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ELECTRIC MAGNETIC DUALITY AND QUARK CONFINEMENT *

F. GLIOZZI
Dipartimento di Fisica Teorica, Universita di Torino,
via P. Giuria 1, 10125 Torino, Italy

We give an elementary account of the Seiberg and Witien approach to N=2 super
Yang-Mills theory which yields an exact form of the low energy effective action and
suggests a simple confinermnent mechanism generated by monopole condensation.

1 Introduction

It is now widely believed that the phase of quark confineinent observed or conjectuted in many
gauge theories in three or four space-time dimensions is described. as first suggested by t'Hooft,
Mandelstamn and Parisi !, by a sort of dual Higgs mechanism: a (composite) field ¢as carrying a
magnetic charge acquires a non-vanishing vacuum expectation value < ¢a ># 0. This conden-
sation gives a mnass to the gauge field and a mass gap is generated like in ordinary Higgs effect.
The important difference is that it is the dual or magnetic description of the gauge field which
couples locally to the magnetized field ¢ar. As a consequence, the chromoelectric field is expelled
from the vacuum (dual Meissner effect) and the flux lines connecting a quark pair are squeezed in
a thin Aux tube .(dual Abrikosov vortex), giving risc to a confining potential proportional to the
interquark distance.

Unfortunately the above description for almost all known models remains at a conjectural stage.
The only explicit example of this mechanism can be found in the Polyakov proof of confinement
of U/(1) gauge model in threc space-time dimensions 2.

More recently, Seiberg and Witten worked out a new approach to four-dimensional N = 2
supersymmetric gauge theories leading to some exact results on their spectrum and on their low
energy behaviour which strengthen and sheds new light on the dual picture of confinement. In this
talk I would like to give an elementary account of this new approach.

2 N =2 super Yang-Mills Theory

The minimal N = 2 super Yang-Mills theory for SU(2) gauge group is described by a Lagrangian
of the following form

g d (8 ALY (o pa _ Ywse pa o
L= 4ﬂi}m { (‘Zn +i e?) [—‘-1 (FWF‘W 5 F“,Fp,,) +
—_ 1 -
+DLB1(Dable -~ gl euol*+ Jermions| | 1

where, in the usual notations, F2¥ = §#4% — ¥ A% — ec?® 41 4, the complex Higgs field ¢ is in
the adjoint representation, and {(D#g), = I¥p, — ec?*° AL ..

\We need not to write out explicitly the fermionic part of the Lagrangian which contains the
contribution of the two Weyl fermions (the gaugino and the higgsino) which complete the chiral
N = 2 supermultiplet.

The structure of the bosonic part of the Lagrangian in eq. (1) is pretty much the same as
the one in the Georgi-Glashow tnodel. There is, however, an important difference. Unlike the
Georgi-Glashow case, here the potential

. 1 — - :
V() = @(c“‘méc)- (2)
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does not fix uniquely the vacuum. In fact any field configuration of the type ¢° = (0,0, a) corre-
sponds to a minimum of the potential with vanishing value {in order not to break the supersym-
metry) for any value of the complex variable a. The set of all values of a is called the classical
moduli space of the theory.

If @ # 0 the SU(2) gauge symmetry is broken to U(1) by the Higgs phenomenon and the
charged components of the gauge fields get a non vanishing mass, while the Higgs and the gauge
field of the unbroken U(1) remain massless. Thus the bosonic massless spectrum for a generic
value of a consists of a photon A, that is the gauge field of the unbroken U(1), and of a complex,
neutral scalar particle ¢. If we are interested in studying the low-energy dynamics of these fields,
we need to restrict ourselves to an effective Lagrangian with at most two derivatives and with no
more than four-fermion couplings. The requirement of N = 2 supersymmetry fixes completely its
form giving the following Lagrangian®

= 4—9771 {r(¢) 9,06"¢ — - (F2 iF‘F) + fermions]} (3)
where orF
™¢) = gz (4)
is given in terms of a singlc holomorphic function F(¢) of the scalar field ¢ which fulfills the
important constraint
o*F
Sm(a¢2)>0. (5)

As a consequence, the low-energy dynamics is completely determined by the function F t.hat. In
general will receive both perturbative and non-perturbative contributions.
Comparing eq. (3) with eq. (1) we see that at the tree level the function F is given by

1 4 f  dm
Fa=grad Ta =g +ig (6)
As a dlrect. consequence of the fact that this theory is asymptotic free with a S-function
Be) = —3-;-; one gets for the sum of the tree and one-loop contributions the expression %
_ 4y 8
fcl+fl—§¢ logAZ l (7)

where A is a dvnamically generated scale. Conversely, inscrting this expression in Eq.(4) one
obtains how the running coupling constant varies with the scale a showing that for large @ the
asymptotic freedom takes over and the theory becomes weakly coupled.

It can be shown that higher loops do not give any contribution to F. Only non perturbative
effects, as for instance instantons, can give an additional contribution to it.

We have seen that the moduli space of the N = 2 theory is parametrised, in the semiclassical
theory, by the vacuum expectation value of the scalar field a =< ¢ >. We can endow this 2D
manifold with a (Kahler) metric ds? expressed in terms of F with the conatraint (5) as follows

ds’ = Qmr(a)dada , r(a)= 82;(:) (8)

However a cannot provide a global description of the moduli space. In fact any helomorphic
function f(a) of the complex plane a with an everywhere positive imaginary part should be a
constant (because expif(a) is bounded) while asymptotic freedom tells us that Sm(r(a)) diverges
for | | = oo. Therefore in Ref.? it was proposed to choose the gauge invariant quantity u = Ji <
tr ¢* > as the one providing a global parametrization of the moduli space and to regard both a(u)

. Gliozzi
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and the auxiliary variable ap(u) = %f— as functions of u. In terms of both a and ap the metric in

eq. (8) assumes the more symmetric form

ds® = Qm (d—:‘lgdadﬁ) = Qm (dapda) = —% (dapda — dadap) (9)

dap

Introducing the vector v = ( da ) it is easily shown the invariance of ds? under the trans-

formation v — Muv , where M is an arbitrary matrix of SL({2, R). This isometry group may be
generated by the repecated action of two independent matrices Ty and 5, defined by

ne(b8) 5= (80)

The former leaves da invariant and transforms dap according to
dap = dap + bda . ' (11)
This implies that r(a) is just translated
r(a) = r(a) +b (12)
yielding, when inserted in the effective Lagrangian, a translation for the vacuum angle ¢
¢ =8+ 2rh . (13)
Since physical quantities are invariant when
8= 6+2mn (14)

for any integer n, we deduce that the transformation associated to the matrix T} is a symmetry
of the theory. Thus only the SL(2, Z) subgroup of the isometric group SL(2, R) of the moduli
space is compatible with the physical interpretation of the model.

It remains to understand the meaning of the inversion S in 1erms of the gauge fields. Note
that S transforms r(a) according to

r(a) = —ﬁ = —E%% = rplap) , (15)
or. equivalently, it exchanges the field ¢ with the auxiliaty field ¢p = i':- :
¢+ ép ,
ép =+ —¢ . (16)

In order to see more clearly the meaning of such a transformation, it is convenient going into the
weak-coupling region and set the vacuum angle § = 0. Then we see that, if Qmr{a) = 3%, then

Qmrplap) = :—:, which is the typical effect of the electric-magnetic duality ®?. Thus the auxiliary
variable ¢ p is nothing but that the dual Higgs field in a dual formulation of the theory.

Notice that the action of 5 does not correspond necessarily to a symmetry of the theory,
but provides a transformation between two different descriptions of the same physics. In fact
the bosonic part of the low energy effective Lagrangian can be represented either in terms of the
variables (A#, @, 7(#)) or in terms of the dual ones (A}, ép, 7p(ép) = —1/7(¢)) . One description
may be more suitable for weak coupling, while the other for strong coupling.



2.1  The spectrum

We shall see now that in this N = 2 theory the holomorphic function F(4) fixes not only the low
energy effective Lagrangian, but also its exact spectrum. Indeed, as in the Georgi-Glashow model,
in the N = 2 super Yang-Mills theory there are also time-independent solutions® of the classical
equations of motion corresponding to magnetic monopoles and dyons. These states survive after
quantization and their mass, in the semiclassical limit, is given by

M = V2|24 (17)

with
Zo = a(ne + Tenpm)

where n. and n,, are the electric and magnetic charges and a is the vacuum expectation value
of ¢. It has been shown ® that Z. is the semiclassical limit of the central charge of the N = 2
superalgebra. This algebra yields, in the same limit, the positivity constraint M > /2| Z,|, with
equality precisely for the so called “small” representations. States saturating the inequality are
known as BPS-saturated states 1011,

Noticing that the coefficient of np, is equal to ap in the classical limit, the mass spectrum of
the possible BPS states can be rewritten as follows

M = 2|z , Z = ane + apnhy, (18)

Seiberg and Witten ? proposed eq. (18) as an exact formula and made several checks for
confirming its validity. It easy to show (see for instance?) that, when ap/a is not real, these states
are stable provided that the integers n. and n,, be relatively prime.

2.2 Singularity structure of moduli space

In this section we study the singularity structure of a and ap as functions of the variable u, that
provides a global parametrization of the moduli space.
In the semiclassical region, corresponding to a large value of u, we get

a=\/2_u apzi@ [2105%-}-1] (19)

Thus there is a branch point at # = oo, Under a rotation around such a point given by logu —
log u + 2i7 a and ap are not monodromic functions, but transform according to

My a— —a ap =+ —ap + 2a (20)

The existence of a branch point requires tlie existence of another, at least. No other kind of
singularity is allowed, because the physical quantities a and ap cannot diverge. But, if we had
only one additional branch point, it should be at u = 0, because there is a global Z(2) symmetry
that transforms u in —u . The only holomorphic functions a and ap with two branch points in 0
and co and the asymptotic behaviour given in Eq. (19) coincide with (19) everywhere in the whole
u—plane. As a consequence, the positivity condition (5) cannot be fulfilled near u = 0. Thus we
must require the existence of at least two additional branch points.

Following the example of what is happening in some N = I supersymmetric theories Seiberg
and Witten assume that the singularities occur at those points of the moduli space where additional
massless particles appear in the spectrum. In the classical theory this occurs for @ = 0 where the
SU(2) symmetry is restored and W* become massless. This singularity at u = 0 does not survive
quantization because of the positivity argument given before. On the other hand, restoration of
the SU(2) gauge symmetry should be accompanied by conformal invariance in the infrared region,
then this restoration cannot happen at a finite u # 0, because it introduces an explicit breaking

F. Gliozzi
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of the scale invariance. There are instead indications that one at least of these singularities is
associated at the point up where the monopole with (nm,n.) = (1, 0) becomes massless.

Using the exact formula in eq. (18) we see that this occurs when ap(ug) = 0 with a{ug) #0 .
With an obvious rescaling it is always possible to choose uy = 1.

"The monodrotny M; around the singularity at u = 1 can be easily computed by observing that
the low energy theory at the point u = 1 consists of a "magnetic” ¥ = 2 super QED (the matter
has magnetic and non electric charge). This theory is not asymptotically free and the coefficient
of the S-function, besides a sign, has a factor 1/2 of difference with respect to the #-function
previously used for studying the singularity around u = oc. By taking into account this difference
in the 3-function one arrives at the following monodromy transformation around the point u = 1:

My ap —ap a—a—2ap . ' (21)

The Z{2) symmetry implies that there is another singularity at u = —1 . The monodromy M_,

around the point u = —1 st be consistent with the previous ones , i.e. MyM_; = M,,. One
obtains

M_y ap = —ap + 2a a— —2ap +3a . o (22)

In order to see what massless state is associated to this singularity, note that these monodromies
act also on the spectrum of BPS-saturated states because a transformation on the pair (ap,a)
induces a corresponding transformation on the charges n,,n.. A massless state associated to the
singularity around which we are looping should remain invariant. Using this criterion one finds
that the massless state associated with u = —1 is the dyon with (n,,, n.) = (1,-1) .

2% Ezract solution

Iaving established the singularities and the monodromy transformations of a and ap their form
is uniquely determined: any pair of functions with the same monodromies in the same points and
with the positivity constraint (5) can differ only by a multiplicative constant. Such a constant
is fixed by their asymptotic behaviour. Seiberg and Witten have built up an explicit solution by
mapping the space of the quantum vacua into the moduli space of Riemann surfaces of genus one,
where an explicit solution of such a monodromy problem is known.

Here [ would like to outline an elementary approach to this problem, based on some general
properties of the p-function of Weierstrass. This is a meromorphic, doubly periodic function. Let
us denote by {w} the period lattice, namely the set of points of the complex plane of the form
{w = mw; + nwz} . with m and n integral coefficients and w|, w2 two complex numbers  periods)
with non real ratio w, fwy . Then the double periodicity means

p(z +w) =p(:) . (23)
It satisfy the first order differential equation
% = A(p(z) — e))(p(z) - e2dplz) — ea) (24)
where e; are all distinct and given by
er =pw1/2)  e2=p(wa/2) ea=pl(wi+w2)/2) . (25)
In terms of the new variables .
e L e @

Eq.(24) can be rewritten as the elliptic curve

y? = (z—1)(2+ 1){x — u) uzﬂ---,f-;—ﬁ—?_—ge3 . {27)

€] — €2

[+ 1]



This algebraic equation describes a generic torus as a double cover of the z plane branched over
oo, 1,—1 and u. It becomes singular when two branch points coincide, and this occurs: precisely
forz =o00,1,-1. _

Using the uniformizing parametrization (26) one can verify at once that

2 dx dp

— Y _ =dz | (28)
Ver—er y  2/(p(z) — e1)(p(2) — e2){p(z) — €a)

teiling us that dz/y is a holomorphic differential and that its integral along a topologically non
trivial closed path is proportional to a point of the period lattice {w}. In particular, denoting with
71 a path looping around the pair 1, —1 and with 42 the one looping around 1, u , the two periods

defined by d
Ui=\/2(31—62)f -;'E ., i=172 - {29)
Y

have precisely the same monodromies of da/du and dap /du. Moreover Sm(wsofw;)} > 0, thus

d(lp da wo
=5 — =— 30
du SW1 o e P = (30)
Integrating on u and adjusting the proportionality constant one gets the exact result
1 — u —
a(u) = -‘/-—2/ dz YE_ Y ap(u) = ﬁj dzYEZY (31)
T S Vz?T-1 LA Y vei—1

Generalizations of these formulas are now available for inany other gauge groups !? also with
matter in the fundamental representation 3.

3 Monopole Condensation and Confinement

One of the interesting propertics of the N = 2 super Yang-Mills model described before is that a
small perturbation produces a dramatic modification of the space of the possible vacua, leading to
monopole condensation and confinement.
Suppose to break explicitly the ¥ = 2 supersymmetry to N = 1 by adding a mass term mé¢? to
the Lagrangian. Then the quantum moduli space collapses to the two points % < tr¢? >=tu, .
If u, is non vanishing the Z(2) symmetry is spontaneously broken and there is a simple argument
3 indicating that u, does correspond precisely to the value ug where the monopole or the dyon
become massless and that these monopoles condense. The argument goes as follows. Let U be
the chiral superfield whose first component is %é’. In order to break the N = 2 supersymmetry
to N =1 we have to add to low energy Lagrangian an effective superpotential W = ml. Near
the point at which there are massless monopoles, they can be represented by chiral superfields Q
and @. Since the monopoles couple in a non-local way to the original “electric” photon, we cannot
use that photon in the eflective Lagrangian. Instead we should perform a dual transformation and
write an effective superpotential in terms of dual vector supermuitiplet Ap, i.e. the supermultiplet
formed by the dual potential A%, the gaugino and the dual Higgs field ép. The total effective
superpotential is N
W= ApQQ + mU(Ap) , (32)

where the first term is required by gauge and NV = 2 invariances of the m = 0 theory. The possible

vacua correspond to solution of dW = 0, which yields for the bosonic component the following
conditions:

~ d
QQ+m—— =0 :
dap

F. Gliozzi
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apQ@=apQ =0 . . (33)

One of the fundamental properties of the parameter u as defined in Eq. (27) is that du is always
different. from zero, because u is a good global coordinate on the space of moduli of the torus and
hence on the space of quantum vacua. Then the first equation tells us that Q and Q are different
from zero. i.e. there is a condensate of monopoles, while the second equation requires ap = 0,
which expresses the vanishing of the mass of the monopole at u = vo. This condensation gives a
mass to the photon. However, since the photon around the point ug is described by the dual A},
of the usual electric potential, we have actually the confinement of the clectric charge.
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Some Aspects of Physics Beyond the Standard Model
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Abstract

We discuss some phenomenological aspects of extensions of the Standard Model related to the
electroweak symmetry breaking sector with supersymmetry. The physics potential for Higgs
boson searches ai, LEP200, including Majoron extensions of the Standard Model, the physics
of invisibly dccaying Higgs bosons, as well as some possible signatures associated to models
with R parity violation are included.

1 Introduction

Although very successful wherever it has been tested, the Standard Model leaves unanswered many
fundamental issues in particle physics to be an ultimate theory of nature.

A basic assumption of the Standard Model is the Higgs mechanism, which is introduced in order to gen-
erate the masses of all the fundamental particles. This mechanism implies the existence of a fundamental
scalar bosons [1]. If such an elementary boson exists some stabilising principle - like supersymmetry
(SUSY) - should be operative at the electroweak scale in order to explain the stability of its mass scale
against quantumn corrections associated with physics at very high energies. The unification of the three
gauge coupling constants as they are evolved from the presently accessible energies up to a common scale
of ~ 10'® GeV provides a hint that supersymmetry seems to set in somewhere around Mgygy ~ 108
GeV. Probing the details of this structure constitutes one of the main goals in the next generation of
elementary particle colliders.

Another fundamental issue in the Standard Model refers to the properties of neutrinos, in the sense that
there is no principle that dictates that neutrinos are massless, as postulated in the Standard Model.
In fact, nonzero masses may be required in order {6 account for the data on solar and on atmospheric
neutrinos, as well as for an explanation of the dark matter in the universe.

The above two different extensions of the Standard Model may be connected via, for example, super-
symmetric models with spontanecusly broken R parity, which necessarily imply non-vanishing neutrino
masses. As a result in some of these models there are novel processes that could be observed at high energy
colliders. One interesting aspect of these models is that they may affect the physics of the electroweak
sector in such a remarkable way, that can be probed in various present and future experiments.

“‘E-mail: fernando@ift unesp.br
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SU.(3)® SUL(2)® Ur(1)
W (1,3,0)
B (1,1,0)
¢ (1,2, 1)
Z (1,2,—1)
e (1,1,2)
Qa (3,2,1/3)
us (3,1,-4/3)
dg (3,1,2/3)
" Table I:

1.1 Standard Model Basics

The Standard Model is-a Yang-Mills theory based on the SU(3) ® SU(2) ® U(1) gauge group, and
described by the field represeniations in table 1, where all fermions are left-handed. The fundamental
constituents of matter - quarks and leptons - interact mainly due to the exchange of the gauge bosons.
In order to comply with the fact that the weak interaction is mediated by massive vector bosons, the W
and the Z, the gauge symmetry has to be broken. The way to accomplish this is through the nonzero
vacuum expectation value (VEV)

(&) =/ (1
of the neutral component of a complex Higgs scalar doublet ¢
¢t '
¢ = . (2)
¢ :

The surviving electrically neutral Higgs scalar, the so-called Standard Mode! Higgs boson, has a mass

given by

my o< VA ($) (3)
where X is the quartic coupling in the Higgs potential. A great effort has been devoted in designing a
search for the Standard Model Higgs boson. This is one of the main open questions of the Standard
Model [2]..As a result, the massless vector boson A, is thie photon, while Z, has a mass

gqu
= 4
mz 2cos Gw ( )

while the charged gauge bosons W# = 715(W1 F iW3) have a mass

miy = 2. (5)
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Figure 1: Theoretical Bounds on the Standard Model Higgs Boson.

The W and the Z gauge bosons have been discovered at CERN. The properties of the Z have now been
precisely determined by the LEP experiments [3], while those of the W mostly come from CERN and
Fermilab [4]. The measured gauge boson mass values agree well with the clectroweak theory predictions,
once radiative corrections are included. The success of the LEP experiments in the precise determination
of the electroweak paramelers has been so remarkable that just the internal consistency of the various
measurements is sufficient to provide a very good determination of the mass of the top quark m, = 180+14
GeV, with the error largely due to the lack of knowledge of the Higgs boson mass [3]. This is in excellent
agreement with the direct measurement at Fermilab [4]. In the same way, the agreement among the
theoretical and experimental Ry, and R, values are improved (5].

The total Z decay width, as well as its partial widths have been precisely measured by the LEP collabo-
rations, leaving little room for new physics. Of special interest to us is the measurcment of the invisible
Z width [6]

T? =499.9 + 2.5 McV : (6)

iny
which can be translated into a measurement of the cffective number of Standard Model neutrino gen-

crations. This places a very stringent constraint on models of neutrino mass where lepton number is a
global symmetry spontaneously broken at low energies.

1.2 Standard Model Higgs

Unfortunately both the mass and self-coupling strengths of the Higgs boson are undetermined by the
theory. However, an upper bound on the Higgs boson mass depending on the top quark mass through
the renormalization group equalion, is illustrated in Fig. (1).
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Figure 2: Standard Model Higgs boson search potential at LEP200.

The limit varies from my <600 GeV down tb muS$200 GeV if one also assumes that there is no new
physics below M Planek [7]

From the analysis of the data collected at LEP one can place the following lower limit on the Standard

Model Higgs boson mass [8]
mp 265 GeV (7)

As illustrated in Fig. (2}, if lighter than ~ £00 GeV, the Standard Model Higgs boson should be found at
LEP 200 [9). The minimum required luminosity per experiment, in pb~!, for a 50 Higgs boson discovery
is displayed in the solid line of Fig. (2), while the corresponding 95% C.L. exclusion limit is shown as
dashed. Heavier Higgs boson can be probed at higher centre-of-mass energies, such as at NLC, or at the
LHC. Unfortunately the prospects for finding the Higgs boson in the intermediate mass range between
mz and 2mz at the LHC are not too optimistic (11]. Above this mass the detection would be very easy,
through the 4-lepton signal [11]. In addition to testing the Standard Model, one has the possibility of
constraining the value of the Higgs mass, which enters through the radiative corrections to the Z and W
boson self-energies. Combining the most recent LEP and SLC electroweak results {12] with the recent
top-quark mass measurement at the Tevatron [4], a weak preference is found for a light Higgs boson mass
of order mz [12]. Fig. (3) illustrate a typical x? Standard Model fit constraining the Standard Model
Higgs mass. The solid line includes all LEP, SLD, pp and deep inelastic neutrino data. The dashed one
excludes the measurements of the Z width into bb and cé. The dotted line corresponds to the LEP data
including Rj and R,. In all cases one includes the direct top mass determination from the Tevatron.

2 Supersymmetry

The physics associated to the electroweak breaking sector plays a central role in particle physics. One
of the most important physics motivations in favour of supersymmetry is the fact that it is the only
symmetry one knows which can stabilize the elementary Higgs boson mass with respect to divergent
radiative corrections. These would be expected in any fundamental unified theory including gravity, or
simply encompassing the electroweak and strong interactions. Either way one has a very large mass
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Figure 3: Standard Model Higgs mass determination from precision data.

scale - the Planck scale or the grand unification scale - which can mix through loops and destabilize
the electroweak scale in eq. (1). This is the so-called hierarchy problem, which can be solved through
supersymmetry [13], to the extent that it holds at TeV energies and helps to cancel the loops.

Supersymmetry is also theoretically attractive as it is the most general symmetry consistent with the
basic principles of field theory [14]. Unlike most symmetries discussed in particle physics, that relate
particles of the same spin, SUSY relates bosons to fermions, and vice-versa (see table).

Finally, the experimental determination of gauge couplings at low cnergies plays in favour of the existence
of SUSY particles ! at the TeV scale. This hint is provided by the joining of these gauge couplings at high
energies of order of the unification scale 10'® GeV [15] as illustrated in Fig. (4) [16). For these reasons
the study of supersymmetric extensions of the Standard Model has attracted a lot of effort, including the
theoretical understanding of supersymmetric models as well as the simulation of the expected signals at
present and future particle colliders.

2.1 The MSSM

The simplest supersymmetric model is the so-called Minimal Supersymmetric Standard Model (MSSM)
(17], defined by the particle content given in table. and supplemented by the hypothesis that the basic
interactions conserve a discrete R parity (R,) symmetry, under which all Standard Model particles are
even while their partners are odd. As a result the interactions of the MSSM are such that all SUSY
particles must be only produced in pairs, with the lightest of them (LSP)'being absolutely stable.

The presence of two doublets of Higgs superfields is required by supersymmetry, anomaly cancellation,

'For definiteness, one assumes here those present in the so-calied MSSM.
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and in order to give different masses to both up and down-type charged fermions.
With this assumption the MSSM is characterised by the following superpotential,
Wo = can [y LS BV ES + W, QB DS + K QR AL0E + whE A1) ®)

For our subsequent discussion we need the chargino and neutralino mass matrices. The form of the
chargino mass matrix is given by

| HF W+
H-d‘ In ﬁggvd (9)

—iW- V220, My
Two matrices U and V are needed to diagonalize the 2 x 2 (non-symmetric) chargino mass matrix
Xt = Vit (10)
x; = Uy (11)
where ¢ = (HF, —iW+) and Y7 = (H-J', —iW-).

On the other hand the neutralino mass matrix is 4 x 4 and has the following form

H, Hy —-iWy -iB

H, 0 —p =gV Qi1Vy
Hq —1 0 g2vd  —Givd (12)
'—iﬁﬁ — g2ty Tvq Arfz 0

-iB | gvu —qwa 0 M
This matrix is diagonalized by a 4 x 4 unitary mairix N,
X} = Ni? (13)
where (,b? = (Hy, Hy, —iWs, -iB), (the indices ¢ and j run from 1 to 4).
In the above two equations M) 2 denote the supersymmetry breaking gaugino mass parameters and g o are

the SU(2) @ U(1) gauge couplings divided by vZ. We assume the canonical relation My /M; = FtanZ6w .
Typical values for the SUSY paramelers u, Ms and tan g lie in the range given by

—1000GeV < g < 1000GeV ; 20GeV < M < 1000GeV ; 1< tang < 40 (14)

Adding the soft supersymmetry breaking scalar mass terms to the supersymmetric gauge interactions(D
lerms) and the supersymmetric Yukawa interactions following from ¢q. (8) one can wrile the scalar
poiential characterising the MSSM. Its gencral form may be written schematically as

oW
Vmssm = |:9z_

2
+ 1o [AW3 + BWp + hc] + Y m? |z[* + aljHu|* - |H4l?)? (15)
i
where W3 and W5 denote the cubic and quadratic parts of the superpotential, o = 91"592 and z; denotes
any necutral scalar field in the theory. The parameter A is the cubic soft breaking parameter and B=A-1
is the corresponding quadratic one [17].
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Figure 5: Radiatively corrected MSSM lightest Higgs mass versus SUSY scale.

2.2 The MSSM Higgs Sector

Due to the presence of two Higgs boson doublets in the MSSM there are two physical CP-even neutral
Higgs scalars (h, H), a CP-odd neutral scalar particle, A, and a physical electrically charged scalar boson
HZ%. At the tree level the mass of the lightest CP-even ncutral Higgs beson h can be calculated in terms
of two parameters, which may be chosen as m, and the ratio of Higgs VEVS tan 3 [18].

There i3 an upper bound on the lightest CP even Higgs boson mass due to the special structure of the
MSSM Higgs potential. At the tree level, this bound is exactly the Z mass. However, it is sensitive to
radiative corrections, which depend on the soft supersymmetry breaking parameters [19].

The full one-loop radiatively corrected & mass is given in [20) and [21]. A simple procedure for accurately
approximating m; was described by Haber [22]. We assume that the ratio of Higgs VEVS lies in the
range 1 < tanf8 < B¢ and that the scale characterizing supersymmetry breaking Mg is less than 2 TeV.
This scale can be roughly regarded as a common supersymmetric scalar mass. A large Mg value takes
into account the possibility of large radiative corrections to the lightest CP even Higgs boson mass. We
used a top quark mass in the range m; = 175 £ 35 GeV which covers the region indicated by the recent
experimental data from the Tevatron. In Fig. (5) we illustrate the dependence of the radiatively corrected
lightest CP-even Higgs mass with respect to Mg for tang = 1.5. The one-loop leading logarithmic
computation is compared with the RG-improved result which was obtained by numerical analysis and by
using the simple analytic result [22].

The dependence of the upper bound on the lightest CP-even Higgs boson mass in the MSSM with respect
to the top quark mass is given by the solid line in Fig. (6). The dashed line shows the corresponding
result for the special case of b-r unification under several assumptions, explained in [21). The complete
spectrum of MSSM scalar boson masses, including the h, H, A and H* masses is shown in Fig. (7) from
ref. [21]. The dashed, solid and dot-dashed lines refer to h, H and H* masses respectively. The region
of interest is above 40 GeV, which is roughly the lower limit on the A mass accessible at LEP1. On the
other hand, onc sees that for m4 above 200 GeV or so there is a very slow variation in my,.



16 XVII Encontro Nacional de Particulas e Campos

176

150

126

IIIIIIIIII'II

m, [GeV]

7 |- 'I'
- 'T

80
140 180 180 200

Mror [GeV)

Figure 6: Radiatively corrected MSSM lightest Higgs mass versus m;.

250

200

150

mass [GeV)

100

60
60 100 150 200 250

m, [Gev}]

Figure 7: Radiatively corrected MSSM Higgs boson masses.



F. de Campos 17

tanp
.S
:

N aquee x|nviniing
Tpical miting

Mpximal mixing
10 e

o 50 100 150 200 250 300 350 400
m, (GeV/c?)

Figure 8: MSSM Higgs boson discovery contours at LEP200.

The MSSM Higgs boson discovery contours at LEP200 are illustrated in Fig. (8) [10]. This plot corre-
sponds to centre-of-mass energies 192 GeV, substantially better for Higgs bosons searches at LEP than
175 GeV, and for three stop quark mixing assumptions A; = 0 and |u| < Ms (no mixing), 4; = Mg and
i = — Mg (typical mixing), and A, = v6Mys and |u| <€ Ms (maximal mixing), with Mg = 1 TeV.

2.3 Limits on SUSY Particles

So far all searches for supersymmetric particles have been negative. The best existing search site for the
weakly interacting SUSY particles is the LEP accelerator. The most recent results follow from searches
performed at 130 and 136 GeV centre-of-mass energies and supersede some of the previous LEP1 results.

From the non-observation of acoplanar lepton pairs, hadronic events with isolated leptons, hadronic
events with missing cnergy, and acoplanar jet topologies, the Aleph collaboration has recently placed the
following limits [8]:

I my+ 2 65 GeV If the chargino is mostly gaugino this assumes that the sneutrino mass exceeds

200 GeV and, when it is mostly Higgsino, it assumes that the chargino-neutralino mass difference
exceeds 10 GeV.

2 The searches for neutralinos at Aleph lead to the excluded region in Fig. (9), for the case y =1
TeV and tanf8 = 2. Note that it depends on the assumption of universal soft-breaking gaugino
masses and on the value of the selectron mass. The limits also substantially depend on the assumed
decay modes of the heavier neutralino.

3 Searches for dilepton + missing momentum events have been performed by the LEP collaborations.
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The Aleph data give the following limit [8]
m,; 2 60GeV (16)

For the smuons and staus there is no improvement over the 45 GeV LEP1 limit. For sneutrinos,
the limit is worsc than for charged sleptons.

The limits on squark and gluino masses come mostly from hadron collisions [23]. These limits are
correlated. For a very heavy gluino, one has mz=2100 GeV for the lower limit on the squarks, with a
weaker limit on the top squark. On the other hand, in the limit of very heavy squarks one gets m;=2140
GeV as the corresponding limit on the gluino mass. The limits given depend on simplifying assumptions,
and some of them may become stronger if one adopts specific parameter choices in the MSSM. On the
other hand, they may get weaker in extended models.

The limits for SUSY fermion searches may be combined in order to determine the shape of the corre-
sponding allowed region of region of SUSY parameters u and M,, for given choices of the ratio of Higgs
doublet VEVS tan 3, as shown in Fig. (10).

The region excluded by the chargino search is the shaded region, while the dashed linc indicates the
previous LEP1 region. The slepton masses are assumed to be 500 GeV. The dark area corresponds to
the case that the chargino is lighter than all neutralines. The searches for neutralinos at Aleph lead Lo
the hatched excluded region displayed in Fig. (9), for the case py = I TeV and tanf8 = 2.

In short, there is still a very large domain of parameters where SUSY would be a meaningful symmetry.
From this point of view it is of great interest to look for its possible effects at higher energies, such as
will be accessible at the LHC and other fulure elementary particle accelerators such as the NLC.
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An important assumption underlying all SUSY searches conducted so far, is that of R parity conserva-
tion. This assumption dictates that all SUSY particles must be produced in pairs, the lightest of these
(LSP), typically a neutralino, being absolutely stable. Thus the signal associated to the LSP is missing
momentum. These properties have been taken as the basis of all searches of SUSY particles.

Unfortunately there is no clue as to how SUSY is realized. Whether or not R parity is conserved is an
important dynamical issue. However, for all we know so far, R parity conservation may very well break
down at some level.

Present SUSY particle search strategies are not adequate for the analysis of extended models where
SUSY is realized with broken R parity. For example, if R parity is broken, it would be possible to probe
SUSY even at the LEP1 energies through new signatures, such as single SUSY particle production [24].
Therefore one needs to re-analyse the existing data in order to place limits on these models.

2.4 Explicit and Spontaneous R Parity Violation

The minimal supersymmetric extension of the SU(2) ® U{1) theory in general violates lepton and baryon
number conservation. Indeed, SU(2) @ U(1) gauge invariance and SUSY are consistent with adding to
the basic supcrpotential, ¢q. {8), many Yukawa terms that violate lepton number conservation, such as

Wgr=¢a [A,‘jki?faggf + )\:ka:fégbf + Eii:?ﬁz] (17)
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Here i,j,k denote flavour indices and A is anti-symmetric in i,j. Similarly, one could add terms such as
UcDeDe, as they are consistent with all symmetries of the Standard Model, plus supersymmetry. The
presence of such terms, along with those in eq. (17), will lead to baryon number violating processes
such as proton decay. In their presence R parity symmetry is broken explicitly, as can easily be checked.
There are several constraints on these couplings, some of which are quite siringent [25]. Recent results
by the Aleph collaboration has placed limits on explicitly broken R-parity models [26]. One normally
forbids these terms by hand, invoking R parity conservation. It is possible, however, that R parity is
explicitly broken only by a subset of these terms, at a sizeable level, yet fully consistent with observation.
The missing terms could arise by imposing some global and/or discrete symmetry. Moreover, explicit Ry
violating interactions could be tolerated in the presence of a mechanism that could generate a nonzero
baryon asymmetry at low energy, as suggested in [27].

In Spontaneous R Parity Violation scenarios the breaking of R-parity is driven by right-handed isosinglet
sneutrino vacuum expectation values (VEVS) [28, 29], so that the associated Goldstone boson (Majoron)
i8 mostly singlet. As a result the Z does not decay by Majoron emission, in agreement with LEP
observations [3).

Here we focus on what is the conceplually simplest model for Spontaneous R Parity Violation, in which
two SU(2)@U(1) singlet leptons, instead of one, are added in cach family [28] The simplicity of the model
follows from the fact that the magnitude of all R Parity violating effects is strictly corrclated to the mass
of the tau neutrino. We will focus on the simplest model and start by recalling its main ingredients.
Indeed, many of the phenomenological features relevant for the accelerator studies already emerge in an
effective model where the spontancous violation of R parity is reproduced through a the addition of the
explicit bilinear superpotential term in eq. {17) [30).

The superpotential is given by
huQHLWUC + hgHiQD® + holHES + (hoH Hy — €2)® + b H, W + h®SV° + h.c. (18)

where we have omitted the bhats in the superficlds, as well as generation space indices in the coupling
malrices Ay, hg, he, by, h. This superpotential conserves {otal lepton number and R parity. The superfields
(®,v5,S;) are singlets under SU(2) ® U(1) and carry a conserved leplon number assigned as (0,-1,1),
respectively. These additional singlets v, S [31] and & [32] may drive the spontancous violation of R
parity in the model [28). This leads to the existence of a Majoron given by the imaginary part of

2
v vy . Ug- vs &
ﬁ%(quu - Ude) + ‘7"1 - V”cf + T}?'S'r (19)

where the isosinglel VEVS
v = (Prr) , vs=($r) (20)
with V = /v + v2 characterize R-parity or lepton number breaking and the isodoublet VEVS

vy = (Hu) , va = {(Hg) (21)

drive electroweak breaking and the fermion masses. The combination #? = v2 + v + vZ is fixed by the
W,Z masses. Finally, there is a small sced of R parity breaking in the doublet sector, i.c.

v = {Vpr) (22)
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whose magnitude is now related to the Yukawa coupling h,. Since this vanishes as h, — 0, we can
naturally obey the limits from stellar energy loss [33].

The form of the chargino mass matrix is common to a wide class of SU(2) ® U(1) SUSY models with
spontaneously broken R parity. It is given by

ey HE —iW+
e:- heijvg  —hvijvr; V292uLi (23)
Hy | —heijvrs 2 V29204
—iW- 0 V2gev, M,
Two matrices U and V are needed to diagonalize the 5 x 5 (non-symmetric) chargino mass matrix
X = Vi ' (24)
xi =Uy¥; (25)

where the indices i and j run from 1 to 5 and ¢f = (e} ef,ef, HY,—iW+) and ¥; = (e7,e5,€3,
Hy,—iW-).

Under reasonable approximations, we can truncate the neutralino mass matrix so as to obtain an effective
7 x T matrix of the following form [28]

72 0 hm'jURj 1] J2VL —mVLi
H, | huijvn; 0 ~B  —GVy  G1Vy (26)
Hy 0 —p 0 g4 —givd
—iW3 | gavri  —gavu a4 My 0
—-iB [ -qvzi g1 -—qiva O M
This matrix is diagonalized by a 7 x 7 unitary matrix N,
X} = Nig¥§ | (27)

where 1,1)5,-' = (v, iy, Hy, —iWa, —i13), with v; denoting weak-eigenstate neutrinos (the indices ¢ and j run
from 1 to 7).

Here we make the same parameter assumptions and conventions as used in the MSSM. Typical values
for the SUSY parameters u and M, are as before. The parameters h,; 3 lie in the range given by

10710 < hyis, by < 1071 105 < hyg3 < 107! (28)
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while the expectation values are chosen as

VL =Vr3 = 1060 MeV VL) = VL2 = 0
YR = vgs = 1000 GeV vp = vgz = 0 (29)
vg = 1000 GeV IStanﬁ=%:~S$—§

The diagonalization of eq. (26) gives risc to the mixing of the neutralinos with the neutrinos, leading to
R-parity violating gauge couplings and to neutrino masses, mainly the v, mass. Although the v, can be
quite massive, it is perfectly consistent with cosmology [34], including primordial nucleosynthesis, as it
can both decay through Majoron emission v, — v, + J [35, 36] duc to flavour non-diagonal couplings
such as h, 2, as well as annihilate to a Majoron pair due to the diagonal coupling 4,33 [37].

In what concerns the R-parity breaking couplings, the largest ones correspond to the case when the
standard lepton belongs to the third family. These couplings can reach a few per cent or so for mass
values accessible in accelerator studies [38).

2.5 Implications of Spontaneous R Parity Breaking
2.5.1 Invisibly Decaying Higgs boson searches in the ete™ - HZ and e*¢™ — H A channels

The mass spectrum for both CP-even and CP-odd scalar bosons was studied numerically in this model,
both at the trec level and after including radiative corrections (39]. For centre-of-mass encergics attainable
cither at LEP200, LHC or NLC, not all of the scalar bosons are kinematically accessible. Typically
one or two of the CP-even ones {h, H) will be accessible and one of the massive CP-odd (A} scalar
bosons. Although the Majoron has very tiny couplings to matter and gauge bosons, it can have significant
couplings to the Higgs bosons, leading to the possibility that the Higgs boson may decay with a substantial
branching ratio into the channel [40]

h=aJ +J (30)

Since the Majoron J is weakly coupled to Lhe rest of the particles, once produced in the accelerator, it
will escape dctection, leading to a missing momentum signal. Since the strategies to search for the Higgs
boson depend heavily on its expected decay pattern, the presence of such an invisible decay signal affects
them in a very remarkable way.

The production and subsequent decay of a Higgs boson which may decay visibly or invisibly via the
process ete™ — H Z production involves three independent parameters: its mass My, its coupling
strength to the Z boson, normalized by that of the Standard Model, €2, and its invisible decay branching
ratio. The LEP searches for various cxotic channels can be used in order to determine the regions in
parameter space that are alrcady ruled out, as described in ref. [41]. The cxclusion contour in the planc
¢® v8. My, can be found in ref. [41].

The invisible decay of the Higgs boson may also aflect the strategies for searches at higher encrgies.
For example, the ranges of parameters that can be covered by LEP200 searches for various integrated
luminositics and centre-of-mass energies have been investigated [42], and the results are illustrated in Fig.
(11). Similar analysis can be made for the case of a high cnergy linear e¥e™ collider (NLC) [43], as well as
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Figure 11: Higgs mass and coupling that can be explored at LEP200 in ete™ — H Z production,

the LHC {44]. In the latter case the invisible decay has an advantage for searches in the intermediale mass
region, namely, that the invisible decay branching ratio can be of order 1, while the standard H — yy
decay branching ratio in either the SM or the MSSM ig rather small, ¢ (10~3). Although it can lead to
sizeable signals, the invisible decay has the disadvantage that the Higgs mass can not be reconstructed
at a hadron collider. In any case, Higgs boson masses in this range can be probed in less than a year
LHC running. However, the NLC would be a cleaner machine for invisibly decaying Higgs boson searches
beyond the LEP200 reach.

Due to the existence of two SU(2) ® U(1) doublets of scalar bosons, there is another mode of production
of invisibly decaying Higgs bosons, in which a CP-cven Higgs boson is produced in association with a
massive CP-odd scalar.

Present LEP1 limits on the corresponding coupling strength parameter were given in [45]. The region of
parameters that can be explored at LEP200 is shown in Fig. (12), as a function of the A and H masses,
for the case of a visibly decaying A boson and an invisibly decaying H boson.

2.6 The Fermionic Sector

In the MSSM all supersymnetric particles are always produced in pairs. If R parity is broken, they may
be singly-produced. As we have scen, in models with spontaneous R parity breaking the mixing of the
standard leptons with the supersymmetric charginos and neutralinos leads to the existence of R-parity
violating couplingg in the Lagrangian when written in terms of the mass eigenstates. It is in the couplings
of the W and the Z where the main R-parity violating effects reside [38]. As a result one is no longer
forced to produce the SUSY particles in pairs. For examnple a SUSY fermion such as a chargino or a
neutralino may be produced in pairs (standard MSSM production) as well as singly, in association with
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Figure 12: Higgs masses and coupling that can be probed at LEP200 in ete™ — H A production.

a 7 or v, {R-parity breaking single production).

On the other hand the RPSUSY model rates for pair production of SUSY particles are similar to those in
the MSSM. However, in contrast to the MSSM, where all supersymmetric particles have cascade decays
finishing in the LSP which is normally a neutralino, in the RPSUSY case there are new decay channels and
the supersymmetric particles can decay directly to the standard states breaking R-parity. Alternatively,
they may decay through R-parity conserving cascade decays that will finish in the lightest neutralino,
which then decays. This way one can generate novel supersymmetric signatures in R parity violating
models even when the single production SUSY particle cross sections are small.

The lightest neutralino can decay to standard states breaking R-parity. If its mass is lower than the mass
of the gauge bosons there are three-body decays such as

X' = viff X lifufa (31)

where the first decays are mediated by the neutral current, while the second are charged-current mediated.
Here { denotes any fermion, while f, and f; denote up or down-type fermions, respectively.

If the neutralino is heavier than the W it may have the two body decays
XX oW oz (32)

The explicit expressions for the widths are given in [38]. Neutralinos of mass accessible at LEP have
mostly three-body decay modes mediated by charged and neutral currents. The only exception will be

the two-body Majoron decay, characteristic of the simplest spontaneous R parity breaking models eq.
(33). '

In SU(2)®@U(1) models of spontancous breaking of R-parity the LSP is not the neutralino, but rather the
Majoron, which is massless and therefore stable The existence of the Majoron implies that in SU (2)yeU(1)
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spontaneously broken R-parity, the neutralino can always decay invisibly to

xo = v;J (33)

For definiteness let us consider the case of the lightest neutralino and chargino, which one expects could
be the earliest-produced supersymmetric particles. Here are some examples of signals related to their
production in the spontaneously broken R parity (RPSUSY) models:

o Single chargino production in Z decays

Z = xErF (34)

where the lightest chargino mass is assumed to be smaller than the Z mass. This decay is char-
acteristic of spontaneous R parity violation. In the simplest models, the magnitude of R parity
violation is correlated with the nonzero value of the ¢, mass and is restricted by a variety of exper-
iments. Nevertheless the R parity violating 2 decay branching ratios can easily exceed 1078 and
thus lie within the sensitivilies of the LEP experiments performed at the Z pole. The maximum
branching ratio allowed by other experiments and by theory is directly correlated with m,, which
is a characteristic feature of the model of [28].

o Single neutralino production in Z decays

Z = X%, (35) -

To the extent that y decays into charged particles are dominant the neutralino is not necessarily
an origin of events with missing energy, as in the MSSM. Thus the decay Z — x°v, would give rise
to zen events, similar to those of the MSSM, bul where Lthe missing energy is carried by the 2, and
the visible tracks come from the decays of the y. The scarches for single particle SUSY production
at LEP1 should place restrictions on the parameter space available for studies at LEP200 encrgies
(46].

s Pair production of the lightest neutralino in Z decays, followed by neutralino decays.
Even if its single production cross section is small, the x x pair production process at LEP will
gencrate zen events where one x decays visibly and the other invisibly. The corresponding zen-event
rates can therefore be larger than in the MSSM and may occur even if there is no energy to produce
the next-to-lightest neutralino x/.

The allowed rates for single Majoron emitling u4 and 7 decays have been determined in [47] and are
compatible with presenit experimental sensitivities (6]. An illustration of the 1, mass dependence of
the allowed decay branching ratios can be found in [47]. This example also illustrates how the search
for rarc decays can be a more sensitive probe of neutrino properties than the more direct searches for
neutrino masses, and therefore complementary. Moreover, they are ideally studied at a tau-charm factory
(48, 49].
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Figure 13: Sneutrino decay branching ratios in the RPSUSY model.

2.7 R Parity Breaking Scalar Boson Decays

Explicit violation of R parity in the minimal supersymmetric model through bilincar terms f,ﬁu plays
an important role in the scalar sector [30]. The presence of such bilinear superpotential term will induce
the mixing of sleptons with Higgs bosons, thus affecting the decays of both.

The most illustrative example of this is the possibility that, below the threshold for SUSY particle
production, the sneutrino mostly decays to Standard Model particles, as shown in Fig. (13} However,
even when the sneutrino is not the lightest SUSY particle, there may be a sizeable branching ratio
for the R parity violating sneutrino decays, even for a moderately small value of the Higgsino-lepton
superpotential mixing parameters ¢;.

As shown in [30] this may lead also to sizeable branching ratio for the supersymmetric Higgs boson decay
mode H — x£, where x denotes the lightest supersymmetric particle - LSP - or a chargino, and £ is either
aneutrino or a tau lepton. This R parity violating Higgs boson decay mode may compete favourably with
the conventional decay H — bb, at least for some ranges of parameters of the model. In these estimates
one has taken into account the relevant constraints on R parity violation, as well as those coming from
SUSY particle searches.
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Teoria de campos em espagos curvos:
Nova luz para velhos problemas.

George E.A. Matsas
Instituto de Fisicu Tedrica
Universidade Estadual Paulista
Rua Pamplona 145
01405-900 - Sao Paule, SP°, Brasil

Revisitamos alguns cfeitos preditos pela gravitagao semi-cldssica ¢ em particular rediscu-
timos neste contexto o conceito de particula elementar. Uma breve introdug¢iio histérica
¢ incluida para situar a ‘Teoria de Campos em Espagos Curvos no cendrio da gravitagio
cldssica. Encerramos com alguns resultados recentes que dizem respeito i solugao do prob-
lerna se cargas estaticas em campos gravitacionais também ecstaticos irradiam.

Prefacio

O presente artigo foi parcialinente inspirado cm. minha palestra entitulada “Bremsstraklung, ecfeito Davies-
Unruh, radiagdo Hawking. Gravitagdo semi-cldssica: Nova luz para velhos problemas” proferida no XIII Encontro
Nacional de Particulas ¢ Camnpos etn Caxambu-1992 e parciahnente em minha palestra entitulada “Solution to
the paradoz whether or nof static charges in gravitational ficlds rediale” proferida no XVI1 Encontro Nacional de
Particulas e Campos e Serra Negra-1996. Isso ine pareceu propicio ja que a palestra de Serra Negra é-uma
continuagio natural daquela proferida em Caxambu, cujos proceedings nunca forarn publicados. De fato, a presente
contribuigao foi construida sobre uma versio preparada ein 92 ¢ acrescida da se¢io T que trata do paradoxo se
cargas eslaticas em campos gravitacionais também estdticos irradiam ou nio.
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1 Introducgao

A gravitagdo semi-classica, também conhecida como Teoria de Campos em Espagos Curvos, pretende ser mais um
passo na construgio de uma teoria quantica da gravitagho. Sua géneses remonta aos fins dos anos 60 quandoe L.
Parker e Ya.B. Zel’dovich decidiram analisar a criagdo de particulas em Cosmologia (veja por exemplo [1] e suas
rcferencias para uma abrangente revisio.) Em sintese, a idéia resume-se em fixar um espago-tempo! de fundo onde
se efetua a quantizacio dos campos. As propriedades geownéiricas da variedade podem ser artificialinente dadas ou
definidas pelas cquacdes de Einstein, G, = 877}, onde G, é o tensor de Linstein, e T, ¢ o tensor de energia
momento. Restringindo-nos, por simplicidade, & solugdo de védcuo, recscrevenos as equagdes de Einstein coino

C";w =0. (1)

Contudo, apesar de no vicuo o tensor de energia momento clissice ser nulo, a curvatura c¢/ou topologia do
espago podem perturbar a flutuagio do vacuo quintico, fazendo com que em geral {0|7},,|0) seja diferente de zero.
Esse tipo de fendmeno constitui uma espécie de efeito Casimnir gravitacional. E natural entio se perguntar qual a
auto-reagio do valor csperado no vicno do tensor de energia momento sobre a geometria. A mancira mais natural
de se introduzir correcdes semi-classicas na métrica é conseguida modificando-se (1) para

Gup = {014, ]0). (2)

Para cainpos livres, por exemplo, o lado direito de (2) é de ordem k, o que evidentemente induz corregdes quanticas
na métrica. Note que sendo (T,,) = (0|7}, |0) de origem quéntica, o valor esperado no vacuo do tensor de energia
momento nio precisa satisfazer as condicdes classicas de positividade de energia, usadas na maior parte dos teoremas
de singularidade deduzidos por Hawking ¢ Penrose via técnicas globais. lsso permite a cvasao de tmportantes
resultados por eles demonstrados no contexto classico, assim como veremos depois.

Apesar de nao podermos esperar que a validade da teoria possa ser extrapolada para atém da escala de Planck,
a gravitagio semi-classica ja tem antecipado efcitos de origem puramente quantica em gravitagdo, tal como a
radiagao Hawking sobre a qual voltarcinos a falar hrevemente nais adiante®. A existéncia de um mecanismo no
yual buracos negros evaporan levando possivelmente ao sen desaparecimento® foi uina predigio l_lot,ével [3], ¢ inudon
completamente o conceito de indestrutibilidade que a teoria cldssica conferia aos buracos negros. Isso levou muitos
pesquisadores a analisarem mais cuidadosamente a construgiio de teorias de campos em diversas variedades ndo
triviais. Com iss0, o estudo da Teoria de Campos em Espagos Curvos acabou enriquecendo em conteido velhos
conceitos. km especial, notou-s¢ que o conceito de particula elenmentar é forteinente dependente do referencial no
qual o campo é quantizado. Tal fato pode ser ilustrado pelo assim chamnado efeito Davies-Unruh [4]. Suponha
um detetor acelerado no vacuo de Minkowski.? Ao contrdrio do que esperado inicialinente, tal detetor acusa a
presenga dec particulas. Mais especificamente, um detetor com aceleragio prépria constante no vicuo de Minkowski
deteta um banho térmico de particulas caracterizado por uma lemperatura proporcional a sua aceleragao prépria.,
Voltaremos a isso has segoes seguintes.

O objetivo principal desta palestra é o de enfalizar as principais conquistas na drea, disentindo rapidamente
ao final alguns novos resuitados. Na secio 2 farcmos um breve (¢ incompleto) histérico de alguns resultados da
Relatividade Geral como inotivagio a Teoria de Campos em Espagos Curvos. P’ara tanto, enfatizaremos a fisica
de buracos negros como paradigma guia. Na seqio 3 serd evidenciado no contexto cldssico como a estrutura da
variedade influencia na construgao de teorias de campos. Na seqio 4 veremos que a existéncia de simetrias temporais
sdo ¢ruciais para o conceito de particula elementar. Dedicaremos a socao 3 para discutir mais detalhadamente o
cleito Davies-Tinruh. Na segao § responderenmios a questiio se cargas uniformeniente aceleradas irradiam com respeito

! Formalmente definimos o espago-lempo comu uma variedade M munida de wna métrica Lorentziana gq, [2]. Intuitivamente uma
varicdade é uina superficie de dimensan n que localmente possui as propriedades do H™. No espago de Minkowski, A estd associado a
RY ¢ gap A métrica de Lorentz 7,-

2 Atualmente tem sido uma pratica comum se usar o efeito Hawking como um teste a baixas encrgias pars possiveis teorias quanticas
de gravitagao

20s estigios finais da evaporacao de buracos negros tem sido fonte de especulagiu. Nao é claro se buracos evaporam completamente
ou 5¢ permanece alguma estrutura estavel ao final. Apenas uma teoria quintica completa da gravitagio poderia trazer uma resposta.

*0 vicuo de Minkowski é o ¢stado no qual obarervadores inercinis nao medem a presenga de particulas.
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a observadores em co-movimento. Finalmente na secio 7 abordaremos o problema se cargas estdticas em campos
- . . . P . . . , s . - o -~ o
gravitacionais também estiticos irradiam. Comentirios finais serdo reservados para a segao 8.

2 Notas Histéricas

Pouco tempo depois de Einstein ter publicado suas equagbes para descrever o campo gravitacional no vicuo (1),
K. Schwarzschild as resolveu para o caso estatico ¢ com simetria esférica.® Q elemento de linha encontrado por
Schwarzschild

. . -1
ds® = (1 - ﬂ) di* — (1 - ﬂ"i) dr® — v (d6? 4 sin®0dg®) (1)
r

nio € apenas nnportante para o estudo do campo gravitacional ao redor da enorme maioria dos corpos celestes
que sao aproximadarnente esféricos, colo também descreve a solngao para buracos negros estaticos de massa A
que passaram a ser chamados buracos de Schwarzschild. Comuda. foi apenas em 1933 que Lemaiire reconhecen
(ne o raio de Schwarzschild r, = 2M nao era uma singularidade fisica [6). A 1inica singularidade fisica presente se
encontra em r =  onde se “concentra” a massa do buraco negro. O raio de Schwarzschild define a regiao denominada
horizonte de eventos deulro da qual os cones de luz encontram-se tio distorcidos que nada pode escapar.® Qualquer
fonte de energia adentrando o horizonte, inevitaveliente colapsa para o centro.

Depois de um periodo de relativa laténcia, a gravitagdo voltou a ganhar iinpulso na década de 60. Urna solugao
de vacuo descrevendo buracos negros estacionarios axialmente simétricos, caracterizados por sua massa e nioniento
angular, foi descoberto por Kerr em 1963, Com efeito, uma séric de 1coremas demmonstrados entre 1967 ¢ 1975
particulamente por Israel, Carter, llawking ¢ Robinson mostraram que huracos negros estacionarios, derivados das
-50111(,‘50_'5 de vacuo Jas equagdes de Fiustein, devem ser tipo Kerr, ou s¢ja, sio caracterizados apenas por sua massa
¢ momento angular {(veja [7) e suas referéncias.) A generalizagao destes teoremas, conhecidos comno teoremas no-
hair, nos faz crer que buracos negros sio comnplataiente descritos por sua massa M, womento angular J ¢ carga
cléirica Q. Para evitarmos a presenga de singularidades nuas; (i.c. ndo vestidas de win horizonte e« eventos,) tais
pardinetros devem satisfazer M2 > Q? + J2/M2

Neste mesino periodo Hawking e Penrose mosiraram que buracos negros, uma vez forimados, nio podem ser
destruidos ou se bifurcarem.” Finalmente em 1971 Hawking provou que num espaqo fortemnente predizivel assintot-
icamente, ¢ satisfazendo R,pk"k% > 0 para todo £ tipo luz,® a sota total da drca dos horizontes de evento nunca
decresce.

A drca do horizonte de eventos associado a um buraco negro de Kerr-Newmann (i.¢, caracterizado por sua massa
M, momento angular J e carga clétrica Q) é dada por [8§]

4y 1/2 '
A=dr |2M? - Q*+2M (M:' -Q* - %) . (2)
E interessante inverter (2) para isolar a massa
a_ A (4N (2, Q" Q@
M= —— oy - e - :
1 167+(A)(J+4)+,2 (3)
Diferenciando (3) obtemos
AM = =dA+Qd] +¢dQ, )

5Um espago-tempo & dito esfericamente simétrico se o grupo de isometrias contiver um subgrupo SO(3).

SDe maueira mais geral, buracos negros poden ser definidos em espugos assintoticamente planos, como B = M — J—(Tt), onde M
denota a variedade associada ao espago-tempe, ¢ J=(T+) ¢ o passade causal do infinito future nulo. O horizonte de evenlos H é definido
por M = J=(ITt) N0 M. O conceito de horizonte de eventos esta intimantente relacionado com o conceito de horizonte de Killing, i.e.
uma hipersuperficie nula com um campo Jde Killing €9 nortnal a hipersuperficie.

"De passagem comentamos que tanto este como o tesrema scguinle assuntem ue o espaco-tempo é fortemente predizivel assin-
toticamente, i.¢. todos os observadores externos a buracos negros ou sobre o horizante de eventos nao podem ser influenciados por
singularidades nuas. .

§Note que csta condigdo em conjunly com as equagies de Einstein implicant e Tapk®k® > 0.
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que relaciona a diferenga de massa entre dois buracos negros com pequenas difereugas de area, momento angular e
carga elétrica. A gravidade superficial ¢ definida por

[M2 - Q% — s2/aa?)'?

¢ = 4 , 3
K=dn 3 (5)
a frequéncia angular cono
amJ
= - 6
Q== (6)

e o potencial elétrico sobre o horizonte de cventos como

o=% [M +/MEo 0T = .ﬂjmrﬂ] . (7)

A semelhanga eutre (4) e a forma diferencial da prisneira lei da termodinamica nos faz associar a X /Br uma
grandeza tipo temperatura, ¢ a area A uma grandeza tipo entropia® [10]. O préprio Hawking, um ano depois, ao
estudar a quantizacio de campos no espago externo ao de estrelas colapsando mostrou que buracos negros irradiam
com uina temperatural!®

X

T=— (8)
27’
assun conlo observado no infinito'!, e fica associada uma entropia ao buraco negro de
: A
n‘)bn = T (9)

Especificamente no caso de Schwarzschild T = 1/87M e S = 47A % Foi com enorme surpresa que este resultado
foi recebido, pois ao contrario do que previsto classicamente, buracos negros poderiain eventualimente evaporar até
seu possivel desaparccimento. Outras consegiiencias marcantes sao a violagio de algumas leis de consevagio,!? ¢ »
generalizacio da segunda let da termodinamica que passa a ter o seguinte enunciado: Em qualquer processo fisico,
88’ >0, onde 8" = ¥ Snateria + Y. Stn- Swmuteria ¢ a cntropia terinodindrmica usual externa ao horizonte de eventos

e Spn € & entropia associada aos buracos negros.

3 Espaco-tempo e teorias de campos cldssicos

Neslta secdo pretendemos.evidenciar através de exernplos, como a estrutura da variedade determina e limita a
construgio da teoria de campos ainda a nivel classico. Para tanto snpomos um campo escalar real nio massivo
descrito pela equagdo de Klein-Gordon

O¢ = u. (1)

Suponha que a variedade M associada no espago-tempo (M, gqs) ¢ um 4-toro de lado espacial L ¢ temporal T
Entao se 77/ L? for irracional, (1) nio admite solugio.

Em contrapartida, se (M, gas) for globalinente hiperbdlico,'? com ¥ sendo wima superficie de Cauchy suave, entdo
a solugdo de (1) é um problema a valores iniciais bem posto, no seguinte sentido: Dadas fungdes suaves {dq, mo) de

®Note-se quie, segundo o teorema de Hawking, a drea tolal dos horizontes de evento nunca decresce, em perfeita analogia com s
entrapia totnl de um sistema termodinamico fechado. Contudo, antes de 19744, iss0 parecia apenas uma coincidéncia [o):

“It showld hewever be emphasized that K /87 and A are distinet from the temperature and entropy of the black hole.
It fact the effective cemperature of a black hole is absolute zero.”

WA gravidade superficial K ¢ definida come segue: Seja £ mn campo dv Killing normal ao hedzonte de I\'illing H. Entdo V*(£9¢,) =

. b
—2X£Y subre H. Também podemos escraver ignahnente K = lim oy (V n) onde V = yf—£q£9, a = \Juba,, e at V,_.ﬁ-r

HEin geral, a temperatura para wn autro observador serd Tioe = 7:@-:?
a

7Suponha que uma estrela com mimero leptanico {baridnics) nio nule cnlapse em um buraco negro. Pelos lcoremas de no-hair, nio
somente a infuormagio sobre estes ndmerns quanticos serda perdida, como também havera explicita violagao destes nimeras devido A
rariagio térmiica na qual o buraco evapara.

1303 canceito de “spago- l.ﬂnpu globalmente hiperbélico eatd inlimanente relucionado comt o de dominio de dependéncia. Seja £ wina
supetficie acronal,ie. [1{E)NE = 0. Definimos o dominio de dependéncia de 2 por D(Y) = {p € M| toda curva causal que passe por
p, intercepte ). Se () = A, entdo E ¢ dita wma superficie de Cauchy ¢ M globalmente hiperbdlica.
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ordem C sobre ¥, entio existe umna dnica solugio suave de (1} sobre M tal que |z = o, n°Vaé|z = mo, onde
n® é o campo vetorial normal a &

Fica claro assim que as propriedades da variedade de fundo influenciam na construgio das possiveis teorias de
campo mesmo a nivel clissico. Evidentemente isso deve se refletir na quantizagao como vercinos a seguir.

4 Particulas e teorias de campos

Antes de prosseguir devemos averiguar qual a dependéncia do conterido de particula de uma dada teoria de campos
com as simetrias temporais do espaco de fundo em questao. Para tanto, volieinos a analisar o campo escalar real
néo massivo no bem conhecido espago de Minkowski.!* Os modos normais de vibragao sio dados pela solugao de
0¢ = 0. Ondas planas uy = e“'(""";'i') (w > 0) sao solugdo e formam um conjunto completo. Na representagio do
espago das configuragtes, & — z . Assim, como

—u=(2) = Fwuz(z), (1)
8t -r(. ) ¥ '-F(. )

definimos u_(z) como modos de freqiiéncia negativa e uy (z) como modos de freqiéncia positiva. Fazemos entao a
vxpansao em Fourter do campo ern ondas planas

$(z*) = {a(Bre= =59 4 e ). (2)

j a3k
V& (2r)3
A questao que se coloca é como discernir modos de frequéncia positiva de modos de freqiiéncia negativa numa
teoria invariante por transforiagdes gerais de coordenadas. Para responder a isso € necessario generalizar a relagao
(1). Dizemos que u{z") ¢ um modo de freqiiéncia positiva w com rela¢io a um camnpo de Killing £ tipo tempo se

iCeuy = wuy, (3)

onde w > 0 e £ indica derivagio de Lie.'"® Lembramos que se £ ¢ um campo de Killing entao L¢g = 0. O grupo a
um parametro de difeomorfisimos A; associado ao campo vetorial £ define uma isoinetria.
Analogamente, se uma fungao de onda u_ satisfizer

ileu_ = —~wu_, {(4)

entdo dizemos que u._(z) é um modo de freqiéncia negativa w, com relagao ao campo de Killing & tipo tempo.
Assim, uina vez dado o campo de Killing tipo tempo £ e descoberto um conjunto comnpleto de modos de freqiiéncia
positiva e negativa, procedemos de maneira usual a expansdo do campo

é(z”):Z{r’z,-uj_(z")+l'{.c.}, " (5)
j
onde somamos sobre os nimeros quinticos que rotulam o campo.

Pela deftnigio acitna, ndo € claro como definir o conceito de particula em espagos sem alguma simetria temporal.
Podemos contornar parcialmente esse problema quando o espago-tempo tende a Minkowski assintoticamente no
passado e fuluro. Neste caso pode-se comparar o nimiero de particulas nos espagos assintoticarnente planos, e atribuir
uma possivel criagio de quanta i variagio do campo gravitacional. Uma situagdo andloga pode ser encontrada no
cletromagnetismo [11]. Uma situagio mais intercssante é o caso de espagos que admitermn mais de um campo de

Killing tipo tempo. Neste caso pode-se extrair diferentes conteiides de particula, associados a cada campo de Killing,
de uma mesma teoria de campos.

140 espago de Minkowski ¢ obviamente globalmente hiperbélico.
1* Definimos o derivada de Lic de um campo tensorial T com relagao a um ciunpo vetorial £ no ponto p de uma variedade M como
AT, T-T
£;T = limy~o —-'-'— , onde § gera o grupo a um parimetro de difeornorfismos A, e denotamos por ] o isomorfismae induzido por A,

(A7 : Tp = Taygp))-
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5 Efeito Fulling-Davies-Unruh

Afim de analisar o cfeito Hawking num contexto mais simples, Davies ¢ Unruh (vide {4]) analisaram o caso de um
observador com aceleracio prépria constante no vicuo de Minkowski. De fato, descobriu-se que um observador
acelerado no espaco de Minkowski deteta um hanho térmico de particulas cuja temperatura ¢ dada por [veja (3)],

Q)

T
2r
onde @ corresponde a aceleragdo propria do observador. Para disculirmos o efeito Davies-Unruh [4] investigaremos
brevemente a resposta de um detetor acelerado no vicuo de Minkowski.
A amplitude de transi¢io em primeira ordem e perturbagio para um detetor no cstado fundamental |£p) e
acelerado no vaeno de Minkowski |0) de se excitar para nm estado |#,) (E, > [Fq) e ainda emitir um quantutn [1y)
pode ser escrita como '

A, kol =iy 50y = 4B, 1[I0, Ea, (2)
onde a ¢ una constante de acoplaniento pequena «
+a0 .
Sy = ] d=in(7)P[z*(7)) (3)
-0

denota a agiio de interagao entre o campo cscalar ¢(z#) e o detaror’® descrite por um monopolo m(7). A linha de
Universo do detetor ¢ descrito por £# = z¥(7) coin 7 sendo seu tempo proprio.
Usando a Hamiltoniana 4 onde I |E) = E|E), podemos evoluir o monopolo m(7) associado ao detetor como

h(r) = e”hﬁa(O)c_”}'. {4)

& com isso reduzimos (2) a

+eo . A ,
Ao, o=y B0} = i EaIm(0)} Eo) / !B =BT (1 [¢(z")|0)dr, (5)
~ 02
Expandindo o campo e termos de ondas planas (2), obtemos
(i lz#)]0) = (16m%0) = /2ilet=ED),

com © yue podemos reescrever (5}
+oo . -
AID.Eo)—IlkJ'?:) = in (£ |m(0)] Eo)(167°w) ™ 2 [ ¢ (Erv=Eoyr giwt=k-3) g {(6)
EEY )
A probabilidade de transigao seri simplesinente

Ho kb=l B0 = l-4|u..-;.,)—|lk,£.)l3- (7)

Note agora que (6) depende da trajetoria do decetor £ = Z(7).

[5 ficil ver (1] que se o detetor estd numa trajetoria inercial (£ = £o -+ 7t = Zo + VTJ—_JT)' entio (7) se anula
como esperado. No entanlo, se o detetor possui uma aceleracio prépria constanie a, a prohabilidade de transigao
(7) (por unidade de lempo préprio} ndo sq anula, podendo ser escrita coino

lJlosHu)_'“k-El, _ o (Fy — Eo)|{I1|m{0)| o) |* (8)
T = 9 elx(Ei—Ea)fa _ | '

: _E . .
O fator tipo Planck [¢2*(Er—#o)/a _ 4]™" jndica que o detetor no seu referencial de repouso sente um banho
térmico caracterizado pela temperatura'” 7' = ¢/27. Com efeito, a fungao de Gireen para um detetor com aceleragio

16 Basicamente o deLetor pode ser encarado comna um sistema de dois niveis.
17 fendmeno também algo contra-intuitivo pode ser encontrado em cletrodinimica classica: Supounha wna carga com aceleragao
prépria constante. UUm observador inercial deteta radiagio provinda da carga, enquanto aue um observador co-ncelernds com s carga

nio. Interpretandu radiagao come sendn fatons, venios mesmo neste contexto que a ubservacho de futons dependeri do referencial.
{Vrja discussho na segie G.)
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prépria constante a corresponde A fun¢ao de Green térmica para uin detetor inercial num banho com temperatura
T=afln.

O fato do deletor emitir simultanecamente um quantum e se excitar a uin nivel de energia mais ¢levado somentie
¢ possivel porque o agente que acclera o deletor fornece essa energia. L interessante notar também [12] que cada
particula de Minkowski emitida pelo detetor assim1 como observada no referencial inercial, é descrita pelo observador
acelerado como a absorgde de uma particula de Rindler presenie no banho térmico. As denominagdes particula de
Minkowski ¢ particula de Rindler estio associadas & quantizagao do campo coin respeito aos vetores de Killing o, e
8, respectivamente.

A busca pela confirmagao observacional da radiagdo Hawking continua intensa [13], mas até o momento os
resultados negativos tém sido apenas itels para fixar limites superiores sobre a densidade de mini-buracos negros.
Em contra-partida, a observagao da depolarizagao do feixes de particulas em aceleradores pode ser interpretado
no referencial co-acelerado como devido a presen¢a do banho térmico que induziria um flipping no spin [14]. Em
scguida veremos como o banho térmico de Davies-Unruh é importante na re-interpretagao da emissio de radiagio
por cargas aceleradas.

6 Cargas aceleradas irradiam segundo observadores co-acelerados?

Nesta segiio vamos re-interpretar o efeito de irradiagio por cargas classicas uniformemente aceleradas no contexto
da QED em primeira ordem de perturbagio no referencial etn co-movimento com a carga [15]. E bem sabido que
cargas aceleradas irradiam tal como observado em referenciais inerciais. Classicamente, contudo, havia alguma
controvérsia sobre sc observadores co-acelerados com a carga mediria alguma radiagio. Atualinente existe um
consenso no contexto classico de que observadores co-acelerados com a carga nio medem qualquer radiagio, porque
toda ela se dirige A uma regiao inaccessivel para estes obscrvadores [16). No contexto da mecdnica quantica, a
investigagio destas questdes se Lorna ainda mais intcressante, devido ao papel desempenhado pelo banho térmico
no qual a carga esta imersa em secu referencial de repouso.
Existem dois ingredicntes basicos nque devem ser levados em conta neste estudo:

» A corrente que descreve a carga no scu referencial de repouso nao pode excitar modos de Rindler de energia
finita pois é cstatica.

o Existem infinitos “fotons de Rindler de energia mula”, i.e. modos de cnergia nula com respeito ao tempo
proprio da carga acelerada, no banho térmico de Davies-Unruh.

O primeiro ingrediente antecipa porque apenas “modos de Rindler de energia nula” serdo excitados. O segundo
ingrediente permite que a taxa de emissio e absor¢io destes modos nio se anulem, apesar de sua energia nula. A
mancira de contornar estas duas tendéncias concorrentes é introduzir um regulador na corrente, suprimindo-o ao
final dos caleulos.

Suponha uma carga q com aceleragao propria constante a na diregio z. O regulador € introduzido snbstituindo
a corrente estitica

7" = B()5(=)5(y), M
F=i = =0 ®

que descreve a carga no seu referencial de repouso, pelo dipolo

JT = Vg cos(Er) [8(€) - e22L6( — L)] 8(z)6(w), (3)
¢ = V2qEsin(ET)e~2%0(£)0( L - £)56(x)(y), ()

Ao final dos calculos o regulador é removido, i.e, £ — 0, I, — +00.'8

13S0 usadus coordenadas de Rindler para cobrir o Rindler wedge. O Rindler wedge é a regiio do espago de Minkowski vinculada por
 >°|t]. Estas covrdenadas estio relacionadas com as conrdenadas de Minkowski por t = 5:—‘uinh ar, = = #coahar.
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A corrente (3)-(5) sc acopla ao campo de Maxwell 4, via a Lagrangiana de interagio
Ling = V —gjp-‘iu: (6)

através do que os tnodos de Rindler podem se excitar.

Depois de quantizar adequadamentc o campo eletromagnético no Rindler wedge, podemos obter a taxa total de
emissio de fotons de Rindler com momento transversal k), = ,/k2 + k2 (por unidade de tempo proprio total r} tal
como calculado no referencial acelerado

% dw 2 !
rr= [l (4 ) i

Ox termos dentro do parénteses em (7) estdo relacionados com emissio espontinea ¢ estimulada respectivamente.
Analogamente, a taxa de absorgao e lotons de Rindler do banho é dada por

acpars _ [ duw I
Hr= [ I ®

eTrufa _ |

Efetuando os cédlculos e entdo retirando o regulador (£ — 0, L — 400}, obtem-sc a resposta total da carga com
respeito a fotons de Rindler de energia nula

2
ae ptat Ui

P, = 47r3a|'f\'|(h/ﬂ)|2, (9

ac ptot —a¢ pem ac pabs
onde (Ferky) = P(k"h)+ I(k.,k.,)'

Afirmarnos em segnida que a taxa total de emissio de fotons de Minkowski com momento transversal k) , assim
como calculado no reflerencial inercial coincide inteirainente com esse resultado

in [ q'.'.’ - 2
Piee) = m“\:(h/“)l - (10)

Note que k) € invariante por boosls na dirc¢ao z, ¢ portanto tem o mesmo valor em anbos os referenciais. Esta

igualdade (i.e. acpq‘f:.k.,) =

A emissdo de folons com mamenlo Iransversal ky assim como vislo no referencial inereial, pode ser interprefada

in P(:::.k.,) } ilustta nossa principal conclusio:
conto a emissdo/absor¢do de fotons de Rindler de encrgia nula com v mesmo momento transversal k) para/do banho
térmico de Davies-Unruh no qual a carga estd imersa em sen referencial de repouse.

Com respeito & mensurabilidade dos fotons de Rindler de energia nula, notamos que apesar de carregarem
momnento transversal finito, fotons de Rindler emitidos pela carga nio sio detetaveis. Isso se deve ndo apenas
ao fato de que existem infinitos fotons de encrgia nula no banho 1érmico, mas também porque a taxa de emissio
¢ absorqao destas particulas é a mesma ¢ o banho ndo sofre disrupgho (ie., jn) — |n + 1) tem a mesma taxa
de transicdo de |[n + 1) — |n).) Esta conclusio estd de acordo com a andlise feita no contexto classico de que
observadores co-acelerados com a carga nio observam radiagio (veja por exemplo [16]).

7 Cargas estiticas em campos gravitacionais também estaticos irra-
diam?

Nessa scqdo tratamos da classica controvérsia se deveriamos esperar pelo Principio de Equivaléncia que cargas
estaticas em campos gravitacionais também estiticos irradiassem. Q “paradoxo” pode ser enunciado corno segue: E
sabido que cargas aceleradus irradiam com respeilo 6 ebservadores inerciais. Come radiacdo pede ser interpretada
quantum-meccanicamentc em lermos de folons, seria nalurul esperar que observadores co-acelerades com a carga
também ovbsertassem radiegdo. For fim, usande ingenuemente ¢ Principro de Equivaléncia, poderiamos ser levados
a concluir que cargas esldticas e campos gravilacionais lambém estilicos emitem radiagde, o que seria inconsistenle
do ponte de vista de conserracdo de energia. Como ja vimos acima, o fato do conceito de particula elementar ser
dependente do ohservador permite que vbservadores em co-moviinento com uma carga uniforrmemente acelerada nio
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observemnt fotons de energia finita sendo irradiados pela carga, ao contririo de observadores inerciais. Entretanto,
como ji visto, esses observadores co-acelerados atribuem a carga emissao e absorgio de fotons de encrgia nula. E
natural entdo se perguntar se observadores estaticos com uma carga num campo gravitacional também estatico
podem igualmente atribuir a ela a emissio e absor¢io de algum tipo de particula de energia nula. Tratamos aqui
especificamente do caso no qual uma carga se encontra em repouso fora de nm buraco negro de Schwarzschild
ernitindo radiagio Hawking. Por simplicidade, consideramos [17] nma fonte escalar clissica interagindo com um
campo escalar nio massivo, ao invés de tratar de uma carga elétrica interagindo com o campo de Maxwell. Os
caleulos e demais consideragdes sio bastante analogas is feitas na seqdo anterior, contanto que as devidas adaplagoes
scjam feitas.

A fonte escalar ¢ emn repouso fora do huraco negro nas coordenadas de Schwarzschild (ro, 6. dg) serd descrita

pela corrente escalar

7= 7.7_';5(7 - T'O)é(a - 0(])6(95 - ‘P.O), (l)

onde h = det|h;;] é o determinante da métrica espacial. Para evitar resultados indeterminados inroduzimos
novamente um regulador oscilatdrio, wg, na corrente acima

Jj = L \/2 costwat)6(r — r0)6(0 — 00)8(é — éa), (2)

vh

que € naturalmente suprimido ac final. A corrente (2) se acopla ao camipo escalar ¢ via a Lagrangiana de interagao
Lint = V/=gj. ' (3)

Fm seguida, depois de quantizar o campo escalar no espaco de Schwarzschild {1) e repetir o procedimento acima
descrito para o caso de uma carga no espago de Rindler, podemos calcular o taxa total de emissdo ¢ absor¢ao de
fotons de energia nula [17], tal como calculado no referencial de repouso da fonte:

2
acplolz -q—ﬂ(T‘g)_ (4)
4z
ande 2¢ et =ac pem g ac pabs o g(r0) é a accleragio propria experimentada pela fonte quando em repouso em r = rg.
Assinl, um observador parado cotn a fonte estatica fora do buraco nao obscrva nenhum {6ton de energia nio-nula
sendo emitido pela fonte e por conscginte nenluina inconsisténcin com o principio de conservagio dec encrgia é
verificado!

8 Comentarios finais

A gravitagao semi-cldssica, assim corno preconizadoe no inicio nio pretende ser uma teoria completa de gravitagio
quantica. No entanto, esperamos ter conscguido convencer o leitor da riqueza de informagées que ela acrescenta
aos nossos conhecitnentos de gravitagio como um todo. A férmmla para a temmperatura com que buracos irradiam
consegue agrupar as conslantes fundamentais G, ¢, A, k ¢ talvez acabe sendo o primeiro resultado intrinsecamente
quéntico observado na gravitagdo. Mas mesmo que isso ndo se confirrne, nio devemos esquecer os beneficios que a
Teoria de Campos em Espagos Curvos ja trouxe para uma melhor compreensio de alguns de nossos velkos conceitos
Lais comio o de particula elementar. Guardadas as devidas propor¢des, a relevancia das particulas de energia nula
introduzidas acima, por exemplo, deve ser cotiparada com a relevaucia do conceito de particulas virtnais: Apesar
de, por defini¢do, serem nio-observiveis, sio muito nportantes para a inteleccao da fisica subjacente a vérios
fenomenos tais como do efeito Lamb shift, efeito Casimir, etc. Apenas o futuro podera aquilatar com propricdade
o quao relevante esta teoria serd para o desenvolvimento da Fisica [eérica.
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A Profusion of Black Holes From Two to Ten Dimensions
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Black holes in several dimensions and in several theorics are studied and discussed. The the-
ories are, gencral relativity, Kaluza-Klein, Brans-Dicke, Lovelock gravity and string theory.

1. Introduction

Black hole physics and black holes (BHs) have by now a long and interesting history since they were first
predicted in 1939 by the prescient work of Oppenhcimner and Snyder [1] following some hints left by Zwicky in 1934
{2) that neutron stars, stars of very high densities and very small radii, could form as the end prodnct of a supernova
explosion.

It is not here the place to comment on the development of these ideas, but maybe, some wonld like to know
that in the same year, Einstein published a paper [3] arguing forcefly that the gravitational radius, what we now
call the event horizon of a BH, could never be surpassed. Einstein was, in a sense, isolated in Princeton, while
Oppenheimer was on tlie west coast, the other side of the country, commuting with his students betwecn Berkeley
and Caltech each six months. In Caltech he could share ideas with T'olinan the great relativisi, and Zwicky a master
of prophesying correctly (although there is no direct sign of communication between Zwicky and Oppenheimer).
With hindsight, it seems that Caltech was the right place to study gravitational collapse and predict BH formation.

It is also relevant to note that 150 years before, dark stars, the Newtonian BHs, were predicted by Michell [4]
in Cambridge, an idea that Laplace followed 12 years later {5]. In modern terms Michell’s idea can be put in the
form: give a mass M of an astronomical object; find its radius so that the escape velocity is the velocity of hight c.
The answer is i = l":'-j‘-”f-, where G is the gravitational constant. Objects with radii below this value are dark stars.
However, the argument is not strictly valid because ¢ does not have a fundamental meaning in Newton's gravity.
One could detect tachyonic particies emmited from the surface of the star, or an observer not placed at infinity,
in the neighborhood of the star, say, could still see the light coming from the star. However entertaining was the
dark star idea, it was dropped down for one or other reason until 1939, where it appeared in the right context, the
theory of general relativity. Curiously enough, a good condition for the formation of a BH is that the radius of the
star obeys Michell condition R = z—f#, although now M and R have the corresponding relativistic meanings and
G and c are both fundamental constants.

So, what is the picture of a star collapsing into a BH? One can best see it through a spacetime diagram. As the
star collapses there is a last ray emerging from the center that can reach spatial infinity. This is the event horizon,
signaling the existence of a BH, see figures 1 and 2.

When the BH forms therc are two distinct but connected regions, the inside and the outside of the event horizon,
explicitly showing that time in relativity is observer dependent. As the matter of the star continues Lo collapse
inside the event horizon it will form a singularity where curvatures and densities of infinite strength are formed and
the usual concept of spacetime is Jost. lnside the event horizon light is trapped. Light not only does not escape Lo
infinity, it cannot cscape to the outside of the BH. Hlowever, to an outside observer the story is different. As the
BH is being formed, the luminosity of the original star decays exponentially, L = L,e~+ where the characteristic
time is very short, 7 = 3\/?:9;1}1 = 2.6x10‘5%3, i.c., in a few millionths of a second the star turns totally black
(Mg = solar tnass). In addition, to an outside obscrver the collapse of the star results in a BH whose properties
are characterized by threc parameters only: mass, charge and angular moinentum, One then says that BHs have
no hair (in fact, they have three hairs). All the other properties, or ‘hairs’, of the matter of the star that formed
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the BH disappear. No observation can reveal the nature of the original star, whether it possessed anti-matter, or
was made of fermions, or bosons, or whether it had any other hairs.

_l—
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Figure I. Eddington-Finkelstein diagram for the collapse of a star, (¢h = event horizon). A double lin¢ in all figures
represents a polynomial singularity.

singularity

infinity

center
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star

surface
of the
star

Figure 2. Penrose diagram for the collapse of the same star of figure 1. Light rays move at +45° and each point in
the diagram represents a 2-sphere. '

“This picture is drastically altered if the collapse produces a singularity first, not dressed by an event horizon.
'BHs are well studied and their existence is highly plausible. Naked singularities do not enjoy the same satus. They
are a threat to the predicability power of gencral relativity, and for this reason a cosmic censorship conjecture
forbiding the existence of such nasty objects was formulated [6]. There are many theoretical counter-examples to
the cosmic censorship conjecture {7, 8], although it is still arguable that these examples cannot occur in nature,
cither because they may be physically unrealistic or possibly highly unstable. One drawback to the conjecture,
often invoked, is that its validity implies the impossibility of observing quantuin gravity phenomena, coming out
right from the singularity.

BHs formed from the collapse of stars can have inasses belween 3 — 100Mg. There is also the possibility that
supermassive stars or the core of star clusters collapse to forrn BHs with masses of the order of 1000Mg. BHs with
much higher masses 10° — 10°M 1nay form in the center of a galaxy via gravitational collapse of a mixture of
clusters of stars and gas. Primordial BHs with masses ranging up to 10~'¥Mg =~ 10'%g, and the radius of a proton
10~ 3¢m, could have been formed in the fluctuations of the early aud very early universe.

For stellar size objects, the mass is a good indicator to separate Blls from neutron stars. If the compact object
has a mass M X 3.5My then there is no equation of state, however stiff, able to support the neutron star (a cold
star with a radius of ~ 10Kint) against complete cotlapse. There are strong candidates in the sky to stellar BHs,
the most lamous of all is Cygnus X1, a binary system emniiting X-rays and harboring a dark compact object with
~ 16Mg (see e.g. [9] for a review). There are no candidates for BHs with ~ 1000 Mg (even the existence of
supermassive stars is pure theoretical speculation). Galactic BHs should inhabit the center of active galactic nucles,
compact sources which can shine more than an entire galaxy. lu some cases like quasars, the nuclei of the galaxy
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has a brightness equivalent to the brightness of several thousands of galaxies, in a region not bigger than the solar
system. In two galaxies with active galactic nuclei the value of the central mnass points Lo the existence of a BIl: (i}
in the elliptical galaxy M87 the Hubble Space Telescope measured a rotation \clocit) of v ~ 550Km/s for the gas
at an orbital radius of 60 light ycars, which, through Kepler’s law gives Af = -—— ~ 2= 3x10°Mg; (ii) for the spiral
galaxy NGC 4258 Keplerian velocities of ~ 1000Km/s in an inner orbit of very small radius, B ~ 0.4ly, have been
measured through water masers which imply a central mass of M ~ 2x107Mg. This work is considered to provide
the strongest case for a supermassive B in the center confirming the predictions of Lynden-Bell {10], (sce [9)] for a
review). All these methods are indirect, and to probe directly the existence of a BH one should measure relativistic
speeds of the tnatter circulating in the disk very near the event horizon. In addtion, when the gavitational antennas
are operating we should directly detect the formation of BHs either through collapse of a single star, or through
the merging of binary systems. ‘I'here is no observational evidence of the existence of primordial Bifs.

A quantity that gives some insight Lo the physical processes ocouring during the co“d.p‘i(‘ is the average dcnsm of
the collapsing matter p when the BH is forming, i.c., when K = &#. yiclding p = 1-—,-;75(7.;) ~1 3x10‘°( —f;";r
For a 1Mg BH this gives a density ten times larger than the nuclear density, whereas for a [08Mg BH it gwes the
density of water. This means the larger the mass the less uncertain is the physics at the BH formation. Even if BHs
have not been produced in our cosmos, one could envisage an astronomical experiment, by assembling a very large
rnass in the form of dust and let it alone to collapse to form a BIl. After the matter has passed its own gravitational
radius, the singularity theorems [11] plus theorctical models indicate that the density raises to infinity, p — co. Is il
really infinity? In principle there are strong suggestions that there is a minimumscale, the Planck scale (constructed
from G, ¢ and Planck’s constant #), below which the nsual physical concepts break down. At the Planck scales,

Rpl = \/g 2~ 10~%cm and My = \/— 10~%gm, the density of the matter is p ~ £ = l[}92( )gm/cm
At these scales it is expected that the topology of the spacetime breaks down in order t.o accomadate these large
masses in such a small volume. 1t is interesting to note that the Planck density p, = -G‘:—h ~ 10%gm/cin® is the
density at which a Planck mass turns into a BH, as welt as merging into the singular structure of the spacetime.
Gieneral relativity provides an adequate description of BHs that are much bigger than the Planck mass. On the
other hand for Planckian BHs a description in terms of general relativity breaks down and it has to be replaced by
a quanturn theory of gravity.

Even much before the quantum gravity regime starts to be important, the BH alrcady presents a quantum
mechanical bebavior. indeed following hints that a BH has an associated entropy and therefore, through the

relation §' = @/T', an associated temperature, Hawking [12} using quantum ficld theory on a BII background found

that Blls are not black but radiate with a blackbody spectruni at a temperature ' = M"‘(‘Iks 3 = 6x107 e’(M")
and have an associated entropy Si;) given by Spy = i#r—“ where 4 is the area of the Bil and kg is the Bollzmann

constant. Since so many fundamental constants enter these forinulas one can say that quantum mechanies, general
relativity and thermodynamics tnust merge together in a unified theory. For M ~ 1Mg one has 7" ~ 10-7K,
whereas for a Planckian BH, A1 ~ 10~%gm, T ~ 10%K. An important unsolved problem raised by this thermal
cvaporation is the information paradox, which is the problemn of knowing to where all the information contained
inside the original star has gone after the BH has evaporated completely [13, 14].

Classically, BHs are stable objects, however quanturn mechanically they are unstable. As the BH radiates

cnergy its inass decreases, the temperature increases in a runaway process which probably ends in a final explosion.
M3_Q3

"' (M+/M2-Q3)"

the charge is large enougl, |Q| = M, then T = 0 and one could expect these objects to be stable. However, vacuum

polarization cffects will discharge the BH itseif rapidly. ‘There are two ways to stabilize the situation:

Suppose now that instead of neutral Blis one constders a charged non-rotati ng BH. Then T' =

1. Take a topological charge so that there are no particles to radiate [15].

2. A charged BH will prefercntially radiate away its charge, depending on the charge to mass ratio of the particles
in the theory. If Z is small most of the radiation will be in the form of neutral particles and @ will remain
constant. Take then thal the lightest charged particles are heavy enough so that they cannot be created by
the BH. This could be done in two instances.

(a) For example, suppose that the BII carries magnetic charge instead of electric charge. 'The only way for
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the BH to loose this charge would be via the creation of monopoles. However, if the monopoles are heavy
cnough the probability of decay is heavily suppressed [16].

(b) A variant of this scenario is to suppose that the charge arises as a central charge in a supersymmetric
algebra. It is known that in N = 2 supergravity the bosonic sector is Einstein-Maxwell theory with a
Bogomolnyi bound given by @ < M. One can then show that extreme Reissner-Nordstromn solutions
IQ|] = M (which saturate the bound) are supersymmetric, in the sense that under a supersyminetric
operation the metric remaius invariant and the fermionic sector remains null [17). These Blls have zero
T and are stable.

Stable BHs can be considered as solitons of the theory and as such belong to the non-perturbative sector and
should be put on the same foot as the elementary particles of the theory. To see more directly that the distinction
beiween Blls and clementary particles can be blurred, suppose there is an clementary particle with a mass grealer
or equal to the Planck mass. Then its Conpton wavelength is smaller or cqual to its Schwarzschild radius. At
these scales it is therefore hard to distinguish between what is an elementary particle from what is a BH. It is then
natural to think of such particles as BHs and conversely BHs may be viewed as elementary particles [18]. It is
expected that gravity must become the dominant field at the quantum Planck scale 10~33¢m, which as we have said
represents the minimum scale at which spacetime can he considered smooth. BHs, viewed as elementary particles,
are the objects to test this scale, through Hawking radiation. Imagine the following futuristic expcriment: two
incoming particles in a huge accelerator are set to callide face-on, such that, a center of mass energy of ~ 101°Gev
is produced. Then, one might form a Planckian BH which will evaporate quickly in a burst, allowing us to study
the physics at the Planck scale. One might think that by increasing the energy the study of sub-Planckian scales
would follow. However, this is not the case, since one would produce a BH with larger mass, which would decay
slowly.

From all this one can see that quantum gravity plays an cssential role in every theory of extremely strong
gravitational fields such as BHs and singularities. One could think of reconciling general relativity with quantum
mechanics, but it is known that general relativity is perturbatively unrenormalizable which is taken at face value by
inany people as an indication that the quantum theory does not exist. At present, the best candidate to a consistent
theory of quantum gravity is string theory, a theory remarkable in sorne respects. The idea of string theory is to use
strings as fundamental entities and treat its vibrations as manifestations of the physical world, as fields, particles,
etc. The string action plus some rules (like preservation of conformal invariance at the quantum level) place strong
restrictions on the possible theorics and on the spacetime itsell. For instance, string theories treat the dimension
of spacetime as a parameter to be settled hy the theory. For the pure bosonic string theory (inconsistent at the
quantum level), the dimension is 12 = 26, while D = 10 for the four consistent supcrsymmetric string theories which
seem to belong to a 2 = i1 M-theory [19, 20] or even a D = 12 P-theory [21]. Although apparently incorrect,
these dimensions can, in principle, be dynamically compactified into the D = 4 dimensions actually ohserved in our
universe. Superstring theories can also be formulated in any dimension D < 10, with the left 10 — D dimensions
treated as being compactified somehow [22]. A remarkable feature of the theory is the presence of a bewildering
variety of BH solutions in any dimension from 2 to 10. The study of BH solutions in [) > 4 dimensions is not new
{23}, although string theory has made an iinportant impact in their appearance and development in the lower 2
and 3 dimensions. Besides string theory, BHs in different dimensions also appcar in theories like general relativity,
Kaluza-Klein theory, Brans-Dicke theory, Lovelock gravity and in their corresponding supersymmetric versions. In
the subsequent sections we witl discuss some of these sohitions and some of their properties.

2. BHs in 4D
Let ns start with general relativity in 4D, i.c., Einstein-Maxwell theory, cliaracterized by the action

!

S:m—ajrf‘z\f—_g(lf—l?"’), (1)

where g and R are the determinant of the metric and the curvature scalar, respectively, and F? = F,, F*", where
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¥,, is the Maxwell tensor (¢ = 1). Uncharged BHs are described by the Schwarzschild solution

2 dr?

ds® = —(1 - -rﬂ)dt? + T + ridQ,*, (2)

where d,? is the line element of the 2-sphere, Af is the mass of the BH, and we have put G = 1. The causal
structure is conveniently described by the Penrose diagram of figure 3, where light rays move at +45° and each

point in the diagram represents a 2-sphere. The event horizon is located al r = 2M (where g7 = 0).

r=0

Figure 3. Penrose diagram for the Schwarzschild solution.

A charged BH in general relativity is described by the Reissner-Nordstrom solution,

2 2 2
ds* = —(1 - QTM -+ %)dtz + [__-Ei_:—.:’;’: +ridQ,’, (3)
r r :

where Q is the charge, F,, = g— for clectric Q, and Fpy = Qsind for magnetic @. The causal structure is richer
now. ‘There are three distinct cases depending on the charge to mass ratio. For 0 < |2} < A there are two horizons
(the event and the Cauchy horizon) given by the roots of g™* =0, r4. The Penrose diagram is skelched in figure 4.
For an extreme BH. |Q] = M, the two horizons wmerge in one, and for § > A the singularity is timelike and naked.
The Hawking temnperature of static Bils can be calculated in several ways. The original calculation involves
the analysis of quantum matter ficlds in the BIl background [24]. A cleaner calculation is achieved by analitically
continuing the retric in tine ¢ and requiring that the resulting Riemannian space be non-singular. ‘Uhis implics a
periodic identification in imaginary time with the temperature being equal to the inverse of the period (25). One
can then show that this BH instanton is related to a real BH in thermal equilibrium with radiation. As mentioned,

for the Reissner-Nordstrom BH T = L M which for @ = 0 yiclds the familiar 7" =

N/

I (M4 /MI_QY)’

r=x

Figure 4. Penrose diagram for the Reissner-Nordstrom solution.
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Near singularities general relativity should be replaced by a quantum theory. String Lheory is a consistent theory
that may give some clues at the Planckian scales. This raises the question of whether BHs in string theory are
different from BIs in general relativity. We will see that these two theories give distinct BHs. Due to the existence
of dilaton, axion and other fields in string theory there are even BHs without singularities. There are also solutions
describing one-, two-, and p-dimensional objects surrounded by event horizons, i.e., black strings, black membranes
and black p-branes. We will also show in the next section that general relativity also possesses these type of objects,
a feature not known untill recently [26, 27].

Without further details for the time being, let us consider the low energy action to heterotic string theory {22, 28]

S= %]d"zﬁe‘m [I?.— 24 + 4(Vé)? — P — %H?] , (4)
where the new fields are the dilaton scalar field ¢, and the 3-form field H,,,, such that H? = [, ,H"* and
defined by H = dB — A x F where By, is the axion 2-form potential and A, is the vector potential that defines
the U(1) Maxwell field, F = dA. 'These ficlds arise naturally in string theory. The cosmological constant A Is set
by the internal consistency of the theory and related to the dimension D of the spacetime and the central charge
of a possible internal conformal ficld theory. The constant factor % in front of the integral in the action (4) is
somewhat arbitrary. This arbitrariness will remain throughout this article, although without loss of precision, since
we are dealing mostly with classical results.

To have a full theory and not only the low energy action (4) one wonld have to add higher order correction terms
I?, R®, F%, etc. All the higher order terms are important for studying Blls of Planckian size and the spacetime
singularities. However, using (4) one can study the properties of larger BHs away from the singularities. For D =4

and in a background where A = 0 = H the action simplifics to
S= 4i_ diz/—ge % [R+4(Ve) — I . (3)

Note that ¢ plays the role of a coupling constant, since comparing (1) and (5) roughly onc has G ~ ¢*® = g,, where
g, is the string coupling constant. In order to directly compare with the Einstein-Maxwell aclion one rescales the
string metric g, (which is the metric seen by the strings) to the Einstein metric g2, = ¢72?g,, (the metric that

puts the string action in an Einstein form) te have the action,
1 . . .
Sg = 4—1/d4=5\/-95 [He +4(T&)? — e ?°F¥] . (8)

For F = 0. i.e., uncharged solutions, one deduces from (6) and the no-hair theorems [29] that uncharged BHs in
the low energy string action are the same as the Schwarzschild BH of general relativity. On the other hand, for
F # 0 and ¢ # 0 the charged BHs in string theory are different from the Reissner-Nordstrom BHs. This could give
a low energy test of string theory: if string theory is the correct one then charged BHs are not described by the
Reissner-Nordstrom metric but instead by the solution [30, 31, 32]

ds? = —(l _ Z?m)(l + 2m:i'_|:|h’a)dt2 + ]E?'” +F2d922

=2 = | 4+ '.!m.-iirilh:'a A = — msinh 2a )

VIF+2msinha) }

where the mass and charge are given by M = mcosh® o, Q = vV2msinh 2. For ¥ = 2m there is an event hotizon
whercas for ¥ = 0 there is a singularity. At the singularity g, = #®® — 0 which might mean that in the full
string theory, the string coupling remains negligible and quantum effects are suppressed. To compare with general
relativity we then do the couformal rescaling mentioned above (ds = ¢~?®ds?) and obtain

dsh = —(1 — Byae2 4 4 4 r(r — L)d0,2,
e=1-2 =5, (8)

. — 7 . . . - - . .
where for convenience we have defined r = 4+ % The charged string metric is identical to Schwarzschild in the
r — t plane (same Penrose diagram as in figure 1), however the spheres have smaller radii. There is the extremal
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limit | Q] = M given by the diagram of figure 5. For {@| > M the siugularity is naked. The string metric (7) has
the same corresponding Penrose diagrams since these diagrains are unallered by conformal transformations.

Figure 5. Penrose diagram for the charged extreme BH in string theory. The singularity is null, or in other words,
the event horizon is singular.

Whai about magnetic BHs? We have scen that in general relativity, electric and mmagnetic BHs have the same
nietric, i.c., neutral particles do not distinguish the two types of BHs. In siring theory one can find magnetic BHs
by performing an S-duality {or strong-weak) transformation, which transforms weak conpling into strong coupling
and vice-versa. The transforination is [28]

FesF,¢——p, g —gx (9

where F is the dual of F, [, = Le=2¢¢,, 2P F,p transforming electric into magnetic charge. Since the Einsiein
metric is unchanged the Penrose diagrams for magnetic BHs are identicai to the Penrose diagrams for electric Bls.
In terms of the string metric we have

DU LL dr’ + rid(d,?
R (-0~ 8#5) ’
e =1 -%. s = Qsind (10)

The singularity happens at a finite area, when r = i; The extremal limit is given hy Q* = 2A2, for which
the temperature is zero. On the other hand for the non-extremne BIF given in equation (10), the temperature is
1T = 37'37, independent of the charge. This means that the BH radiates past beyond the extremal limit, indicating
in turn that the semi-classical approximation for the ealenlation of the temperature breaks down.

We have only mentioned non-rotating Blls. In string theory, uncharged rotating BHs have the same metric as
Kerr Blis. However the charged rotating BHs are different {33].

3. BHs in 3D

It is now known that 30 general relativity is important to study as it provides a bedtest for 41 and higher D
theories (34, 35, 36]. Two features in 3D general relativity are relevant: (i) the theory has no Newtonian limit (it
is still an open quesiion which 372 theory has a Newtonian limit), (ii) there are no propagating degrees of freedom,
which means that in vacuum, outside matter, spacetime is tocally flat, anti-de Sitter or Jde Sitter depending on
the value of the cosmological constant, A = 0, A < 0, and A > 0, respectively. Due to this simplicity and lack

of structure it can be thought that there is no interesting object emerging from the theory. Surprisingly, from the
action

1
.5':2—‘r d>z/=g(R - 27). (11)

and its equations of motion, Baiiados, Teitelboim and Zanelli [37] found a 3D rotating BH metric known as the
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B1'Z BH, given by

dr? J

ds? = _(ﬁﬂw+“'—2ﬁ)dtﬂ+ . — + ri(dp — ——dt)?, (12)
i 4r? M+ 2r?
where I = —% and J is the angular momentum. For |[J| < M{ there are two horizons r3 given by the zeros

of g"". There arc also ergoregions for ry < r < reqg where particles and observers are dragged along certain
trajectories. In the extremal case, |J| = M|, the two horizons merge. For J = 0 the BH is static. The rotating case
resembles in many aspects the Kerr metric and the non-rotating case the Schwarzschild solution, although there
are no polynomial singularitics, only (milder) causal singularities. The maximal analytical extension of the static
and rotating BHs are given in the Penrose diagrams of figures 6 and 7.

r=0

=00

Figure 6. Penrose diagrani for the 3D static BH. The line r = 0 in this figure and in figure 7 is a milder causal (not
polynomial) singularity. Spacetime is asymptotically anti-de Sitter,

Besides the BH solution, 3D general relativity with A < 0 also has the anti-de Sitter (ADS) spacetime as a
vacuumm solution with metric given by

2 2
ds? = — r—; + 1)dt? + ,dr + ridg?. (13)
B w1

We notc that for r — co the BH solution (12) is asymplotically ADS. Asymptotically ADS solutions and ADS
spacetime itself are interesting to study for various reasons: (i) thcories of extended supergravity in which some
group, like O(N), is gauged have ADS as a vacuuin state, and (ii) there exists a positive energy theorem, i.e., it is
possible o give Witten’s proof of the positive mass theorem of Schoent and Yan to asymptotically ADS spacetimes,
implying in turn that asymptotically ADS solutions are stable.

Now, in 3D there is the relation %4 = c““ecd_,G‘f. Therefore, a solution of (gp = 0 is flat, and a solution
of Gap = —Agap has constant curvature. Since the B metric and the ADS solution have both constant curvature,
_ one coucludes that patches in the BH spacetime have an isometric neighborhood to the ADS spacetime and the BH
spacetime can be defined by a collection of such neighborhoods. Indeed, it was shown in [38] that the BH can be
represented as a quotient space of the universal covering of ADS, ADS, by some group of isometries, which provides
a powerful mathematical tool in examining the BH spacetime.
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Fignre 7. Penrosc diagram for the 1D rotating BII.

3D ADS spacetinie can be oblained from the plane R* wilh two time and two space coordinates (X3, X2, 71, T2)
(we follow {39] here}. The ADS metric is then the induced metric taken from the 40 flal metric,

ds® = —d1}? — 1" + dX,* + dX,?, (4)

restricted to the hyperboloid
.Y[z—le-f-.-\.zz —-7"_!2 = . (]5)

From (14) and (15) the isometry group is SO(2,2), of course. One can go further and combine (X, X2, 77, T2) in

a2 x 2 matrix,
. T+ X, 15 + X2
X= . , 16
L (—Tg-i-,‘(g T - X, (16)

withdet|X] = | and X € SL(2, R). Here, the isometries can be represented as elentents of the group SL(2, R)xSL(2, 1),
S0(2,2), with each .—S'L(Q,h’) acting by left and right multiplication, such that ;\__' = pLXpr, with (p, pr) ~
{(=pL,pR). i
Now, given ADS spacetime one nay cover it using three different regions parametrized by (r.¢,) with0 < r <
00, —00 < I < 00, and ~oc < p < co. TFor instance, in the region r > ry we have X; = ly/a(r)sinh(%tp - 1),
Ty = L/a(r)cosh(Fo — 7). Xo = [ /a(r) - Lcosh(Ft — o), and Ty = L /a(r) - I'sinh{ T} — J¢), where,
a X

rlarr . . . . . - .
w(r) = T This corresponds to give region I of the Penrose diagram in figure 7. Analogous transformations can

be given Lo the regions r_ < r <ry and 0 < r < r_, i.e, Lo regions I and 111 of the figure 7. By repeating Lhese
regions ad infiniturn one covers the entire ADS spacetime. One can pick up Xy, Th, X3, 7% from these transformations,
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put back in the induced metric (14)—{13), and recover the form of the BH metric (12). However, note that this
is not the BH spacetime since ¢ ranges front —co to +oc. To make ¢ an angular variable onc has to indentify
» with ¢ + 27, In this construction it is easy to see that such au identification is an isometry of ADS, in fact it
is a boost in the X, — T} and X3 ~ T; planes. Indeed, it leads to, X1 — X’ = (cosh ?-!fri)z\'l + (sinh 2L;rt)Tl=
Ty — 11" = (sinb 2#'—1).\'1 -+ (cosh 2L,"*‘-)'l‘1, and analogously for X7 and 7%, 'This corresponds in the SL(2, R)

rp-r_ . FL—r. . rotr_ L L
formulation to an element (pr,, pr) given by pr = diag (e’( e 5 )),pﬁ = diag (e"( =) (5 )).

The BTZ BH may then be viewed as a group manifold given by the quotient space ADS/ 7, where P denotes the
group generated by (pr, pr).

This formulation has greal advantages: the ADS spacctime is an extremely simple manifold and if one makes
appropriate global identifications one finds a 3D Bl which has inherit its own complex structure . The implications
are many: (i) one can compnte the Green functions in the ADS spacetime and then make a direct connection to the
BH; (ii) one can find Killing spinors fairly easily, which provides an identification of the existence of supersymmetry;
if the Bl is embeded in a supergravity theory with vanishing gravitino field, then the existence of Killing spinors
leave the metric and gravitinos invariant. It was found that Killing spinors exist for extretne BHs only {40]; (iii)

the temperature of the BH is 7' = ;:—'%%- which for zero rotation yiclds, T = 3“,% and an entropy S = %’a'-'c-f:-.
Unfortunately, this does not help in solving the long standing problem in 40, to know whether or not the BH
evaporates completely, since in 3D T — 0 as M — 0; (iv) on the other hand, one can show thal the 32 BH forms
from gravitational collapse of 3D matter, as in the 4D case [41]; (v) 472 gravity can be written in a first order
formalisin as a Chern-Simons theory. Viewing the BH as an ADS space with proper identifications helps in the
stady of the holonomies (see (39] for a complete list of references). )

Another important tesult, is that the 3D BH we have been discussing is also a solution of 300 string theory
[42, 43]. Using the action (1) with D=3, ¢ =0and H,,, = %f,,.,p one oblains the samme 31 BIH. This displays the
versatility of string theory. One can also find a black string solution by applying a dnality transformation. We have
atready seen the S-duality at work. There is another well known symmetry of string theory that maps any solution
with a translational symmetry of the low-cnergy action into another solution. This symmetry is usually called
T-duality or target-duality. Given a target-space solution (g, By, ¢) which is independent of one coordinate, like
¢ in the BH solution, then there is another solution (g, B,,,,:t,f;) related to the previous one by a T-duality [28].
The T-dual solution for the 3D BII is a black string,.

What else can we do with the 3D BH? It can be embedded in 40 general relativity [44, 45]. One takes Lhe
product of the BTZ BH with the real line ¢, with metric ds? = dsfpg + d:2, and inposes that it satisfies the
1D Emstein equations derived from the action § = - [d'z/=g{( — 2A) + Lmawtes]. By suitably chosing the
energy-momentum tensor T, = — % %‘;‘:fﬂ one finds that the 30 BH can be converted into a black string in 4D
general relativity. The idea is analogous to the well-known result. that poimt particles in 3D are related to straight
infinite strings in 4.

‘There is yet a different solution whiclt relates vacuum black strings in 42 general relativity with 3D Bls of a
dilaton-gravity theory. Starting with the Einstein-Maxwell action § = k= [ d'z\/—g(R — 2A — F?) one imposes
the existence of a Killing vector such that the metric can be written in the form ds? = g‘(::)d:n“dz"+ e~ 4°d:?, where
a,b=1.2,3 and ga, and ¢ are functions of z%. ‘T'hen by dimensional reduction one obtains a dilaton-gravity action,
5= fde/=ge=?°(K —2A — F'?). It is then casy to relate 4D and 31 solutions. In 4D general relativity there
is a black string solution, with charge and rotation, given by [46]

s 2. 0 -1.“(1-“2“7) 107 a
ds® = —[o%rs — ——21— +<T?F7 di“+

ﬂ:n: -
IV (- 9 ) 2dtdet
ar ‘f a“r (P’
M(1- 22" Yar
: -1
] A4 —2aty? I (1=2aa?
+ (a~r~ = L —f—-ﬂ——‘(‘l A ,’) dri+
— =]
2, 4Ma® _ Q*? 2 2.2 4.2
+ [r + =5 (I U__r.-,_.—.)_uar)]dp + a“r-dz”, (t7)

. . = _1 . .
where here a = —3A. A and @ are the mass and charge, respectively, and a is retated to Lhe angular momentum



a0 . XVII Encontro Nacional de Particulas e Campos

Jvia J = JaM,f1 - a%al with 0 < aa < 1. This solution has many similarities with the Kerr-Newmar BH.

L]
: . 9 2 .2 128 * e ,
For instance, the causal structure for the non-extreme BH, i, 0 < ¢*a’® < £ - TW%FW: i5 given by the

Penrose diagram of figure 7, with r = 0 being now a polynomial singularity. However, unlike the Kerr-Newiman
BII, the topology of the horizon is cylindrical or toroidal, rather than spherical, violating Hawking’s theorem [47]
due to the presence of a negative A. It also has itnplications on the hoop conjecture [48]: gravitational collapse in
such a background can generate a black string even if one is not able to pass a hoop of given circunference through
the matler. If there is no charge then the causal structure changes drastically, resembling the Schwharzschild-ADS
BH rather than the Kerr BH [26].

The 3D BH generated through dimensional reduction of 42 general relativity, has a dilaton in addition to the
tetric and Maxwell fields. A study to put these black solutions in a supersymmetric context is being carried [19].
Generalizations of the 30 action Lo a Brans-Dicke type of action, given by 8 = &= [ d®z/=ge™ ¢(R+4w(V$)?—24)
also yield static and stationary BH solutions [50, 51]. Using a metric with two Killing veclors, one can find black
membranes in general relativity, related trough dimensional reduction to 2D dilatonic BHs. This is a matter for
the end of the next section.

4. BHs in 2D

'To analyse BHs in 2D we first return to string theory. In 2D there is less freedom for dynamics, for obvious
reasons. For instance, for a compact orientable 2D manifold of genus g (e.g., sphere g = 0, torus g = 1, etc), the
Finstein-Hilbert action, 2 fd?x/=gR = 2(1 — g), is the Euler characteristic of space, a topological invariant with
no dyunamics. Therefore, if one wants to go further in 2D one has to find a different action. An interesting action
is provided by string theory. For understanding the appearance of BHs in 2D string theory is now important to
introduce some basic concepts of the theory itsell. In string theory one has to distingnish the world-sheet action
for the string from the target-space or spacetime action for the usual spacetime ficlds. The latter follows from the
former upon imposing certain restrictions related to renormalization procedures. {In particle theory there is also
such a distinction but the respective actions are not inter-related a priori.) The propagation of strings in a generic
curved spacetime is described by the Polyakov action

S= —— [ FoVRRTPY 2"V 0, (18)
ira’

where h*? is the world-sheet metric of the string, £# are the spacetime {(or target-space) coordinates, g, is the
metric of the background, and o’ is the string coupling consiant (see figure 8). Such an action is also called a
non-linear sigma rnodel. It is invariant under reparametrizations of the string world-sheet & — &' and moreover, is
conformal invariant (i.e, local scale invariant), hop — Q2hqg. In principle, one should also include in the action,
besides the graviton, the other massless states or ficldy of the (closed} bosonic string, namely, the antisymmetric
tensor B,, and the dilaton ¢ (see [22] also for the inclusion of fermionic fields and supersymmetry). The bosonic
world-sheet action or ¢—inodel is then,

5= #fdza\/ﬁhapvaz"vﬁx"yw(m)
—gmar J d20e™ PV 0xtVoz¥ By (2) + 3 [ dPovVhReé(2), (19)

where R, is the curvature of A*?. Imposing Weyl invariance at the 1-loop level to get rid of the ultraviolet
divergences translates into the requireinent that the so called beta-functions associated with the background fields
vanish. The beta-function associated to Lhe metric g, is BL, = Ry — %H,.“"Hy,\, + 2¥,.V. which should be set
to zero. The 3-form /] is related to I3 through H . = Vulloa + V, Bay + ViBy,. The olher 3—functions are
ﬁf,, =Vl —2(VagH>,) =0, 8% = R+2A +4V26 4 (V) — $5H? = 0. The constant A is connected to
the dimension of spacetime. For the Losonic string A = 2=25, whereas for the supersymumetric string with fermions
Ao (D —10). The dimensions 2 = 26, 10 are the critical dimensions for the bosonic and supersymunetric strings,
respectively, because in Lhese dimensions the theory is free from divergences and anomalies. However, one can go
away from these dimensions to the more familar 2, 3 or 4, by considering additional internal conformal field theorics
with central charges 10 complete, so to speak, the other extra dimensions.
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Figure 8. Spacelime diagram showing the nomenclature for the propagation of strings.

The equations for the three 3—functions are the field equations of first order string theory, which can be derived
fromn a spacetime eflective action given by

2 1 2
Ser = ‘%/d”m/_—yc_g" (n —2A4+4(V§) + FH') : (20)
m -

The Maxwell feld F,, has been left out in this discussion (compare (20) and (4)), as well as other fields like the
tachyon T of the bosonic string, bus they can be included consistently. Puting D = 2 and H = 0 in the equations
of motion derived from (20) one finds a 2D BII solution in [52] given by

d R 1— —'.’.).r) li"" + d"'? e—'_’o — ',—.\r (21)
s =—(1—e ‘ T e-ir =e 7,
where A? = —4. This solution has horizons at r4 = 0 and a singularity at r = —co. The Penrose diagram is

identical to the Schwarzschild diagrarn in figure 1. Since this is a sulution of the low-energy action it is only valid
as long as the curvature is small compared to the Planck curvature. s there a way to find an exact solution of the
full action, i.e, of the world-sheet action, without resorting to perturbation theory? Yes, and the idea was initiated
in [53]. One starts with the Wess-Zumino-Novikov-Witten (WZNW) model described by the action

k U . L]
Swznwly] = o jd‘a\/ﬂh"ﬂtr (V“g" Vag)+ikl(y), (22)

where ¢ is an clement of some group, funciion of a field z*, k is a real and positive number (called the level of
the Kac-Moody algebra) and ihe last term is the Wess-Zumino terin which garantees conformal invariance of the
action and for the purposes used here is of no importance. The morivation for this nodel comes front the need o
simplify the background in order to find solutions. One good simplification is to assume string propagation in a
group manifold of a Lie group & with elements g. Note the analogy of (22) with the world-sheet action (18), where
the trace has the role of a metric. Now, if one supposes that ¢ € SL(2, R)/U(1) one can parametrize it by

(&) (23)

with ab+ uv = 1. Since SL(2, R) has dimension 3, and U(1) has dimension 1, the yuotient space group manifold
SL(2, R)/U(1) has dimension 2, wlich, in turn, can be parametrized by the coordinates u,v. After imposing that
the action (22) is gange invariant and solving the ejuations of motion one finds [53)

- k . Vv
.Erszw[g] = m jd-ﬂ\/fjh,.ﬂ_l‘u_ﬁﬂ ' o0

— uv
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Comparing with the world-sheet action (18) one immediatly finds that the target space metric is

ds? = udv (25)
—uv’

which upon further coordinate transformation can be put in the form (21). The dilaton can also be made to enter
in this picture, sec [53]. Since one has to solve the classical equations of motion this treatment is semticlassical. The
fult treatment was attempted in [54] where it was found without approximations that the metric and dilaton are
given by

ds? = 2k — 1) [— (ﬁ - %)gdt“ + irffi—ﬂ]
-2 — 27~ 26
= (20)

where z is a new radial coordinate. In ihe semiclassical approximation, when & — oc one recovers Witen’s result.
The causal structure is given in figure 9 [55], the novel feature being that in the exact solution of the full theory
the BHi has no singularities! This indicates that string theory has indeed new things to show at the singularities.

KL

Figure 9. Penurosc diagram for the non-singular 2D BII in string theory.

Hlaving this exact solution and using the tools of string theory, narnely, conformal field theory, one can in
principle know how strings propagate in the BH background, calculate the latest stages of the BH evaporation and
solve the information paradox. [lowever, in practice the problemn is still out of reach [56]. Extensions to 4D of the
idea of using a WZNW model to find exact solutions with associated conformal field theories have been tried with
some interesting bui limited progress [57].

We have just scen that the dilaton gives non-trivial dynamics to 2D. This has been known since the works of
Teitelboim [58] and Jackiw [59] where the power of 2D theories was first understood. They proposed the theory

S = -;—Tr/d?:\/_-ge'“(!{— 24) , (27)

with A < 0. Although spacctime lias constant and negative curvature it is possible to find a BH solution which is
asymptotically ADS [60, 61, 62]. T'he thermodynamics of this BH lias been study (sce this volume (63] and [64)).

In trying to find meaningful 2D actions one can look for connections with 4.0 general relativity, as it was done for
3D theories (see last section). Starting with the Einstein-Hilbert action § = 7es [ d"z/—g(R — 2A) and imposing
Planar symmetry (two-killing vectors), with a metric given by ds? = g, dz°dz® + e=2¢ (d2? + dy?), onc finds upon
dirnensional reduction the following 2D action [27)

) 1
§= ﬂjdﬂz\/-—ge-“ (R +2(V$)? - 2A) . (28)
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‘This theory also possesses a BH which, when reinterprested in 4/ vields a hlack miembrane in general relativity
[27]. An obvious generalization of these three 2D theories is given by the Brans-Dicke action [65)

;= %F d*z/=ge~*? (R4 w(Vé) - 24}, (29)

where w is a free parameter, and w = ~1,—3,0 corresponding tu string theory, planar general relativity and the
Teitetboim-Jackiw theory, respectively. When w — oo one obtains 1he 20 analogue of general relativity {66], also
called the R = T theory {67]. The BH in this case is a massless BH as has been shown in [63]. The BHs of action
(28) for all rational ws have been analysed in detail in [65] and the quantum version in [68]. What abont the
temperature of these BHs? Usnally the temperature goes with some power of the mass M, 7" « M7, where for
instance for w = 0, v = l§ [63, 64). Thus, these 20 theories cannot. tell much about the latest stages of the BH
evaporation. A notable exception is string theory (w = —1) for which ¥ = 0 and T o constant, independent. of the
mass. Thus, following this result, the BH radiates indebinitely, which cannot be correct. In order to remedy the
situatiott one has to make a full quantum treatment. of the backreaction (sec c.g. [69, 70]).

5. BHs in higher D

We have been considering BHs in general relativily, Brans-Dicke and string theories in 4 and lower dimensions.
llowever, higher dimensional BHs are also important. to study since they may shed some light on the understanding
of non-perturbative effects in quantum gravity (such as the compactification scheme), as well as expose which of
the features of the usual four-dimensional Bl solutions remain in higher dimensions. Let us then go on to higher
dimensions and consider, for a change, the original Kaluza-Kleint theory in 5D. This is simply 3D gmoral relalivit,y
in which the fifth dimension is a Kitling direction, i.e., the lields are independent. of the Hth dimension, =° The
theory has two descriptions, the first given by the acL:on

1

5= fry"gR, (30)
lb"r
and metric components gf,?:), ‘7515) and gg’;’, p.v=0,1,2 3. [n the other description the action takes the form
§= 16 d'z =g (R~ V)" - .:2‘/5%'3) . (31)

R 3 b =
with the 5D metric related to the 4D fields by the usnal Kaluza-Klein ansaiz, gi.‘:,) = e¥s (g,(,'l,) + 0“2‘/‘_“/1“4‘1”),

gL;] = c_%.-'l,., ind gss = c_:_/,?. Due to this conneclion, one cau generate with litile effort static non-vacuumn
solutions from static vacnurn sohutions. Given a static vacuum 41 metric one can take its product with the real line
i, 4D solutionx I, 10 obtain a 3D solution with iwo symmetry directions (¢, 2%). If one hoosts this 51) solution in
the 5th direction it still satisfies the 5D cquations. However, when reinterpreted in 41) one obtains a solution with
non-zero Maxwell and dilayon fields. In other words, given a 4D metric g5, oue obtains a new solution (Fuu, .1,, o)
given by the transformations,

Jia
(cosh? a4gsy sinh? aﬂ !

ﬁn =

§ij = J,J(crr,h & + g sinh® a)h,

/i _ l+g"u|nh 2a
! NcoshTatgn mnhT o) 2

e” A = cosh®a + guesinh® er (32)

wliere a is the boost parameter and ,j = 1,2,3. Example: given tn: Schwareschild solution {2) onc obtains after
performing the above transformations, the following [71, 72, 73]

ds? = —71=——"—(“. + (—r__t-)(—l—-r—-—}-?"(l )([Q
A= LI

THE=1-, (33)
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where we have redifined’ the Schwarzschild radial coordinate (rg, say) in (2) to rs = r(1—5=), and put r_ =
2msinh? a, ry = 2mcosh’a, m being the Schwarzschild mass. The ADM mass and electric charge are M =
msinh2ae, @ = mcosh 2a, respectively. There are horizous at r = r1 and the singularity is at r = 0. Another
type of transformation, called Harrison transformation [74], transforms metrics within general relativity, taking for
instance, the Schwarzschild metric into the Reissner-Nordstrom metric. Now, in string theory there is the analoguc
of these boost transformed solutions. In a simple case, one starts with a stalic solution (gg,, ¢), with B,, =0 and
Ay = 0. ‘I'hen one gets a new solution (J,., A, ¢) by making the following transformations (73]

Tew — ga¢
9¢t = osRTatgusmnT o)

i _ 14-g4; sinh Jax
HhL i 2;72(cosh’a+§u sinh? o) !

e"2% = ¢~ 2 cosh? a + ¢y sinh? o . : (34)

Recalling that the Schwarzschild solution (2) is a solution of string theory, one can apply (34) to obtain the electric
charged BBHs given in equation (7). Bui we are still discussing 4D BHs. '
To obtain charged BHs in higher D, one starts with a D-dimensional nncharged BH [23),

dr?
] - cm

= (1~ __)dt2 +r2dQ2 (35)
where n = D —3 and c is a constant. This is a solution of both D—dimensional general relativity and string theory.

By using the transforming equations (34) one can obtain the [}-dimensional electrically charged Blls in string
theory [31],

ds-z - (1 — cm) (1 + cmsmh n) dl2 + lf'j -+ r dQ,,.H '

A, = — cm sinh 2a
¢ 2/ (r"+emsinhTa)

e~ =] + £ 7 sinh? & . (36)

The ADM masy and charge are given by M = m(l + 2"1 sinh?a) and Q = %ﬂfﬂ The event horizons
are at r = (cm)=, and the singularities at r = 0. In constrast with 4D we have that in the extremal limit the
singularity is timelike rather than nuil, and the temperature of the extreme BH is zero. There are no higher D
magnetically charged BHs becanse there are no Maxwell magnetic charges (one caniot integrate a 2-form F over
a 2 — 2 sphere). However, using a magnetic charge associated with the 3-forin field H, one can find magnetically
charged BH solutions in string theory [76).

From BHs in D—dimensions one can find straightforwardly black strings in (D + 1)~dimensions. It is only
necessary to take the product of the BH with R [76],

2

1—con

cm

di® = —(1 = —2)dt* + ——5 4+ 17O+ da? (37)

=

If one takes the product of the BI with R%, R?, R?, one obtaius a hlack membrane, a black 3-brane, and a black

p-brane. These branes are simple products. For instance, to get a black string that is not a simple product one

performs, after Lorentz boosting 1o get charge, a T-duality transformation on the simple product black string to

obtain

.S

14 “l\h o

Bﬂ — cmsinh 2o

2(r=+em sinh? u)’

e~ = 1+ 25

ds® = - di? + —",-$ +r2dQL o+ dz

f_ﬂ,q.h_a"

(38)
‘The causal structure is identical to Schwarzschild. In the extremnal litnit the metric field is given by

. —dt? 4 dz?
ds” = Téﬂ_ + d zdsli_'_l (39)
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where  is a redefinition of c. There are two novel features in this solution (39): (i) an extra symmetry has appuared,
the metric is now boost-invariant in the (z,¢) plane, and (ii) the solution is the same solution found in [77] for a
straight fundamental macroscopic string. ‘These objects appear as stable extended sates of closed-string theories
and are distinct from the cosmic strings of string theory. This means that fundamental strings are extreme black
strings. “Uhere is no such analogue in general relativity. The electron, a fundamental particle is not an extreme BH.
Ultimately, one would like to get a BII solution of 100 string theory, suitably dimensionally reduced to 4D.
One starts with the 10D action
L1
T 167

1
/dm:: -G [R.G + VoMo - T

n 1 12 .
2 _ 40
H? - LF ] (40)

where H? = HanpHMNP P12 = Fl 1M capital letters denote 10D fields and indices, and 7 is an internal
index. Through a Kaluza-Klein reduction to 4D, one can find an cffective 4D action, with the other dimenstons
compactified on a six torus. One writes the ansatz,

eﬂég“, + Gn;nA:_:‘A::u {1;?Grrln ) (

, = 41)
G ( A2Gonn Grn

with the 4/ spacetime indices gtv = 0,1,2,3, m,n = 1,...,6, and 4 and A are the 47 dilaton and Kaluza-Klein
U(1) fields, respectively. The action {39) then turns into

S= e [ dizyF (R - §V.9T46 - §e90,000

16n

4 F B 4 Su(V, M A M) 42)

where M is a O(6,22) matrix of the scalar (moduli) fields appearing in the reduction process and ¢ is the axion
related to My, by Hypn = %c“"*"\?prﬁ, see [78] for all details. "Uhis is quite complicated to solve, but applying
a generalized boosting procedure and using all the symmetries it is possible to find the most general BH solution
with all charges [78]. An important consequence brought from this 1D analysis is that the extreme BH solutions
correspond to massive excitations of 41D superstrings, suggesting that BHs are simnplestring states [79]) and confirming
the idea that elemetary particles (represented here by those string states) might behave like BHs. These HHs
saturate the Bogomolniy-Prasad-Somerfield bound of the underlying supersyrnmetric theory and are called extreme
BPS BHs.

There are also studies on black p-branes in string theory (e.g. {80]) motivated by their importance in the non-
perturbative dynamics of the 112 M—theory [19], a theory not explicitly formulated, but known to agglutinate the
four consistent {(heterotic, type I, type I1A and B3) superstring theories.

We have been presenting higher dimensional BH solntions in Kaluza-Klein theory, string theory and general
relativity. Yet, although pure general relativity can be formnulated in other dimensions, when one goes to dimen-
sions higher than four it is not anymnore unique. The natural generalization is given by the Lovelock action [81]
so that the field equations for the rnetric remain of second order. The theory can also be considered as a dimen-
sional continuation of the Euler densities of lower dimensions [82, 83, 84]. In four dimensions one has Lo take in
consideration two Euler densities. The Euler density of the 0-dimensional space which is proportional to /=g, and
the Euler density of the 2-dimensional space, proportional to /=g, where g is the determinant of the metric and
R the Ricci curvature scalar. Thus Lovelock gravity in four dimensions reduces to Einstein gravity, with action
TGITG" Jd*z\/=g(—2A+R). A similar construction and action is obtained for three dimensions. In six dimensions one
has still to add the Euler characteristic of four dimensional space, i.e. the Gauss-Bonnet term, to have the Lanczos
action, given by, eior [ d®z /=g (=2A + R + 02(Rugyo R¥%17 ~ 4R,pR*P + R?)), where a2 is a new constant. A
similar construction and action can be obtained for five dimensious. For each two new dimensions there exists a
new constant. o,. These constants do not seern to have a direct physical meaning. In order to find a meaningful set
of constants in any dimension D, it was proposed in [83, 86] a method whiclt restricts drasticaly the number of inde-
pendent constants to two, G and A, thus yielding a restricted Lovelock gravity. This method separates, in a natural
manuer, theories in even dimensions (D = 2n, with n = 1,2, ..) from theories in odd dimensions (D = 2n + 1). The
Bl solutions are given by [86]

. ; = 2
ds":—[l—(z':ﬁj +q) +(§)2 dr

L (B4 q)™T 4 (5)?

dt? + +r2dQ%_,, (43)
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where for odd D one puts (s = .%,p =0.¢ = 1), and for even D one has (s = 1,p = 1,¢ = 0). There are horizons at
r = ry given by the zeros of ¢ and the singularity is at r = 0. Note that there is no restriction in the dimension
of spacctime, it can be any natural number from 3 to oo, Since in genceral relativity IHs appear as the final state
of gravitational collapse it is important to know if the BH solutions found in Lovelock gravity can, in an analogous
maner, form from gravitational collapse. It was shown that, indeed, Lovelock BHs form from regular initial data
[87). The collapsing matter is modelled by a Friedmann type meiric, and the solution can be viewed as a dimensional
continued Oppenheimer-Snyder gravitational collapse. A possible scenario for the occurrence of this collapse in D
dimensions, would be in the very carly universe, before the (D — 4) extra dimensions have been compactified. In
turn, these newly formed higher dimensional BHs could play a role in the compactification process. It is inleresting
to note that these BH and collapsing solutions show that sotne important features of classical general relativity are
preserved and carried into Lovelock gravity in any dimension.

5. Conclusions

We have investigated BH, black string and black rmembranc solutions in several dimensions and in several
theories (general relativity, Kaluza-Klein, Brans-Dicke, Lovelock gravity and string theory}. We have scen that new
properties come into play. For instance, in string theory there are BHs withour singularities. 1t was also shown
that the existence of a negative cosimological term can he important in producing black solutions, as was the case of
black strings in 4D general relativity. We have also seen that some features appearing in general relativity remain
in other theories, like in Lovelock gravity, where the BHs also form from gravitaiional collapse of matter. Other
important developments not discussed here are solutions of Blls with both electric and magnetic charges, rotating
Blis, and multi-BH solutions in the various theories, to name a few.

With such a profusion of Blls in all these gravity Lheories, one conld hope to umderstand in some detait the BII
evaporation process, at least, in one of those solutions. However, the problem of calenlating Hawking radiation of
BHs, black strings and black membranes, through the latest stages of the evaporation process, remains.

A rainarkable poperty of Blls is that they appear in all scales, from the Planck length to astronamical dimensions.
‘This secmns to be unique. Electrons, molecules, stars and galaxies have well defined scales, 1$Hs do not.

Acknowledgements — I thank Paulo Sa and Vilson Zanchin for collaborations and conversations. | also thank
Antares Kleber for reading the manuscript carefully.

References

[1} 1. R. Oppenhcimer, 1. Suyder, Phys. Rev. 56, 455 (1939).

(2] W. Baade, F. Zwicky, Phys. Ren. 45, 138 (1934).

[3] A. Einstein, Ann. Math. (Princeton) 40, 922, {1939).

(4] J. Michell, Phil. Truns. R. Soc. (London) 74, 35 (1784).

[5] P.S. Laplace, Ezposition du Systéme du Monde (1. B. M. Duprat, Paris. 1796).

(6] R. Penrose, Riv. Nuovo Cimento 1, 252 (1969).

(7] J. P. S. Lemos, Phys. Hew. Lett., 68, 1447 (1992).

(8] P.S. Joshi, Global Aspects in Gravitation and Coamology, (Clareudon Press, Oxiord, 19493).

[9] J. P. S. Lemos, in Proceedings of the XNI'"* Annual Meeling of the Sociedade Astronémica Brasseira (August 1995},
eds. F. Jablonski, F. Elizalde, L. Sodré Jr., V. Jatenco-Pereire, (1AC 1996), p. 57.

[10] D. Lynden-bell, Nuture 223, 690 (1969).

[11] R. Penrose, Phys. ltev. Lett. 14 (1965) 57.

[12] S. W. Hawking. Nature 248, 30 (1974).

(13) S. W. Hawking, Phys. Ree. 13, 191 (1976).

[14] A. Stromiunger, Phys. Rev. Lett. 77 (1996) 3498.

[15} 5. Coleman, J. Preskill, I'. Wilczeck, Nucl. Phys. B378, 175 (1992).
{16) B. Carter, Phys. Kev. Letl, 33, 558 (1974).

(17] G. Gibbons, C. M. Tlull, Phys. Lett. BL09, 190 (1982).



José P. §. Lemos 57

[18] S. W. Hawking, Mon. Not. R. ustr. Soc. 152, 75 (1971).

{19] P. K. Towsend, M-Theory for mortals, Lectures delivered at the XVII'"" UK Institute for Theoretical High Fnergy
Physicists {1996).

[20] E. Witten, Nucl. Phys. B443, 85 (1995).

[21] G. Vafa, hep-th/9602022.

[22] M. B. Green, 3. H. Schwarz, E. Witten, Superstring theory, (Cambridge Unversity Press, Cambridge 1987).

(23] F. R. Tangherlini, f1 Nuove Cim. XXVII, 636 (1963).

[24] 5. W, lawking, Comm. Math. Phys. 43, 149 (1975).

[25] S. W. Hawking, in General Relativity, ods. S. W. Hawking, W. lsrael (Cambridge University Press, Cambridge 1979).
[26] J. P. S. Lemos, Phys. Lett. B 352, 46 (1995).

[#7] J. P. 5. Lemos, Class. Quantum Gravity 12, 1081 {1995).

[28] G. llorowitz, Proceedings of The 1992 Trieste Spring School on String Theory und Quantum Gravity, (World Scientific,
Singapore 1993}, hep-th/921014%.

[29] P.T. Chrusciel, Contemporary Mathematics - AMS 170, 23 {1994).
[30] G. Gibbons, Nucl. Phys. B207, 337 (1982).
[31] G. Gibbous, IX. Maeda. Nucl. Phys. B208, 741 (1948).
(32] D. Garfinkle, ¢;. Horowitz, A. Strominger, Phys. ftex. 17 43, 3140 (1991); 45, 3888(L}) (1992).
[33] A. Sen. Phys. Ree. Lett. 69, (1992).
[34] S. Deser, R. Jackiw, G. "t Hooft, Ann. Phys. 152, 220 (1984).
[35] A. Acliicarro, P. K. ‘Townsend, Phys. Lett. B180, 89 (1988).
[36] E. Witten, Nucl. Phys. B311, 46 (1988).
(37] M. Baiiados, C. Teitclboim and J. Zanelli, Phys. NHev.Lett. 69. 1849 (1992).
[38] M. Baiiados, M. Henneaux, C. Tritelboim and 1. Zanelli, Phys. Rev. ) 48, 1506 (1993).
[39] S. Carlip, Class. Quantum Grav. 12, 2853 (1995).
[40) O. Coussaert, M. Henneaux, Phys. Rev. Lett. 72, 183 (1994).
[41] R. B. Mann, S. F. Ross, Phys. Ree. D47, 3319 (1993).
[42] G. T. Horowitz, 1. L. Welch, Phys. Rev. fett. T1, 328 (1993).
[43] N. Kaloper. Phys. Rev. I? 48 (1993) 2508,
[14] N. Kaloper, Phys. Hev. D 48 (1993) 4658.
J
I

-

[45] J. P 5. Lemos, V. T. Zanchin, Phys. Hev. D 53, 4684 (1996).
[46) J. P. 8. Lemos, V. T. Zanchin, Phys. Rex:. D 564, 3840 (1996).

[17] 3. W. llawking. G. F. R. Ellis, The Large Scale Structure of Space-Time, (Cambridge University Press, Cambridge,
1973). '

[18) K. S. Thorne, in Magic without Magic, cd. J. R. Klauder, (Freeman and Company, San Francisco 1972), p. 231
(49] I . S. Lemos, P. V. Moniz, *Supersymmetry of the black strings”, in preparation.

(0] P. M. Si, A. Kieber, J. P. S. Lemos, Class. Quartum Grae, 13, 125 (1996).

{51] P. M. Sd, 1. P. 5. Lemos, hep-th/9503089.

[52] G. Mandal, A. M. Sengupta, S. R. Wadia, Mod. Phys. Lett. A 6, 1685 (1991).

(53] E. Witten, Phys. Ree. D 44, 314 (1991).

{54] R. Dijkgraaf, H. Verlinde, E. Veelinde, NUel, Phys. B371, 269 (1992).

[35] M. J. Perry, E. Teo, hys. Rev. Lett. 70, 2669 (1993).

(56] K. Becker, Strings, Black Holes and Conformal Field Theory, (PhD thesis, University of Bonn 1994), hep-tli/9404157.
(57] C. V. Johnson, R. C. Myers, Phys. flen. D) 52, 2294 (1995).

(58] C. Teitelboim, in Quanturn Theory of Gravity, ed. S. M. Christensen (Hilger, Bristof, 1984).

[59] R. Jackiw, in Quantum Theory of Gravity, ed. S. M. Christensen (Hilger, Bristol, 1984).

{60] 1. P. S. Lemos, P. M. S4, Mod. I'hys. Lett. A 9, 771 (1994).

{61] M. Cuadoni, S. Mignemni, Phys. Ree. D 51, 4139 (1993).



HR

62}
(63}

fo4]
651
[66]
[67]
[6#]
[69]
(7o)
@)
[72]
[73]
[74]
[75)
{76]
(77}
[78]
[79]
180)
(81]
[82)
/83)
[84]

{85]

[36]
[87]

XVII Encontro Nacional de Particulas e Campos

A. Achiicarro, M. E. Ortiz, Phys. Rev. D 48, 3600 (1993).

J. P. 8. Lemos, “Cotnparative study betwcen the thermodynamics of the 2-dimensional hlack hole in the Teitelbaim-
Jackiw theory and the 4-dimensional Schwarzschild black hole”, this volume.

J. P. S. Lemos, Phys. Rev. D 54, 6206 (1996).

J. P. S. Lemos, P. M. §4, Phys. Rev. D). 49, 2897 (1994).

1. P. S. Lemos, Paulo Sa, Class. Quantum Gravity 11, L11 {1994).

R. B. Mann, S. F. Ross, Phys. Rev. D) 47, 3312 (1993).

J. D. Hayward, hep-th/9508090.

C. G. Callan, S. B. Giddings, |. A. Harvey, A. Strominger, Phys. ftev. 145, R1005 (1992).
5. W. Hawking, Phys. Reuv. Lett. 69, 406 (1992).

P. Dobiasch, D. Maison, (Fen. Rel. Grav. 14, 231 (1982).

A. Chodos, S. Detweiler, Gen. Rel. Grav. 14, 870 (1982)

G. Gibbons, D. Wilishire, Ann. Phys. 167, 201 (1986); 178, 393(E) (1987).

B. Harrison, J. Math. Phys. 9, 1744 (1968).

S. Hassan, A. Sen, Nucl. Phys. B375, 103 (1992),

G. Horowitz, A. Strominger, Nucl. Phys. B360, 197 (1991).

A. Dabholkar, G. Gibbons, I. A. Harvey, F. Ruiz Ruiz, Nucl. Fhys. B340, 33 (1990).

M. Cvetic, DD. Youm, Nucl. Phys. B472, 249 (1996).

M. ). Duff, R. R. Khuri, R. Minasian, ). Rahmfeld, Nuel. Phys. B418, 195 (1994).

J. M. Maldacena, Black Holes in String Theory, (PhD thesis, University of Princeton 1996), hep-th/9607235.
D. Lovclock, J. Math. Phya. 12, 498 (1571).

T. Regge, Phys. Rep. 137, 31 (1986).

B. Zumino, Phys. Rep. 137, 109 (1986).

C. Teitelboim, J. Zanclli, in Constraint Theory and Relativistic Dynamics, eds. G. Longhi, L. Lussana, (World Scientific,
Singapore 1987).

M. Baiiadoy, C. Teitelboim, I. Zanelli, in J. J. Giarabiagi Festschrift, edited by H. Falomir, R. Gamboa, P. Leal, F.
Schasposnik (World Scientific, Singapore 1991).

M. Baiiados, C. Teitelboim, J. Zanclli, Phys. Ree. D 49, 975 (1994].

A.llha, J. P. 8. Lemos, “Dimensionally continued Oppenheimer-Snyder gravitational collapse. solutions in even dimen-
sions”, Phys. Rev. D, to appear (1997), hep-th/9608004.



XVII Encontro Nacional de Particulas ¢ Campaos 59

Black Holes as Atoms: Classical Hair and
Quantum Levels in the Light of General Relativity

Jacob D. Bckenstein
Racah Institute of Physica, Hebrew University of Jerusalem,
Givat Ham, Jerusalem 91904, Israel

I marshal the heuristic arguments, based squarely on general relativity and . elementary
guantum notions, thal suggest the quantum numbers relevant for a black hole in a stationary
state. The evidence for believing that horizon area is an adiabatic invariant is reviewed.
This fact when combined with an argument going back to P. Ehrenfest points to a discrete
spectrum of black hole horizon arca with uniform spacing between eigenvalues, as also found
on other grounds by V. Mukhanov as well as others. This immediately leads to quantization
of black hole mass with the spacing beiween neighboring “energy levels” roughly inversely
proportional Lo mass, in harmony with N. Bohr’s correspondance principle. The degeneracy
of the “encrgy levels” can be gotten by identifying degencracy with the exponent of black
hote entropy. | delincate an algebra for the relevant black hole operators which reproduces
the uniformly spaced area spectrum. It also, independently of other arguments in physics,
leads to charge quantization for black holes and free particles in multiptes of a universal
charge unit. { remark on the differences belwecn the conclusions listed here and those from
the loop quantization of gravily.

1 INTRODUCTION

In classical general relativity the mass spectrum of black holes is a continuum. Tlowever, venerable argunents
[1. 2] suggest that in quantum theory this spectrum inust be disercte and highly degenerate. The simplest way to
summarize these conclusions is by stating that black hole horizon area is quantized with equispaced levels whose
degencracy corresponds, by the usual Boltzinann-Einstein formula, to the black hole entropy associated with each
area eigenvalue. The first of these conclusions has been recovered by a number of workers using diverse ideas [3].
On the other hand, the loop quantization scheme for general relativity {4) sees to give a different spectrum [5).
Here 1 shall marshal the arguments favoring the equispaced area spectrum, and point ont the clarification they
afford of the nature of the quantum black hole.

In what follows | use units for which (¢ = ¢ = 1. Then £'/2 is the Planck—-Wheeler length €p.

¥
2 NO HAIR - NO NEW CLASSICAL PARAMETERS

A primary question here is what is the comnplete sel of quantum numbers that describe a black hole in a stationary
quantum state. In the absence of a Jucid quantum theory of gravity, I here opt to infer the answer from the generic
parameters of a black hole in classical general relativity. The issue is the sane as thalt in Wheeler’s *no hair”
conjecture [6] which has illuminated so much of black hole physics. Inspired by lsrael’s and Carter’s early black hole
uniqueness theorems [7], Wheeler anticipated that “collapsc leads to a black hote endowed with mass and charge and
angular momenturn, but, so far as we can now judge, no other frec parameters”. He stressed that quantum numbers
such as baryon number or strangeness can have no place in the cxternal description of a hlack hole. Support for
this last expectation was soon forthcoming from the “no hair’ theorems of Chase, Teitelboim, Harlle and myself

[8].
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Wheeler’s characterized a ‘free parameter’ as one subject to a Gauss type law, which circumstance permits its
determination from measurements made far away from the black liole. [t is entirely in harmony with this philosophy
Lo add rmagnetic charge to Wheeler’s list: magnetic monopole is subject to a Gauss law, and duality invariance of
the Maxwell-Einstein equations implics that there should be analogues of the Kerr-Newmnan solution with magnetic
charge alongside electric charge (these are in fact known). The question of whether charges of nonabelian gauge
thearies - color in modern parlance - shoutd be added to the list arose early. 1 {9] found no obstruction to such “hair”,
while Yasskin [L0] provided cxplicit, if trivial, sotutions of black lioles with nonabetian gauge hair. Nevertheless, the
discovery of the black hole solution with S1/(2) gauge hair by Volkov and Gal'tsov [11] took everybody by surprise.
The ensuing plethora of black hole solutions with “hair” (for reviews see ref. [12]) was interpreted by some as
debunking the “no hair” principle. '

But, at least for spherical static black holes, this reaction has proved premature. The Volkov-Gal'tsov black
hole as well as the Green—Mathur-O’Neill Proca-hair and sphaleron-hair black hole solutions [13] have turned out
to be unstable [14]. In like manner the hoary Bronnikov-Bocharova-Melnikov conformal scalar hair black hole [15]
was found unstable [16). The Skyrme hair black hote [I7] and the black liole with a nonabelian monopole [18} are
the only known general relativistic spherical black liole solutions which have hitherto evaded unstability symptoms.
It addition powerful new theorems rule out the ezistence of static solutions with scalar hair, whether charged and
interacting witl an Ahelian gauge field [19, 20], or neutral [21, 20] (in the latter case the proof still does not cover
therange 0< € < % of the nonminitnal coupling parameter).

What about nonspherical black holes ? ‘I'he Kerr~Newman family contains all known general relativistic solutions
representing stationary rotating black holes. For static black holes, three nonspherical examples are known. The
first is the the Zel’dovich and Novikov [22] quadrupolar black hele; Lhis is not asymptotically fiat and, therefore,
represents a noilisolated black hole. The second is the Achucarro-Gregory—Kuijken [23] black hole transfixed by a
cosmiic string. Again this is not asymptotically flat, and is not ostensibly equipped with a parameter not already
present in the spherical black hole or siraight cosmic string. Thus these examples fail to supply us with new black
hole parameters beyond the usual ones; they are not hairy Dblack holes. The third nonspherical example is Ridgway
and E. Weinberg’s black hole [24]; it is a solution of a rather contrived gauge theory, and as such not directly of
interest to our search for parameters that imay transtate into quantum numbers.

Reviewing all this evidence we see that today only the Skyrmion black hole and the black-hole~in-a-monopole
deserve the statns of viable (that is stable) hairy black holes. Things have not changed much since Wheeler made
his clever guess. We do have to ade to his list of black hole paramelers magnetic monopole, both the Maxwell kind

and the kind in sore specific nonabelian gauge theories, as well as Skyrme topological number.

3 BLACK HOLE QUANTUM NUMBERS

How Jo we convert information about classical parameters to a selection of quantuin numbers ? Again, the lack of
a hucid quantum gravity motivales us 1o seek itlumination from analogy. Consider then the case 5f the Higgs field
with Mexican hat potential in flay spacetime. A configuration with the Higgs field taking on values on a slope of
the potential is not a stationary classical solution. No stationary gquantum state corresponds to it. A configuration
with the field at a minimum of the potential is a classical stationary stable solution. It is well known that small
perturbations away from it, which classically oscillate around it, are interpreted in quantnm theory as excitations of
the field arising from the minimum state. By contrast, a configuration with the ficld at a maximumn of the potential
is a classical stationary but unstable solution. A small perturbations away from it runs away. In the quantum
theory such perturbations are reinterpreted as vachyonic excitations which, at thie level of this discussion, certify
the underlying stationary configuration as pathological.

By analogy we may conclude that (o each stable stationary classicat black hole solution corresponds a stationary

quantum state which is capable of excitation. Again by analogy, the cxcited state can be interpreted as the hase black
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hole state plus quanta of various ficlds propagating on its background. By contrast, an unstable stationary classical
black hole solution cannot be associated with a stationary quantum stale because excitations of the later would be
tachyonic in nature. Thus, the unstable nonabelian hair black holes and the Bocharova—-Bronnikov—Melnikov black
hole do net furnish classical analogucs of quantum stationary states.

The classical nonstationary solutions of the Higgs theory include some which have the field shuttle in time
frotn one potential well to the other and back. These are big perturbations which are not confined around a single
minimum. In the quanturn theory the appropriate base state is a linear superposition of two quantum stationary
states, one for each well. It would seem that in the black hole case the appropriate analog is a linear superpositions
of two distinct black hole stationary states. In other words, the shuttling solutions do nol imply new quantum
stationary black hole states. _

Although the above arguments cannot rule out quantum stationary black hole states without classical analogs,
they are suggestive that, as far as present evidence requires, the only quantum numbers of a stationary black hole
state are mass, electric and magnetic charge (this last including nonabelian varieties) and Skyrmionic topological
nuriber. 1 am not too clear about. what lo do with this last number, so 1 will ignore it at this preliminary stage. |
thus focus on black hole eigenstates of mass M, clectric charge Q, magnetic monopole A, angular momentum ¥
and J, and, of course, linear momentum P. This last can be set to zero if we agree to work in the black hole's
center of mass. The eigenvalues of @, i, J2, J, are well known. By making the standard assumption that this last
set of operators are mutually cominuting, we may inunediately establish the spectrum of the mass for the extremal
black holes.

The ciassical ertremal Kerr—Newman black hole is defined by the constratnt

M2=Q*+ K24+ J%/M? (1)
50 that 12
M =91/ [Q'-’ + R+ NPT Rip+ 4J'~’] 2)

where the negaiive root solution has been discarded because it gives iinaginary Af. By replacing in this expression
Q — gah)M? K — g(hf4a)'/? and J? — j(j + 1)k* with ¢,g integers, j a posilive integer or half-integer and
« the fine—structure constant, we enforce the quantization of charge, magnetic monopole and angular momentum,
and obtain the mass cigenvalues (also discussed by P. Mazur [25])

Mog; = (h/2)'/? [aq‘* + g% /40 + /(ag? + g /4a)? +45(j + 1)] " (3)

Substituting these in the classical expression for horizon area of an extremal black hole
A=ax [Q*+ K+ 27% /M7 (4)

we oblain the area eigenvalues. It should be noted that these last, which can hardly be quibbled with, are at
variance with the area cigenvalues claimed to follow from the loop quantization program {4, 5]. Therefore, since
the cigenvalues of charges which force this conclusion cannol be tampered with, one must conclude that either the
algorithm from loop quantization is manifestly inapplicable 1o extremal black holes, or else that extremal black
holes are forbidden by loop gravity theory. Most would view the lasl alternalive as highly unpalatable.

For generic black holes 1 shall use other arguments. As I shall make clear, for them horizon area is more
immediately quantized than is mnass. | shall avail myself of the relation between mass and area of the generic
Kerr-Newman black hole to write, as first done for the classical quantities by Christodoulou and Ruffini, [26]

e 151., (1 N 4#(@2:+_ [‘(2))2 N 4:r:jz

(5)

‘T'his relation allows one to read off eigenvalues of A1 from those of A, the charges and the angular momentum; it
was first used in this sense long ago [1].
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4 BLACK HOLE AREA: AN ADIABATIC INVARIANT

In the absence of a complete theory of quantum gravity, I seck to yuantize the black hole arca of a generic Kerr-
Newinan black hole in the style of the old quantum theory, by exploiting its similarity to an adiabatic invariant in
mechanics. What is an adiabatic invariant 7

A physical system governed by a hamiltonian which depends on an exterior parameter X is said to undergo an
adiabatic change if A varies on a timescale long compared to the longest timescale of the internal motions T'. Thus
if H(g,p, A(t)), the change in the system is regarded as adiabatic when A~'d)A/dt << T-'. An adiabatic invariant
is any dynamical quantity A(g, p) which changes little during the pcriod when # accumulates a large total change.
Ehrenfest {27] showed that for a quasiperiodic system, all action integrals of the form 4 = § pdq are adiabatic
invariants. For instance, for an harmonic oscillator of frequency w, the action integral equals 27 E/w. Thus when
the spring constant varies on a timescale » w™!, E/w remains constant even when £ has changed sizeably.

One can understand this adiabatic invariance of E/w in guantuin terms. For an harmonic oscillator in a
stationary state labelled by quantum number n, E/w = (n + _%)h. One expects n to remain constant during an
adiabatic change because the perturbations imposed on the systein have frequencies € w, so that transitions between
states of different n are strongly suppressed. Therefore, the ratio E/w iy prescrved. Now in the Bohr-Somunerfeld
theory (old quantum mechanics), action integrals are quantized in integers: § pdq = 2rnA. The above logic then
explains why the classical aciion integrals are adiabatic invariants.

Actually Ehrenfest stated a broader hypothesis [27] any classical adiabatic invariant (action integral or not)
corresponds to a quantumn entity with discrete spectrum. ‘The rationale is that an adiabatic change, by virtue of its
slowness, is expected to lead only to continuous ;:hangcs in the system, not to jumps that change a discrete quantum
number. The preservation of the value of the quantum entity would explain the classical invariant property. 1 shall
apply Ehrenfest’s hypothesis to black hole arca of generic Kerr—Newman black holes, which, as | show now, shows
all the signs of being the analog of the mechanical adiabatic invariant.

Consider a Rcissner-Nordstrom black hole of mass M and clirge Q. We shoot in a classical point. particle
of cltarge £ with (conserved) ecnergy E = eQ/ry, where ry is the radius of the black hole in Bover-Lindquist
coordinates. !n Newtonian terms the particle should marginally reach the horizon where its potential encrgy just
cxhausts the total energy. Study of the exact equation of motion supports this conclusion: the particle’s motion has
a turning point at the horizon. Because of this the assimilation of particle by the black hole takes place especially
stowly; it is an adiabatic process.

Now the area of the horizon is originally

A=aury® =dn (M + /AT Q) (6)
and the (small) change inflicted on it by the absorption of the particle is

AA=8pn~"! (AM - QAQ/rx) (7)

where
t ;
91(;\,' = EA'—l M2 — Q"' (8)
Thus if the black hole is not extremal,’ A4 = 0 becaise AM = L while AQ = ¢ and £ = e@/rx. Therefore,
the horizon area is invariant in the course of an adiabatic change of the black hole. For an extremal black hole

this conclusion fails: when @ = M, /M? —Q? in Eq.(6) is unchanged to O(e?) during the absorption, so that
AA=8rMFE £10.

As a second example consider a Kerr black hole of muss A an angular momentin J. Send onto it a scalar wave
of the form Yy m(8, ¢)e™"*. It is kuown [28} that the absorption coefficient has the formn

I = ng,,;(M,J) (w — Q) (9)
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where

JIM
rHZ+ (J/M)2

is the rotational angular frequency of the hole, while K, em({M, J) is a positive cocflicient. 1f we choose w = m Q,

1) {10)

the wave is perfectly reflected. By choosiug w — Qe slightly positive, we arrange for a small fraction of the wave
to gel absorbed. If the reflected wave is repcatedly reflected back towards the black hole by a large spherical mirror
surrounding it, one can arrange for a sizeable fraction of the wave’s energy and angular momentum to eventually
get absorbed. But since this takes place over niany cycles of reflection, the change in the hole is an adiabatic one.

The horizon arca of the Kerr black hole is
) 2 "2
A:dfr[(M—%-\/M?—(J/M)-’) +(J/M)‘] (I1)

and small changes ol it are given by

AA =0, (AM = QAJ) (12)

where l
O = EA"’ VM= (J/M)? (13)

In our case the overall changes AM and AJ inust stand in the ratio w/mn (as a mental aid just think of the wave
as made of quanta, each with energy hw and angular momentum A in). But since we chose w == Qm, we see from
Eq.(12) that if the black hole is not extremal, AA 2 0, 1o the accuracy of the foriner equality. Lvidently, here
too liorizon area is invariant during adiabatic changes. This conclusion fails for the extremal black hole for reasons
snuitar to those in our first exainple.

The two examples and the one i the next seciion support the thesis that for a generic black hole, horizon arca
A s, classically, an adiabatic invariant. By taking Elrenfest’s hypothiesis seriously, 1 conclude that horizon arca of

a generic quantum black hole, A. must have a discrete eigenvalue spectrum:
wy = f(n); n=123, .- (14)

The function f is supposed to be positive and monotonically increasing (this last just rellects the ordering of
eigenvalues by magnitude); however, nothing else can be deduced ahout f freun this argument. At any rale, in light
of Flq.(5), and 1he quantization of charge, magnetic monopole, and angular mornentum, this result tells us that
black hole inass has a discreie spectruni. The fornin of it will be elucidated in Sec.V

5 AREA QUANTIZATION

For generic err—-Newtnan hlack holes, Eq.(14) raises the pressing question, whai is the spacing of the arca levels,
ant how does this spacing vary along the spectrwin ? llere [ shall answer this question by recalling a modification
[29] of Christodoulou and Rufini’s reversible: process {26]. Christodoulou asked, can assimilation of a poiut particle
by a Kere black hole be made reversible in the sens» that all changes of the black hole can be undone by absorption
of a suitable second particle 7 lis auswer, as larer gencralized to the Kerr—Newman black hole [26], is that the
process is reversible il the particle, which may be electrically charged and Celrr_;' angular momentuni, is injected at
the horizou from a turning point iu its orbit. In this case the horizon area (or the irreducible mass in the original
terminology) is left unchanged. Since horizon area cannot decrease [31], it is plain that the effects on the black hole
can be uudone by another reversible process which adds charges and angular inonentum opposite in sign to those
added by the first. For generic Kerr-Newman black holes Christodoulou’s reversibte process is an adiahatic process
(in the sense that assimilation from a turuing point proceeds slowlv) which leaves the horizon area unchanged. It

supplics us with a further example of the adiabatic invariance of horizon area.
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Note that the particle in the reversible process has Lo be a point particle in order for its absorplion to leave the
arca unchanged. In fact, recalculation of the process for a particle of mass u and radius b shows [29] that there is
a minimum increase in area,

Ad = Brub, (15)

which is attainable if the particle is captured when its center of mass is at a turning point of its motion a proper
distance b away (rom the horizon. Classically one can here take the limit & — 0 and recover Christodoulou’s
reversible process. However, a quantum point particle is subject to quanturn uncertainty. If it is known to be at
the horizon with high accuracy, its radial momentum is highly uncertain; this prevenis the turning point condition
from being fulfilled. And, of course, a relativistic quantum point particle cannot even be localized to better than
a Compton length fif/yu. Thus in quantum theory the limit & — 0 is not a legal one. One can get an idea of the
smallest possible (quantum) increase in horizon arca by replacing 6 — v1/8wu in Eq.(15), where 7 is a number of

order unity and the 8« is for later convenience. That minimal increase is
(AA)min = 'I'EPz (16)

The surprising thing here is that (A A).n ts independent of A, @ and J of the black hole. This strongly suggests
that it corresponds o the spacing between cigenvalues of A in the quantum theory, a unifortn spacing. For it would
be strange indeed if thal spacing were to vary, say with mass of the black hole, and yet the increment in area
resulting from the hest approximation to a reversible process would contrive to come out universal, as in Eq.(16),
by involving a number of quantum steps inversely proportional to the eigenvalue spacing.

A check of our identification is furnished by a calculation of the mass spacing belween area eigenvalunes. For a

black hole with zcro charges and angular momentum, it is easy to derive from Eq.(5) that

AM 1 AA_ 4 a7)
kT 32zM g7 32aM

W=

This result is in pleasant agreement with Bohr’s correspondance principle: “transition frequencies at large quantum
numbers should equal classical oscillation frequencies” bhecause a classical Schwarzschild black hole displays ‘ringing
frequencies’ of order M ~%, just as F.q.(17) predicts. The agreement wonld be destroyed if the area cigenvalues were
unevenly spaced. Thus there are two good grounds for replacing Eq.(14) for a generic Kerr—Newman black hole by

apn=vlpi(n+y); g>-1; n=12-.. {18)

where n allows for the possibility, entirely consistent with all that has been sald, that the smallest area eigenvalue
is either very simall or very large on the scale of the spacing yp?.

Our conclusion that the minimal area increase is given by Eq.(15) fails for extremal black holes becanse the
analog of the quantity 85 in Fq.(13) diverges. Just as we found in Sec.iV that for an extremal Kerr black hole the
area does increase during the adiabatic process, so we find here that the ininirnal incrcase in area is not Eq.{(13),
but a quantity dependent on M, Q and J. We cannot thus deduce that the area cigenvalues of an extremal black
hiole are evenly spaced. This is entirely consistent with 7qs.(3-4) which show the area specirum of the extremal
black hole to be very complex.

To get an idea about the magnitude of 7 in Kq.(18), I now consider the degeneracy g, of the eigenvalue ap,
first discussed in these terms by Mukhanov [2]. We know that black hole entropy Sk = A/4€p + const. (recall
that black hole entropy is deterinined by thermodynamic arguments only up to an additive constant} quantifies how
many internal microstates of the black hole correspond to the particular externally describable black hole macrostate.
Accordingly, in the spirit of the Boltzmann~Einstein formula, I inake the identification exp(Su} — ga. or

an

On = exp (48 7 + consl..) =g exp{y{n -1)/4) (19)
F
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As stressed by Mukhanov, gn has to be a whole number for cvery n; this is ouly possible if [32]
ai=1,2-- and y=4x{In2,In3, -} (20)

I now consider some special cases.

In casc g1 = 1 (nondegenerate black hole groundstate), the additive constant in Eq.(19) must be retained, for
were it to vanish, @, would also vanish; however, in any state a black hole should have nonvanishing horizon area.
Just this case was studied in Ref. [32]; it is a bit ugly in that the eigenvalue law Eq.(18) and the black hole entropy
include related but undetermined additive constants. For g; = | the simplest choice for v is ¥ = 4ln 2.

The next case, gy = 2 (doubly degenerate black liole groundstate), no longer requires an additive constant in
the black hole entropy. 1 view this as a virtue. With zero additive constant and ¥ = 4In2, Eq.(18) specifies Lthat
71 = 0. Thus this is an economical option in that borh the additive constant in the entropy and the offset 5 vanish.
The arca spectrum is

ay = A0p N2 -n: n=1,2, - {21)

If instead we take ¥ = 4Inz with = 3,4, -+, then g = —1 + 1/lnaz. The resulting spectrum is 6, = 4¢piInr -
(n— 1+ 1/Inz 2). For instance, if z = 4, the horizon area is quantized in half integers.

For g, = 3,4.---, the choices v = 4In3,41In4,. .., respectively correspond to = 0 and vanishing additive
contant in the entropy. ‘They are as elegant as the case g3 = 2 with v = 41n 2 discussed above, but in the present
state of ignorance | prefer this last one for its lowest ground state degeneracy.

IFor an extremal black hole the arca eigenvalues that follow fromn Egs.(4) and (3), if substituted in Eq.(19), would
in general give nonintegral values of g,,. However, we recall that the black hole entropy of an extremal black hole
is thought te vanish [33]. This decoupling of area from cntropy means we must ignore Eq.(19) and set g1 = 0.

For the nonextremal black holes we still have Lo decide among the various choices of - for g3 = 2. | now propose
a new kind of argumnent.

6 ALGEBRAIC APPROACH

lu quantum theory one usually oblains spectra of operators from the algebra they obey. With Mukhanov I have
heen studying various algebras that might enlighten us on the quantumn basis of the results just discussed. Let
me here describe one algebra of this kind; it has the advantage of simplicity. and offers as a surprising bonus the
quantization of electric (or magnetic charge), which in this paper has so far been assumed to be a given.

In ordinary guantum theory the algebra of opurators usually reflects symmectries in the sysitem. | cannot claim
that I know how to derive the relevant algebra of observables from the underlying symmetrics of black holes. My
approach here shall be axiomatic. QOur earlier heuristic arguments have alrcady pointed us to the operators that
should be involved. and have cven suggested that one should focus on horizon area quantization as the key step. |
shall thus try to guess, by appealing to analogies with well known physics and simplicity, the forin of the algebra
that is required. Tn the final analysis what is being done here is trytug an algebra for consistency with our previous
conclusions.

| now state and discuss three axioms;

» Horizon area is represented by a positive semi-definite operator A with a discrete spectrumn fa,; n=0,1,2---J.

Discretness of the area spectrim, as suggested by the adiabatic invariant characrer of horizon area. is formalized
in this axiom. One imagines the eigenvalies to be arranged so thai ap = 0 corresponds to the vacuum 10} (no
black hole case) while the rest of the a,, are arranged in order of increasing value. These eigenvalucs have various
degeneracies gn,; | take gy = 1.

» The operators A, @, K, J* and J, mutually comiuute, and for each set of their joint eigenvalues there exists at

least one black hole creation operator Rnggjms such that Huggims|0} is # one-black hole state with area a,, with



66 Jacob D). Bekenstein

electric and magnetic charges g(oh)}/? and g(ifda)}/? | and with total spin j(j + 1)/ and z-component of spin mh.
The index s represents internal quaniutn numbers invisible to an external observer.

That Q, K, J% and Js mutuglly commute requires no explanation. That A commutes with all of them is
in agrecement with the feeling that horizon area is invariant under gauge transformations and bodily rotations of
the black hole. Creation operalors are common in field theory. In view of the similarities between black hole and
elementary particle, it seems not farfetched to treat black holes as particles of sorne field. Internal quantum numbers
are necessary because we know from the black hole entropy that each state seen by an external observer corresponds
to many internal states; these need to be distinguished by additional quantum numbers.

o The subalgebra spanned by A, Q, K, J; and all the R.,,,g,-m, and ffiw_’-m, for n > 1 is linear and closed.

In general it is always possible to choose operators such that their algebra is linear, but there i8 no guarantee
that these will be the physically inleresting operators. Thus the third axiom is a physical one and nontrivial. Note
that [ have left out J2; this is because being a square it cannol have a linear algebra: it is easily verified that even

J:? cannot have commutators with the Itrg9ima which are linear in Rpggim, i J; has such.

In applying these axiowms, it will be convenient to use the index x as an alias for nggjm. One example of a

conunutator consistent with the axioms is
[A, Res) = B2 Reryr + KAV A 4+ KD 4 KR 46U, (22)

where I;::"' and Lhe kg) are suitable structure constants. Clearly all of 1, Q. K and J; annihilate the vacuum;

[A, Res]0) = AR, [0) = A% Ryryr0) (23)

therefore,

ltowever, R, is Lo create an eigenstate of A from the vacuum; therefore we must sel
o ] '
hyy = anbl 8 (24)

with n identical to the n in the group & for consistency. Now suppose we redefine

Rxe — 2% = R, 4 a2 [kg-p.é +EDQ + £ K 4 kU, (25)

frew obviously still creates a statc with quantum numbers ks out of the vacuum. But in terms of it the commutation
relation (22} becomes

(4, BS¥) = an REY™ (26)
From now on I drop the superseript “new”.

Now we operate with R,;',:R;, on the vacuum and employ thic said commutatlion relation to get
fihmkn's‘lo) = Rxs(fi -+ ‘In)Rx':'lu) = (an + an')Rm Rx’a'w) (27)

so thay R, R,‘.,JIO) has area which is the sum of the areas of R;,IO) and R.;a,alO). Analogy with ficld theory might
lead us to believe that the state R,;, R,—_'.'IU) 18 Jugt a two-black houle state. In this case the result Just obtained
would seem Lo be trivial. But in fact, the axiomatic approach allows other possibilities.

To clarify the matter, let us write down one more generic cominutation relation allowed by the axioms:

[f?.“, R‘;';] = C::::;:R‘u,u “+ fi:‘zlsrli + fi.?,gr,rQ. + f(K) .!{- -+ fijl) jz (28)

LY LA aR's’

o r ) . -
Here the €%,2,,. and f,("i,,. are additional structure constants antisymmetric under the exchange xsx's’ — «'s'xs.
Operating with this rclation on the vacuum gives

it

Ras By |0) = fgryi Ry |0) = X050 By [O) (29)
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Since on the R.H.S. of this relation stands a one-black hole state, any state like Rx, Rcis¢|0) is a linear combination
containing one-black hole states. T'he statement that g, + an- is also an eigenvalue of A must thus also accrue to
one-black hole states. )

The last result means that 2a; must be an cigenvalue of A at least as big as the second eigenvalue, ay. Likewise
2u) + @) = 3a; must be eigenvalue at least as large as the third, a3. Continuing this scheme we see that {na,; n=
[,2,---} is a series of eigenvalues of A. The only question is, are there other eigenvalues sprinkled in between these
? 1 shall show, by contradiction, that there cannot be.

Suppose that the k-th eigenvaluc is given by a; = (k' + {)a; where k' is an integer below k while 0 < { < 1.
Let us take recourse Lo the adjoint of Eq.(26)

[}i, Ratu] = —dn R!u (30)
In entire analogy with Eq.(27) we have
ARY, Rerrl0) = (RLA = 6uRL) R 10) = (ans — an) R, Rurrl0) (31)

We may now conclude that the difference of two arca cigenvalues of one black hole is also an eigenvalue. In addition,
it follows from the postulated positive definiteness of A that RL,R;:,: annihilate the vacuum whenever n > n’ (from
the fact thav eigenvalues are ordered by magnitude). Anyway, the difference (k' +¢)a; — k'a, = (a; of two
eigenvalues singled out by our previous discussion must also be an cigenvalue. But this contradicts the assumption
that a; is the lowest area cigenvalue. Thus the assumption that { can be nonvanishing must be wrong. We thus
come out with the spectrum

ap =nay; n=01,2--- (32)

Comparing with Eq.(18) we sec that the axiomatic approach requires n = 0. Further, referring to the discussion
accompanying Eq.(21), we find that necessarily v = 4In2. Thus if we accept the argument from simplicity that

g1 = 2, all free parameters in the formula for arca eigenvalues are fixed by the algebraic approach.

7 QUANTIZING CHARGE AND SPIN

A bonus of the algebra just described is that it gives quantization of black hole charge, as well as of the > component
of black hole spin. To see this consider the Jacobi identity

Q. AL Rxs] + [(fes. Q), A + ([4, Rs), Q] = 0 (33)
As argued already, [Q, A) = 0; taking Eq.(26) into account this can be written as
(4,1Q. Re]] = aa[Q, Rei] (34)
Now the third axiom allows us to write in analogy with Eq.(22)
@, Rrs) = HE Rorpr + IPQ -+ DA+ DR +120J, (35)
By operating with this equation on the vacuum we get, in analogy with Eq.(24), that
HE = qb7 6] (36)
with ¢ identical to the ¢ in the group x. If we now substitute these two results in Fq.(35) we get

an (KDQ+ EDA + KO +140J,) = 0 (37)
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Thus so tong as & is not null {so that a, # 0), the I, coefficients must vanish because the four operators in Eq.(37)
are independent. tlence

[Q: f[‘.“] = quru (38)

Eq.(37) is entirely analogous to Eq.(26). By analogy with the discusston of Eqs.(27) and (31), we concinde
that if g and ¢’ are two eigenvalues of Q, then so are g + ¢’ and ¢ — ¢'. Here there is no rcason to forbid negative
eigenvalues. Thus all positive and all negative integer multiples of some smallest charge ¢ are cigenvalues of Q. So
is zero (because g — ¢ = 0). The proof that there are no eigenvalues in between these proceeds just as in the case
of area eigenvalues. Hence,

q=ke k=0,+1,+2,. - (39)

And because two black holes may merge, and charge is conserved in the merger and subsequent relaxation to
stationarity, the charge ¢ must be the same for all black holes.

Not only that, but if there is just one black hole in the universe, all particles in the universc must have their
charges quantized according to the same rule (39) since particles can always fall into the black hole, and charge
is conserved in that event. We thns get for free an cxplanation of why electric {or magnetic) charge is quantized
in integers. In pliysics there are only a couple of ways to understand charge quantization: existence of magnetic
monopoles (which maybe do not exist) and grand unification (which may not happen), so it is gratifying to find
another one here.

From the point, of view of our algebra, there is very littlc difference between @ and J,. By arguments similar
to the above we can show thal the eigenvalues of J, are restricted to zero and all the positive and negative integer
multiples of some fundamental unit. But this is preciscly the specirum that follows in the well known manner
from the SU(2) algebra of 32 and J. when both integer and half integer values of j are atlowed, and when the
fundarental unit is identified with /if2. Thus the algebra expounded here is consistent with angular momentum
quantization. We note that as far ag the formalism goes, black holes may he bosonic or fermionic.
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Selected Topics on D@ Physics

Jussara M. de Miranda
Lafex/CBPF - Rio de Janeiro

I Introduction

In this paper we cover a few selected topics on D@ physics. ‘Top physics, the W mass measurement and the inclusive
jet cross section were taken as examples of fundamental tests of the Standard Model. Several interesting results
were presented in the summer conferences(l). We do not mean to exaust the thiree chosen topics nor to compare
ours results with the ones from the other Tevatron Collider experiment, CDF {2].

Our intention is to show some of the newest results from D@ as well as presenting 10 a non specialist audience
a flavour of how we extract physics from the data. For that reason we’ve decided to cmphasize the top analysis
description. We did not have time to detail ali the topics.

The DO detector was designed to study high transverse momentum (pr) physics topics [3] in pp collisions.
It does not have a central magnetic field, inaking possible a compact, hermetic detector with almost full solid
angle coverage. A vertex, central and forward drift chambers provide charged particle detection in the region
Iyl < 3.2, where 7 = = Intan -g- and 6 is the polar angle. The tracking system is surrounded by finely segmented
uranium liquid-argon calorimeters (one central and two end-caps). The overall resolution of the D@ calorimeter is
ok = %@0.004 for electromagnetic showers and 28 = 0-5?
shape of their energy deposition in the calorimeter and a matching track (for electrons). A muon system consisting
of proportional drift tubes and magnetized iron toroids (1.9 Tesla) located outside the calorimeter provides good
muoh identification in the region || < 3.3. The deflection of the nuon candidates in the magnetic field provides the

. . 18(p— ,
momentum measurement with a resolution of ¢ (%) = u—}j’—y @ 0.008 where p is the muon mornentum measured

for hadrons. Electrons and photons are identified by the

in GeV/c. Neutrinos are not identified in the detector but their transverse momentuni is inferred from the missing
transverse energy in the event(y)!

II Top Physics

After the announcement of the top quark discovery by the D@ [4] and CDT [5] collaborations at the Fermilab
Tevatron Collider, the DO analysis was redone with more than wwice the statistics (~ 100 ph~!), now focussing on
the best possible ineasurement of the top production cross section and rnass.

Presently only Fermnilab's ‘Tevatron has sufficient energy to produce top quarks. Fortunately the top mass is
such that the quark is produced with low enough momentum to keep its decay products well isolated and large
ciiough to pass the detector thresholds, thus enabling it’s observation over a huge background.

At the Tevatron, top quarks are predominantly pair produced, via g§ annihilation (~85%) or gg fusion(~15%)
[6]. Due to its large mass, top quark decays before hadronization [7]. According to Standard Model expectations
the branching ratio of process { — W + & is 99.8%. The various D@ analysis are classified by the subsequent W
decay, as follows:

® Dilepton: both W's decay leptonically to ev or uv (the Tv channel is in progress). ‘The rather small branching
ratio of these channels ( 5%) is compensated by the extremely small backgrounds.

7 cal

Yo

= - Z.- Fising where the sum t extends over all cells in the calorimeter. Erincludes muon in its calenlation.
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Figure 1. The D@ detector

s Lepton+jets: one W decays leptonically to ev or pv and the other hadronically. This is the compromising
mtode with a sizable branching ratio (30%) and a reasonable background. The dominant background comes
from W + jets dircct production. These channels are subdivided into 4-tagged or untagged according to
whetlier or not a soft muon consistent. with the & quark decaying seinileptonically is observed. Selection
criteria based on the Lopology of the top-like event are applied to the p-untagged to further clean the sarnple.
The best. top mass measurement comes from these channels and will be described below.

Two other analyses are being pursued by D@. The all jets channel, where both W's decay hadronically (8] and
an inclusive ev + jets where some of the kinematic cuts arc relaxed Lo try and recover some of the efficiency lost.
We will not present these analysis. Particle identification and detector techniques are described elsewhere [3], [9].

In the various analysis that we'll present here the topology of the top-like events is explored. As result of a gnid
search process using Monte Carlo (to represent Lop signal) and data (for the background) two variables prove to be
effective on reducing the background: aplanarity (A) and Hyp.

Aplanarity A is defined after the normalized three-mornentum tensor consiructed from the selected jets in the
event:

b i bil
M =
Toaint’
in such a way that

A= 3 x (smallest eigenvalue of M).

The maximuin value for the aplanarity is 0.5 for a spherical event. For a planar or linear event, it is zero. Top
events tend to be more spherical than cvents due to radiative QCD background processes. Large aplanarity rneans
that there is little difference between the jet with the highest £y and the one with the lowest £ and that Lhe jets
are spherically distributed 2.

Hr is defined as the scalar sum of the transverse energies of all jets which pass the selection cuts:

Hp = Zu-:T(je:.,-n

2 Aplanarity would not be a good variable if the top quarks themsclves carried very high K7, or in the case of & much larger top
mass where the b jets would take more momentum than the W decays.



72 XVII Encontro Nacional de Fisica de Particulas ¢ Campos
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H, (GeY)

Figure 2. Hr distribution of dilepton cvents. The open histograms show the expected distributions for ti events for m; = 170
GeV/c? and background. The hatched rectangles show the events from our data before the I cut.

A large Hy is a signature of the decay of a massive particle. It is a good variable hecause the top is very heavy,
and it would be a poor variable for a light top.

I1.1 Cross section

The Top quark production cross section is given by

N-D
AL
where N is the total number of events that survive the analysis cuts, £ is the integrated luminosity, 3 is the

o =

estimated background and A is the acceptance for top events to correct for detector, srigger and selection cuts effects,
weighted by the braching ratios for the specific modes. In principle we would like to have a model independent
incasurement but we cannot. avoid using Monte Carlo to estimate acceplances and soine aspects of the background.
Various generators arc used and discrepancies among themn are accounted for on systematic crror estimation. In
the following we summarize the various analysis used in the cross section measurement [14] 2.

The dilepton channels are characterized by two high pp isolated leptons (ee, cp, pp), two or more jets and missing
Er. Table 1 summarizes the kinematic cuts as well as Lopological and specific selection criteria for these modes. For
the ee channel the electron’s Er are included in calculating Hyp. In figure 2 we compare i1 distributions for MC
top signal (rm, = 170 GeV/c?). expected major backgrounds and final cuts data events. Physics backgrounds are
Drell-Yan Z, yv — U, vector boson pair and heavy flavour praduction. ‘I'o remove the specific background Z — ee
we require |me, — mz| > 12 GeV/c?. The pj events are required not to be consistent with the Z — ug hypothesis
by a global kinematic fit (probx%a). Unphysical backgrounds due to jets misidentified as electrons are estimated
using data controlled samples. Typical value for the misidentification probability is 2 x 10~%. The unphysical muon
backgrounds were found to be negligible.

3We use [SAJET [10) or HRERWIG [11] for top event generation, VECBOS [12] for backgronnds, and GEANT {13] to model the
derector.
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Figure 3. Multiplicity distribution of e + jets after lepton identification and kinematic cuts applicd.

For the three dileplonr channels four events altogether survive the cuts. The background is estimated to accouni
for 1.6-£0.3 events.

The signature for the lepton + jets channels is one high p; isolated lepton (e or i), missing Epr and a number
of high Fp jcts (in principle top events should produce at least 4 jets, but we study the background content as a
function of the jet multiplicity). Figure 3 shows the jel multiplicity spectrum for W — e + jets data, as comnpared
to ahsolutely normalized m; = 180 GeV/c® Monle Carlo where we required pr isolated electron and missing Erp.
Tt becomnes clear that we necd more stringent selection cuts to see top events under the huge W + jets background,
even at large jet mulliplicity. Two independent and non overlapping analyses were pursued by D@. The first,
“ui-tag”, requires a muon to tag a semileptonic decay for one of the & quarks. These are usually soft muons running
close by the jet. This is imposed by p:, > 4 GeV/c? and AR(u,jet) < 0.5 4. Since “ali” top events should have
two b and taking into account the inclusive branching ratio for b — u+ X', ~44% of the top events should have at
least onc p4 tag. D@ reconstructs 45% of those muons leaving ~ 20% of the events with a u-tag.

Events not sclected by the u-tag arc submited to the topological analysis. Here the emphasis is the overall shape
of the top-like events. To sclect the events the already mentioned H1 and are A variables arc used in such a way
that minimizes the relative error in the cross section measurement, not necessarily the besi signal to background
ratio. In figurc 4 we show a scatter plot of H vs. A for top Mome Carlo, backgrounds and final data.

Two major backgrounds are considered. The physical background is dominant and comes from direct W pro-
duction with jets. The second comes from QCD multijet production where onc jet is misidentified as an ¢. In
either case one of the jets can be a real b or ¢ that undergoes a semileptonic decay contributing to the background
on the u-tag analysis. To estimate the background the basic ingredients are real data and the fact that W + jets
production follows the Bercnds scaling [13]:

NWi _
NWi_,
where NW; is the number of W — 41 jets. The estimative of the various sources of background is specific for each

analysis, we take the W + jets background on the { + jets mode as an example. Before applying the topological
cuts, and having already subtracted the unphysical background, we can write:

TAR(LI) = /A"?j + Ad?}- being the distance in the n — ¢ of the objects § and §




74 XV Encontro Nacional de Fisica de Particulas e Campos

l+jets channel
' 03

025
02

0.15
0.1

Aplanarity(WsJets) -
o o [~]
Y "

0.05

03
025
0.2
0.15
0.1
0.05

0.3
025
0.2
0.15
0.1
0.05

100 200

Figure 4. A(W + jets) vs. M for data, Maonte Carlo signal and W — (v 4 jets and QCD multijet backgrounds.

A’.Pherl'Edl = NWI * ﬂi_l + f,— * .N'g

Where Nbserved iy the number of events with 7 or more jets, leplon identification and missing £;. The first term
on the right accounts for the direct W + jets contribution. fi is the fraction of tf expected for maltiplicity { and N,
is Lhe total nuinber of top events surviving the kinematic cuts. N Wi, o and N, are cxtracted from an Ngbserved yg
inclusive multiplicity plot and f; comes from Monte Carlo. Next the topological cuts are applied and their efficiency
for both top and background are extracted from Monte Carlo. As a result of this process we estimate a W + jels
background of 7.68 & 2.83 and a QCD multijet contribution of 1.55 + 0.49 events for efpn + jets channel.

Tables 1 and 2 surnmarize the results for these seven channels. We observe 37 events with an cxpected background
_of 13.415.0 events. The cross section measurement as a function of the top mass hypothesis is shown in figure 5.



Jussara M. de Miranda

Table 1: Summary of dilepton channels

channel et + jets ee + jets pup+ jels
lepton pp > 15 > 20 > 15
electron |y <5 <25 . S
muon || < 1.7 - <10
ETcnI > 201’ - 25 _

# of jels > 2 > >2

jet pr > 20 > 20 > 20
Jel |n] < 2.5 < 2.5 < 2.5
Iy > 120 > 120 > 100
specific cuts - |Mee — Myo| > 12 prob(x% ) < 1%
signalt(m, = 180) 1.69 +0.27 0.92+0.11 0.53+0.11
JL(pb~ 1) 90+ 5 106 £ 6 R7+5
events observed 3 1 1
Backgrounds

Z =77 0.31£0.07 017+ 004 0.03+0.01
ww 0.03 4 0.01 0.04 £ 0.02 0.009 £ 0.003
Drell-Yan— 77 0.02 £ 0.03 - -
Fake e 0.02+0.01 032+0.14 -
Z—-N - 0.131£0.03 0.46 £+ 0.26
QCDh - 0.00x0.05 0.05+0.01
total 0.36 £0.09 0.66 £ 0.17 0.55+0.28

Energy in Gev, mass in Gev/c?
t Aditional cut of F;10(includes u)
: Expected number of top events based on ref [16]

Table 2: Summary of leplon+jels channels

channel e+jels A jels e+ jels/fnm  u+ jelsip
lepton pr > 20 > 20 > 20 > 20
lepton |n| <20 < 1.7 < 2.0 < 1.7
gt > 75 > 208 > 20 > 208
# of jets >4 >4 >3 >3
jel Er > 15 > 15 > 20 > 20
Jet 1n| <2 <2 <2 )
tagging pt —— -— L 1
EX¥: > 60 > 60 —— --
A >0.066 > 0.065 > 0.04 > 0.04
Hr > 180 > 180 > 110 > 110
signall (m, =180) 65+15 6A+14 24404 28+09
events observed 10 11 5 6

[ Cipb™) 106£6 9645 9145 96 45
background 3814 H54£20 14404 1.1:£0.2

Energy in Gev, mass in Gev/fc?

§Aditional cut of B > 20 (includes p)

! lixpected number of top events based on ref [16]
t pf;. >4 GeV, AR (i, jet) € 0.5

" EY = iE7l+ |ErT
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Figure 5. Top production cross section.

II.2 Mass Measurement [17]

In the direct mcasurement of the top mass there are two major problems. First, we don’t fully measure the
neutrino momentum, the transverse component is obtained from the total energy balance and its : component is
undctermined. Second, except for u-tagged jets there is no way to uniquely identify them. Here we will present the
D® measurement using only the | + jets modes, that has evolved considerably since the observation. We apply the
kinematic cuts listed in table 2 for the topological { + jets analysis. For the subsample without a u-tag we require
EY > 60 GeV and ;| < 2.0 .In this selections process, 93 events survive, 8 of which have a p-tag . Notice that
the focus of the analysis changed from cross section to mass measurement and consequently, the variables chosen
to select the cvents arc very weakly correlated with the mass.

The 6 final state particles are fully determined by 18 parameters, of which we measure 17. We then perform a
constrained fit 1o the hypothesis mn(lv) = m(¢§) = mw = 80.9 GeV/c? and m; = m(W+b) = m; = m(W=b) to
obtain what we call fitted mass (my;;). As we have no a priori way to assign the jets (except the tagged ones) we
do all combinations retaining only the best x? one provided that 2 < 7. The jet perrutation runs over the 4 most
energelic jets in the cvent. The Monte Carlo my;, distribution peaks at the correct value (m;) and the width is
dominated by jet combinatorics.

After all the mentioned cutls (refered as precut), we arc left with 73 events, most of which are background
(signal/background ~ 1/2). To discriminate between signal and background we use two multivariate techniques
based on the following variables;

v = By

sz.A
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_ Hyr;=Hr - E:}.-l

1)
? H))
Vs = Rmin = (min of 6 AR;). Ex=""*
EY
Us = HT2
vs = KTmin

where AR;; is the distance between any two jets, Hjj is the scalar sum of |p;| of the jets, charged leptons, and
neutrino. In the first method we construct a top likelihood discriminant (D) based on the the variables v1 through
vd. These variables are weakly correlated with the m,. We fit simultaneously the mass and a likelihood discrimi-
nant distributions. The second method consist on using neural network techniques to construct a top probability
discriminant (¢,r00) based on all variables listed above. Figure 6 ilustrates the discrimination power of the method.

Using the variables above mentioned we obtain a Lop enriched sub-sample of’ 32 cvents refered as low bias (1.B),
where signal/background ~ 2/1. The top mass results for the two sanples obtained with the two methods are listed
in table 3 below,

"Table 3: Top mass for the precut and low bias samples obtained with the two methods

D L0Pprob
PR LB PR LB
m, (Gev/fe®) [ 168110 168+8 | 169+ 10 168+ 7
n, 275470 24537 1264L£76 266£5.5
ny 4554100 4907 [395+76 24420

JII W Mass

The Standard Model requires interrelations among its parameters, and, given other measurcments, the theory may
predict the paramecters of the W. At lowest order, an important relation holds bet.we_en the weak boson tnasses
and the weak mixing angle: p = Mw /Mzcosf = 1. Deep inelastic scattering, forward-backward and left-right
asymmetries at the Z° ressonance cstablish a value lor the weak mixing angle, sinfw, that, t_ogether with the LEP
precision measurernent of the Z° inass, give a prediction for Mw . So, a precision measurement of Mw can be
compared with the theory prediction.

More than that, a precise measurement of M, combined with other electroweak precision measurements and
the measurement of the top quark mass, tests the consistency of the standard eletroweak niodel, and within the
framework of the model, can give an indication of the Higgs mass (My7). In figure 7, the curves show Lhe dependence
of Mw on m, in the minimal Standard Model using several Higgs masses. The data point represents the D@ current
result.

D@ plans to measure the W-boson mass within ~ 50 MeV/c? for the next run [18). This measurement, coupled
with a 10 GeV/c? for the top mass, would severely constrain the theory and give information about the Higgs.
As we will see below, the challenge here for a hadron collider is to control the momentum scale to such precision.
LEP 200 also plans to measure My with an equivalent precision, and there the problem is to achieve the necessary
statistics.

The D@ measurement is based on W — er decays ® where the electron is detected in the central calorimeter.
The calorimeter is not calibrated independently to the precision needed and therefore the ratio of the W to Z

*The muon mode is not used in this nnalysis since the electron momentum is better measured.
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masses was measured and scaled to the precisely known LEP/SI.C 7 mass. This ratio cancels various systematic
uncertaintics.

The longitudinal momentum of the neutrino cannot be determined because the detector cannot measure with
enough precision the longitudinal component of the total encrgy flow of the hard scatter. The invariant mass cannot
be reconstructed, which imposes the use of the “transverse mass”, the invariant mass using only the transverse

components of the momentum vectors. 1t 13 defined as
MY = \/2p%p5 — 295 7y

where pf and p% are the transverse momentumn of the neutrino and of the clectron, respectively.

The mass of the W was determined by a maximum likelihood fit of the measured MY distribution to Monte
Carlo distributions which were generated for several values of My . The fast Monte Carle simulation used a
theoretical prediction of W production and decay and a parameterized model of the detector response. The same
applies to Z cvents. The underlying event was modelled by superimposing the W event onto a minimum bias event
obtained from data. QCD multi-jet production and Z — ee events where one electron is not identified were the
considered backgrounds to the W cvent saniple.

The result is Mw = 80.340 & 0.140(stat ) & 0.160(scale) £ 0.165(syst.) GeV/c®. The systematic uncertainties
are dominated by the electromagnelic encrgy resotution, hadronic energy resolution, input pp(W) distribution and
parton distribution functions, number of minitnum bias events, hadronic energy scale and electron angle determi-

nalion.

IV  Inclusive Jet Cross Section [19] [20]

The experimental determination of the inclusive jet cross section ( o(pp) — jet + X) is probably one of the simplest
tests of QCD, yet a very fundarnental one. "The complete next-to-leading order ((a?) calculations [21])[22]{23] have
small theoretical uncertainties (10-20)%. In adition, this rmeasurement can be used to test the validity of diferent sets
of parton distribution functions. It is also a good place to look for “new physics”, for example quark compositness.
The Tevatron enables probing a wide portion of the phase space producing jets with large statistics up to nearly 500
GeV. DO is particularly well snited for the task due to its highty segmented liquid argon calorimeter with |n]| < 4.0
cuverage.

‘The basic entity for this analysis is the hadronic jet. In principle we would like that the experimental definition
of a jet represent theoretical quarks and glnons. More over we would like that the various experirments use the
same definition in a way to simplify comparisons. In D® jets are rcconstructed offline using an interactive jet cone
algorithm, with a cone radius of R = 0.7 in the n — ¢ space [24]. Starting with preclusters formed from > 1 GeV
calorimeter tower seeds, the algorithm builds up a jet by includinging neighbouring cells. The jet Ep is defined as
the sum of each cell E7. After all jeis are formed, they are split or merged according to whether they share more or
less than 50% of thie smaller energy jet. Effects like out of cone energy deposition, non linearity of the calorimeter
for soft particles (< 2 GeV) and extra cnergy from the underlying event may deteriorate the measurement of the
Jet energy [19]. Calorimeter energy scale calibration is of course fundamental. We use the expected energy balance
of ¥ + 1 jet Lo estimate the jet encrgy scale correction.

In figure 8 we show the inclusive jet cross section measurement with very good agreement with the NLO parton
event gencrator JETRAD [22] over scven orders of magnitude. The NLO calculations require gpecification of the
renonnalization scale (u = Ep/2, where By is the maximum jet Er in the generated event), parton distribution
function and the parton clustering algorithm. Figure 8b shows the ratio (D —T)/T for data (D) and theoretical
(T) prediction based on different choices of parton distribution functions. We see thatl the shapes of all predictions
are in very good agreement with data.
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V Conclusion

We presented the latest DO results on top physics and briefly discussed the W mass measurement and the inclusive

Jet cross section. The D@ collaboration is working actively on the upgrade of the detector for the next run when
there will be a factor of twenty incru:ase in integrated luminosity.
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Turbulence and Quantum Field Theory

L. Moriconi
Instituto de Fisica, Universidade Federal do Rio de Janeiro
C.T. 68528, Rio de¢ Janeiro, RJ — 21945-970, Brasil

We briefly review some attempts towards a field-theoretical comprehension of turbulence.
After a discussion of basic phenomenological ideas, like the laminar-turbulent transition and
the Kolmogorov’s cascade picture of the inertial range, we introduce the fundamental set
of Hopf’s cquations, describing the stationary statistical state of a turbulent fludd. The
application of conformal field theory methods in two-dimensional turbulence is studied, as
well as the computation of corrections due to realistic three-dimensional effects.

1 Introduction

"Turbulence is one of the most common cxperiences of our everyday life. Nevertheless, its understanding has been a
rcal challenge along the centurics. 1t is ainazing to know that the phenomenon of turbulence was formerly studied
around 500 years ago by Leonardo da Vinci, who clearly noticed the generation of eddies across a cerlain range of
length scales in turbulent water flows, an observation that could be regarded as an anticipation of some relatively
recent ideas [1, 2]. A large historical gap followed Leonardo’s studies until the very first sistematic investigations
. of turbulence by Q. Reynolds [3] and Lord Rayleigh [4] in the last decades of the 19th century. Since then,
many approaches and new insights have been devised, originated from completely different branches of science
and technology. Even though a unified theoretical description grasping most of experimental turbulence is still
lacking, we believe that field theory methods are promising, not only by their fundamental character, from which
phenomenological results should be derived, but also by a number of suggestive ideas by now accumulated in the
study of a plethora of models, like short-distance expansions and anomalies.

Besides the interest we may have in turbulence by itself, it is important to note thal there are physical phenomena
like localization in condensed matter systems [5], hadronic jets in high cnergy physics [6], or the dynamics of chaotic
gystems [7], which scem to be deeply connected with the cascade processes happening in 2 turbulent fluid. Essentially,
all of these phenomena exhibit some kind of intermittency, or, in other words, strong deviations from: simple gaussian
statistics, leading to an infinite set of anomalous exponents, typical of multifractal distributions [8].

Our aim in this short review is 1o describe first basic phenomenological ideas and then some of the modern
field theory attempts in the study of turbulence. The intcrested reader is also encouraged to take a look at other
“classic” and recent accounts on turbulence [2, 9, 10, 11].

This paper is organized as follows. In section I, we explain in an clementary way how the laminar-turbulent
transition comes into place in fluid dynamics. Furthermore, we describe the celebrated Kolmogorov’s picture of
thie energy cascade process in fully developed turbulence [12], as well as deviations from it duc to intermittency
[13]. In section 111, we establish the fundamental statistical equations (Hopf’s equations) of turbulence and a field
theory formulation for the computation of velocity correlation functions [14]. We, then, comment on some advances
obtained in this way by mcans of renormalization group [15, 16] and saddlc point techniques [I7, 18]. In the next
scction, we examine the problemn of iwo-dimensional turbulence. After a discussion of the orthodox view [19], the
recent conformal field theory approach [20] is introduced. 1t should be clear, however, that purely two-dimensional
turbulence is just an idealization, possibly corresponding, in the real world, to rotating fluids. An analysis of
perturbations associated to the three-dimensional nature of space is carried out in section V, in the framework of
the conformal approach [21]. Finally, in section VI, we comment on some problems not touched in Lhis review,
along with general conclusions and possible directions of researcl:.
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2 Phenomenological Aspects

Qur basic assumption is that an incompressible fluid may be described, cither in laminar or turbulent regimes, by
the Navier-Stokes equations,

O Va+g0pvg = —8a P+ fo + v3u, , (D
Ga va=0. (2)

Above, v, is the velocity field, P is the pressure, f, is an external force and v is the viscosity. Boundary and initial
conditions have also to be defined. The role of pressure is just to assure the incorupressibility constraint, given by
(2). Taking the divergence of (1) and using (2) we get an expression for P that may be replaced back in (1), yielding

iva + MaqvpBavy = Moy fy + v, , 3

where [,y = 84y — 8a8y/8% is the projector on transverse modes. The nonlinear term of (3) is associated to
convection, representing eddy interaction at different length scales, while the viscosity term is the one responsible
for energy dissipation, through diffusion.

In order to discuss the laminar-turbulent transition, it is simpler to assume that there are no external forces
acting on the systern, that is, fo, = 0. The transition is related, roughly, to a competition between convective and
diffusive processes. To understand it, let us imagine that the fluid, initially at rest, was perturbed in a small region,
€2, such that the rms velocity in this region is now V. As the fluid evolves, Q will grow and we may ask how long
it will take to reach a size of order L. There are, in fact, two time scales here, corresponding to different physical
regimes. One follows from convection and is given by 7; ~ L/V. ‘'he other characteristic time is due to diffusion.
If the convection term in (3) could be discarded, meaning that diffusion is the dominating process, the dynamics
would be completely described by the heat equation. Therefore, the time spent in the propagation of the initial
velocity configuration would be Ty =~ »/L2. We may define, thus, a dimensionless quautity, the “Reynolds number”,
givcn by

R= Tﬂ = H . (4)

T v

According to the above definition, R — 0 means that diffusion is much more important than convection, implying
that the fluid is laminarly lowing. On the other hand, as R grows, convection starts mixing more and more portions
of the fluid, diffusion is not relevant anytnore and turbulence appears. We regard, more concretely, L and V as
typical values for thesc quantities in an experiment, like the size of an object imniersed in the fluid and the rms
velocity close to its boundary layer, respectively. In the case of turbulence sustained by random external forces, L
may be considered to be their correlation length, a natural macroscopic scale characterizing the effective system
size. Perhaps the most well-known example of the laminar-turbulent transition is given by a flow past a circular
cylinder. From experimental observations, it turns out that there are flow patterns below a critical Reynolds number
k., like Karman vortex streets. Above R,, the flow looses its regular aspect and becomes turbulent [22]. For many
diverse water flows, R. =~ 103, cxplaining why turbulence is so easily gencrated: for L ~ lem, the critical velocity
is Ve > 10cm/fs. The laminar-turbulent transition at a finite critical Reynolds number is still a very open problem,
waiting for more experimental and theoretical investigations. In tnost of the fundamental studies, the interest has
been concentrated in “fully devecloped turbulence,” related to the limit R — oo.

In 1941, Kolmogorov [12] proposed a cascade theory of turbulence, establishing, through simple dimensional
arguments, the universal decay of the energy spectrum in Fouricr space, for the region of hig-her wave numbers.
The cascade mechanisin, qualitatively foreseen by L. Richardson [23] several years before Kolmogorov's work, is
something that may be understood directly from equations (3). As mentioned before, in a sligthly diverse way,
the convection term in the Navier-Stokes cquations represents a coupling between different Fourier modes of the
velocity field. On the other hand, the viscosity term implies that encrgy dissipation is more intense at higher
wave numbers. Kolmogorov's idea, combining thesc two effects, is that in fully developed turbulence, eddics will
“break” into smaller ones until they reach a ininimum size, where dissipatlion acts. 1t is assumed that there is an
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energy cascade from large to small scales, characterized by an energy transfer rate which is constant and viscosity
independent.
We may express the averaged cnergy density in the fluid as

1, © ) 5)
- < vz} >= E(k)dk , {
2 0

where E(k) is the energy spectrum at wave nunber &. In order to define the energy transfer rate, c’(i_c), at wave
number k, we inagine that at some time, o, when the fluid was already in a stationary statistical regime, all the
external forces were turned off, so that

E
e(k) = -3, [/ﬂ E(k,t)dk] =c. (6)

=ttt
=1

Thus, according to Kolimogorov’s reasoning, it follows that in general, E(k) = F(¢, k). The only possible choice,
considering the dimensions of € and k. is to take F(c, k) = C},,¢*/3k~%?, where C, is a dimensionless and uriversal
constant. In a simitar way, the “Kolmogorov length scale,” 5, where dissipation starts being relevant and viscosity
cannot be discarded anymore, may be proposed to depend only on ¢ and v. Using again dimensional analysis, we
get 7 ~ (3/€2)'/4, 1t is important to observe that as viscosity vanishes so does 7. Also, if one wants to study
turbulence in a discrete version of space, at Reynolds number £, the number of latlice sites should be, roughly,
N =~ (L/n)® ~ R%1 showing why it is so hard to perform straightforward computer simulations of turbulence at
higher Reynolds nutnbers, without the use of additional assurnptions.

The Kolmogorov’s picture of turbulence may be summarized by noticing that. it distinguishes essentially three
different physical processes happening in Fourier space, each one associated to well-defined length scales:

s [inergy pumping occurs al scales given by 0 € k < 1/L, where 1. is the length scale of exlernal random forees.
This is not a universal region, since velocity correlation functions will depend on the specific forcing mechanisms or
on the system geometry;

o The encrgy generated at larger scales is transferred to smaller wave numbers across the region 1/L < k < 1/
In particular, we hope that velocity fluctuations will have a universal character for 1/L € k < 1/, the so-
called “incrtial range,” where energy pmnping and dissipation are not relevant and the energy spectrum decays as
E(k) ~ k=5/3_ It is also belicved that translation symmetry and isotropy, broken at larger scales, are restored in
the incrtial range;

s Finally, at scales given by k& > 1/5, energy is completely dissipated, through annihilation of the small cddies
created at the end of the inertial range.

In the ficld theory approach to turbulence, one is mainly intcrested to find results in the inertial range, working
in the presence of natural infrared and ultraviolet cutoffs, given by 1/L and 1/n, respectively. In principle, the limits
L — co and n — 0 should be taken, leading to physically acceptable answers, like velocity correlation functions or
probability distribution functions.

A large amount of experimental and numerical data has becn collected supporting Kolmogorov's theory in its
genceral aspects [24]. However, there arc deviations concerning predictions for the scaling exponents of the structure
functions, Sp(|£~ 7]) =< |#(Z)—W(§|P >. From Kolinogorov’s analysis, it follows that in Lhe inertial range, defined
by n € |-l =r « L. we mnust have Sp(r) ~ {7 with ¢(p) = p/3. In this respect, general argunents tell us
that {(3) = 1, one of the few quantitative exact resulls in turbulence [25], and also that {(p) is a convex curve, that
is ¢"(p) £ 0, as it follows from probability theory [26]. Ansclnet et al. [13] obtained experimentally that ¢”(p) < 0,
in contradiction with the cxpected linear behavior of {(p). The physics behind this disagreernent has to do with an
old comment by Landau [10], regarding Kolmogorov’s theory. The point is that in the eddy fragmentation process,
tt was assumed that the energy transfer rate is a non-fluctuating quantity. However, it is likely that, while the
mead energy transfer rate is reatly scale independent, fluctuations might introduce a length scale in the problem,
modifying the scaling exponents. Later on, and even before experimental studies, Kolmogorov [27] and Obukhov
[28) tried to include the effects of possible energy transfer fluctuations in the original cascade theory. Anyway,
experiments still show deviations when these improvernents are taken into account.
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A better phenomenological understanding of the scaling exponents is due to the multifractal theory of eddy
fragmentation [7], where it is supposed that the eddies generated in the cascade towards smaller scales do not
fill all space, but in fact give rise to a multifractal structure. The multifractal model is physically related to the
phenomenon of intermittency [9], viz., the existence of strong fluctuations of the velocity field, far beyond the ones
predicted by any simple gaussian statistics. It is, however, a very phenomenological model, containg a certain
unmber of arbitrary parameters whose values are defined so that the hest agreement with experiments may be
achieved. Recently, a conceptually simpler phenomenological model with no arbitrary parameters was proposed
[29], based on a hierarchy of singular structures like vortex filaments, leading to an accurate prediction of the
scaling exponents.

Another recent progress concerns the behavior of S,(r) for the dissipative region, r < 3, where no simple scaling
relation exists. Surprisingly, the crossover from the inertial range to the dissipative region was found to be well
described by Sp(r) ~ [f(r)r] ‘(p), where f(r) gives corrections to the scaling behavior in the dissipative region [30].
"This result, named “Extended Self Similarity” (ESS), has been useful for the apalysis of experimental data, yielding
more precise values for {(p), resorting to the fact that ((3) = 1. We believe that ESS is indeed a property shared
by a larger class of multifractal systems, like strauge attractors and localized electrons in random potentials, as
indicated in some numerical computations [31].

3 Statistical Field Theory Formulation

In the statistical field theory approach to sustained turbulence, we are interested to compute N-point correlation
functions, like

N
Gﬂ’:_’l({f.-,t.-})5< Hvora(fi.-’i)> . (7)
=1

There are many ways to define the averaged product of fields considered in (7). We may choose a set of different
initial conditions and, then, after a long time, wheu the fluid has reached a stationary statistical state, take the
average over the ensernble generated in this way. Another procedure, this timne independent of initial conditions, is
based on an ergodic hypothesis, vielding

N ¥ o
<Ivesit) >= tim o [* e vou(@iti+0). ®)
i=1 i=1

A third method of computing averages, which will be the one we will consider in practice, is to irnagine that the fluid
18 evolving under the influence of external random forces. Averages are now taken over the cnseinble corresponding
to all realizations of the stochastic forces. Of course, in order to obtain meaningful results, we have to suppose that
the random forces fa act at large length scales, without spoiling general leatures of the inertial range, which is the
region we want to describe. The simplest: choice for the statistics of random forces is the gaussian case, where

< falZ ) ful &) >= gbo ab(t — ) F(IF ~ &) . (9)

Above, F(r) is a function which decays quickly for r > L. We may take F(r) ~ L3exp(—r?/L?). Physical results
correspond to the large scale limit, I, — oo, such that the Fourier transfom of I*{r) approaches ﬁ'(fc') ~ 63(5).

Defining the correlation function (7) at equal times, ¢; = ¢, an equation describing the asymptotic stationary
statistical limit may be promptly obtained: (').Gg':,fl)}({;i:], t}) = 0, that is,

N
0= < va,(F1.8)..0v0;(£j,1).. Vun(En, 1) > . (10)

i=1

Using now equaticns (3), we may replace the above time derivatives by expressions containing random forces and
space derivatives of the velocity ficld. We get

N N
0 =3 [~ < Uapyop(E. 000, 0) [ venlEit) >
=1

i=14#)
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N N a2
+ 3 z a0, F(|E; — Ti]) < H va,(z;,t)>+b':2 <Hva (Int)>] ' (11)
i=1,i#j I=1.0#i§

where we used the result that for gaussian random forces, described by (9), holds [32]

< falF, t)Hva (£, 1) >= ngsa o FF - E) < H va,(Fj 1) > . (12)
i=1 J=13#%
The so-called Hopf’s equations, given by (L1), mix correlation functions with different number of points. We have,
therefore, an infinite chain of coupled equations, similar to the Schwinger-Dyson equations of quanturn field theory.
In the past, many (modestly successful) attempts based on closure technigues were devised, consisting of truncations
which would render (11} a finite and closed set of equations [33].
A further simplification is obtained if these correlation functions are studied in the inertial range, that is, taking
7 € |&; — T3] € L. In this situation, we may neglect in (11) terms proportional to ¢ and v, since external forces
and viscosity play their roles out of the inertial range. Hopf's equations become now

N N
0=23" < la,yv5(, 00050, (F5, 1) [ val(dint) > . (13)
i=1 i=1,igj

The consequence of neglecting the mechanisms of energy injection and dissipation is that we need to do more than
merely solve (13). We could find, in principle, many solutions of the simplified Hop[’s equations, with none of them
satislying the physical imposition of a constant energy flux through the inertial range. In order to establish a relation
for the energy flux in Fourier space, let us consider the fluid as initially at rest and contained in a volume V — co,
where periodic boundary conditions were imposed. Its evolution, as governed by the stochastic N-S. equations, will
be described, therefore, by translation invariant and isotropic correlation functions. The time dependence of the
energy spectrurn is obt.ained from

F(k )+ 3 J(k t)= L[< fo(k,)io(—k,8) > +c.c. > | — wk*E(k, 1), (14)
where

J(k»f) = l-/_ ds’? < [“L]Tvﬂaﬂv?]i'lﬁa(_glit) > (15)
|E7 <k

and [l'laTvngv-,]E, is & notation for the Fourier compoients of the convection term. Equation (14) gives the energy
balance in the fluid. In the asymptotic statistical limit, 8 E(k,t) — 0. In this case, taking a wave number k in the
inertial range, 1/L < k < 1/, the RHS of (14) may be discarded, implying that J(k) = 0. This means that in
real space, for n € |T — §] € L, we must have

< (“nv“ﬂaﬁv‘v)

zu,,(g’) >~ |£~ 7° = const. (16)

In this way, Hopf’s equations (13) arc supplemented by the contraint of a constant coergy flux in the inecrtial range,
written as (16). If (13) and (16) adinit more than one solution, further work will he necessary to single out the
answer compatible with the large scale statistics of the random forces. In three dimensions, the solution of the
above equations is still a major problem of turbulence theory. In two dimensions, as we will see in the next sectiony,
some advances were obtained recently, through the application of conformal field theory methods.

A field theory formalism, developed by Martin, Siggia and Rose [14), from which Wyld’s perturbative expansion
(34} may be obtained, addresses in a fundamental way the problem of computing velocity correlation functions. It
amounts in defining the generating functional

VAR ::A"f DiDvexp (—S[v,r}] + ijd"fdtja(f,t)uu(:i:'.t)) , . (17)

where
S5 [v,i]= i/ddfdtﬁ,, {9va + Oaqugden, — vazun)

+ g ] A% d?EydtDn (F), 1)i4(F2, Yo F(|E) — Fa]) | (18)
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in such a way that N-point correlation functions may be written as

, lyr 8 :
Gﬁﬁ.)}({f.-,t.-}) =¥ .1:[1 mzbl » : (19}
For the sake of simplicity, we omitted, in (17), a jacobian which just cancels tadpole diagramms in a perturbative
expansion, where the only vertex is given by the nonlinear convection term.

Straightforward perturbation theory is faded to fail here. As the limit £, — oo is carried out, individual terms
in the perturbative expansion will show infrared divergencies, suggesting, due to unsiuccessful efforts to regularize
them, that the problem has to be attacked essentially by nonperturbative methods. Anyway, a renormalization
group procedure, based on a perturbative approach has been studied [15], where the force-force correlation function
(9) is replaced by a different expression, which would, hopefully, correspond somehow to an effective theory of the
inertial range. The replacement is given, in Fourter space, by

Flk) = Dok*—9%(m3 4 k*)~4/2 . (20)

Above, d is the dimension of space, ¢ > 0 is an arbitrary parameter, playing a role similar Lo the one in the
e-expansion in critical phenomena, and my — 0 is an infrared regulator. Ii turns ot that the field theory given
by (17) has an infrared stable fixed point, with E(k) ~ k'-¥ and renormalized Reynolds number R ~ ¢!/,
As ¢ — 4, we recover Kolmogorov's law of energy spectrum decay. Even though there are conceptual problems
(turbhulence should not be associated to a stable infrared fixed point) and also technical difficulties (there are infrared
divergencics as ¢ > 3) in this ad hoc formulation, a number of quantitative results [16] show a remarkable agreement
with experiments, like the prediction of the Kolmogorov’s constant, Cy, ~ 1.6.

An important problem of turbulenee is the evaluation of probability distribution functions of velocity dependent
observables, like O(va) = (8(%) — #i(§)) - ##, where # is an arbitrary unit vector. They are defined as

P(O(va)) = 2%/

o0

dr <exp(ErQ{vg)) > . (21)

Recently, it has been proposed that the saddle-point solutions obtained from the modified action
Sa[v, 8) = S[v, 8] + 1AO(vy) (22)

may give the non-gaussian tails of probability distribution functions related to intermittency [17). The first inves-
tigations so far have been motivating, specially regarding applications in one-dimensional turbulence, where many
diverse techniques may be compared [18, 35, 36, 37].

4 Two-dimensional Turbulence

Investigation of turbulence in other than three dimensions has shown, in general, interesting concrete applica-
tions. In the real world, approximnately two-dimensional motion may be observed in many systems, like soap films,
stratified flows, or rotating fluids [38]. The later, in particular, have been receiving much atention due to their rel-
evance to oceanic and atmospheric sciences. One of the advantages of lower-dimensional turbulence is that higher
Reynolds numbers may be achieved in mnnerical simulations. Also, as a general rule, intermittency effects are
more pronounced here than in the three-dimensional case, making il easier, in principle, to study their generation
mechanisms.

Defining the strcam function v by the relation v, = €g,8p¢ and the vorticity w = 84, the two-dimensional
N-§. equations for w may be written as

S + Gapan l,"Jagap!}J = tqpdafp + v . (23)

In the inviscid case (¥ = 0) and in the absence of external forces, the above equation implies that there is, besides
energy, an infinite number of conserved quantities, given by

I, = / d*E." | (24}



88 XVII Encontro Nacional de Particulas e Campos

where n is a positive integer. I is known as “enstrophy,” having an important role in the cascade picture of two-
dimensional turbulence. Kraichnan [19] advanced the hypothesis that not only cnergy, but also these additional
conserved quantities would flow across the inertial range. A careful analysis of the energy and enstrophy fluxes leads
L0 a surprising result. Energy is transported now to larger length scales, while cnstrophy flows towards smaller ones,
in such a way that both fluxes cannot coexist in the same range of wave numbers. Regarding the energy spectruim,
if the system is forced at wave number kg, the encrgy transport to wave numbers k < ko Is characterized by
LE(k) ~ k753 ag in the Kolmogorov’s theory, and the constant enstrophy flux towards k£ > kq is associated with
E(k) ~ k=3, It is believed that Kraichnan’s idea of the enstrophy cascade is physically correct, but numerical
sitnulations [39) show that the energy spectrum decay is given by exponents close to —3.5, varying according to the
nature of the large scale external forcing,.

Polyakov has suggested, recently, a conformal ficld theory approach to two-dimensional turbulence {20}, from
which the exponents describing the cuergy spectruin decay nay be fonnd exactly. Conforinal methods have been
very important in Lhe understanding of critical phenomena in two Jirensions, where specific models were seen to
correspond to different reahizations of the Virasoro algebra. Among the conformal theories, the “minimal models”
play a special role, since they have a finite number of scaling operators. "T'hese models [40] are gencrically defined
by a pair of relatively prime numbers, (p,¢), with p < q. They contain a subset of (p — 1)(¢ — 1)/2 scalar primary
Operators, ¥, o), labelled by 1 <m <pand 1 <n<(g-1)/2,ifpiseven,or 1 <m < (p—1)/2and | <n <y,
otherwise, having dimensions Ay = ((pn — gm)? — (p — q)?) /4pq. The rcason for the clivice of scalar operators
is that we deal with isotropic corrclation functions in the turbulence problem. The operator product expansion
(OPE) of two primary operators ¥y, ,,)(2) and ., ,3(z’), with |z — ='| — 0 is writien as

Brean(Dhraun(2) = Y (@) Benm= 80 =dipn) § glneat L

{ra,ss) (n,m)

ST FRUY FY A AU DL Y DL e (25)

where |r;—ra}+1 < rg < min(ri4+r:— L 2p—ry—ra—1), |8y —s2|+1 < 53 < nuin(s) +s2a—1,2¢— 5y —s2—1) and we
have introduced, in (23), the Virasoro generators of conformal transformations, L., and L_, . 'The interest in these
models is related not only to their finite nutnber of primary operators, bt also to the fact that their dimensions
and the form of short distance products are completely known.

Let us now apply the above operator structures in the probletn of two-dimensional turbulence. We may write
Hopf’s equations for the vorticity corrclation functions,

< w(zy, thwe(za, 8). . w(zy, t) >] =0, (26)

where time derivatives arc expressed through equations (23). In the inertial range, as discussed in the previous
section, both forcing and viscosity terms may be neglected in order to formulate a simplified set of Hopf equa-
tions. Considering, furthermore, the convection term in (23) as a vanishing point-split product. of fields, that is,
_ﬁz_,q:lu'(d:’/a)e,,ﬂﬁ,,yb(z)623g¢(:’) — 4, when |z - 2’| — 0, wc would have, then, an exact solution of (26). A
concrete realization of this possibility may be achieved if we regard the strcam function v as a primary operator of
some conformal niiniinal model. In this case, we may use all the available information on operator dimensions and
OPE’s to obtain physical results. According to this assuinption, let. ¢ be the primary operator which has the lowest
dimension, A¢, appearing in the OPE ¢, between fields with the same dimension A, Taking a = |a| exp(i6), we
will have, thus,

1=’ . o
lim ‘Tfagﬂ,,;b(zli)'apt.b(z')

fa]—0 |z =2"|=]al
~ fdﬂ (63020, — 83020:] (0a)\2¢=22 3" Crnny by o Lony Lo, D@2 "G (2, 3)
~(ad)B9=280) L 12 T a12)] ¢, (27)

as the dominant contribution in this short distance product. It is inportant o note that in order to get (27) it was
necessary to set Cyy2) = Cyaay and Cpyya,nyy = Cya,1):1), as it follows from the pseudoscalar nature of the ¢ factor
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above. We sec, then, that (27) vanishes with |a| — 0 if
Ad > 2P, (28)

which is one of the constraints that the chosen minimal model has to satisfy. An additional constraint comes from
the condition of a constant enstrophy or energy flux through the inertial range. In the cnergy cascade case this
means, according to (16), that < v,(z)ve(0) >~ z%. Analogously, it may be proved that the condition for a constant
enstrophy flux is < w(z)w(0) >~ z° which gives

< w(zho(0) >~ (ua)l 207289 « [([_,12 | — L_5L2)) ¢(z)] 8%v(0) > . (29)

The correlation function at the RHS of (29) is now evaluated by means of a purely dimensional argument, as
L-XA¢+A4+3) which makes sense if one thinks that there is an eflactive infrared cutoff in the theory at the length
scales given by L, where random forces act. Imposing (29) to be independent of 1, we get

A¢+A¢Y+3=0. ' (30)
In the case of an energy cascade, the argnment is the same and the constraint turns out to be
Ap+AY+2=0. (31)

It is known that there is an infinite numnber of minimal models compatible with (28) and (30) or (31} [41, 42).
The general belief, and still an open problem, is that there may be universality classes, associated to the statistical
properties of the forcing terms, which would single out one or another of the possible solutions. Let us note that the
mintmal models found in this way are non-unitary, since the short-distance product ¥(z)¥(z') goes to zcro when
2 — 2z

An alternative analysis of conformial turbulence regards the existence of boundary effects on the vacuum ex-
pecation values (VEV’s) of single operators in non-unitary theorics [43]. In this case, one has to consider the OPE
between ¢(z) and ¥(0) in (29), picking up the most relevant operator, let us say, x. Now, (30) is modified to
A¢ + Ay — Ax + 3 = 0, with an analogous change for the constant energy flux condition. Some of these further
solutions (in the enstrophy cascade picture) were obtained in ref. [44].

The connection of the conformal approach with real experimentls or numerical simulations is made through
the computation of inertial range exponents, which describe the decrease of encrgy in the region of higher Fourier
modes. In the situation where VEV’s of single operators vanish, the inertial range exponents are given by 4Ap + 1
and, in the opposite case, by 4Ay — 2Ad + 1. A good agreement has been rcached between the former possibility,
for the direct enstrophy cascade case, and numerical simulations [39, 45, 46] of the two-dimensional Navier-Stokes
cquations. There are, however, deviations with the results obtained in real laboratory investigations [47]. In fact,
as we will show next, the inclusion of three-dimensional effects in the conformal field theory approach may give
corrections to the inertial range exponents, in rcasonable agreement with experimental data [21).

5 3-D Perturbations in Conformal Turbulence

In a series of interesting cxperiments, lopfinger et al. [48, 49, 50] studied the wurbulence phenomenon as it happens
in a rotating tank, where at its bottom there was an oscilating grid responsible for perturbations of the fluid motion.
According Lo the Taylor-Proudman theorem [51, 52, 53} a rotating fluid tends to behave as if it were two-dimensional
and in fact this was observed in the form of coherent structures (vortices) organized in the direction parallel to
the rotation axis of the tank. llowever, “defects” in the vortices were seen Lo propagate from the very turbulent
region at the bottom of the tank up to the effectively two-dimensional system. The essential picture extracted from
these observations is that the fluid should be best described in terms of two-dimensional equations containing not
only large scale forcing terms but also sinall scale random perturbations, originated from either voriex-breakdown
or soliton pulses propagating along vorticity filaments. The experimental data suggested then the existence of an
inertial range, likely to be related to a dircct enstrophy cascade and well approximated by E(k) ~ k2%, which
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represents a less stecp cnergy spectrum than the one obtained by Kraichnan, £(k) ~ k=3, or even other proposals
[54, 53], not excluding conformal turbulence {41]. This puzzingly result is presently understood to be due only to the
measurement Lechniques used in the experiments, based on the aunalysis of the dispersion of suspended particles in
the fluid [50]. More recently, similar experiments were conduced by Narimousa et al. [47] and direct measurements
of the turbulent velocity field were recorded. ‘L'he results pointed out the existence of a possible encrgy spectra
E(k) ~ k=3/3 at lower wave numbers, in agreement with the conjecture of an inverse cnergy cascade [19], and a
range at higher wave numbers, where E(k) ~ k=35%%3% 1y {}is region, the spectral slope was seen to depend on
the controlling external conditions, with results varying from E(k) ~ =3¢ up to E(k) ~ k=52 It is worth 10
note that a spectral law E(k) ~ k~° follows from Rhines theory of #-plane turbulence [56} and, alternatively, is
closely approximated by some solutions of the constant ensirophy tiux condition in the conformal approach, like
the minimal models (9, 71) or (11, 87).

The variation of exponents obtained in the experiments may have a theoretical counterpart in the existence
of a set of operator anomalous dimensions, making it interesting to analyze the problem from the conformal field
theory point of view. It is clear, however, that the inertial range exponents, found in ref. [41], cannot reproduce the
experimental situation. We believe that the important ingredient, missing in the previous conformal approach, is
precisely the cxistence of three-dimensional perturbations, which must be taken into account in any realistic model
of a quasi two-dimensional fluid.

In view of the ahove considerations, let us write the two-dimensional Navier-Stokes equations as

O:L'n +Uﬂaﬂun :uazva +f,€,l)+yf,(,2}—(9ap ] (32)

where fE,” and ft(,ﬂ are stirring forces defined at large (L) and small (¢ << L) scales, respectively. The dimensionless
constant g represents, roughly, a coupling with the three-dimensional mnodes of the fluid. We assume that the
dissipation scale, 5, is related , in principle, to the other scales of the problein as 7 << u << L. This means that
even though the perturbations act at very small scales, when compared Lo the macroscopic size of the system, they
are still much larger than the scale where dissipation occurs.

An trmportant point here is that the condition of incompressibility, when formulated in three dimensions, reads
O1v1 + Ba2va + Oyvz = 0, suggesting that the “projection™ of this constraint to the Lwo-dimensional world has to be
given by d,vq = O(g), in the framework of cquations (32). The velocity field tnay be described, then, by means of
a stream function, ¥, and a velocity potenitial, ¢, as

Vo = €ga0p + gladd . (33)

It is of further interest to study, besides the vorticity w, the divergence of vy, given by p = ¢8%¢. An exact, although
infinite, chain of equations may be generaled if we expand 4 and ¢ in powers of g, substituing them into (32) and
collecting the cocfficients of the obtained series. Defining, in this way,

oo (43 ]

T S SN i
n=0 n=0
3 S -

6= L g‘“tf?(ﬂ)  p= Zyn-Hp(n) ' (3‘1)
n=0 n=0

we get the following set of coupled equations,

n n=1
i) O™ + z (nﬁaad,(p)asa%,(ﬂ-ﬂ + Z [fjﬁqg(p)()ﬂa?,rf,(n—p—l) + 826 g2 p(n—p=1)
p=0 p=0

= vd%i") + caac')oféz)En_l ,

i#) 20 eapBu i M9pa Y = v + 0y, fi1
n-—1|

i) 60+ z [(')..aﬁé(”c')nagqﬁ("‘”‘” + aaét")aur')zgé("“’“‘]

p=0
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13
+3 [zcagagaaca“’)aaaafp(w} + (.,,,a,,a;;("-*’)aﬂa-'qsfﬂ]

p=0
n+l
+3° [0.009P8,0in 74D - g2gIg2yln-PHN]| = pa7pl)
p=0
i) 8t +20, 854V 0,959 + 2c¢,33p3,¢(°)6060u’:‘°) + Caﬁaa¢(_0)3632¢(o)
_262‘[’(0)62"#(” = Va2p(0) + aafc(.ﬂ 1 (35)

and, finally, the constraint of incompressibility for the g-independent part of the velocity field, which defines the
pressure term,

(aaa,waf‘") (aaa,,t,bw)) — 920987 = 9, ;0 — 92 p (36)

In the ahove expressions, n > 1. We have abtained, therefore, a sct of stochastic partial differential equations. In a
statistical description, reflecting a stable asymptotic limit for the correlation functions of w and p, Hopf equations
may be straightforwardly written as

N M
o <[l I1 A= >=0. (37)
i=1 J=NF1

We observe now that in (35), equation ii) is identical to the one which corresponds to an unperturbed (y = 0)
two-dimensional fluid. This means that the field %'®) will be related to an enstrophy or energy cascade, even in
the presence of threc-dimensional cffects. This field plays the role of an external random variable in the other
equations, since its dynamics is independent. of the other components (") or to the field ¢ (in general, the subset
{0 g0 () 4(n=10} contains fields which act like external randon perturbations in the equations
for ¥ and =1, with p > n + 1). Considering that (35) gives relatively complex equations, the analysis of the
problem might scem hopeless, being perhaps adressed.only to a numerical treatment. However, we can extend
the conformal approach, applied previously 1o the unperturbed case, to find here solutions of the Hopf equations.
Our basic assurnption is that not only ¢{®} but also the other components in the power expansions of ¢ and ¢ are
pritnary operators which belong to some minimal model in a conformal field theory. It is necessary, then, to define
a scale £, possibly associated to intermittency effects, which allows us to write the following diinensionally correct

expansion,
ke 0
p= Y fa A= ov Ny
n=0
(48]
b= pLeed-avtyngn) (38)
n=0

where ¢(") and ¢(*) have dimensions A¢(") and A¢{™), respectively.

The introduction of a scale £ in (38) ineans that the perturbed system exhibits a breaking of scale invariance
in the inertial range. It may be seen that this phenomenon is signhaled by the existence of constant enstrophy or
energy fluxes which depend on the small scales of three-dimensional perturbations. L is conceptually irnportant to
understand the physical origin of €. A clue for this comes from the struciure of couplings between (%) and the
other fields, as expressed in (35). As we have already observed, yA? is effectively an external field in the equations
for Yin} (with n > 1) and ¢(™) (for any n). In this way, it is plausible Lo have a relation between £ and the scales
involved in the dynamics of ${%). Now, if we consider the turbulent limnit of the equations for ¥®, corresponding to
v — 0 (or, alternatively,  — 0), we are Jeft essentially with the correlation length L of large scale random forces. A
siinple choice, thus, is to consider £ = L. In this respect, one may observe that the small scale it could also be used
in the definition of £. We have, however, physical reasons to believe that this does not happen: i is rclated to the
forcing terms in the equations for (1) and ¢'*), which we expect Lo be irrelevant when compared to the nonlinear
convection terms in the range of wave numbers given by [k| << 1/
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It is interesting to note that there is an analogy between our problem and the statistical mechanics of second
order phase transitions for a system close to its critical point. In this case, one can study deviations of the critical
temperature 7. by means of an expansion in (7' — T.) and through the use of the operator structure of the critical
theory [57]. Here, in the turbulence conlexi, the “critical theory”™ is just what we get when g — 0.

We are intecrested to get possible combinations of primary operators in equations {38) that would nat affect, in
the limit 4 — 0, the constant enstrophy or energy fluxes, derived from the dynamics of the field ¥{°). We may
write a set of operator product expansions from equations (35), generalizing (27). In this way, all the conditions
necessary to find minimal models related to an enstrophy or energy cascade in a quasi two-dimensional fluid may be
abtained. We will nat write these conditions here, which would render our discussion very technical. The important
abservation is that the models we have to find must belong Lo the infinite set of solutions found in the former
study of unperturbed conformal turbulence. This follows directly from the conditions which depend only on $(®).
A strategy of computation could be, thus, just a numerical analysis of all possible cambinations of fields for these
previously known minimal models. As straight it may sound, this approach is hardly uscful when the number of
primary operators becomnes large, a fact that happens alrcady for the first few minimal models.

A more inleresting computational scheme is provided if we look for solutions of the form

=1+ fa(g)'d"l '
¢= @éo ) (39)

where f,(0) = f,(0) = 0, that is, we arc considering solutions with #(f) = ¢, for p > 1, and ¢ = &g, for
any p. This approach is valuable since it turns out that il it is impassible to satisfy the constant fAlux conditions
through any pair of fields ¢, and ¢q, then there are no further solutions for the model under consideration. All our
task is, therefore, to consider the set of minimal models representing conforniat turbulence without perturbations,
from which the fields yo may be immediately obtained, and add, according to the new constraints associated to
three-dimensional effects, the fields ©; and ¢,.

In the study of the inertial range exponents, we may think of, at least, three limits for fap(9): a) g — 0, that
18, fa5(9) = 0, b) fas(g) = I, and c) ¢ >> 1, which may he defined as a “strong coupling” regime. In the first
case, the perturbations play a negligible role and everything is described by unperturbed conformal turbulence. A
competition between exponents appears in the second case, where the less steep spectral slope will be the mast
relevant in the limit of higher wave numbers. We see, in this way, that cases a) and b) cannot give any of the
sleeper spectral slopes observed in real experiments. The third case is, in fact, where we have some hape to find a
relation with experimental results. 1t would be unphysical to have fap(9) — 0, far large values of g, since in this
limit we would recover the unperturbed system. Let us assume that fas(g) diverges as g — co. This means that
the inertial range exponent derived from g may be discarded and we have to analyze orly the competition between
the exponents obtained from ; and $o-

An investigation of the first six minimal models for both the enstrophy and energy cascade cases was carried
out. In the enstrophy case, therc are solutions for all the madels studied. The results show a good agreement with
experimental verifications, with the only considerable deviation accuring for the very small set of two solutions for
the model (2,21). The solutions, excluding the model (2,21), are organized in the table below, where values of mean
exponents and standard deviations are described. It is clearly scen thal the perturbed exponents arc in general
lesser than the exponents of the unperturbed fluid.

minimal model | exponent (g=0) [ incan exponent (g # 0) | standard deviation
(3.25) 45 -1.90 0.28
{3,26) -4.23 -9.25 0.27
(6,55) -3.73 -5.89 0.21
(7,62) -4.03 -5.46 0.28
(8,67) -4.51 -4.90 0.34
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Table I: Statistical daia related to the solutions for the constant enstrophy flux condition, iu the strong-coupling
regime, where a comparison is made with the unperturbed valucs of the inertial range exponents.

In the energy case, an interesting fact happens: most of the models studied do not yield any solution for the
fields ¢, and &g. Only the model (10,59) gives solutions, all of them with inertial range exponents close to —3.0,
which do not support the conjecture of a Kolmogorov exponent —5/3 for the range of lower wave numbers. It is
worth to note that E(k) ~ k=39 has been observed in atmospheric studics, which have been puzzingly for a long
time, since they refer to large length scales. Thus, the apparent agreement with Kraichnan’s prediction seems to be
fortuitous . However, more theoretical and cxperimental work is necessary in order to arrive at a conclusive answer
on this point.

6 Conclusions

We discussed briefly the field theory approach to turbulence, keeping in mind its most important phenomenological
aspects. We focused, then, in a more detailed way, on the application of conformal methods to the problem of
two-dimensional turbulence, considering also the effects of three-dirnensional perturbations.

We believe that the large experience accumulated in the last decades, through the study of field theory models,
will he extremely useful towards a better understanding of turbulence. Of course, the connection of turbulence and
field theory is not expected to be only one way. Perhaps onc of the important advances to lollow from this relationship
regards multifractality, which is a peculiar scaling behavior observed in many different systems. The problern here
is to find a general description, similar to a renormalization group treatment. In this respect, Gawedzki [58] evokes
the idea of an “inverse renormalization group” analysis of turbulence, where the scaling behavior of correlation
functions arises in the ultraviolet region, opposite to what happens in critical phenomena. It would be desirable to
have also sorne perturbative cxpansion in turbulence, free of infrared divergencies. A recent proposal by I.’vov and
Procaccia [59) seems to generate a well-behaved perturbative serics, from the replacement of velocity by a galilean
invariant field, which would cancel the infrared divergencies.

Another intercsting recent idea worth of mentioning, is the “loop” formulation of turbulence [60}], sitnilar to
the well-known loop approach of gauge theories. The intcrest here is concentrated on the galilean invariant order
parameter

F[Cl=< exp [:i ﬁ'-da':'] >, (40)

were C is an arbitrary loop. Migdal conjectured that F[C] should depend only on the riinimal area enclosed by C.
Related nurmerical investigations [61) show that further theoretical work is in order, mainly regarding an account of
intermittency effects.

Turbulence is, at the present morment, a fundamental open problem of theoratical physics. S. Orszag once
observed that we know more about the small scale siructure of the proton than about turbulence in some atmospheric
layers. There is some truth in this comment, even if we know that “quantification” of scientific knowledge is always
a vague concept.
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Abstract

We study a class of lattice field theories in two dimensions that include quantum
Yang-Mills theory as a particular example. Given a two dimensional orientable
sutface of genus g, the partition function Z is defined for a triangulation with n
triangles of size ¢. These models are called quasi-topological in the sense that Z is
a function of g, n and ¢ only. We compute the partition function and show that the
continuum limit is well defined if when ¢ — 0 the mode! approaches a topological
theory. We show that the universality classes of such models can be easily classified.

1 Introduction

Exactly soluble models in statistical mechanics [1) and field theory are extremely valuable
examples where one hopes to learn about the physics of more realistic models where
exact calculations are not available. The Ising model, for instance, has proven to be an
incredible source of important ideas, such as duality and finite size scaling [2], that can
be applied to much more general situations.

The simplest examples of soluble models are probably the so called lattice topological
field theories {3, 4, 5, 6]. Let M be an oriented 2-dimensional compact manifold and T
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a triangulation of M. Starting from a quite general ansatz, the authors of [4] determined
what are the conditions that the local Boltzmann weights must satisfy in order that the
partition Z(Ty) do not depend on the specific triangulation Tps of M. In other words,
Z(Tw) is a topological invariant of M. A large class of models, corresponding to semi-
simple associative algebras, were found. The reason we say that these lattice topological
theories are soluble is because to compute Z(T)) for a triangulation Tps with an arbitrary
number n of triangles, it is enough to take another triangulation Ty, with the minimal
number of triangles, and compute Z(Ty) explicitly.

Lattice topological field theories (LTFT for short) are in a sense too simple. They are
almost trivial from the dynamical point of view. Consider for example a cylinder with
boundaries $1US?, and the corresponding evolution operator U (or transfer matrix in the
language of statistical systems). It is trivial to show that for a LTFT U is equal to the
identity when restricted to physical observables. (However, if instead of a cylinder one
has some other manifold interpolating the two circles $*US?, U is no longer the identity.)
Despite their simplicity, topological models represent an attractive class of models since
they can be generalized to higher dimensions and still be exactly soluble. The same type
of models considered in [4] have being carried out in 3 dimensions [5). A different approach
have been used by the authors of [6] to produce subdivision invariant theories in several
dimension, including four.

There is a large variety of fully dynamical soluble theories in d = 2 [1], but in di-
mensions bigger than 2 this is far from being true. Unfortunately the general situation is
that physical models in higher dimensions are either soluble but too simple as LTFT’s,
or dynamically nontrivial but too hard be be exactly solved, as for example lattice gauge
theories in 3 dimensions. It would be desirable to find a class of models interpolating these
two extreme situations. We want to look for models that are a little more dynamical than
LTFT and still can have its partition function computed. The answer is not known in
general, but in two dimension Yang-Mills theories (YM;) are legitimate examples of such
models. It is well known that the partition function of a gauge theory on a 2-manifold
M is not a topological invariant. Nevertheless its partition function can be explicitly
computed both in the continuum and in the lattice [7]. It turns out that the partition
function depends not only on the topology of M but also on its area . This is an example
of what can be called a 2d quasi-topological field theory [7]. Another feature of Y M is
that the theory is a perturbation in o of a topological theory. When the area a goes to
zero, the model becomes topological.

In this report we shall discuss how to construct quasi-topological theories on the lattice.
They will include gauge theories as a particular example. Let M, be an orientable 2d
surface with genus g, and T(g,n) a triangulation of M, consisting of n triangles. For
simplicity, we will assume that all triangles have the same area ¢. To each link in T'(g,n)
we associate a dynamical variable taking values in a discrete (or even continuous) set I.
Then we follow [4] and look for models such that the partition function Z(T(g,n),¢)
depends on the topology through g, on the total number n of triangles, and on ¢ but not
on the details of the triangulation 7. In other words, Z is a function Z(g,n,¢) of the
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global topology, the number of triangles. a.nd their size, That will-be. our definition of a
lattice quasi-topological field theory (LQTFT). We will show that the continuum limit
of a LQTFT is well defined whenever the model is a deformation of a lattice topological
theory. The partition function Z(g, n, ¢) can always be computed and the continuum limit
is recovered by taking n = oo and € — 0, while keeping the total area a = ne fixed.

We start by defining what we mean by a lattice quasx-topolognca.l field theories in
Section 2. In Section 3 we compute the partition function in full generality. The dynamics
of LQTFT is discussed in Section 4. There we compute the evolution operator U for the
case of a cylinder and comment on how to extend the answer to the generic situation. We
also determine what are the physical observables and compare with the topological case.
In Section 5 we study the continuum limit. Section 6 is dedicated to a simple example.
Finally on Section 7, we conclude with some remarks. Some results used through this
report are glven in the Appendix.

2 Quasi-Topological Lattice Theories

The definition of the model follows the basic steps of [4). Let T(g,n) be a triangulation
with n triangles of a two dimensional surface M, with genus g. A configuration is determ-
ined by assigning to each edge of the triangulation a “color” i belonging to a index set I.
If the set [ is finite, we may think of i as a sort of spin variable siting on the links of the .
lattice. For gauge theories, [ is nothing but the gauge group G. To each triangle A, with
edges ‘colored by 1, j, k and area ¢, we associate a Boltzmann weight C;;(¢). We assume
that all triangles have the same area ¢ and that C,Jk(e) is invariant by cyclic permutation

of the color indexes, i.e.,
Cij(€) = Cjrile} = Crij(e)- (2.1)

The weight associated with two triangles, as indicated in Fig. 1, is determined by a
gluing operatot g*' and is given by

an(e) g CbH( ) (2 2)

where the summa.t:on on the repea.ted indexes a and b is understood. One may use g**

lift indexes and write (2.2) as C;i;}(€)Cyui(e) or Cija(€)C%i(e€).

It will be convenient to restrict the gluing operator g* in such way that there exists a
inverse g;;, _ _ _

giag™ = 6], (2.3)

The partition function for the triangulation T(g,n) is obtained by performing the

gluing operation on all pair < ab-> of edges tha.t should be identified in order to build
the triangulation. In other words

Z(T(g,n),e) = [ II Cisrle)g™. (2.4)

A€T <ab>
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Fig.1. The figure shows how the gluing operator g°° is used to give the weight corresponding to a pair
of glued triangles

If the weights Cijx(¢) are not restricted, the partition function (2.4) depends on the
triangulation and it represents a complicated and fully dynamical theory.

It is convenient to represent a given triangulation T(g,n) by its dual graph I'(g,n).
Figure 2 (a) shows the gluing of triangles in terms of the dual graphs and Fig. 2 (b), an
example of the graph corresponding to some triangulation. The graphs must have double
lines in order to encode the same information as the triangulation.

Given two triangulations T(g,n) and 7"(g,m), or the corresponding graphs I'(g,n)
and ['(g, m), of a surface with genus g, it is possible to transform one into another by a
set of local moves that do not change the topology, namely g. It is well known that two
basic moves are needed in order to go from one triangulation to another. We are going
to use the so called flip move and the bubble move. In terms of the dual graphs, these
moves are given in Fig. 3. Note that the flip move preserves the number n of triangles;
whereas the bubble move, change it n by 1.

The theory is called topological [4] if Ci;x(¢) do not depend on €

dC"jk(C) _
e =0 (2.5)

and it is invariant under any topological move. Invariance under the flip move implies
that

Ci;*Cu™ = Cu™Cyi, (2.6)
whereas the bubble move is equivalent to
CiasC"; = gij. (2.7)

A partition function that is invariant under both moves, can not depend on the tri-
angulation, and therefore is a topological invariant. In other words, Z is a function Z(g)
depending only on the genus g of the surface M,.

A topological theory defined by C;j; has a enormous symmetry. Thanks to this fact,
the partition function can be computed. Since Z do not depend on the triangulation, one

99
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e

(@)

(b)

Fig.2. Figure (a) shows the gluing of triangles in terms of the dual graph. Figure (b) is a simple example
of a triangulation and its duai graph.

\_/H\/__H/\
- =——=0

@) ®)

Fig.3. The two basic topological moves in terms of ‘the dual graphs. Figure (a) is the flip move and
figure (b) is the bubble move
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chooses the minimal triangulation and writes down Z(g) explicitly. Topological models
are very special when compared to a generic theory given by (2.4) that has little or no
symmetry at all. What we are going to do, is to consider an intermediate situation where
part of the full topological symmetry is not present. That is the reason for the name
quasi-topological models.

The simplest thing to do is to give up the invariance under one of the two topological
moves described before. It will be interesting to have a partition function that depends
on the size of the lattice, so we choose to break the invariance under the bubble move and
keep the invariance under the flip move. We also want to allow for variation on the size ¢
of the triangles. Therefore, the model is defined by a set of local weights C;x(¢) invariant
under the flip move, and partition function given by (2.4). In our class of models, we will
assume the flip move, or in other words

Cii*()Cu™(€) = Ci™(e)Ci*(e) o (28)

for any value of the parameter .

[t may happen that for some value ¢ of the parameter €, the weights Ci;i(e€) also
satisfy equation {2.7). At this critical point, the full topological symmetry is restored. As
we shall see, if ¢ = 0 is a critical point, the model has a well defined continuum limit.

Let us assume for simplicity that the index set [ is a finite set with r elements.
Consider a vector space V with bases {¢y, ..., ¢.}. Then, for each value of the parameter
e the numbers C;;*(¢) define a product structure in V, namely

$id; := Ci*(€) . | (2.9)
Because of the flip symmetry (2.8) the product ¢;¢; is associative. We may think of

Ci;*(€) as given a family A, of algebras on the space of associative algebras defined on V.

Since we are assuming that g' has an inverse g;; we-can define a dual base {¢‘} given
by '
& = g4, . (2.10)

For the dual basis, the product is

¢ = Ch(e)g". (2.11)

3 Partition Function

For a triangulation T'(0, n) of the sphere, the corresponding graphs ['(0, n) are planar. Let
['(0,n) and I'(0,n) two planar graphs representing two different triangulations of $? but
with the same number n of triangles. It is a well known fact that I'(0,n) and [(0,n) can



always be connected via a sequence of flip moves [8). Therefore if C;,-k(e) fulfills equation
(2.8) the partition function (2.4) computed for F(0,n) and I"(0,n) have to be identical.

Using a variation on the proof presented in [8] we were able to show that any pair of
dual graphs I'(g, n) and [V(g, n), for arbitrary genus g can also be connected by a sequence
of flip moves. For completeness we give a demonstration of this fact on the Appendix.
As a result, our partition function (2.4) depends only on g,n and ¢, prov1de that (2.8) is
fulfilled. We will write Z = Z(g,n, €) for this matter.

The particular graph I'(g,n) we use to compute Z is immaterial. The result of the
Appendix shows us that ['(g,n) can be reduced to the canonical graph I'°(g,n) given on
Fig. 4(a) via a sequence of flip moves. The canonical graph is obtained by gluing the

(a)

@__—"Kij m - H.

ij

.(b) (©

Fig.4. The dual graph corresponding to the standard triangulation of a surface of genus g is given in
Figure (a). It can be constructed by repeating the basic blocs shown in Figures (b) and (c) respectively

232 and g times.

elementary blocks on Fig. 4(b) and Fig. 4(c). They correspond to operators

Kij(€) i= Cias(€) Ci(¢) (3.1)

and

Hi;(€) := Cini(€) C*™" () Cm®'(€) Crpi(e) | (3.2)
respectively. If we define matrices K. and H, with matrix elements (K,).-j = Ki(e)g"
and (H.);" = Hix(€)g*, then the graph on Fig. 4(a) shows that Z(g,n) can be written as

Z(g,n,€) = Tr (K5 H/?) _ (3.3)

Due to the flip symmetry, the computation of the partition function for a two dimen-
sional lattice has been reduced to a one dimensional problem. If the set of states 7 is a
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finite set with r elements, K, and H, are r X r matrices. In this case, (3.3) can be calcu-
lated for an arbitrary g and n. For this note that the algebra of observables {¢, ..., 9.}
has a natural inner product given by the g;;:

< ¢i, ¢; >= gij,

and that K, and H, are both self-adjoint with respect to this inner product. Moreover,
we will see below that they also commute

K.H. = H.K,, (3.4)

therefore they can be simultaneously diagonalized. As the trace is unchanged by a co-
ordinate transformation, the partition function can be computed as

Z(g,n,€) =S kT A, (3.5)
]

where k; and h; are the eigenvalues of K, and H,.

We now show that equation (3.5) is fulfilled. This is a direct consequence of the
flip symmetry. Consider the graphic representation of K;*(¢)H,;(¢) on Fig. 5(a). By

N/

I '
@ ®

(TR

© @

O

i

R

Vi

Fig.5. The figure shows equation (3.6).

performing a flip transformation, the leg of the graph marked with 2 can be moved to
the position presented on Fig. 5(b). Repeating the same step one can move it further,
arriving at Fig. 5(c). Finally, Fig. 5(d) is obtained by repeating the process with leg 1.
This sequence of flips shows that

K:*(€)Haj(c) = Hi*(€) Kaj(e) (3.6)

and therefore K, and H, commute
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4 Dynamics and Observables

The dynamics of a model is controlled by its evolution operator U. For a topological
theory, U is equal to the identity when restricted to the physical observables (see [4)).
Since our models have less symmetry then a LTFT we expect that it must have some
dynamics.

Let T(p1, p2,n) be a triangulation of a cylinder where n is the number of triangles and
p1, p2 are the number of edges on the boundaries o) and ;. We enumerate the edges on
the boundary in a clockwise fashion, as in Fig. 6. We define the operator U;,,...i. 1 jsveips

Fig.6. A cylinder with boundary given by two polygons with p; and p; links. The boundary elements
are enumerated in a clockwise fashion.

as the one given by coloring the boundary links at o, and &, respectively with (iy,...,1p,)
and (j1,...,Jp,), and then gluing (summing over) the internal links by the rules explained
in Section 2. In other words,

Ui onipys 31omdpy = 11 [T Ciir(e)g®® (4.1)
A€ET <ab>
where < ab > runs over the pairs of glued internal links. What we will call the evolution
operator is the matrix

I 2 Uiyt Krvekp @ e g5P29P2 (4.2)

It is clear from the definition that U,‘:",‘;’:’ fulfills the factorization properties of an

evolution operator. If the triangulation T'(p;,ps,n) splits in two cylinders T,(p1,p, n,)
and Ty(p, p2,ms), na + ny = n, then
Ui (T) = ULk ign (T) U i (). (43)

1'1 """'Pl h...,llpl 1 yeery
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We are going to assume for the moment that the set of I of colors is equal to 1,2,.
Then, the vector space V ~ A, of states associated with a smgle link is generated by
a basis {¢y,¢2,...,4,}. In other words, a generic state ¢ is given by ¥ = ¢'¢;. The
space of states V(P!) corresponding to a boundary with p; links is just the tensor product
VP) = V@V ®..QV with p, factors. At the boundary o, the space of states V) is
defined in the same way. We recall the usual interpretation for U as an linear operator
from V(1) to V(P given by

Ui, ® ... ® i, ) = U7, ® ... &y, - (4.4)

v‘m

The computation of U follows the same idea as in the calculation of the partition
function on Section 3. Given two triangulations T(py, p2,n) and T'(p1, p2,n) with the
same number of triangles, and the same number of links on the boundary, we were able to
show that they can be connected by a sequence of flip moves. Therefore the U only depend
on the triangulation through the numbers p, p; and 5. In fact any triangulation can be
brought to the canonical form given on Fig. 7. Note that once more, the computation

N7 -2

2
'(p -1) ip i s J(p 1)

A\ A\l\_ﬁ@_ﬂ_ _/_Q_\_@/é//_ /L

Fig.7. The canonical graph for a cylinder.

has been reduced to a one dimensional problem. It involves the product of the operator
Ki(¢} defined in (3.1), and a new operator

Si(€) := Ciap(€)C™(e) ' (4.5)

We are going to use the following property of 5;’(e):
S.-“‘(c)Cm_,-k(é) = S.-'"(e)ka,-(c). ' (45)

A graphic proof of (4.6} is given in Fig. 8.

Now let us consider the linear map S, : A, = A, given by Si(¢). On a generic element
a = a'¢; € A, it act as o
S,(a) = a'S.-’(c)d:,- . (4.7)

As a consequence of (4.6} and (2.1), it is very simple to verify that-for any a,,a; € A,

a15.(a;) = Se(az)a;  and  S.(a)a;) = Sc(azay). (4.8)
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Fig.8. The figure shows a sequence of moves that proofs equation (4.6).

The first part of (4.8) shows that S,(a) belongs to the center Z(A,) of the algebra A,.
Contrary to the topological case, S, is not a projector from A, to Z(A.). Actually, one
can show that

SHe)Si(e) = Ki'(€)Si(€) = S (€) Ky (e) (4.9)

One can see from Fig. 7 that the form of U,-i‘:::}i‘:’ (p1,p2,n,¢€) is

U3 (12, ) = [S(n b8, )" (K—u’ﬂ_)m (¢ mt.. ) (410)

Therefore the evolution given by U(p),ps,n,¢€), is actually an evolution for the data
Se(i,--$i,, ) and S(¢rrim-1. ") in Z(A,). Note that S, is invariance under cyclic
permutations of the factors ¢’s. This is clear from the second part of (4.8). Therefore
the functions S(@;,...¢i, ) and S.(@/¢’-1...¢"") depend only on the oriented loops o,
and o, and associate to each one ot them a well defined elements of Z(A,). It is useful
to introduce variable W(o) € Z(A,) analogue of the trace of the Wilson loop in gauge
theories, wheré ¢ is any loop given by an oriented sequence of p links. We define

W(o) = S(di,bs,). (4.11)

Analogous, we define its conjugate W(o) = W(—c), where —o is the same loop with
reverse orientation, by

W(o) = S.(¢mPm..4") € Z(A) (4.12)

The observables, or loop variables W(c), are elements of the center of the form 5,(a)
for some a € A,. The question is whether S.(a) span the entire Z(A,) or just a subspace.
That will depend on the particular set of weights Ci;i(¢). Consider an element b € Z(A,).
One can show that S;7(e)b* = K,/ (¢)b'. Therefore if K, restricted to the center is invertible,
then the image of S, is the whole Z(A,).
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Note that, when restricted to the observables, the evolution U is given by

2=msmcl . (4.13)

Ulphy = K

A Cylinder is tapoalogically equivalent to a sphere with two holes. For this reason U is
also called the two point correlation function for genus zero. To complete our discussion
we would need to consider the corresponding operator for a surface with g handles and ¥
holes, i.e., the NV points correlation function for genus g. It is a well known result that it
is sufficient to compute the three point correlation function Y for genus zero. Any other
correlator can be written in terms of Y and U. Consider a sphere with 3 holes representing
a cobordism from S' x 5! to S'. Let T(pi1,p2, p3,n) be a triangulation with n triangles
and p; links on the oriented boundary ;. It is not difficult to show that analogously to
(4.10) we have

Yol i (P PPy m) = W (@) W(on)} Cul(e) [KE) W(o)m,  (414)

LR PTEI TR

whereq=n —p, — p, — p3 — 4.

5 Continuum Limit

The continuum limit is obtained by making the number n of triangles going to infinity.
We will be interested in the scaling situation, when the area € of each triangle becomes
smaller but the total area a of the surface remains constant. Therefore

a . '
€= ; (51)

At the limit, the partition function will be a function Z(g, a) of genus g and area a.

In the continuum limit, the weights associated with the two triangles of Fig. 9 (a)
should be the same, since both would be triangles of zero area. The corresponding dia-
grams are shown in Fig. 9 (b). It is clear from the figure that C;;(0) should satisfy

Cia(0)C(0) = gi; ' (5.2)

or, in other words K;7(0) = &7. But (5.2) is exactly the condition (2.7) to have a lattice
topological field theory. In other words, to have a well defined continuum limit, the.
weights C;;x(¢) have to be a perturbation of a LTFT, or

0
Ciin(e) = Cijf + e5-Ciin(0) + o). (5.3)

Similarly _
Ki(e) = 6 + 2eBy 4+ O(€?) (5.4)
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oA
Jo-->0=-)-

Fig.9. In the limit of ¢ — 0 both triangles in (a) have zero area. The restriction on the weights can be
derived from (b).

where By is defined by

18
J .. -7 1k} )
B = oo (c ()| (5.5)
Therefore 5
lim Ko™ = lim (1 + = B)"" = o2, (5.6)
From (3.3) one sees that in the limit the partition function is
Z(g, ) = Tr ("B (Ho)?). (5.7)

The continuum theory is clearly a perturbation of a topological theory.

The operator U also has a well defined continuum limit when restricted to the physical
observable. In the limit n = oo the algebra A, becomes Aq. Let o} and o, be the boundary
of a cylinder. The observable are given by two loop variables W (o) and W(ag) belonging
to the center of Z(Ap). From (4.13) we have to compute

. , n—py —pog =3 . . .
Ulphy = ,‘1,'_,‘2, I‘a/ﬂ—n"’ﬂ_- _ . (5.8)

As p, and p; are of the order \/n, we get
Ulpny = e*? (5.9)

where a is the area of the cylinder interpolating between ¢, and o,.

It is clear from the above discussion that the continuum theories are determined by a
topological theory and an operator B;’. The pair C;;x(0), " defines a topological lattice
field theory and and B, contributes with a non trivial dynamics. Note that B in (5. 5)
is fixed by the derivative of Cjji(¢) at zero. The global behavior of Cjjx(e€) is irrelevant,
To classify the possible continuum theories, or universality classes, one has to determine
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what are the possible dynamics B¢ that can come from a generic Cyjx(€) via (5.5). As we
shall see, for a given Ci;+(0), g", the allowed B;’ are not arbitrary.

Consider the matrices C¢,,, defined by

[Cn) = Cumi’ () (5.10)
As it is illustrated by Fig. 10, the matrices C*,, fulfill
C'nK.=KC. (511)

This equation has to be valid in all orders of ¢ = a/n. It is easy to see that at first order
in ¢, equation (5.11) is equivalent to

C°.B = BC%, or [B,C%])=0 (5.12)

—ol oA, da

Auy pair C;jx(0),¢" and By coming from (5.3) and (5.5) has to satisfy equation (5.12).
Actually this is the only restriction on Bi. Given a topological theory Cijk,g" and an
operator By fulfilling (5.12) we can always find at least one Ci;x(€) where they came from.
A simple calculation shows that it is enough to take

- Cije(e) = [EEB]: Cijk (5.13)

Therefore, given a topological lattice theory Ci;(0), g% the the set of allowed quasi-
topological theories, are given by all matrices

Bi = Big” , Bij = Bj;

commuting with Cp,. It is easy to verify that any element z = z°¢; in the center Z(Aq)
defines a possible operators B(z)

B(z) = z"C"%. (5.14)

Actually, as we will see next, all operators B are of the form (5.14).

We will show that there is a bijection between the space of all B and the center of
the algebra. For a given symmetrical M/ commuting with the C% we can associate an
element of the center of the algebra by the mapping

B(M) = Cit® MY ¢;. (5.15)
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Fig.11. Figure (a) shows that the image of § is in the center. Figure (b) shows that Bo g is the identity
map. '

Fig. 11 (a) proves that C;;*B®C,,* = C;;*B®Cy,* and therefore f¢; = ¢;8 and f is
indeed an element of the center of the algebra. We can see that (5.15) is the inverse of
(5.14) in Fig. 11 (b). The symmetrical matrix commuting with the C9, is displayed as a
box. It follows from-the commutation that we can attach the box on any side of the C;;*,
Fig 11 (b) shows that [(B oﬂ)(M)]' M} for any M commuting with C%. Hence Bof
is the identity map. On the other ha.nd ﬂ o B is also the identity map on the algebra.
Given an element of the algebra z™¢,, we will have

[(8 0 BY(z™¢m)} = B(z"Cr) = Cia* 2™ C"t = 2™ . (5.16)

Hence f is a bijection and therefore any operator B is of the form (5.14).

6 Example

We will now consider an example of quasi-topological theory. We will study the-case .
where the topological constants C;;* are derived from a group algebra.

Given a group G, we can construct a group algebra over the complex numbers in the

usual way:
C[G] @ C¢P '

g€G
with the a.lgebra. product inherited from the group, i.e., ¢¢, = qS,,,

We can then calculate the topologlcal part of Ci;*:
Cii*(0) = 8Gij.k) , gis = 8(i,57"), Ciga(0) = 5(=Jk 1),
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where 1 is the group identity.

We saw in the last section that the two constraints on B are i}B;; = Bji and ii) the
matrix B with entries B’ must commute with the C?,, defined above. In other words,

S 505, 0)B(L k) = Y 8(il, k)B(j,1),

leG leG

where we use B(i, j) for B;’. Working out the details, we will have

B(ij, k) = B(j,ki™").

We then realize that B(i,j) = B(j'i,1) = B(j~%) = Bj-. As B;; is symmetrical,
it follows that B(ij~!) is a function which depends only on the conjugacy class of the
product ¢-1. In other words, B is given by a class function. It can be therefore expanded
on the characters xg of the group as

B(ij™') = 3_ Brdrxa(ij™"). - (6.1)
‘R

The sum runs over representations and the complex constants Br spans all possible B.
This is consistent with the discussion of Section 5, since there is a one to one correspond-
ence between the set of all class functions and the center of the group algebra.

The relation with the elements of the center of the group algebra is easily seen as
follows. Let F' be the set of all functions f: G — C such that

J(hgh™") = flg).

For each class function ¢ € F we can assign an element of the center of the group algebra
by the map

- b: F — C[G]
febif] = Z;;f(g)g

Note that the image of b is the whole group algebra, for arbitrary functions f. Therefore,
for b{f] be an element of the center of the group algebra, it suffices to prove that we have
b[f16[h]) = b[h]}b[f] for any class function f and any function from the group to the complex

numbers A,
flbfh} = 3~ flz)z 3 A{y)y

E114 VEG

1

making the transformation on z, z =+ yzy~*, we will have

Y. flyzy Dh(y)yzy 'y = Y h(yy Y f(z)z

which equals b[h]b[f]. The reverse is also true: if b[f]b[h] = bfh]b[f] for all k, then f
is a class function. Note also that each element of the group algebra defines a unique

111
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function f : G — C, the coefficient of each group element giving explicitly the value
of the function on that element. Therefore b is invertible and the space of all B have a
bijective correspondence with the center of the group algebra.

It is interesting to go a little further and calculate the partition function for a triangle
on the continuum limit. For this consider a single triangle with a triangulation such that
an external edge of the triangle belongs to only one triangle of the triangulation. After
reorganization by flip moves, this will correspond to a single triangle, whose weight teads
to the topological one, attached to a chain of operators K;’(e), whose weights tend, on
the continuum limit, to the exponential of B (5.9). Note that we can easily compute the
exponential of B, using (6.1) and the orthogonality of the characters:

(eB4) = 3 ePrAdpyp(ii~Y).
R

So the partition function for the triangle at this limit is:

Z(i, 5, k, A) = Co(eP4)' = 3 eBrAdRxr(isk). (6.2)
R

The reader will recognize the Yang-Mills partition function [7} if we take the quadratic
Casimir operator C;(R) as Bg for continuum groups, such as SU(N).

7 Concluding Remarks

Two dimensional lattice quasi-topological field theories are less trivial than the corres-
ponding topological models. They have less symmetry but it is enough to reduce the two
dimensional model to an equivalent one dimensional problem. If the link variables assume
values in a finite dimensional set, the partition function can be exactly computed.

The set of Boltzmann weight C;;*(¢) and the gluing operator g¥ give a one parameter
family of associative algebras A, together with a bilinear form. The scaling limit € — 0
is well defined whenever C;;*(0) and ¢* define a lattice topological filed theory. At e =: 0
the topological symmetry is restored and the theory becomes invariant by subdivision.
The continuum theory is not topological in the sense that the partition function depends
also on the total area of the surface. However, in the limit -of zero area, the theories
become topological. This is usually what is meant by a quasi-topological field theory,
the prototype being YM; {7]. It is clear that a single topological theory can be the zero
area limit of more that one continuum quasi-topological theory. That will depend on how
Ci;*(e) approaches the critical point. We have seen that the set of all quasi-topological .
theories associated with Ci;*(0) is in one to one correspondence to the center Z(Ag) of
the semi-simple algebra Ao.
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It is not clear whether our continuum theories can be described by means of a Lag-
rangian field theories. The continuum approach is certainly possible in the case of YM,.
It would be very interesting to find other examples of such Lagrangian theories. The
simples approach is to look for the analog of a Schwarz type topological field theory, ie.,
one considers Lagrangians that are invariant under area preserving diffeomorphisms. If
there is no anomalies, the zero area limit should be a Schwarz type topological field the-
ory. Volume preserving theories have been considered in [9]. However this may not be
generic enough and one may need to find the quasi-topological analog of the Witten's type
topological field theories. This possibility is presently under investigation and results will
be reported elsewhere.

A Appendix

We will now present a proof that any triangulation representing a surface with genus g
and consisting of n triangles is equivalent. This will be done by an argument somewhat
similar to the one of [8]. Qur idea is to reduce any triangulation to a special one which we
will refer as standard. This one is constructed by attaching several bubble-like structures
composed of two triangles, as well as some double-handled structures composed of four
triangles, the latter giving information about the genus. These two are shown in their
dual representation on Fig. 4 (b) and Fig. 4 (c) respectively.

It is well known that any surfacc of genus g can be represented as the inner part of a
4g-sided polygon with its sides identified suitably. Hence any triangulation of the surface
can be viewed as a triangulation of the polygon itself. We will make a distinction between
the triangles by now. We will call “external” triangles those which share an edge with the
outer boundary of the polygon. As the polygon has 4g sides, that will be the minimum
number of “external” triangles. We will now prove that no matter how complicated the
triangulation is, we can always reduce the number of “external” triangles per one side of
the polygon by one and therefore reduce it to the minimal number. In other words, we
can consider only one triangle per side of the polygon. Suppose that there is some side
with two such triangles. As the graph is connected, we can always do some flip bonds
in order to make these two triangles share an edge. Now we flip this common edge and
the result will look like Fig. 12. To proceed, remember that this polygon is in fact a
genus g surface, and therefore this side we are considering is identified with another side
of the polygon. Note also that this identification is somewhat arbitrary. The edge defined
as the side of the polygon could be in fact any edge nearby. In particular, let us pick
that common edge we flipped as the side of the polygon. Now our number of “external”
triangles has decreased by one.

The action on the dual graph will now be the cutting the lines which connect each side
with its “opposite”. We are then left with a triangulation of a 4g sided polygon with just
one triangle at each side. Qur problem reduces now to getting the standard triangulation
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A A |
B — B —
| C c

Fig.12. How we can decrease the number of “external” triangles. From left to right: in the first figure
we have two triangles, and the external edges are ABC, in the second we made a flip move, in the third
we redefined our external edge as AC. The dashed line means that B has been sent “to the other side”.

of a sphere with 4g boundary elements. As this graph are planar, we can draw them with
single lines and still encode the same information as the triangulation.The action of the
flip bond move will be then the simple sliding of one edge over another as shown on Fig.

o

Fig.13. The action of the flip move on dual graphs. As the graph is planar, we can represent it by single
lines. The figure shows the flip move as the gliding of lines one over another.

This triangulation is, in terms of the dual graphs, represented by internal loops, con-
nected by several links among then, and some links connecting this complex to a greater
loop, formed by the external triangles. This greater loop has several links pointing out-
wards, which will be suitably identified among them later on in order to re-build the
g-torus. Consider now the internal loops. As we can slide one edge over another, we can
then arrange all the edges of a given loop to link it to at most two different loops, these
three loops interconnected. Fig. 14 shows how to disentangle this compound, forming
“pins” in the process.

We are left then with structures like two loops linked by some edges. Fig. 15 shows
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SN A

Fig.14. The action of disentanglement of three internal loops with edges linking themn. This results in a
number of “pins” attached to any of them.

how to transform it into two loops linked by just one edge, again forming pins. We have

RS S

Fig.15. The action of disentanglement of two internal loops creating “pins”.

by now some internal loops, with some pins attached, connected by just one edge to at
most two different loops, and this compound connected by just one edge to a greater
loop which encompasses all internal loops. The pins can be carried one by one to the
last internal loop - the only loop that is connected to just one different loop — and thus
becoming the last one. Repeating this process, we will eventually reach a triangulation
with a chain of loops linked by only one edge with one end of the chain linked by inside
with the big “external” loop. This end will have an edge finishing at a vertice with two
other edges, these two belonging to the outer loop. Then carry one edge of these two
to the other end of the chain. We will have then a chain of bubbles attached in each
end to a chain of “external” edges. Now we identify the external edges by the usual way
arbiar b7+ aghyar b1, we will have our standard triangulation as depicted is Fig. 4
(a).

One may notice that, although all we did was for a surface with genus greater than
zero, we could also extend the argument for genus zero. With a given triangulation of
the sphere get a vertice with coordination number 3. If it does not exist, create one by
some flips. cut these three out and we will have a structure just like we had before in
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the non vanishing genus case. One goes through all the procedures listed above and will
end with a chain of loops on the dual graph, with one end attached to the other plus a
single vertice with three edges attached to the chain. We will then merge it into the chain
making two more loops, as shown in Fig. 16.

Fig.16. (a) How a vertice with coordination number 3 can be transformed into Fig. 4 (a). The vertice
is represented by a triangle in the dual graph.

Acknowledgments
This work was suported by CNPq.

References
[1] R.J. Baxter, Ezactly Solved Models in Statistical Mechanics (Academic Press, New
York, 1982)

[2] S. M. Bhattacharjee and A. Khare, Fifty Years of the OEzact Solution of the Two-
dimensional Ising Model by Onsager, preprint IOP-BBSR /95, cond-mat/9511003.

[3] J.F. Wheater, Phys. Lett. B223 (1988), 551; T. Jonsson, Phys. Lett. B285 (1991),
141; C. Bachas and P.M.M. Petropoulos, Commun. Math. Phys. 152 (1993), 191.

|
(4] M. Fukuma, S. Hosono, H. Kawai, Commun. Math. Phys. 161 (1994), 157.
[5] S-W Chung, M. Fukuma, A. Shapere, Int. J. Mod. Phys. A9 (1994) 1305.

[6] D. Birmingham and M. Rakowski, Commun.Math.Phys. 173 (1995)135, hep-. .
th/9405108; Int.J.Mod.Phys. A10 (1995), hep-th/9303110.

[7] E. Witten, Commun. Math. Phys. 141 (1991) 153; M. Blau, G. Thompson, Int. J.
Mod. Phys. AT (1992) 3781.

(8] D. V. Boulatov, V.A. Kazakov, 1.K. Kostov and A.A. Migdal, Nucl Phys. B275,
(1986), 641.

(9] R. Brooks, Nucl. Phys. B423 (1994) 197.



Physics of the Standard Model and Beyond®

R. S. Chivukula
Boston University - USA

1. The Standard Model

¢ Precision Electroweak Tests
* Hy & R,

2. What's Wrong with the Standard Model?

¢ Unanswered Questions
& Naturalness and Hierarchy Problems
o Trivialily
3. Dynamical Electrowcak Symmetry Breaking
¢ Technicolor '
¢ Phenomenoclogical Signatures
e The Top Quark & Top-Color
4. Compositeness
e Composite Vector Bosons: W & Z

¢ Composite Fermions

5. Couclusions

*Invited Plenary talk at the XVII Brazilian Annual Meeting in Particles and Fields -
October 2-6 1996, Serra Negra - Brazil



118 X VI Eucontro Nacional de Particulis ¢ Campos

The Standard SU(3)c x SU(2)w x U{1)y Model
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Unanswered Questions...

What is responsibie for Electroweak Syminetry Breaking?

~ Technicolor, Composite Higgs, Dynainical SUSY Breaking,...

What is responsible for Flavor?

— Extended Technicolor, Family-Symmetries,...

What is the origin of CP-violation?
-
* What explains the gauge structure of the standard model?

— Grand-Unified Theories, Compositeness

Whiy is the cosmological constant small?

~ 7

. What is the quantum theory of gravity?

- String Theory

‘What’s Wrong with the Standard Model?

. Fundamental Scalar Doublet:
g+
¢ = ( ¢0 ) T

Vg =2 (¢~ ?)2

e No ezplanation of Electroweak Symmetry Breaking

with potential:

e Hierarchy and Naturalness Problem

O = mi x A?.
e Triviality Problem
3A2
>©< =0= o7 >0
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Wilson Renormalization Group

Dcfine theory with a fixed UV-cutoff:

La= DH#tDug+mP(A)gle + 24ty
+50 (pte) + ...

Integratc out states with A’ < k < A:

CA = La
mi(A) = m?(A)
AA) = AMA)
s(A) - x(A)

Consider evolution of couplings in the IR-limit....

kappa

lambda
mAaZ
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Linplications:

s x —¥ 0 — Renormalizability.

e m? = oo - Naturalness/Hierarchy Problem:
Am2(A)  ?
miny <Az

o ) = 0 — Triviality.

Periurbative analysis, but Wilson approach in principle non-perturbative:
e Nontrivial Fixed Points .

" & Large Anomalous Dimension

Solving the Naturalness/Hierarchy Problems

Stabilize the Hierarchy
While scalar masses are susceplible to O(A2) mass renormalization, they can
be protected by a synunetry.

1. Supersyminetry

s « log A?
H, H o
2

2. Composite Higgs

¢ Higgs as Goldstone Boson

« EWSB due to “vacuum {inis)-alignment”

Ehlminate the Hierarchy...

e EWSB due to y-symmetry breaking in a gauge theory with inassless
fermions .
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Dynamical Electroweak Symmetry Breaking

Technicolor: SU(N7c) gauge theory,

¥, = ( g ) Ur,Dr
L

with massless fermions
L = UpipUL + UriPUgr + (1)
DLiPD. + DgiPDg (2)
Like QCD in m,, mg — 0 limit:
e Chiral SU(2);, x SU(2)s symmetry
« Dynamically broken SU(2), x SU(2)r = SU(2)v

UD UD

- (U Ug) = (DLDg) #0.

Broken Chiral Symmetries => Goldstone Bosons
Gauge SU(2)w x U(l)y = Higﬁs Mechanistn
%, 7% = Wf, Zy

9Fre

Mw = = Fro =2 250GeV

Scale up QCD by 2
TC

fa

=2 2500.

Generaljzations:
o Any strongly interacting gauge theory with
SU2w xU(l)y CG > H2SUQ2)c 2U(l)em

e wlere “custodial” SU(2)¢ symmetry insures that

Mw

P= Mzsinty

at tree-level.
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This results in Universal Low-Energy Theorems:

M[FV,""WE - WI""WE] = ;;"-}';
MWFEWE o Z,2,) = % (4 - %) (3)
M[ZLZL — ZLZL] = 0

What dynamics cuts off growth in amplitude?
e New particles.

¢ Born approximation fails — strong interactions.

¢ Both.
e —- T T - iy
on -
006 |- : ’4_“
4
04 g
02 — 4
i ]
L -
oo l_.__.__L.._g?é..s . -
1] 200 400 AOO BOC 1800

E (MeV)
QCD Data (from Donoghue, et. al.) and low-energy theorem prediction for

the spin-1/isospin-1 pion scattering amplitude.

To get predictions for QUD-like technicolor, scale by v/ f, =~ 2600. That is,

3
Mﬂ'rc = 2TeV m
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Gauge-Boson Scattering at the LHC®

For M,,, = 1.0 TeV,2.5 TeV:

H 10 y z 10
5 : wza 3y § .
5 ol s LA
§ 10 § 0.00
s oo L E 0.001
] 1000 2000 3000 o 1000 00 3000
My My
leptonic cuts Jel cuts
w(e)] < 2.5 Eljtag) > 0.8 TeV
pr(f) > 40 GeV 3.0 < |y(fiag)} < 5.0
P 5 50 GeV Prliug) > 40 GeV
Pr(Z) > My PT(frere} > 60 GeV
Mr > 500 GeV [5{ivete)| < 3.0
*J. Bagger et. al., hep-ph/9306256, 9504426.
Gauge Boson — Vector Meson Mixing at LHC*
3 1, 3 00
wtzanw
8 B
z " (8 $u
3 . d
2 a
-~ Ot = 01
‘E o E 001 o

0 1000 2000 3000 1000 2000 3000
My My

*M. Golden, et. al., hep-ph/9511206.
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Fermion Masses & ETC Interactions

Extended Technicolor Interactions — Connect chiral-symmetries of TFs to
quarks & leptons.

2
Jere (ZLUrNGrar)
ETC

Mere
(UU)gre = (UU)zcexp ( ./; df‘rm(u))

For QCD-like TC (“precociously” asymptotically free), ¥ is small over this
range:

(UU)ETC -1 (UU)TC -1 411'F-?vc

Mpre Fre } (100 MeV) 4
—— = 40 TeV
YJETC 0Te (250 GeV) mg
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The Status of Models of DEWSB...

Dynamical electroweak symmetry breaking can provide a natural expla-
nation for My & Mz # 0.

Fermion masses require additional, ETC interactions.

ETC ia a dynamical theory of flavor, no complete theory exists.

The following obstructions to an ETC theory may be alleviated in a theory
of “walking technicolor”:

1. Flavor-Changing Neutral-Currents
2. Light Pseudo-Goldstone Bosons
3. 8(7)

Top (and Bottom) pose a particular challenge...

Top Mass in Models of DEWSB

b d ETC t,

Q U = 2&1¢ §,Up)(aQu)

2
L R A{ETC-'

2
ar TT .
m = I;TC {UU)etc

Using
{UU)ere = (UU)re = 4nFig

we find

Myre Fre \? /175Gev\?
1
geTC N 1TeV (250 GeV) ( m )

Scale of top-quark ETC-dynamics is very low.

Since Mpro =~ Are,

Ma.rc
{UU)ere = {UU)rc exp ([ df'rm(#))

Are

walking doesn’t alter this conclusion.
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ETC Effects on Z — bb

Top-quark ETC-boson couples to the current
&¥L Q) + € (Urr'tr)

{or h.c.) where a is a TC index, and the contracted i are weak-indices.
N.B.: We assume here Lhat [SU(2), ETC] = 0.

Defining Ry = s /T's,

9By 6Ly . oo oo g2 m
R. Ty (1= Ry} = ~5.1%-¢ (175c:ev)'
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Isospin Violation: Ap

ETC-interactions must viclale weak-isospin in order to give rise to my > my,.
= This could induce dangerous AJ = 2 technifermion operators (Appelquist,
et. al.). .

AU » 5 @)’

In the vacuum-insertion approximation

Ap ~ 2935'1“0*""rpr'rcﬁ
Mire  o*

\F—NDFTC)"' _ ( 1TeV )’
250 GeV Merc/eeTe)
If we require that Ap < 0.4%, then

Apz12%-(

2
Morc | 55mev. (YRRITC)
9ETC 250GeV

to large to produce m; =~ 175 GeV.

Another possibility: It is possible that NpF2, < (250 GeV)?, if the sector
responsible for the top-quark mass does not give rise to the bulk of EWSB.
In this scenario, the constraiat is

F 105 GeV ( Merc/9ETC ) 172
TC < :

Nil)/ 2 1TeV

Topcolor-Assisted Technicolor (TC2)
C. T. Hill, Physics Letiers B345, 483 (1995)

o Strong Technicolor dynamics at 1 TeV dynamnically gencrates most of
EWSB.

¢ Extended Technicolor dynamics at seales much higher than 1 TeV generate
the light quark and lepton inasses, and ETC contributions to the third
grreration masses (my br ¢y of ordor 1 GeV. (Nu large ALY).

¢ Strong Topcolor dynamics also at a scale of order 1 TeV generates (it) # 0
m, ~ 170 GeV.

» Topcolor does not form (bb).
e Topcolor contributes a small amount to EWSB (f;, ~ 60 GeV).

¢ Low-Energy Phenomena: Extra pseudo-Goldstone bosons (“Top-pions”),
“Top-glious”, ete.
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Compositeness

Composite Vector Bosons: W, Z

o Weinberg: As My — 0, consistency requires that the coupling to a con-
served current, hence...

e Gauge couplings (& universality) inevitable in the limit My /A — 0

Following Hagiwara, et. al.:

i
ecotd

Lwwz = 91(W,L,W“Z" - W;{Z,,W“")
+rzWEW, 24 + + I WIW, Fre

Where:
f1—1 M2
Kz — 1 =0 (—R—':—)
Ky —1

Current Limits':

Yuy inotalona Couplings (rem pp - Wy
8% CL Ll Contours

10 T——1"—r - T
08 PredimtaaT
ll-n)a.,-lu-n
oot wt-wy
aF s " e = IBTeT
H ~
AR T . E
LRI SR
2 N Foa 3
{ . —? T
..u (N o =
’ P ~ T
-ar Rl S N
-at
F -~ h |
L} rd N
_gLrm-m s T~
i = 1 Ta¥ ~ 3

Y . b
SW-R € -4-20 2 ¢ 8 B 10
ay
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TOY snmrmaiems Couplings frum py - ¥V VL ¥-
83T & Lmil Comlengry
T T

] T
if b @ww L L
WU - ey Prolevisery
al A =00 To¥ ["EATL
t1d -
-t - =
3 e O
'|--..l 4 N
- T
-e}
/
-3 mrwew
LY ‘e vy
-4 [Ny 3 = 10 0¥
Y - L Al ba
-3 -4 -3 -2 -1 0 1 2 3 & 8
) = ac)

t' Aihara et. al., hep-ph/9503425.
Experimental Prospects at the LHC':

1 T ) o ome T T T
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- 03 (L MoBIa
1

1
G0l -0 ool
610 -0 L L] L1 010 -aat 60 (1) ool oee
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som T "
e s T 4 by Umea)
oomf- e E
-
s~ 4
X, B E
-un:r —
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. 1 1 I
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A

V'8 = 500, 1500 GeV, 80 & 190 fb?
! Aihara et. al, hep-ph/9503425.
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Composite Fermions

s 't Hooft: confinement, & unbroken chiral symmetry = massless composite
fermions. :

e In limit my — 0, SM has (SU(3) x U(1))® global chiral symmetry: can
fundamental theory have fewer fermions?

Following Eichten, et. al., low-energy effects:

ar (PP
= "oz )

Leads to rise in cross-section:
2
(} 473
o(s) ~ -; (1+m+...)

Current limits: A(€£€€) > 2.9 TeV
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High-E7 Jet Data at the Tevatron:

{nb/Gov}
9.005

0.001
0.0005

9.0001
0.0000%

0.00001

diffarsnoa

47

21A2 S

Dashed lines for a model” with A(gqqgq) ~ 2 TeV.
* hep-ph/9603311

However, this effect could be due™ to lack of understanding of structure
functions:

Q3 A re————

* CTEQ Collaboration hep-ph/9606399
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Conclusions

There is still NG DIRECT EVIDENCE for physics beyond the standard
model.

There are strong theoretical rcasons to believe that there is, probably at
cnergies of O(1 TeV) or below.

Models of Dynainical Electroweak Symmetry Breaking provide a natural
and dynamical explanation of EWSB.

~ Accommodating the ¢ mass => TC2 or related model(s}).

Gange-Boson or Fermion Compositencss would result in interesting phe-
nomenological signatures and remain a possibility.

Huwever, no complete, consistent, & compelling wodels exist .. .

“Oh, yeah! Well I’d rather be a living corpse made from dismemn-
bered body parts than a hunchbacked little grave robber like you!”

We Need Experinental Direction!
(Apologies to Larson, and thanks to K. Lane.)



136 X VI Encontro Nacional de Particulas ¢ Campos
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Casimir Effect for the Real Boundaries

V.M. Mostepancnko
Departamento de Fisica - Universidade Federal da Paraiba -Jodo Pessoa
(On leave from St Pelersburg State Technological Institute {Technical University)
and A. Friedmann Laboratory for Theoretical Physics {Russia))

1 Introduction

‘The physical phenomena generally known as the Casimir effect are interesting because of their exclusively quantum
nature associated with the presence of zero-point osciltations in the vacuum states of quantized fields. Due to
the change of zero-poiut oscillation spectrurn in restticted quantization domain some force arises acting upon the
boundarics. For two perfect plane parallel uncharged metallic plates placed in a vacuum at a distance a the Casnnir

attractive force per unit area is [1] \
x hic
Fo=-— 240 2° (1
where h is Plank's constant, ¢ is the velocity of light. A unique perculiarity of this force is that it does nct depend
on mass, charge or any other coupling constant. ‘The attraction (1) was observed experimentatly [2]. For plates of
area 1cm? and a = 0.5 gin the value of the force was = 0.2 1073 N in agrecinent with (1).

We will discuss here the corrections to the Casimir force (1) due to non-ideality of the electeical properties and
of the geonetry of the bonndaries restricting the quantization domain. Such corrections rmust be taken into account
in experitnents on measuring the Casimir force and in applicatious of the Casimir effect for obtaining niore strong
constraints for the constants of hypothetical long-range interactions [3,4].

In Sec. 2 the corrections to the Casimir force (1) will be studied due to the electrical imperfeciions of the plate
metal. lu Sec. 3 the new formatism will be presented which helps to calculate corrections to (1) due to the small
geometrical tmperfections of the plates material. In Sec. 4 the configurations which are important for experiment
will be considered.

Below the unmits in which fi=¢ =1 are used.

2 Corrections duc to the electrical imperfections

We begin with the corrections due to the non-ideality of plates tnetal. The result (1) was obtained for the ideat
metal, i.e. when on the surface of the plates the boundary condition is fulfiled:

E; IS' - 0, (2)

where &, is the tangential component of the electrornagnetic zero oscillations electric field.
It is known [5] that the penctration of an eleckromagnetic fietd into a real metal can be modelled by imposing a
so called “impedance” condition at the boundary:

Ey=Z{w) [fy x n], {3)

where Z(w) is the impedance, n is the internal (“into” the medinm) normal, and the tangential components of
the clectric and magnetic fields are given by

Ec=E-n{F.n), Hi=H-n(H n) (4)
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When the medium is characterized by definite electric permitlivity e(w) and magnetic permeability p{w) the
itnpedance can be expressed as

Zlw) =

H(w) | (5)

e(w)’

Betow we shall assunte that |7Z] << 1; for an ideal metal Z{w) = 0.

We imipose condition (3) on surfaces of plates bounding the quantization dom.un and pose the problem of
calculating the resulting electromagnetic ficld vacuum energy densities and Casimir forces [6].

Condition (3) similarly to the simpler boundary condition (2) changes the vacuum fluctuation spectruni. e
determnine it for the case of two plane parallel plates modelling half-spaces separated by an empty gap —a/2 < r <
af?2.

We will look for eigenfunctions to the Maxwell equations obtained after separating the time variable in the forin

E =e(z)exp(i} - p); (6)
G=iwkf = g(2)exp(iQ-p) =V x E, . (7

wlere @, p arc two-dimensional veetors in the plane of the plaites (x, y); the veclors e and g satisfy the equations
e’ + nle =10 .g"-+-f:.2_q =0, x’=z=o®-Q% (3)

Here the prime denotes the derivative with respect to =z,
Substituting {6), (7} inlo (3) and taking account to the direction of the normal, we find that au the boundaries
;= taf?

gy = :tz—Z-{iQ,e, —e.);
w .
| 7. .
&y = £ [iQyer - ). . (9)
In addition from V-E=10 it follows that
iQ -e)+¢, =0 (10)

evervwherce.

Without loss of gencrality we will assume that Q, = 0. If ey =0 then by symmetry considerations the solutions
of (7) has the formn

€y ~ COSKZ, € ~SITKS (11)

or vice-versa. Substituting (11) into (9) we obtain the dispersion equation for the determination of the spectrurn:

[
. Ka iZ(Q% + &) K
sin +TCOS—‘F-O (12)
or
ka 1Z2{Q*+ k%) . ka :
| COST—TSIIIT—O. (13)
Fquations (8} also have the solutions
e:=ex:=0; e, #0, (14)
leading to the equation
s in ey 5
5 5 :J—h sin 7 = (IO)
or
. KA 1Z Ka
bl!l?"*‘-u—h'. cos—‘z— =0 (16)

It is obvious that in (12)-(16) ¢ = (Q,_.,'Qy) may be considered as arbitrary.
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When the penciration depth § = iZ/w and the eigenfrequencies are real, the vacuun energy averaged over =

=2 e (7

and the argument prineiple may he used to calenlate it. We obtain

is given by the half-sum of frequencies

Fo = Eola. 4) = dc,/Q L9\ pio, i), (18)

where (¢ = |Q| and the repiacemients arc used w — i, &k — i\/(? + Q2 = ift, and D is a function that vanishes
for every solution of (10), {13}, (153, (16).

For arbitrary complex 7 the cigenfrequencies w = /w* + Q2 governed by (12)-(16) will have an imaginary
part. It is known that in this case the vacuum energy shonld he determined from the solution of an auxiliary
clectromagnetic problem [7] and does not coincide with the half-sum of the eigenfrequencics (which is already clear
from the complexity of the w,). However, formula (18) is in fact still valid: we recall that after the contour rotation
w — i the integral in (18) evidently real.

Multiplying (12) and (13), and using the previous replacements, we obtain

20
D! = sinh Ra + Tia® cosh Ra, (19)
where = Z(/R.

To ascribe a fnite value to Eg it is suitable to use a subtraction procedure which reduces to the subtraction
from Ep of its asymptotic beliaviour as a — co. This subtraction eltminates fictitious divergences of lower orders
as weltl as the vacuum divergence ~ RY.

"I'he subtraction is equivalent to replacing of £3; by the regutarized value

pl.= D0l 1a !
reg = T T F o oap(2Ra) — 1
D" = | —exp{-21ta). (20)

Here D9 describes the spectrnn for perfect meraltic plates and the second factor gives thie corrections caused
by imperfecrion.
From {15} and (16) we similarly obtain

47 RC I

21
{4+ RAY: exp(2Ra)— | (1)

1 _no
Dl =b [1 1

“I'he renormalized energy Upg is thus given by formula (18) in wich D{Q, i} is replaced hy the product D,‘.,.,;,'DL:’g
frout (20), (21). For the lorce acting per unit area, £ = —iiz/da we obtain

NN I IO Do N
F= b / d(,’/:lQ QHc__')(2Ra) IN(Drey Preg) {(22)
0 0

For perfect plates with 7 = 0 we have D,{eg = D{Jg = D% and from {22) we obtain once more the resule (t).
‘The main comribution to F is given by the frequencies ¢ = Jiw| < a~'. Dircet computation shows that any
approximation to Z(w) ihat is exact for wavelengths Lda < A < 30a and satisties d[Z(())/d¢ > 1 gives F with
al error no greater than 0.01%.

When Z # 0 e value of the force is # = Fy + AF. In lincar approximation with Z(i¢)/Ca as a small
paramncter we obtain frone (22) the follawing correction to the force:

2

Al yr
AV = ——

3

C:l-.._‘ﬁa

T “ B !
- | d “n , .
d“j‘QQR (""’ ¢ ") N2Ra) exp{2Ra) — 1 (23)

0



140 V. M. Mostepanenko

To obtain the second-order correction to the force ARIF ~ FoZz?/(*a” it is necessary to identify those terins
in the expancion of In D,{é? in (22) that are quadratic in § and ZR/(. Because the ncighbouring terms in the
expansion of In{1 + z) in powers of z have opposite sings, it is obvious that the corrections AM'F and AF
have opposite signs. We finally get

AP E = -—jd(;deQR (a + —HQ)

I
6(2Ra) [exp(‘.!Ra)—l (1 + exp(2fta) - 1)] ' (24

We underline that in the integrals {(23), (24) Z is taken with the replacement Z(w — i(). Here, by its analytic
properties, Z(i{) has real values indcpendently of the behaviour of Z(w) on the real axis [5].

"The results (22)~(24) obtained above cnable us to determine the influence of dispersive properties ol real metals
on the magnitude of the Casimir force. ‘To obtain the specific dependence of AF on a one should use an expression
for the-impedance Z in terms of te {requency w and other parameters such as the conductivity o, electron Fermi
momentum pg etc. ‘The main contribution to the Casirnir effect comes from vacuum fluctuations with wavelengths
of the order of the distance between the plates. Because for ficlds with different wavelengths the impedance Z
behaves differently, to calculate the dispersive corrections to the Casimir force one must consider several cases.

We first consider the domain with plate separation from a few 1enths of a micronteter to around a hundred
micrometers (infra-red optics). In this domain imperdance is purely imaginary: Z(w) = —iw/Q, where @ is the
cfiective plasma frequency of the electrons. For such impedance the penctration depth of the field into metal is
frequency-independent [8) '

(w) = bo = iZ(w)fw = 1/52. (25)

‘The domain of applicability of the condition é(w) =const depends on the specific metal from which the plates
are made, and also on the temperature (which should be sufficiently low) when the distances belween the plates are
large. Here the sinall parameter of the perturbation theory may be interpreted as the relative penetration depth:
Zf{a = bofa.

Changing the variable of integration in (23) according to @ = (/I =T we obtain the first-order correction to

the force
So [ et
AR = i/dr { / ut (26)
T / sinh” (a(,'\/_)
Performing this integration and using the result (1), we find
2 168
o Mp___T __ Y9Gy | ryer
ot A =~ ™ T (27)
or, in the same approximation,
. 45,
F(a) = Folaeq), o = ao + -;2 (28)

We note that the first-order correction in 8/a was found in [9] with a coefficient diﬂ'crinlg by a factor of 5 from the
correct value which was firstly found in {10].

We consider now corrections of sccond order in 8p/a for the same values of a. With the change of variable
(2 = (i and integrating with respect to ¢, the integrals in (24) may be found from tables. We finally get

w283 '
lﬂﬂg' (29)

The total force in two orders of perturbation theory is [6]

Al P =

2 68 82
F=Fo+AVFyaA®p=_ (1 _18% o 0% :
o+ F+A 59007 1 - +94 (30)
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From (22), using (20), (21), it follows that the force F has the constant sign for all § and tends to zero in the
formal limit § — co. This allows us to obtain a simple interpolating formula giving the same result for small éo/a
as (30), but applicable over the broader range 0 < §pfa<0.2:

. — 1
1r" lléu n
ST SRR LY 3
F= 240a“(1+3a) ' S

For good metals & ~ 0.1 when a ~ | gm, and so it is clear that corrections to the Casimir foree due to the
tmperfection of the plate metal are ragher significant.

We now cousider the normal skin-effect. domain, which corresponds to the distances between plates of a20.1 cm.
In this domain the impedance Z is complex

Z(w) = (1 =) 5“’7 (32)

where @ is the condactivity of the plate metal. The ficld penetration depth § is connected with the impedance by
the relation

é=(1+i)zf:') = \/z"‘r? (33)

Substituting (32) into (23) and performing the change of variable @ = ¢v/I — 1 we obtain expression for the
first-order correction to the force:

20 o de et
L CL
A(“F:—,-—jd: 14t j——— (34)
8x2\/ma ( ) . sinh*(a V1)
1
Calculating these integrals and using the result (1), the Casimir force in the first order of perturbation theory is
L 1.93 -
Pe— - | 35
240a" ( Va ) (33)

We note that this expressions holds only at absolute zero.

The ancanalous skin-effect domain lies hetween the domain of infra-red optics and the normal skin-effect domain.
The quantity £(w) has then only a formal meaning because of the strong non-locality, and the impedance acquires
a vectorial nature and depends on the shape and sizes of the Fermi surface. In the isotropic approximation

, w \¥ SRS .

where pp is the Fermi momentum of the electrons. Substituting (36) into (23) and performing the integration, we
get the first-ordrs correction

Ap ci" ('eppa)_g . (37N
/

3 Perturbation approach for taking into account small geometrical
imperfections

‘The configuration, for which the Casimir force has been investigated for the first time, consists of two plane parallel
metal plates. At once Lhis is the simplest geometry. In this Scetion we investigate the Casimir force for configurations
with small deviations from that geometry. Qur aim now is to give a complete description for all possible deviations.
Hereby we consider plates made up of arbitraty materials.

The exact result for the Casimir force per unit area between two plane parallel plates made of arbitrary materials
inay be expressed in the form {11]

Fo= —‘1’(51-52)'—(;:17, (38)
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where a is the distance between the plates, €) 2 are the diclectric permittivities of the plates, and we note that

(a2

oo
5 3 -
W(e,62) = 2 -/r_l‘.'c/dp;;.:T [L{H'__p)(izj_.p_)er_l]
0 1

1673 (s1 = p)s2a—p)

(s1 + pe1)(s2 +pe2) . _ -1 :
[(31 —per a2 — psg)c l] } : (39)

Aere, 512 = (€12 — | + p*)}/2. For example, for perfect. conductors we have g, = g2 — o0 and ¥(ey, &) — T/24.
More information — a graphical representaiion, for instance — concerning this function can be found in Refl. [11].

Under small deviations from the plane parallel geotnetry we understand all kinds of devialions whose armplitude
ts stall in comparison with the distance between the plates. All these deviations can be described by some function
depending on the point on the plate, i.c. on two variables. The deviations from the plane parallel geometry give
rise Lo corrections to the Casimir force (38).

First let us ontline the main features of an approximative method which may be applied for the calcnlation of
the Casimir force for configurations of arbitrary form [12). According to this method thic potential of the Casimir
force acting betwcen two test hodies can e obtained by sumretation of the interatomic potentials over all atorns of
the test bodies with a subsequent multiplicative renormalization:

Unla) = =02 ] dry ] drafry — 7o, (40)
v

K
v,

Here the integrations run over the vohunes Vi resp. Va of the tost bodies, N; resp. AN are the numbers of
dtoms per unit volume, € is the coustant of the retarded van der Waals interaction potential, & is a special
renormalization constant and a is the distance between the test bodies. Note that even the simiple sununation of
the interatomic potentials {i.e. (40) without the correction factor A ~!) gives the proper dependence of Ug on a
for three-dimensional configurations. But the values of the coefficients in such dependencies cnine out o be larger
than their true values due to the screening effects.

The renormalization procedure allows us Lo take into account approximately the effects of screening of the farther
Fayers of the test bodies matler by the nearer ones. The valne of constant A is deterinined in [12] as the ratio of
the Casimir force potential between two infinite plane parallel plates obtained by the suimmation method (using
integrations (40) without the correction factor A'~') and by the exact solution (38). 'I'he result is

CN]_JV')
K= ——=— > |, 41
¥(e),e2) g (1)
where the (unction ¥(ey,€q4) is as defined in (39).
Liquations (40) and {41) may bu rewritten ion the form
Up(a) = —W(EI.Eg)]rlr| -/dr?_ lry = g7, (42)
v, v,

As was shown in [12], the relative error of the potential (42) is less than 3.8% for configurations of an arbitrary
hody over a plane plate. For the coufiguration of two plates with small deviations from planes it is cven much
smaller.

For 