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In the context of the Lagrangian and Hamiltonian mechanics, a generalized theory of coordinate transforma-
tions is analyzed. On the basis of such theory, a misconception concerning the superiority of the Hamiltonian
formalism with respect to the Lagrangian one is criticized. The consequent discussion introduces the relation-
ship between the classical Hamilton action and the covariance properties of equations of motion, at the level of
undergraduate teaching courses in theoretical mechanics.
Keywords: transformation coordinates, Lagrangian and Hamiltonian functions, classical action, covariance.

Uma teoria generalizada de transformações de coordenadas é analisada no contexto da mecânica em termos
da lagrangiana e hamiltoniana. Com base nessa teoria, critica-se um eqúıvoco que ressalta a superioridade do
formalismo hamiltoniano em relação ao formalismo lagrangiano. A discussão decorrente introduz a relação entre
a ação clássica de Hamilton e as propriedades de covariância das equações do movimento no ńıvel adequado para
o ensino de graduação em mecânica teórica.
Palavras-chave: transformações de coordenadas, funções hamiltoniana e lagrangiana, ação clássica, covariância.

1. Introduction

The contents of recent advanced textbooks in classical
mechanics [1–5] seem to denote that several theoretical
physicists are now engaged in making more intelligi-
ble the applications of a formalism which, developed
by mathematicians, was becoming maybe too abstract.
We are referring to the intrinsic description of the me-
chanics given by the differential geometry, which brings
into focus in a sharp way the concepts of invariance and
covariance of physical laws. Without resorting to the
differential geometry methods, it is possible to point
out some of those concepts so enriching the traditional
teaching approach.

With such perspective, the main purpose of the pre-
sent paper is to make clear the equivalence between
Lagrangian and Hamiltonian formalisms, by discussing
the transformation properties and the invariance condi-
tions of the classical action

∫
L dt. To this aim we will

identify the most wide class of transformations which
maintain the Euler-Lagrange structure of the equati-
ons of motion and we will revisit the theory of gene-
rating functions in the Hamiltonian framework. The
results exposed throughout the present paper are ad-
dressed both to stimulate the teaching of the classical
mechanics in an undergraduate course, as well as to

give a sound starting point for the transformation ru-
les in quantum mechanics for any advanced course in
theoretical physics.

From the traditional teaching point of view (see for
instance famous textbooks as [6, 7]), Hamiltonian Me-
chanics looks more general than the Lagrangian one,
since its covariance transformations constitute a wider
class with respect to point transformations. Such a di-
dactic setting, although justified by important develop-
ments such as Hamilton-Jacobi theory, induces a se-
vere misconception which may go beyond the classical
mechanics. Actually, Lagrangian and Hamiltonian ap-
proaches to quantization are distinct and independent,
and no conclusive preference can be given to canonical
quantization rather than to Feynman’s path integral. It
is easy to imagine that classical non equivalence would
lead to non equivalent quantum theories.

In sec. 2, we start to point out the complete equi-
valence, by introducing non point Lagrangian transfor-
mations of the equations of motion, leading to a dyna-
mics which can still be Lagrangian. We emphasize that
the second order character of any Lagrangian dynamics
is an essential feature to be preserved in a transforma-
tion. We end by noticing that the inclusion of non point
transformations excludes, in general, the possibility to
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have a scalar field as Lagrange function.
In sec. 3, we show that non point transformati-

ons preserving the structure of Lagrange equation are
nothing else than canonoid transformations (and, in
particular, canonical). A necessary and sufficient con-
dition for a map to be canonoid is discussed and spe-
cialized to canonical maps, inferring also a fundamental
relation between the Lagrangians.

In sec. 4, with the aid of elementary examples, we
recover the invariance of the Lagrangian by focusing
the relevant conditions on the canonoid transformati-
ons. In addition we propose a weak condition of inva-
riance of the Lagrangian, and discuss the consequences
of such occurrence in terms of the Hamiltonian action.
Finally we analyze a simple example of quantum cano-
nical transformation.

2. Theory of the transformations and
scalar invariance of the Lagrangian

One could say that all the equivalence between the La-
grangian and the Hamiltonian formalisms lies on the
following features:2

1. the representative spaces are equivalent from the
topological point of view; more, the velocity space
and the phase space are diffeomorphic manifolds
[5];

2. a dual transformation between the spaces links
the functions of Lagrange (L ) and Hamilton (H),
containing all the information on the dynamics of
the system, as well as the equations of motion [8];

3. in both cases the equations of motion follow from
a variational principle; in fact, they are Euler-
Lagrange equations of two (different) variational
problems.

Though a theory of the transformations in Lagran-
gian mechanics could in principle be characterized by
the request that after a change of variables the equati-
ons of motion preserve the structure of Lagrange equa-
tions, in literature the natural maps are point transfor-
mations.

The latter map the configuration space onto itself;
as a consequence, the velocities which are tangent to
the trajectories at a given point, become vectors of the
tangent space in the transformed point. In such a way,
an essential property of the equations is preserved: they
are still of the second order and can be put in normal
form. Therefore, the dynamics is deterministic, once
the initial conditions are given.

Further, as a direct consequence of the Hamilton
principle (see Ref. [7]), the Lagrange equations are cova-
riant (that is, they preserve the form of Euler-Lagrange
equations) if one performs a point transformation.

Moreover, the Lagrangian associated with the new
equations is still the old one. This means that the La-
grangian is an intrinsic object, univocally defined once
the geometry of the configuration space and the mecha-
nical properties of the system are given. So, one says
that the Lagrange function behaves like a scalar under
a point transformation; namely, the Lagrangian chan-
ges its functional dependence on the coordinates but its
numerical value in a given point remains the same. We
will speak of scalar invariance to express this outcome.
In coordinates

L ′(Q, Q̇, t) = L (q(Q), q̇(Q, Q̇), t). (1)

On the other hand, as we will discuss in sec. 3,
a phase space transformation maintains the Hamilto-
nian form of the equations of motion provided it is ca-
nonoid [5] with respect to a particular Hamiltonian.
If, in addition, it preserves the Poisson brackets, it is
canonical. Moreover, it is well known that the point
transformations in phase space belong to a proper sub-
set of the canonical transformations.3 This depends on
the fact that canonical transformations are identified as
those preserving the form of all Hamiltonian dynamics,
which, as Euler-Lagrange equations exhibit more gene-
ral covariance properties. On the other hand, when one
performs such a change of variables, it may occur that
the new generalized coordinate Q, depending also on
the old momentum p, is unsuitable for the local des-
cription of the configuration space.

For this reason, the complete correspondence bet-
ween the two formalisms seems not full, at least con-
cerning the theory of covariance transformations.

In the present paper, the equivalence between the
formalisms is recovered provided one asks that in the
velocity space the transformed dynamics is still Lagran-
gian, although not necessarily with respect to the same
Lagrangian. As we will see, this leads to include in the
theory those transformations known as canonoid.

Let us take a Lagrangian L (q, q̇, t). Then, we write
the Lagrange equation as two first order differential
equations in normal form

dq

dt
= q̇,

dq̇

dt
=

1
W

(
∂L

∂q
− ∂2L

∂q∂q̇
q̇

)
, (2)

with

W =
∂2L

∂q̇2
. (3)

2Here, we will assume that Lagrange’s equations of motion are second order differential equations, which can be written in normal
form.

3The most elementary proof is given by the exchange transformation Q = p, P = −q (see Ref. [7]), which is non point but canonical.
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Starting from Eq. (2), with a slight abuse of notation,
q̇ denotes the coordinate of the tangent space at q and
not the time derivative of q. In place of the notation
u = q̇, from which Eq. (2) should be written as

dq

dt
= u;

du

dt
=

1
W

(
∂L

∂q
− ∂2L

∂q∂u
u

)
,

we prefer to keep a more familiar notation and recall
that the present dynamical description is carried out
on a 2n dimensional space and not on the configuration
space.

Now, let us consider the most general transforma-
tion (q, q̇) −→ (Q, Q̇), say

{
Q = f(q, q̇, t),
Q̇ = g(q, q̇, t),

(4)

and assume that it can be inverted. Next, differentia-
ting (4) with respect to time, we have

Q̇ =
∂f

∂q
q̇ +

∂f

∂q̇
q̈ +

∂f

∂t
, (5)

Q̈ =
∂g

∂q
q̇ +

∂g

∂q̇
q̈ +

∂g

∂t
. (6)

We demand that once we have rewritten the system
(2), the new equations maintain the same normal form,
in which one of the variables is just the velocity, while
the second equation furnishes the acceleration. Such a
condition is known in literature as Second Order Dif-
ferential Equation condition [9], and if we impose it in
Eq. (5), we get

∂f

∂q
q̇ +

∂f

∂q̇
q̈ +

∂f

∂t
= g. (7)

This condition allows a certain freedom, without cons-
training us to the point transformation. The problem
is possibly another: how to derive the equations in the
new variables from a variational principle? The so-
called inverse problem in the calculus of variations [10]
establishes the condition of existence of a Lagrange
function once a second order equation is given.

Let us face a simple example in which our problem
possesses a solution.

Example 1. Let us consider the one-dimensional
motion of a particle with unitary mass, under the influ-
ence of a constant force. The Lagrangian of the system
being L = 1

2 q̇2 + q, the second order differential equa-
tion is





dq

dt
= q̇,

dq̇

dt
= 1.

(8)

Let us perform the following non point transforma-
tion

{
q = 1

8 Q̇2 − ln
(
Q− 1

4 Q̇2
)

q̇ = 1
2 Q̇

←→
{

Q = e(
1
2 q̇2−q) + q̇2

Q̇ = 2q̇

(9)
and make use of Eqs. (5) and (6). Consequently, we
obtain the new second order equation





dQ

dt
= (q̇q̈ − q̇)e(

1
2 q̇2−q) + 2q̇q̈ = Q̇

dQ̇

dt
= 2q̈ = 2.

(10)

Equations (10) can be immediately derived from the

Lagrangian L̃ =
Q̇2

4
+ Q.

Three points about this example are important to
be noticed:

(a) the transformation (9) satisfies the second order
condition for the system (8), but not necessarily
for any Lagrange equation; as a counterexample
the free particle equation q̈ = 0 is sufficient;

(b) besides the different functional form, the two La-
grangians have different values in the same point,
as one can verify by direct substitution of Eq. (9)
in L̃ ; no kind of invariance arises.

(c) there is no reason to think a priori that L is
a scalar with respect to a non point transforma-
tion; as a matter of fact, if we substitute in L the
new coordinates according to Eq. (9), we obtain
a Lagrangian non equivalent to L̃ : it gives rise
to equations completely unrelated with dynamics
(10).

The example can induce to think that there is no
general method to solve this kind of problem, and that
the procedure used in finding the new Lagrangian is
by trial and error. On the contrary, the generalized
transformations we are proposing are connected with
known properties of the Hamiltonian formalism, as we
will see in the next section. Moreover, the condition
of solvability of the inverse problem in the Hamiltonian
framework are simpler (see the Poisson bracket theorem
in Ref. [5, p. 222-224]).

We will show that such transformations are always
related to maps that are if non canonical at least cano-
noid.

3. The Hamiltonian framework

Hence, let us assume that a map of the kind (4), enjoy-
ing condition (7) for a dynamics described by L (q, q̇, t),
transforms the equations of motion, leading to a dyna-
mics described by L̃ (Q, Q̇, t). Example 1 shows that
in general

L (q, q̇, t) 6= L̃ (Q, Q̇, t), (11)



3306-4 Ferrario and Passerini

where (Q, Q̇) should be obviously evaluated by means
of Eq. (4).

The Hamiltonian characterization of the transfor-
mations we are studying can be obtained by composing
two Legendre mappings and a transformation defined in
the phase space, as summarized in the following scheme,
in which we are assuming that all the maps are inver-
tible:

-

? ?
¾

L (q, q̇, t) H(q, p, t)

K(Q, P, t)fL (Q, Q̇, t)

p =
∂L

∂q̇

Q̇ =
∂K

∂P

Q = f(q, q̇, t)

Q̇ = g(q, q̇, t)

Q = Φ(q, p, t)
P = Ψ(q, p, t)

If we construct non point transformations in this
way, then relations (4) preserve the structure of Lagran-
gian dynamics for the dynamics generated by L (q, q̇, t),
but not necessarily the Lagrangian.

Thus, we consider the function (q, p) → (Q, P ), cor-
responding in the phase space to the transformation (4),
as a mapping acting first of all on the equations of mo-
tion. Then, the existence of a Hamiltonian K(Q,P, t)
does not imply that the transformation is canonical: it
is sufficient that the equations derived from the parti-
cular

H = pq̇ −L (12)

are transformed in equations which keep the canonical
form.

In literature, such transformations are known as ca-
nonoid with respect to H [11]. And one could say that
the canonical transformations are those maps which are
canonoid with respect to all Hamiltonians.

For instance, the map (9) of Example 1 becomes

Q = e(
1
2 p2−q) + p2; P = p, (13)

in the phase space. The transformed differential equa-
tions can be derived by the Hamiltonian K = 2P 2 −
Q. Since the fundamental Poisson bracket [Q,P ]q,p is
not equal to 1, this map is canonoid with respect to
H = 1

2p2 − q, but non canonical.
The above scheme provides a synthetic representa-

tion of the relationship between the descriptions we are
considering: given a transformation connecting the two

dynamics of the Lagrangian functions L (q, q̇, t) and
L̃ (Q, Q̇, t), one finds two Hamiltonian functions with
their equations of motion connected by a canonoid map.
And viceversa given H(q, p, t) and K(Q,P, t) one can
always come back to a couple of Lagrange equations,
which are obviously second order differential equations.

At this point, we have to remind that asking cova-
riance for Hamilton equations means to keep fixed the
statement of the variational principle, while changing
the variables

δ

∫ t2

t1

(pq̇ −H)dt = 0; δ

∫ t2

t1

(PQ̇−K)dt = 0. (14)

Consequently (see for instance Ref. [7]), from the arbi-
trariness of the variations, one can be sure to get the
same Hamiltonian dynamics if a function F defined in
the phase space exists such that

pq̇ −H(q, p) = PQ̇−K(Q,P ) +
dF

dt
. (15)

This condition is sufficient but not necessary for the
covariance of the Hamilton equations: as a matter of
fact, the integrands in Eq. (14) can differ by any func-
tion F which, for the given particular Hamiltonian H,
identically satisfies the Euler-Lagrangian equations in
phase space

d

dt

(
∂F

∂q̇

)
− ∂F

∂q
= 0, (16)

d

dt

(
∂F

∂ṗ

)
− ∂F

∂p
= 0. (17)

In principle F may have an expression as

F = c1L + c2Le + c3
dF

dt
, (18)

where the ci are arbitrary multiplicative constants and
the symbol Le means equivalent Lagrangian [10] to L ,
in the sense that any solution of the equations of motion
obtained from L verifies also the ones obtained by Le.4

We hence underline that condition (15) is necessary and
sufficient for canonicity, whereas it is generalized by

pq̇ −H(q, p) = PQ̇−K(Q,P ) + F . (19)

in case of canonoid transformations. The essential dif-
ference is based on the fact that canonical transforma-
tions leave covariant any Hamiltonian dynamics.

To better understand the role of F , let us return
to Example 1. By using the dynamics equations of the
example, in particular ṗ = 1, it is easy to verify that

4To be rigorous, we should write pq̇ −H in place of L , but the equivalence between the two formalisms is by now sufficiently clear.
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both the following expressions are correct

pq̇ −H − (PQ̇−K) = −3
2
p2 + q − eH =

d

dt

(
−Ht− peH − p3

3

)
, (20)

pq̇ −H − (PQ̇−K) = L − d

dt

(
2
3
p2 + peH

)
.(21)

Consequently, both the choices (0, 0, 1) and (1, 0,−1)
are admissible for (c1, c2, c3).

Finally, we can derive a necessary and sufficient con-
dition of existence for a canonoid transformation, as
equation for F . In fact, by differentiating (19) with re-
spect to q and successively with respect to p, and taking
into account that

∂K

∂q
=

∂K

∂Q

∂Q

∂q
+

∂K

∂P

∂P

∂q
= −Ṗ

∂Q

∂q
+ Q̇

∂P

∂q
, (22)

∂K

∂p
=

∂K

∂Q

∂Q

∂p
+

∂K

∂P

∂P

∂p
= −Ṗ

∂Q

∂p
+ Q̇

∂P

∂p
, (23)

we obtain

∂F

∂q
=

∂

∂q

(
p
∂H

∂p
−H

)
− Q̇

∂P

∂q
− P

∂Q̇

∂q
−

Ṗ
∂Q

∂q
+ Q̇

∂P

∂q
, (24)

∂F

∂p
=

∂

∂p

(
p
∂H

∂p
−H

)
− Q̇

∂P

∂p
− P

∂Q̇

∂p
−

Ṗ
∂Q

∂p
+ Q̇

∂P

∂p
. (25)

In this way we have proved the following
Proposition 1: a transformation (q, p) → (Q,P )

is canonoid with respect to H if and only if a function
F exists satisfying

∂F

∂q
= p

∂2H

∂q∂p
− ∂H

∂q
− P

∂

∂q
[Q,H]− [P, H]

∂Q

∂q
, (26)

∂F

∂p
= p

∂2H

∂p2
− ∂H

∂p
− P

∂

∂p
[Q,H]− [P, H]

∂Q

∂p
. (27)

This condition is exactly Eq. (3.2) in Ref. [12]:
there, F is called generating function and the result
is obtained from a geometric viewpoint, while we deri-
ved it by varying the action.

Finally, in order to introduce the subject of the next
section, let us consider those canonical transformations
whose generating function is a constant of motion (for
a given dynamics): we remark that since of Eq. (15)
the Lagrangian behaves as a scalar. In particular, we
return to point transformations: in the Hamiltonian
formalism, a point transformation is a canonical trans-
formation with the property

dF

dt
= 0, (28)

because of the scalar nature of L . Moreover, Eq. (28)
does not simply mean that F is a constant of motion,
because it must hold true for every Hamiltonian dyna-
mics. Then F is just a constant.

In our generalization (19), we have an analogous in-
variance of L if F = 0. We analyze this invariance in
the next section.

To conclude this section we briefly discuss the in-
variance properties of the Hamiltonian. We know from
the textbooks that the Hamiltonian function is a sca-
lar for time-independent canonical transformations. On
the other hand, for canonoid transformations this pro-
perty does not hold true and we prove in Appendix, the
following

Proposition 2: A time-independent canonoid but
non canonical transformation never leaves invariant its
Hamiltonian.

4. Invariance of the action

Herein, we considered the most general class of cova-
riance both for Hamiltonian and Lagrangian mechanics
and proved that neither the Hamiltonian nor the Lag-
rangian functions are, in general, scalar fields. It is just
the case to underline that it is hard to call “function”
something which is not even a scalar field

How can our analysis naturally lead to some simple
result concerning a theory of transformations in quan-
tum mechanics? In facing such topics a student could
naturally be lead to ask whether the classical theory
of transformations, as we exposed it, still holds. Are
change of variables and quantization of physical sys-
tems commutating procedures?

The general answer is “no”, and a large amount of
papers, see Refs. [13–16] just to give some examples
are continuously produced on this complicated subject,
as well as on the equivalence between Feynman’s and
canonical quantization [17–19].

Just to explain, and roughly speaking, canonical
transformations need to possess a unitary counterpart
allowing to transform Heisenberg’s equations together
with Hamilton’s ones; but this occurs only provided the
correspondence between the commutators is full.

In the present paper, we limit ourselves to point
out some simple features of the Lagrangian framework,
connected with the concept of invariance, which allow
the use in quantum mechanics of some particular trans-
formations of coordinates.

In the previous section, when dealing with classical
mechanics, we asked the invariance of the condition

δ

∫ P2

P1

L (q, q̇, t) dt = 0 , (29)

which identifies the real solutions among all possible
curves in the configuration space .

Then, if one has the aim to preserve Feynman’s path
integral through a change of coordinate, it is natural, as
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a first step, to concentrate the attention on those trans-
formations leaving unchanged the image of the functio-
nal

A =
∫ P2

P1

L (q, q̇, t) dt , (30)

evaluated over sets of arbitrary curves.
This is clearly a stronger condition and, actually,

only a few transformations can be adapted to the quan-
tum framework.

By looking at the results collected in the previous
section, one can perform a first attempt to get the in-
variance of Eq. (30) through a change of coordinates,
by resorting to the scalar invariance of the Lagrangian.
More, one can even consider a simple generalization of
invariance of the Lagrangian, which reflects a possibly
generalized invariance of A. To this end, we recall that
if we multiply by a number the Lagrange function and
add a gauge term to it (i.e. the time derivative of a
function independent of the q̇), then the equations of
motion are invariant. Therefore, the condition F = 0,
ensuring the invariance of L after a canonoid transfor-
mation, can be weakened by requiring in Eq. (18) that
c2 = 0 and F = f(q, t). So one gets

L̃ (Q, Q̇, t) = L (q, q̇, t)+c1L (q, q̇, t)+
d

dt
f(q, t). (31)

In case the canonoid transformation gives raise to
Eq. (31), we will say that L is a weakly invariant scalar
field under the given transformation.

The weak changes induced in the action A by the
ones we have just allowed in definition (31) are associa-
ted also with the invariance of the quantum description
of the system. In particular, on one hand, we allow mul-
tiplication of the Lagrangian by a number since it can
be absorbed in the functional A by scaling the time
unit. On the other hand, whenever the configuration
space is connected a gauge term can always be added to
the Lagrangian without affecting the path integral [10].
The latter can be deduced by noticing that if A is in-
creased with a constant independent of the particular
curve (which is the case), then the quantum wave func-
tion is multiplied by a constant phase factor.

By considering only canonical transformations, from
Eqs. (15) and (31) it follows, as a particular outcome,
that the time derivative of the generating functions ful-
fils

d

dt
F = c1L (q, q̇, t) +

d

dt
f(q, t), (32)

which is the necessary and sufficient condition for a
canonical transformation to leave a given L weakly in-
variant.

The strong invariance of L , as a particular case of
Eq. (31), seems to restitute to the Lagrangian function
the feature of intrinsic object we underlined in the con-
text of point transformation. The same could be argued

for the action which we remember to be a complete in-
tegral of Hamilton-Jacobi Eq. [7]. This could be the
synthesis of our results from the classical viewpoint.

Let us show that the occurrence of Eq. (31) is not
so rare: we exhibit a simple example of (strong) scalar
invariance for L under a genuinely canonoid transfor-
mation.

Example 2. Let us consider the transformation

Q =
q

p
ln p, (33)

P = p2, (34)

which is canonoid with respect to the Hamiltonian

H =
p2

2
of the free particle. In fact, the transformed

equations of motion are

Q̇ =
∂Q

∂q
p =

∂K

∂P
=

1
2

ln P, (35)

Ṗ =
∂P

∂q
p = −∂K

∂Q
= 0, (36)

which are Hamilton equations of motion for the func-
tion

K =
1
2
P (ln P − 1). (37)

We emphasize that the transformation is not canonical
because of [Q,P ] = 2 ln p, and nevertheless, there is no
difference between the old and the new Lagrangian as
scalar functions

p2

2
= P

∂K

∂P
−K ⇒ P

2
=

P

2
ln P − P

2
ln P +

P

2
. (38)

On the other hand, an example of canonical trans-
formation leaving invariant a given Lagrangian (as sca-
lar field) is the following.

Example 3. Let us study the dynamics described
by the Lagrangian

L =
q̇2

2q2
, (39)

which trivially leads to a Hamiltonian

H =
1
2
q2p2. (40)

It is easy to verify that the canonical transformation

Q = ln p; P = −qp, (41)

is generated by the function F = qeQ = qp, and that F
is constant during the motion generated by H. Thus,
since Eq. (15) holds true, we have that both the Lag-
rangian and the Hamiltonian are scalar. In addition, we
underline that this canonical transformation, with the
corresponding one induced in the velocity space, chan-
ges the functional form of the Hamiltonian and of the
Lagrangian. In particular, the new equations of motion
describe the free particle.

In the quantum framework, a class of allowed cano-
nical transformations is that of canonical point transfor-
mations, as noticed by Jordan [20] from the very begin-
ning. And, if we consider the Lagrangian point of view,
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the invariance of Eq. (30) under point transformati-
ons is an evident consequence of the scalar invariance
of L . This subject is fully developed, for instance, in
Ref. [21].

We conclude by presenting a known [22], less tri-
vial, but simple example of canonical transformation
possessing a unitary counterpart. It is an homoge-
neous linear canonical transformation, belonging to
the symplectic group Sp(2), locally isomorphic to the
(2 + 1)−dimensional Lorentz group. The weak scalar
invariance of the Lagrangian as defined in Eq. (31) is
verified for this transformation.

Example 4. From the point of view of quantum
mechanics, it is possible to verify, by means of the
PSD (phase space distribution) function W (q, p, t), that
the transformation we are going to study describes the
spread of the gaussian wave-packet of the free particle,
through the deformation of the error box. Since the
area (of the error box ) is invariant, a characteristic fea-
ture of canonical maps comes out to be meaningful also
in the quantum context.

Let us consider a free particle with unitary mass

L =
q̇2

2
. If we perform the canonical transformation

Q = q + pt; P = p, (42)

generated by the function

F2(q, P ) = qP + t
P 2

2
, (43)

where F2 = F + PQ (see Ref. [7]), since F1(q, Q) does
not exist in the present case, the new Hamiltonian is

K(Q, P ) = H +
∂F2

∂t
= P 2. (44)

The inverse Legendre map gives both L̃ =
Q̇2

4
= q̇2,

which clearly enjoys weakly scalar invariance, and the
non point transformation

Q = q + tq̇; Q̇ = 2q̇ , (45)

which verifies (6). The weak invariance of the Lagran-
gian could be proved also by directly calculating (as is
always possible for canonical transformations)

L − L̃ =
dF

dt
=

d(F2 −QP )
dt

= −p2

2
, (46)

and this expression enjoys property (32).

5. Conclusions

It has been recalled that point transformations and ca-
nonical transformations are characterized by geometri-
cal properties of the related representative spaces, in
the sense that their features are independent of the dy-
namics. From this point of view, the greater generality

of the canonical formalism breaks the equivalence bet-
ween the approaches.

On the other hand, if we only look for the covariance
of a particular equation of motion, then Lagrangian and
Hamiltonian motions are connected in a well identified
way by Legendre mappings.

This dynamical approach is here analyzed by com-
paring the invariance properties of functions and equa-
tions in the two spaces. Technically, what is fundamen-
tal is understanding in which way the transformations
act on the classical action.

At this point we compare two quotations which in-
volve famous scientists and teaching experts in classical
mechanics. The first sentence, where Levi-Civita quo-
tes Birkhoff, is devoted to canonical transformations.
The second, due to Goldstein, to canonoid:

“Professor Birkhoff thinks that the premeditated limi-
tation to this particular group of transformations
may be regarded as a mere exercise in analytical
ingenuity. In my opinion this hard sentence deser-
ves attenuation, and at least temporary amend-
ment.” [23]

“. . . there is added the highly unorthodox, if not down-
right dangerous, notion of a canonoid transforma-
tion - one that is canonical only for certain types
of Hamiltonian. (most applications of canonical
transformations depend on the property that they
be canonical for all Hamiltonians).” [7, p. 430]

Of course both the viewpoints are well-founded and
authoritative, but do not take into consideration the
possibility to enlarge the concept of invariance of Lag-
rangian and action.

Appendix

Proof that performing genuine canonoid trans-
formations the Hamiltonian is never a scalar
field

Let us write Hamilton equations of motion of the
new variables (Q, P ), and let us assume that a function
K(Q, P ) exists such that

Q̇ =
∂Q

∂q

∂H

∂p
− ∂Q

∂p

∂H

∂q
=

∂K

∂P
, (47)

Ṗ =
∂P

∂q

∂H

∂p
− ∂P

∂p

∂H

∂q
= −∂K

∂Q
. (48)

Multiplying the first equation by
∂P

∂p
, the second by

∂Q

∂p
and subtracting one has

(
∂P

∂p

∂Q

∂q
− ∂P

∂q

∂Q

∂p

)
∂H

∂p
=

∂K

∂Q

∂Q

∂p
+

∂K

∂P

∂P

∂p
=

∂K

∂p
.

(49)
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We can find the analogous relation for
∂K

∂q
, so getting

[Q,P ]q,p
∂H

∂p
=

∂K

∂p
, (50)

[Q,P ]q,p

∂H

∂q
=

∂K

∂q
. (51)

Now, let us assume the scalar invariance of H, so that
the right hand sides of Eqs. (50) and (51) are respec-

tively
∂H

∂p
and

∂H

∂q
. It follows that the fundamental

Poisson bracket [Q,P ] is equal to 1, and then the trans-
formation is canonical.

We have so proved that the scalar invariance of the
Hamiltonian is necessary and sufficient condition for a
canonoid map to be canonical.
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