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The intraband and interband optical probes of elementary excitations in quantum dots con-
taining electrons or excitons are discussed. The ground state properties and charge and spin
excitations in self-assembled and deep etched dots are obtained through exact diagonaliza-
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interband, and inelastic light scattering spectroscopies are compared with experiments.
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I. Introduction

The reduction in size of electronic and opto-

electronic devices leads to Quantum Dot(QD) based

single-electron transistors(QSET) [1] and single-exciton

lasers(QDL) [2]. Because of reduced dimensionality the

interaction among carriers in QD is of paramount im-

portance. We use Hartree, Hartree-Fock, and exact di-

agonalization methods to study ground state properties

and elementary excitation in quantum dots as a func-

tion of the number of carriers N. Varying N often leads

to drastic changes in electronic properties of QSET and

QDL. To understand these properties it is necessary

to calculate the coupling of elementary excitations to

external probes. In the intraband far infrared spec-

troscopy absorption of photons couples to the center of

mass motion, and through boundaries or imperfections,

to relative motion of electrons determined by electron-

electron interactions. In interband spectroscopy excess

electrons interact with an exciton. An electron compo-

nent of an exciton can be viewed as a charge and spin

excitation of the electron system. In a quantum dot

laser adding/removing an exciton can be viewed as a

one-particle probe of a many-exciton excitation spec-

trum. In inelastic light scattering one probes directly

charge and spin density excitation spectrum.

We review here briey our work on elementary ex-

citation in quantum dots and their coupling to optical

probes. The calculated response functions are com-

pared with available far infrared, photoluminescence

and electronic Raman experiments.

II. Self-assembled dots

Self-Assembled Dots (SAD) [3] are small quasi-two-

dimensional semiconductor structures formed sponta-

neously during epitaxial growth of strained layers. Dots

in the shape of pyramids [4,5], disks [6], and lenses [7-

10] have been reported, although the actual determina-

tion of the shape is not de�nite. The SADs described

here are the lens-shaped structures formed on a nar-

row InGaAs wetting layer (WL) and surrounded by the

GaAs barriers [7-10]. The dependence of energy levels

of SAD on side, depth of con�ning potential, and the

magnetic �eld has been studied in Ref. [11]. The ef-

fects of electron-electron and electron-hole interactions

on electronic and optical properties of SAD containing

many electrons and/or excitons have been investigated

theoretically [12,13] and experimentally [4,10,14,15].

The Single Electron Capacitance (SECS), far-infra-red

(FIR), and photoluminescence/absorption spectra were

calculated as a function of the number of particles, the

size, and the magnetic �eld [12]. Results were com-

pared with SECS and FIR experiments [7,8] and PL

experiments by Raymond et al [10].
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A. Single particle states

A schematic picture of a lens-shaped In0:5Ga0:5As

SAD is shown in Fig. 1. The dot forms on a wetting

layer (WL) of thickness tw, in the form of a part of a

sphere with �xed height h and radius at the base s.

The carriers, con�ned to a narrow WL quantum well

are further localized in the area of the dot due to the

e�ectively increased thickness of the layer. The e�ec-

tive 2D potential acting on carriers is shown in Fig.

1b. It's radial dependence can be very well approxi-

mated by a parabola, and electronic states can be ap-

proximated by Fock-Darwin states. This is shown in

Fig. 1c where numerically calculated energy levels are

shown as a function of angular momentum. The cal-

culated levels tend to bunch into groups, forming well

separated shells. The spacing of energy levels and the

wavefunctions are very well �tted by Fock-Darwin en-

ergy levels, as discussed below. The FD states jnm >=

(ay)n(by)mj00 > =
p
n!m! are those of a pair of har-

monic oscillators with energies 
� = 1

2
(
�!c), where:


2 = !20 + 4!2c ; !c = eB=cme is the cyclotron energy,

and !0 measures the e�ective con�nement energy. As-

sociating index n with frequency 
+ and index m with

frequency 
�, the energy Ee
nm and orbital angular mo-

mentumRnm of the state jnm > are: Rnm = m�n and

Ee
nm = 
+(n+1=2)+
�(m+1=2) The Zeeman energy

is very small and can be neglected. The eigenstates are

doubly degenerate due to spin �. The valence band

holes are treated in the e�ective mass approximation

as positively charged particles with angular momentum

Rh
mn = n �m; opposite to the electron, and FD ener-

gies Eh
mn = 
h

+(n + 1=2) + 
h
�(m + 1=2) (ignoring the

semiconductor gap EG). The knowleadge of single par-

ticle states allows us to proceed to the calculation of

many-body e�ects.

Figure 1. (a) schematic picture of the InGaAs/GaAs self
assembled dot (b) e�ective lateral con�ning potential for
electrons (c) calculated energy levels.

B. Many-particle states

With a composite index j = [m;n; �] describing the

FD states the Hamiltonian of the interacting electron

(electron-hole) system may be written in a compact

form:

c

H =
X

i

Ee
i c
+

i ci +
X

i

Eh
i h

+

i hi �
X

ijkl

< ijjvehjkl > c+i h
+

j hkcl

+
1

2

X

ijkl

< ijjveejkl > c+i c
+

j ckcl +
1

2

X

ijkl

< ijjvhhkl > h+i h
+

j hkhl: (1)
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The operators c+i (ci); h+i (hi) create (annihilate) the

electron or valence band hole in the state ji > with

the single-particle energy Ei. The two-body Coulomb

matrix elements are < ijjvjkl > for electron-electron

(ee), hole-hole (hh) and electron-hole (eh) scattering,

respectively [16,17].

The eigenstates j� > of the electron(electron-hole)

system with N electrons(excitons) are expanded in

products of the electron and hole con�gurations j� >=

(�N
j+1c

+

j )(�
N
k=1h

+

k )jv > : Up to 30 single particle states

per dot, including spin, were used in calculations. The

electronic con�gurations were labeled by total angular

momentumRtot and z-th component of total spin Stotz .

For electrons, numerical diagonalization of up to N = 6

electrons was carried out for Hilbert spaces with di�er-

ent total angular momentum. For excitons, we concen-

trated on the optically active subspace of Rtot = 0 and

Stotz = 0. A combination of exact diagonalization tech-

niques (for up to N = 6 excitons) in con�guration space

coupled with the Hartree-Fock approximation extended

calculations up to N = 20 excitons.

C. Electronic shells

Due to the large quantization of kinetic energy the

electronic shells correspond to the minimumkinetic en-

ergy con�guration. In case of partially �lled shells i.e.

degenerate states the con�gurations with maximum to-

tal spin and maximum individual momentum form the

ground state. The calculated evolution of the total an-

gular momentumand spin of the ground state as a func-

tion of the number of electrons is shown in Fig. 2. For

example, we �ll up the d shell orbitals with spin down

electrons as j2; 0 >, j0; 2 >; j1; 1 > etc. This trend is in

agreement with Hund's rules.

The role of degeneracies, spin, electron-electron in-

teractions and the magnetic �eld can be illustrated for

N = 4 electrons, i.e. two electrons in a partially �lled

p-shell. For low magnetic �elds the two \core elec-

trons" of the s-shell are frozen in a spin singlet state

while the two electrons on the p-shell occupy degener-

ate FD orbitals j01 > and j10 >. The ground state

is a spin triplet, zero total angular momentum state

R = 0,S = 1. The triplet state lowers it's energy by

exchange-interaction term < 01; 10jVeej01; 10 > while

the spin singlet state R = 0; S = 0 increases it's en-

ergy by the same amount. With increasing magnetic

�eld the triplet state R = 0; S = 1 begins to com-

pete with a �nite angular momentum spin singlet state

R = 2; S = 0: In the R = 2 state both p electrons

occupy the lower energy orbital j10 > : At B � 2:8

Tesla the gain in exchange energy of the triplet con�g-

uration R = 0; S = 1 is overtaken by an increase of

kinetic energy and the system makes a transition into a

spin singlet lower kinetic energy con�guration. Should

the dot be asymmetric, the splitting of the two p levels

would prevent the formation of the spin triplet con�g-

uration.

Figure 2. Spin and angular momentum dependence of the
ground state of SAD on the number of electrons N.

III. Infra-red spectroscopy

Drexler et al. [7] and Fricke et al. [8] reported

FIR absorption measurements of self-assembled dots in

a magnetic �eld. The dots were charged with up to

N = 6 electrons �lling the s and p electronic shells. The

infra-red spectroscopy was used to study the electronic

excitations of the dots as a function of the number of

electrons and the magnetic �eld.

The excitations of SAD reect the electronic struc-

ture and the number of electrons in the dot. For an
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in�nite parabolic con�nement only the center of mass

excitations with frequencies 
+ and 
� (generalized

Kohn's theorem) [1,18] can be measured in FIR. In

SAD, a �nite number of con�ned FD levels leads to

additional transitions in the IR spectrum related to the

magnetic �eld induced changes in the GS, e.g. spin

triplet to spin singlet transition discussed above.

The FIR absorption for N electrons can be

conveniently expressed in terms of the FD cre-

ation/annihilation operators a and b [17,19]:

c

A(!) /
X

f

j < f j
NX

j=1

(aj + ayj + bj + byj)i > j2�(Ef �Ei � !); (2)

d

Figure 3. (a) FIR spectra of SAD with N=4 electrons (b)
ground state and excited single particle con�gurations with
arrows indicating transitions.

where ji > is the initial (ground) state and the summa-

tion is over all bound �nal states If f >. IR radiation

connects only the states with the same Stotz and total

angular momenta di�erent by �1: We show in Fig. 3a

the rmagIletic �eld evolutions of the IR spectra calcu-

lated for the SAD with N = 4 electrons. The area of

each circle is proportional to the intensity A(!). The

solid lines show the transition energies 
� of the non-

interacting system and a vertical line marks the spin

transition in the GS. The GS and two excited single par-

ticle con�gurations for B � 2:8T are shown in Fig.3b.

The two excited con�gurations responsible for the split-

ting of the transition for N = 4; 5, are coupled through

Coulomb interactions. Experiments by Fricke et al. [8]

indeed showed the predicted here splitting which illus-

trates the desired sensitivity of the optical transitions

to the number of electrons N .

A. Many excitons in highly excited quantum

dots

To understand the operation of a quantum dot

based laser one must understand the e�ect of exciton-

exciton interaction on optical properties of highly ex-

cited SAD. We shall loosely refer to excitons as inter-

acting electron-hole pairs. Calculations were carried

out [13] for SAD with 15 bound states which can be

�lled with up to 30 electrons and holes [10]. The calcu-

lations for up to N = 6 electron-hole pairs were carried

out exactly and a combination of numerical diagonal-

ization in a partially �lled shell and the Hartree-Fock

approximation extended calculations up to N = 20 ex-

citons. Due to the large con�nement, the lowest kinetic

energy con�gurations are an excellent approximation

to the ground state in the case of �lled shells. When

electrons and holes partially �ll up a degenerate shell

the states and energies are completely determined by

their mutual interactions and exact numerical calcula-

tions are necessary. However, a simple interpretation

of results is possible due to \hidden symmetries" in the

problem.

For most quantum dots where electrons and holes

are con�ned in the same physical area, the electron and

hole interactions turn out to be symmetrical. For exam-

ple, in the sample calculated here vee=veh = veh=vhh =
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1:04. For almost symmetrical interactions, when the

Hamiltonian is restricted to a single degenerate shell

t, the commutator of the Hamiltonian and the inter-

band polarization operator P+ =
P

i c
+

i"h
+

i# can be ap-

proximated as [Ht; P
+] � Et

XP
+; where Et

X = Ee
t +

Eh
t �
P

jk g
�1
t < jjljVehjkk > is an approximate exciton

binding energy. The quantum number j(�t � j � t)

denotes the angular momentum on a given shell. This

commutation relation is a manifestation of hidden sym-

metry [20]. One can construct coherent N exciton

states (P+)N jv > as eigenstates of P 2. Due to hidden

symmetry these states are also eigenstates of the shell

Hamiltonian with energies E(N ) = NEt
X . The energy

of these states is just the sum of energies of noninter-

acting excitons. These coherent states turn out to be

excellent approximations of exact ground states with

corresponding overlaps of 100% for shells s and p, and

99.8% and 99.2d and f .

Figure 4. Addition spectrum as a function of the number
of excitons (excluding kinetic energy) (a) isolated f-shell (b)
f-shell and scattering to g-shell (c) exchange with all �lled
shells Inset shows the behaviour of the chemical potential,
including Coulomb and kinetic energy.

In a QDL one needs to add/subtract an exciton

to/from a dot already packed with excitons. In Fig.4a

we show the numerically calculated energy to add an ex-

citon to N excitons present in the isolated f shell. The

maximum number of excitons in an f shell is N = 8.

The addition energy is almosta constant, independent

of the number of excitons, in agreement with the \hid-

den symmetry" argument. In Fig. 4b we allow excitons

to scatter to higher shells. We see that the addition en-

ergy is lowered and that it is split into two lines. The

splitting corresponds to the interaction among excitons

and is equal to the singlet bi-exciton binding energy

in an f shell [13]. Finally, in Fig. 4c we show the

same addition energy into the f shell but this time in-

cluding scattering of excitons in the f shell into empty

shells at higher energy and interaction with excitons in

�lled shells at lower energy. The electrons and holes

in �lled shells can exchange with those in the f shell.

This leads to a sizeable bandgap renormalization. The

weak dependence of the chemical potential on the ex-

citon number in a partially �lled shell survives. This

means that there are steps in the chemical potential of

the interacting system corresponding to single-particle

shells.

The emission spectrum of exciton droplets corre-

sponds to a spectral function of a \missing" (removed)

exciton. This spectral function [13] describes the spec-

trum of charge excitations of an exciton droplet. The

spectral function peaks at the highest energy (chemical

potential). Hence the recombination spectrum of highly

excited dots, averaged over many di�erent exciton pop-

ulations with e.g. up to N = 20 excitons, will consist of

only 4 distinct energies, corresponding to steps in the

chemical potential.

An application of the magnetic �eld destroys the

hidden symmetry responsible for this behaviour, as

demonstrated by Raymond et al. [10]. The blueshift of

the chemical potential was also evident in a SAD red-

emitting laser structure studied by Fafard et al. [2].

The interaction of excess electrons with an exciton i.e.

the recombination spectrum of modulation doped SADs

has been also studied recently [21].

IV. Etched and gated dots in a magnetic �eld

In gated and etched nanostructures with signi�cant

density of surface states, trapped electrons produce long

range potential. The e�ective con�ning potential is

smooth and weak, i.e. of the order of few meV. The

e�ects of electron-electron interactions and magnetic

�elds are signi�cant [1,22,23]. One can think of elec-

trons as forming quantum Hall droplets, with magnetic

�eld driving the droplets through di�erent �lling fac-

tors. In the �lling factor regime 1 � � � 2 interest-

ing behavior of the spin polarization is expected [24].



52 Pawel Hawrylak

In the �lling factor regime � = 1 the system is ex-

pected to form a chiral Fermi liquid. The transitions

between di�erent �lling factors in this regime involves

reconstructions of edges through condensation of edge-

magnetorotons [25]. The edge reconstruction is ex-

pected to lead to new absorption lines [25]. In the frac-

tional quantum Hall regime the low energy excitations

of the droplet are governed by the chiral Luttinger liq-

uid theory [24,26] with non-Fermi liquid behaviour.

A. Magneto-optical measurement of ground

state energy

The magnetic �eld induced transitions of quantum

Hall droplets imply changes in the ground state. It

turns out that the ground state energy can be mea-

sured optically by measuring the mean photon energy

< ! > of the acceptor related recombination line [27].

Experiments in this direction have been reported by

Patel et al. [28].

B. Inelastic light scattering by electronic excita-

tions in deep etched quantum dots

Inelastic light scattering measures the excitation

spectrum of a QD [29-32] and, in principle, can provide

direct evidence of the discrete nature of excitations in

zero-dimensional (OD) systems. The electron-electron

interactions play a signi�cant role in determining these

excitations. For example, in a strong magnetic �eld the

gap in the excitation spectrum of the Hall droplet is

determined by electron-electron interactions. The ori-

gin of the gap is similar to the origin of the gap in

the incompressible Laughlin uid [22]. Changing the

magnetic �eld leads to a collapse of the gap at spe-

cial values of the rnagnetic �eld i.e. to a compressible

Hall droplet. One could in principle observe this be-

haviour as soft modes in Raman spectra [29]. However,

the wavelength of the perturbation necessary to excite

electrons of the droplet across the gap has to be much

smaller then the physical size of the droplet. In typical

Raman experiments on 2DEG this wavelength was of

the order of few thousand angstroms i.e. much larger

than the size of the droplet. Nevertheless, a number

of groups [30,31] have undertaken inelastic light scat-

tering of quantum dots. In the absence of a magnetic

�eld, Strentz et al. [30] measured the resonant elec-

tronic Raman spectrum from shallow etched QD's with

sizes down to 400nm. Lockwood et al. [31] measured

the resonant electronic Raman spectrum of deep etched

modulation-dopedQD's with sizes down to lOOnm and

in a magnetic �eld. Both groups attributed observed

structures in the Raman spectra to the OD density of

states. These observations were possible due to pat-

terning, and hence surface roughness, of the samples.

The samples studied by Lockwood et al. [31] were

GaAs/GaAlAs quantum dots prepared in the form

of disks of radius R. Disks with radii in the range

50nm < R < 100nm were etched from a modulation

doped multi-quantum well structure [32] with carrier

density ns = 8:5 � 1011cm�2. The near-resonant elec-

tronic Raman spectra (in a backscattering geometry)

were measured in magnetic �elds up to 12 T at 2K.

Figure 5. Calculated density of states of a dot with carrier
density ns = 8:0 � 1011cm�2 (N=124) and radius r = 70nm
for di�erent values of the magnetic �eld.

To calculate the wavefunctions, energies and single

particle excitation(SPE) spectra we approximate the

quantum dots as disks of radius R and thickness t, con-

�ned by in�nite potential barriers. The positive charges

of ionized donors are modeled as a disk with uniform

density, separated by a distance d from the plane of the
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dot. For such a high density multiple- quantum well

system, we assumed that electrons trapped in surface

states represent a very small fraction of the free elec-

trons.

In the Hartree approximation, the many electron

Hamiltonian for free electrons is replaced by a Hamil-

tonian of a single particle moving in con�ning potential

and a self- consistent Hartree potential determined by

the electronic and the positive charge density through

electron-electron and electron-positive charge Coulomb

interactions. The electron density is given in terms of

occupied eigenstates 	m
� of the Hartree Hamiltonian,

where m determines angular momentum and � labels

states with this angular momentum. In numerical so-

lution of the Hartree equations the following param-

eters were used: R = 70nm; Ne = 124, d = 30nm,

t = 8nm: These parameters correspond to a disk with

diameter of 140nm and density nS � 8 � 1011 cm�2.

In calculating Coulomb interactions we have also as-

sumed a uniform dielectric constant of GaAs and ne-

glected the e�ects due to image charges associated with

the semiconductor-vaccum interface. The calculated

Hartree density of states(DOS) for di�erent values of

the magnetic �eld is shown in Fig.5. The Hartree

energy spectrum is discrete and hence the OD den-

sity of states (DOS) consists of a series of peaks. For

B = 0 there is a typical single particle energy spacing

�E � 0:1� �0:5meV within each peak and an overall

arrangement of peaks in the DOS reminiscent of the

shell structure of atoms, with a typical energy spacing

of � 5meV . When compared with the DOS of nonin-

teracting electrons we �nd that the modulation is en-

hanced by electron-electron interactions. This is due to

the spatial separation of the positive background from

the disk. Since electrons repel each other very e�ec-

tively, the electron charge density is depressed inside

the disk and enhanced at the edges of the disk. The

Hartree potential is therefore repulsive in the center of

the dot, a situation very similar to Hartree potentials in

modulation doped quantum wells. The shell structure

is enhanced by the degeneracy of states with the same

absolute value of angular momentumm. This degener-

acy is removed by magnetic �eld, leading to a splitting

of energy levels. For small values of the magnetic �eld

a rapid rearrangment and crossing of levels takes place.

For higher magnetic �elds, B > 4T , Landau bands be-

gin to form.

Figure 6. (a) measured Raman spectra of quantum dots
with nominal carrier density ns = 8:5 � 1011cm�2 and ra-
dius r = 75nm for magnetic �elds B = 0 - 5T. (b) cal-
culated SPE spectra I(q; !) of a dot with carrier density
ns = 8:0 � 1011cm�2 (N=124) and radius r = 70nm and
q = 1 � 105cm�1 (dashed line) and q = 5 � 105cm�1 (solid
line). The arrows point out related peaks in experiment and
theory for each magnetic �eld.

Experimental Raman spectra for a dot with a nom-

inal radius R = 75nm and nominal density ns =

8:5 � 1011cm�2 in magnetic �elds B = 0� 5T are shown

in Fig.6a. The B = 0 spectra show clearly broad peaks

separated by approximately !0 = 6meV as indicated by

arrows. Up to three peaks were observed. On top of the

broad structure a number of sharper peaks, especially

at low energies, is also visible. As the magnetic �eld

increases, the spectrum evolves in a complicated way.

For example, the lowest peak appears to split and evolve

into two peaks 
+=� as indicated by arrows. However,

the 
+ peak at B = 5 T is split into a number of peaks,

and an additional low energy peak appears. This com-

plicated behavior can only be understood by a compar-

ison of experiment with realistic calculations of Raman

spectra. The Raman spectra can be divided into three
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classes: charge density excitations(CDE), spin density

excitations(SDE), and single particle excitations(SPE).

Both CDE and SPE are simple a linear combination of

excited states, and follow the SPE. The CDE and SPE

can be distinguished by the polarization dependence of

the scattered light. However, since the exciting light

is scattered by a 2D array of pillars, the spectra do

not show the wavevector conservation and clear polar-

ization dependence found in quantum well experiments

[33]. In the interpretation of the experimental spec-

tra, we restricted ourselves to the analysis of the dom-

inant SPE based on Hartree calculations. In the ab-

sence of the wavevector conservation the cross section

I(!) is averaged over all possible wavevector transfers

q = kf �ki of the incident (kf ) and scattered(kf ) light:

I(!) � Pq W (q)I(q; !): The function W (q) depends

on the structure of individual dots and the structure of

an array of pillars on the sample surface. The Raman

cross section I(q; !) for a given wavevector transfer q

and frequency ! is proportional to the imaginary part

of the polarizability �(q; !) of the system [34]:

c

I(q; !) �
X

m;m0 ;�;�0

j < m0; �0j�qjm; � > j2(1� f(m0; �0))f(m; �)�(E�0

m0 � E�
m � !); (3)

d
where the density operator �q = ei~q~r, and f(m; �)

is the Fermi occupation function for a state � with

angular momentum m and energy E�
m. The cou-

pling through the density uctuation operator ei~q~r =
P

m imeim�Jm(qr) induces transitions between di�er-

ent angular momenta m and di�erent single particle

states �.

We summarize in Fig.6b the evolution with mag-

netic �eld of calculated SPE Raman spectra. In the

right panel of Fig.3 we show representative calculated

SPE spectra for small (qR = 0:7; q = 1 � 105cm�1) and

large (qR = 3:5; q = 5 �105cm�1) wave-vectors involved

in the scattering process. For comparison with exper-

iment the calculated energies have been multiplied by

a factor of 1.3 to account for a decrease in the e�ective

dielectric constant due to the vacuum. The calculated

spectra for q = 1 � 105cm�1 and B = 0 show only one

peak while spectra for q = 5 � 105cm�1 consist of three

main transitions with a spacing of the order of 6meV in

good agreement with experiment. If we follow the evo-

lution of the calculated SPE spectrum as a function of

the magnetic �eld we see that the q = 5 �105cm�1 spec-

tra are in agreement with the measured spectra. For

example, at B=1T we see two peaks, while at B=3T

we see three peaks. At B=5T the agreement is also en-

couraging, especially with respect to the emergence of

a very low energy excitation associated with the Fermi

level crossing a quasi-Landau level band. The measured

spectra are, of course, an average over many such cal-

culated spectra.

In summary, the experimental spectra show a mag-

netic �eld behavior consistent with that calculated for

single particle excitations within the Hartree approxi-

mation. The excitation spectrum reects the formation

of electronic shells within quantum dots and exhibits a

complex evolution with magnetic �eld. This now opens

up the possibility to study collective excitations from a

range of strongly correlated ground states in QD's in a

strong magnetic �eld [24,29].

V. Conclusions

The ground state properties and charge and spin

excitations in self-assembled and deep etched dots were

obtained through exact diagonalization techniques,

Hartree-Fock, and Hartree calculations. The calcula-

tions of far infrared, interband, and inelastic light scat-

tering spectroscopies were compared with experiments.

Acknowledgments

Collaboration with A.Wojs, J. A. Brum, D. J. Lock-

wood, S. Fafard, S. Raymond, A. Pinczuk, and M.



Brazilian Journal of Physics, vol. 27/A, no. 4, december, 1997 55

Potemski on various aspects of this work is acknowl-

eadged.

References

1. For recent reviews and references see M. Kastner,

Physics Today, 24, January 1993; T. Chakraborty,

Comments in Cond. Matter Physics 16, 35 (1992);

R. C. Ashoori, Nature 379, 413 (1996).

2. S. Fafard et al. Science 274, 1350 (1996).

3. P. M. Petro� and S. P. Denbaars, Superlattices

and Microstructures 15, 15 (1994); for a recent re-

view see Proceedings of International Conference

on Modulated Semiconductor Structures, Madrid,

1995.

4. M. Grundmann, et. al, Phys. Stat. Sol. 188, 249

(1995).

5. J. Y. Marzin, G. Bastard, Solid State Comm. 92,

437 (1994).

6. R. Notzel,et. al, Appl.Phys.Lett. 66, 2525 (1995).

7. H. Drexel, et. al, Phys. Rev. Lett. 73, 2252

(1994).

8. M. Fricke, A. Lorke, J. P. Kotthaus, G. Medeiros-

Ribeiro, and P. M. Petro�, Europhys. Lett. 36,

197 (1996).

9. S. Fafard, et. al, Appl. Phys. Lett. 65, 1388

(1994); R. Leon, et. al, Appl. Phys. Lett. 67,

521 (1995); S. Fafard, et. al, Phys. Rev. B 52,

5752 (1995).

10. S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P.

Hawrylak, S. Charbonneau, D. Leonard, R. Leon,

P. M. Petro�, and J. L. Merz, Phys. Rev. B,

54, 11 548 (1996). S. Raymond et al, Solid State

Commun. (in press)

11. A. Wojs, P. Hawrylak, S. Fafard, L. Jacak; Phys.

Rev. B, 54, 5604 (1996).

12. A. Wojs and P. Hawrylak, Phys. Rev. B, 53, 10

841 (1996)

13. A. Wojs and P. Hawrylak, Solid State Comm.

100, 487 (1996). P. Hawrylak and A. Wojs, Pro-

ceedings of International Winter School in Solid

State Physics, Mauterndorf, 1996.

14. U. Bockelmann, et al. Phys. Rev. Lett. 76, 3622

(1996).

15. M. Bayer, et. al, Phys. Rev. Lett. 74, 3439

(1995).

16. A. Wojs and P. Hawrylak, Phys. Rev. B 51, 10

880 (1995).

17. P. Hawrylak, Solid State Comm. 88, 475 (1993).

18. W. Kohn, Phys. Rev. 123, 1242 (1961); L. Brey,

N. Johnson, B. Halperin, Phys. Rev. B 40, 10 647

(1989); P. Maksym, T. Chakraborty, Phys. Rev.

Lett. 65, 108 (1990).

19. D. Pfannkuche, V. Gudmundsson, P. Hawrylak,

R. R. Gerhards, Solid State Electronics 37, 1221

(1994).

20. I. V. Lerner, Yu. E. Lozovik, Zh. Eksp. Teor.

Fiz.80, 1488 (1981) [Sov. Phys. JETP 53, 763

(1981).]; D. Paquet, T. M. Rice, K. Ueda, Phys.

Rev. B, 32, 5208 (1985); A. H. MacDonald, E.

H. Rezayi, Phys. Rev. B 42, 3224 (1990); Yu.

A. Bychkov and E. I. Rashba, Phys. Rev. B, 44,

6212 (1991).

21. A. Wojs and P. Hawrylak, submitted to Phys.

Rev. B.

22. P. Hawrylak, Phys. Rev. Lett. 71, 3347 (1993).

23. R. C. Ashoori, et. al, Phys. Rev. Lett. 71, 613

(1993).

24. A. Wojs and P. Hawrylak, submitted to Phys.

Rev. B

25. P. Hawrylak, A. Wojs, and J. A. Brum, Solid State

Commun. 98, 847 (1996); Phys. Rev. B, 54, 11

397 (1996).

26. X. G. Wen, Phys. Rev. B 41, 12 838 (1990); C.

de Chamon and X.-G. Wen, Phys.Rev. B49, 8227

(1994).

27. P. Hawrylak and D. Pfannkuche, Phys. Rev. Lett.

70, 485 (1993).

28. S. Patel, A. S. Plaut, P. Hawrylak, H. Lage, P.

Grambow, D. Heitmann, K. von Klitzing, J. P.

Harbison and L. T. Florez Solid State Comm. (in

press).

29. P. Hawrylak, Solid State Commun. 93, 915

(1995).

30. R.Strentz et al., Phys. Rev. Lett. 73, 3022

(1994).

31. D. J. Lockwood, P. Hawrylak, P. D. Wang, C. M.

Sotomayor-Torres, A. Pinczuk, and B. S. Dennis,

Phys. Rev. Lett. 77, 354 (1996).

32. P. D. Wang et al., Superl. and Microstr. 15, 23

(1994).

33. C. Dahl et al., Phys. Rev. B51, 17211 (1995).

34. A. Pinczuk and G. Abstreiter in Light Scatter-

ing in Solids, edited by M. Cardona and G. Gun-

therodt (Springer,Berlin 1989)p.153; P. Hawrylak

et al., Phys. Rev. B32, 5169 (1985).


