrita como 

00 

	

Fd(T ; ii; pi gi) = 
rte ( Li ) d-P 	7r d ,2  

CO 

\--. It'd  + I  i dt(t) 	V1 + t 

	

9n. 	r((d- 0/2] (ni}--. 0 	0 

	

d-p 	d  I  \ 

	

Li 	 irv) 	 00 

	

- 	0-1  E Kd-P f dt(t) F2--  
+ 2.71.  ) 	r[(d - 0 / 2 ] 	(n4=0 	o 

x In [I - exp (--f3rickt)] 

= Ed(ii; p; gi ) + F:i  (T ; l i ;i); 9 i ) . 	 (4) 

	

K2—  [(71. 1  + 9 1 )1 1 	I (n2  + g2 ) 7 1   	1 (np  +  gp ) 1  2 
( 5) 

e r é a funcao fatorial. 0 primeiro termo desta equacao Ed, é a energia do yam) a partir 
da qual obtem-se a energia de Casimir a T = 0 .0 sego ndo Fcli , corresponde entao a correcao 
introduzida pela.temperatura. 

onde 
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2.1 Efeito Casimir em T = 0 

0 primeiro termo da energia. 'Me de Helmholtz Ed, clue fornece a energia de Casimir em T = 0, 
é entao integrado[2] resultando ern 

Ti (L\ d-13  P R + p — 1) /21   4±2 

r[( -1/2} 
d-p-i-I  

cc 
X  

{n; }—o 

[( al + gi  y 
1 /1 	

., 
+ ... + / 

np  + gp  \ 2 	7 

p 	) 	

(6) 

Estas somas sobre todos os aut.ovalores da energia de ponto zero dos inodos do campo diverge, 
e urn procedimento adequado de regularizacao é nescessario. Para tanto, a tecnica de funcoes 
Zeta sera empregada[8,9]. Este procedimento é implementado definindo-se primeiro 

hc(L\ d- P I [s/2j _,±,21  

2 D 11-1/21" 
( + 	2 

X 	[C 
/ 

	

I 1  4.  gi 	
7,7) 

i 	
(Re s > 0) . 	(7) 

	

1 	

2 

 {tai }=0 

A soma na eq.(2.7) é entao expressa ear t.ermos da funcao Zeta de Epstain Z p , expressa por[8,9] 

	

Zp (g;h;1/1 1 ,... ,1//p ;s) a Vp7' E 	exp [27ri (n.h)). 	
, 	(Re s > 0), 

([(n + g) Aj 2)' 

onde 

Ed(4; p; gi ) 

Ed(/i ; p; gi ; s) 

Os vetores g e h 

(1/1 1 ,...,1//p) e 

todos os inteiros 
termo n = —g 

Resulta pois 

n = (n 1 , n2 , ....n.p ) 	, g = (gi, g 2 , 	gp) , h a (h i , h2 , ..., hp ) . 

acima tern seas coniponentes reais, A é urna matiz diagonal corn dirty (A ii ) = 

Vp  = 	. A linha no sinal de soma indica que e-sta deve ser efetuada sobre 

n. 1 , 	rip  exceto se todas as coniponeutes de g forem inteiros, quando entao 
deve ser ornitido. 
para o caso homogeneo (g i  = 0) quo 

tic (L) d-P  r is/21 	±.1 I 
[1 + 15„,j 

T 	r[(--1121 
 2 -

2P 0,1=-0,;=1 
Ed( li;p; 0; s) 

x  [ 011\2 	(n.p v.1 2 

) 

TIC L. "—I'  IT]  	 " 
7.)J 	PR—)1 2P 

Zi(0; 0; {ii}; s) . 
{ 1 ,} 

(S) 

Nesta expressao a segu.nda soma indica quo ela deve ser realizada sobre todos os conjuntos de 
corn / i 	dentro de cada ordem j associada it V Z,. Ulna vez que o dominio da funcao 
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zeta Z1, é Re s > 0, sera feita uma extensao analitica para a regido onde Re s < 0 . Lsto é 
implementado fazendo-se use da formula de reflexao[8] clue possibilita a escrita de 4, em termos 

da funcao 4, definida por 

Zp  (0; g; 	,Ip ; p - s) = Vp 
E  exp  (2irin.g) 

9 R-71 
fni}= -0.3  (rnA -1 0 2  

Re s < 0 . (9 ) 

A linha no sinal de soma indica clue é excluido o termo em clue n = 0 . Contabilizando-se 
as dual polarizacOes independentes associadas ao campo e corn o auixluQ da definicao anterior 
escreve-se 

SEC 
Ed (li ,p. 0,$) = 2p (---

2
) 	

2  

11(-1/2)
r IP 9  s l E 2P-) 

1.   
=- 1  

„ I 

E 	.7;  (0; g; 1 1 , 	tp ; p - s) . 
{1.} 

A energia de Casimir é obt,ida fazendo -se s = - (d - p + 1) resultando em 

Ed(l i ; p; 0) . 
hc [d + 1] P  

9d+ I 
Ld-P.7 -  2  r —9 E 2P-i 

- 	J=1 

d+  x E [11111 	j' 	Zi (0; 0;1/, . ; 111 ; d + 1) . 
{ii) 

Para vinculos mistos (g i  = 1/2) a expresa.o(2.7) e escrita como 

	

lac L) d- p r Is / 21 	Zp  (1/2; 0; 1/2 i , 	1/1p ; s) Vi;/P 
(12) Ed(l i ;p: 1/2; s) =  

	

- 	1/2] 	 2 

Realizando os mesmos passos anteriores corn vista a regularizacao de Ed tern-se como resultado 

9d—p+2 

Ld _p7 _111 1  [d + he  

	

x Vp P 	Zp  (1/2; 0; 1 1 , . 	,lp ; d + 1) . 	 (13) 

No caso homogeneo corn apenas lima clas dimensaes espaciais confinada (p = 1), a eq.(2.11) 
torna-se 

• Ed(11 ; 1; 0) = 
hc 	.1: 	d + 1 Ld-1 7r--1-r 	((d + 1) , 

2d14 	 2 

onde é a funcao zeta de Riema nn. Este resultaclo concorda coin aquele apresentado por 
Ambjorn(2].Tomando-se agora o caso inist.o sob a mesina res-  tricao anterior, a eq.(2.13) fornece 

tic 	 L+I r 	+ 
EA 	

rd
1 1 ;1; 1/2) = 	7r 	

i  d 

2 

 1 
- 1 2 	--1 C(a + 1) [1 - 2d I] 

No espaco tridimensional (d = 3) a express5.o acinia leva ao resultado obtido por Boyer [7]. 
Estas tiltimas equacoes apontam para valores sempre negativos ou positivos da energia, 

respectivamente. Isto implica em pressoes sempre atrativas (g i  = 0) ou repulsivas (yi  = 1/2) 
sobre as frOnteiras 

(10) 

Ed(li ;p; 1/2) = 
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2.2 Correcio de temperatura ao Efeito Casimir 

A correcao de temperatura ao Efeito Casimir 6 dada pelo segundo termo da energia livre de 
Helmholtz Fe; na eq.(2.4). Apos a substituicio da funcOo logaritmo pela sua expansk em 
serie[5] tem-se 

F:AT ; ii ; p; gi ) = 
d-13 	7r4=E co cc I Wm+ 1 

k  

27r) 	r[(d-
2
p)/21

0-1 	
m 

cC 

X K d-13  f dX2X(X 2 	exp(—OhcKmx) . 	(14) 

A expressao anterior é entao integrada[5] tornando-se 

r 	
- d+p- 1 	-d 1p+1  

Fci (T ; li ;p; gi) = 	Ld-P0 2  (WW) 2 7r  2 

X E E - " K 2  
Kd-p+1  (OrteniK) 

2 

onde K,. é a funcio modificada de Besse'. Para tuna amilise de Fd em baixas temperaturas, 
tomar-se-a a expansao assintotica para fie,(z) ;  z > 1151 resiiltando em 

F:AT ; It; P; 	= 

r  (d-p-1-2)  

—7 2 L P 	
1.  

k=0 k!  r (d-p+2 ) 	kl 
2 

co 
X2 	1.1 2  -k  (hC) 	K 2  -k  

(,4)=0 
co 

-d+p-2  k  x E 7n 2 	exp(—flhcrnK) . 	 (16) 
m=1 

Assumindo p = 1 e d = 3 seleciona-se os dois primeiro terinos da soma em k na equacao 
anterior'. Sob condicoes de contorno homogeneas (g i  = 0) ou mistas (g i  = 1/2) as expressOes 

para Fd saio dadas respectivamente por 

00 / 	CC 

F3(7' ; II; 1; 0) = —L20-2  (hc) -1 / -1 1  E n > 7n.-2  exp (-07rhcmn11 1 ) 
rri=1 

co 00 
— L2  0-3 7 (he) E E m-3  exp (Therncnt71/11) 

n=0 m=1 

e 

00 

F2T ; I , 1,1/2) = —L 20-2 7r2 (hc) -1  1 E (n + 1/2) 
n=0 

a.)  

-2 	
fl 	( 	1 

x E 271 exp 	 n + 7) )) 
m=1 

(15) 
(,,, 1.0 fn.1 	

nL 

(17) 

'Observe que sob a condicao imposta, o argument° de I' no denominador da eq.(2.16) indica polos desta 
• funcio que anuiam termos subsequentes aos coletados 
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00 CO 

—L20-37r (r/c) -2 E > 1713 
re =0 171= 

( &ram  (71 
+ 

-2

1
)) x exp 

1 1 
(18) 

O sinal no simbolo da soma na eq.(2.17) indica que o terrno n = 0 deve ser multiplicado por 1/2. 
A partir da expressao (2.18) obtem-se resultados particulares ja indicados anteriormente[10]. 

3 ConsideragOes finais 

As expressoes gerais para a energia de Casimir obtidas neste t.rabalho, alem de permitir que se 
recupere tima serie de resultados :fa encontrados na literatura (caso homogeneo), tambein possi-
bilitam a analise de novas situacees (caso misto). Por fim , essas expressoes generalizadas apon-
tarn para a possibilidade de estudar-se configuraciies onde coexistam condicoes de contorno ho-
mogeneas e mistas. A abordagem numerica para dimensoes espaciais e confinamentos arbitrario 
(d > 3, p > 1) esti em fase de elaboracao. 
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CARLA RIBE1RO DA FONSECA - UFRJ 
CARLOS ALBERTO SANTOS DE ALMEIDA - UFCE 
CARLOS EDUARDO CAMPOS LIMA - CBPF 
CARLOS ENRIQUE NAVIA OJEDA - UFF 
CARLOS FARINA DE SOUZA - UFRJ 
CARLOS FRAJUCA - IFUSP 
CARLOS MARIA NAON - LA PLATA 
CAROLA DOBRIGKEIT CHINELLATO - UNICAMP 
CLISTENIS PONCE CONSTANTINIDIS - II-T 
CLOVIS JOSE WOTZASEK - UFRJ 
CRISTIANE GRALA ROLDAO - IFT 
CRISTINE NUNES FERREIRA - CBPF 
DANIEL GUILHERME COMES SASAKI - CBPF 
DANIEL MULLER - IFT 
DANIELLE MAGALHAES MORAES - UFRJ 
DENIS DALMAZI - UNESP-GUAR 
DEUSDEDIT MONTEIRO MEDEIROS - UFCE 
DICKSON CADORE GOULART UFRGS 
DIONISIO BAZEIA FILHO - UFPB 
EDISON HIROYUKI SHIBUYA - UNICAMP 
EDSON MINORU KUBO - IFUSP 
EDUARDO DE MORAES GREGORES - IFT 
EDUARDO SOUZA FRAGA - UFRJ 
EDUARDO V TONINI - CBPF . 
ELIEZER BATISTA - IFT 
ELSO DRIGO FILHO - IBILCE 
ERASMO MADUREIRA FERREIRA UFRJ 
ERICA EMILIA LEITE - IFT 
ERICA RIBEIRO POLYCARPO - UFRJ 
EVERTON MURILO CARVALHO DE ABREU - UFRJ 
FABIO BOSCO MOURA SALEMME - IFUSP 
FELICE PISANO - IFT  

FERDINAND° GLIOZZI - UNIV. DE TORINO 
FERNANDO KOKUBUN - IFT 
FERNANDO LUIZ DE CAMPOS CARVALHO - IFT 
FERNANDO MIGUEL PACHECO CHAVES - . UFSE 
FILADELFO CARDOSO SANTOS - UFRJ 
FRANCISCO EUGENIO M DA SILVEIRA - IFT 
FRANCISCO SALES AVILA CAVALCANTE - UFCE 
FRANZ PETER ALVES FARIAS - UEF 
GALINA L. KLIMCHITSKAYA - UFPB 
GEORGE EMANUEL AVRAAM MATSAS - 1FT 
GERMAN 1GNACIO GOMERO FERRER - CBPF 
GIL DE OLIVEIRA NETO - CBPF 
GILDEMAR CARNEIRO DOS SANTOS - UFBA 
GINO NOVALIS JANAMPA ANANOS - CBPF 
GUILIIERME DE BERREDO PEIXOTO - CBPF 
GUILLERMO SANTIAGO CUBA CASTILLO - CBPF 
HATSUMI M UKAI - FUEM 
IIEBE OUEIROZ PLACID° - UFBA 
11E1-10 MANOEL PORTELLA - UFF 
IIUGO R. CHRISTIANSEN - CBPF 
HUMBERTO BELICH JUNIOR - CBPF 
ILYA SHAPIRO- UFJF 
IOAV WAGA - UFRJ 
IRAZIEr DA CUNHA CHARRET - UFF 
IVAN JOSE LAUTENSCIILEGUER - IFT 
J. BEKENSTEIN - U. HEBREW 
JOAO BARCELOS NETO - UFRJ 
JOAO RAMOS TORRES DE MELLO NETO - UERJ 
JORGE ABEL ESPICHAN CARRILLO - UNICAMP 
JORGE ANANIAS NETO - UFJF 
JORGE CASTINEIVAS RODRIGUEZ - IFT 
JORGE EDUARDO CIEZA MONTALVO - UERJ 
JORGE HUMBERTO COLONIA BARTRA - UNICAMP 
JORGE MARIO CARVALHO MALBOUISSON - IFUSP 
JOSE A C NOGALES VERA - UFF 
JOSE ACACIO DE BARROS - UFJF 
JOSE ALEXANDRE NOGUEIRA - UFES 
JOSE AUGUSTO CHINELLATO - UNICAMP 
JOSE CARLOS BRUNELLI - UFSC 
JOSE FRANCISCO GOMES - IFT 
JOSE KENICHI MIZUKOSHI - IFUSP 
JOSE LUIS BOLDO - I FT 
JOSE LUIZ MATI-IEUS VALLE - UFJF 
JOSE P S LEMOS - ON 
JOSE PAULO RODRIGUES F DE MENDONCA - UFJF 
JOSE ROBERTO SOARES DO NASCIMENTO - UFPB 
JOSE TADEU DE SOUZA PAES - UNICAMP 
JUAN ALBERTO MIGNACO - UFRJ 
JUAREZ CAETANO DA SILVA - UFBA 
JULIO MIRANDA PUREZA - UESC 
JUSSARA MARQUES DE MIRANDA - CBPF 
KWOK SAL/ FA - FUEM 
LAURA MARIA RUB! FALCO DE FRANCA - IFUSP 
LEANDRO SALAZAR DE PAULA - UFRJ . 
LEON RICARDO URURAHY MANSSUR - CBPF 
LEONARDO MACHADO DE MORAES - CBPF 
LEONIDAS SANDOVAL JUNIOR - IFUSP 
LIN YOUNG - 
1-UCA ROBERTO AUGUSTO MORICONI - UFRJ 
LUCIENE PONTES FREITA-S - IFT 



RAPHAEL DIAS MARTINS DE PAOLA - PUC/R1 
REGINA CELIA ARCURI - UFRJ 
REGINA MARIA RICOTTA - UNESP 
RENATA ZUKANOVICH FUNCHAL - IFUSP 
RENATO KLIPPERT BARCELLOS - CBPF 
RENATO MELCHIADES DORIA - UCP 
RENIO DOS SANTOS MENDES - FUEM 
REUVEN OPHER - lAG 
RICARDO MOR177,CAVALCANTI - PUC/RJ 
RODOLFO ALVAN CASANA SIFUENTES - CBPF 
ROGERIO ROSENFELD - IFT 
RONALD CINTRA SHELLARD - CBPF 
RUBENS FREIRE RIBEIRO - UFPB 
RUBENS LUIS PINTO GURGEL DO AMARAL - UFF 
RUDNEI DE OLIVEIRA RAMOS - UERJ 
RUDOLF MURADIAN - UFBA 
SAMUEL MAIER KURCBART - U.CALIFORN 
SAMUEL ROCHA DE OLIVEIRA - UNB 
SANDRO SILVA E COSTA - IFT 
SAULO CARNEIRO DE SOUZA SILVA - IFUSP 
SEBASTIAO ALVES DIAS - CBPF 
SERGIO ANEFALOS PEREIRA - IFUSP 
SERGIO EDUARDO DE C EVER JORAS - UFRJ 
SERGIO JOFFILY - CUE 
SERGIO LUIZ CARMELO BARROSO - UNICAMP 
SERGIO MARTINS DE SOUZA - UFF 
SERGIO MORALS LIETTI - IFT 
SERGIO VIZEU LIMA PINHEIRO - IFUSP 
SILVESTRE RAGUSA - IFSC 
SIMONE Al.MEIDA ARAUJO - UCP 
STOIAN IVANOV ZLATEV - UFSE 
TATIANA DA SILVA - UFRJ 
VALDIR BARBOSA BEZZERRA - UFPB 
VAN SERGIO ALVES - IFUSP 
VERISSIMO MANOEL DE AQUINO - UEL 
VICENTE PLEITEZ - IFT 
VICTOR DE OLIVEIRA RIVELLES - IFUSP 
VICTOR PAULO BARROS GONCALVES - UFRGS 
vrroRIO ALBERTO DE LORENC1 - CBPF 

• VLADIMIR KOPENKIN - UNICAMP 
VLADIMIR M. MOSTEPANENKO - UFPB 
WALTER FELIPE WRESZINSKI - IFUSP 
WELLINGTON DA CRUZ - UEL 
WERNER MARTINS VIEIRA - UNICAMP 
WINDER ALEXANDER DE MOURA MELO - CBPF 
WLAD1MIR SEIXAS - UNESP 

LUIS CARLOS BASSALO CRISPING - IFT 
LUIS CARLOS MALACARNE - FUEM 
LUIZ AMERICO DE CARVALHO - UNICAMP 
LUIZ CARLOS SANTOS OLIVEIRA - CBPF 
LUIZ CLAUDIO MARQUES DE ALBUQUERQUE - 1FUSP 
LUIZ FERNANDO KLIPEL - UCP 
LUIZ MARTINS MUNDIM FILHO - CBPF 
LUIZ OTAVIO BUFFON - IFUSP 
MANOEL JANUARIO DA SILVA NETO - UNICAMP 
MANOELITO MARTINS DE SOUZA - UFES 
MARCELLO BARBOSA DA SILVA NETO - CBPF 
MARCELO BATISTA HOTT - UNESP-GUAR 
MARCELO COSTA DE LIMA - CBPF 
MARCELO DE OLIVEIRA SOUZA UENF 
MARCELO EVANGELISTA DE ARAUJO - UNB 
MARCELO OTAVIO CAMINHA GOMES - IFUSP 
MARCELO SCHIFFER - UNICAMP 
.MARCIO JOSE MENON - UNICAMP 
MARCO AURELIO CATTACINI KNEIPP - CBPF 
MARCO AURELIO LISBOA LEITE - IFUSP 
MARCO AURELIO SCHMID'T IFUSP 
MARCOS CARDOSO RODRIGUES - IFT 
MARCUS VENICIUS COUGO PINTO - UFRJ 
MARIA BEATRIZ DE LEONE GAY DUCATTI - UFRGS 
MARIA DE FATIMA ALVES DA SILVA - UERJ 
MARIA TERESA C DOS SANTOS THOMAZ - UFF 
MARIA VIRGINIA MANIAS - LA PLATA 
MARIO EVERALDO DE SOUZA - UFSE 
MARTA LILIANA TROBO - LA PLATA 
MARTHA CHRISTINA MOTTA DA SILVA - CBPF 
MAURICIO BERNARDINO MACRO - IFUSP 
MAXWEL GAMA MONTEIRO - UCP 
MIKAEL BERGGREN - UFRJ 
MIKHAIL PLY USHCHAY - UNE 
MIRIAM GANDELMAN - CBPF 
NADJA SIMAO MAGALHAES - INPE 
NATHAN JACOB BERKOVITS IFUSP 
NAZIRA ABACHE TOMIMURA - UFF 
NELSON PINTO NETO - CBPF 
NELSON RICARDO DE FREITAS BRAGA - UFRJ 
NEUSA AMATO - CBPF 
NIKOLAI KUROPATKIN - IFUSP 
ODYLIO DENYS DE AGUIAR - INPE 
ORLANDO LUIS GOULART PERES - IFUSP 
OSCAR JOSE PINTO EBOLI - IFUSP 
OSWALDO COMES - 
OZEMAR S VENTURA - CBPF 
PATRICIA DUARTE PERES - UCP 
PATRICIA MACEDO DA COSTA JORGE - UCP 
PATRICIO ANIBAL LETELIER SOTOMAYOR - UNICAMP 
PAULO ALEX DA SILVA CARVALHO - UNICAMP 
PAULO CESAR BEGGIO - UNICAMP 
PAULO DE FARIA BORGES - ETFQ 
PAULO SERGIO KUHN - UFRGS 
PAULO SERGIO RODRIGUES DA SILVA - IFT 
PAULO TEOTONIO SOBRINHO - IFUSP 
PEDRO CUNHA DE HOLANDA - UNICAMP 
PEDRO GALLI MERCADANTE - IFUSP 
R. S. CHIVUKULA - U. BOSTON 
RAFAEL DE LIMA RODRIGUES - UFPB 
RAIMUNDO MUNIZ TEIXEIRA FILHO - IFUSP 
RANDALL GUEDES TEIXEIRA -IFT 
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