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Looking closely to the mechanism which make sliding doors move, one sees that the motion of the commonly
used objects can be understood by solving a problem related to the motion of blocks and pulleys. The system
is by itself interesting to be modelled as a problem in Newtonian mechanics, and the solution of the equation of
the motion can lead us to estimate the time it takes for a sliding door to open or close.
Keywords: newtonian mechanics, physics education, problem solving.

Examinando em detalhes o mecanismo que produz o movimento das portas corrediças, observa-se que o mo-
vimento desses objetos usualmente usados podem ser entendidos resolvendo um problema modelado por blocos
e polias. O sistema é per si interessante para ser modelado como um problema na mecânica newtoniana e a
solução da equação do movimento pode nos levar a estimar o tempo de abertura e fechamento de uma porta
corrediça.
Palavras-chave: mecânica newtoniana, ensino de f́ısica, solução de problemas.

1. Introducing the problem

It is a common experience to go through a sliding
door when walking in a store and to observe its rather
smooth motion. By looking closely to the mechanism
responsible for the motion of the door, we notice that it
can be schematized by a rather simple system, made of
two pulleys and two material points. In order to adopt
a simple model for the motion of sliding doors, let us
consider a rather common way of mounting them, as
shown in Fig. 1.

In Fig. 1 we notice that the two pulleys of radius
r, free to rotate about a vertical axis, are connected by
a string of negligible mass. Two doors, of mass MD,
follow the horizontal motion of points A and B of this
string by means of connecting rods. In order for the
string to transmit more easily horizontal motion to the
doors in the two opposite senses, for a given angular
velocity ω (t) of the pulleys, the weight of both doors
is counterbalanced by the normal reactions given by a
horizontal guide, on which a rather low friction force is
present. In the case we neglected friction in the guides
and the moment of inertia of the pulleys with respect
to the quantity MDr2, the relation between the applied
moment M(t) and the acceleration a(t) of the right door
would be given by the rather simple relation

M (t) = 2rMDa (t) . (1)

However, still neglecting the mass of the pulleys, in
the case viscous friction between the horizontal guides
and the door supports is considered, the above relation
is modified as follows

M (t) = 2rMDa (t) + 2βrV (t) , (2)

where β is the coefficient of viscous friction and V (t) is
the velocity of the right door. We shall derive the above
dynamical equation and shall see, in what follows, how
to deal with the friction term, which may be useful to
calibrate the time of closure (or opening) of the sliding
doors.

2. Finding the dynamical equation

In the present section we shall find a schematic repre-
sentation of the system in Fig. 1, describing the ap-
paratus by which sliding doors are set in motion. Suc-
cessively, by means of elementary mechanics, we shall
derive the equation of the motion of the system.

We start by schematizing the system in Fig. 1 ta-
king the two sliding doors as point particles of mass MD

attached to a weightless string connected to two cylin-
drical pulleys of negligible mass and radius r, as shown
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in Fig. 2. When the moment M(t) is applied to one of
the pulleys, let us say the right one, the string is made
to circulate and the attached masses follow the horizon-
tal motion of the rectilinear portions of the string itself,
their abscissa being, respectively, x(t) and −x(t) for the
right and left door as in Fig. 2. We further assume that
the two point particles move on a plane horizontal sur-

face in such a way that the viscous friction force on the
right particle is f t = −βV (t) x̂, x̂ being the unit vector
in the horizontal direction, while on the left particle,
although the analytic expression of the viscous force is
formally the same, it has opposite direction, since the
velocity of the left particle is opposite to the velocity of
the right particle.

c

Figura 1 - A representation of the mechanisms for opening and closing sliding doors. An electric motor provides a moment M(t) to
the system of two pulleys connected by a string to which the doors are connected in such a way that points A and B on the string go
in opposite directions. Points A and B, on their turn, are connected, by means of rods, to the right and left siding door, respectively,
which follow the horizontal motion of these two points. The abscissa of point A is x(t) and corresponds to the abscissa of the middle
point of the right sliding door whose mass is MD. The velocity of point A is V(t) = r ω(t), where r is the radius of the pulley and ω(t)
its angular frequency.

Figura 2 - A schematic version of the system in Fig. 1. The two doors are represented by point particles of mass MD attached to a
weightless string connecting two ideal pulleys. A friction force acts on both particles: its sense depends on the sign of the velocity vector
of each door and, thus, on the sign of the angular velocity ω(t), taken as positive when the right door proceeds toward the right.

d

By applying Newton’s second law to the point par-
ticles and by equating to zero all moments on the right
pulley, referring to Fig. 3 we have

M (t) + T1r − T2r = 0
T2 − T3 − ft = MDa
T3 − T1 − ft = MDa.

(3)

By dividing by r both members of the first equality
in Eq. (3) and by summing all three equations, we get

M (t)
r

− 2ft = 2MDa. (4)

In this way, we can finally write

dV

dt
+

β

MD
V (t) =

M (t)
2MDr

, (5)

which is equivalent to Eq. (2). Notice that, for β = 0,
Eq. (5) reduces to Eq. (1). Furthermore, one can easily
argue that the above equation is similar to the dyna-
mical equation for a particle moving in a viscous fluid
[1]. In Eq. [5], however, we take the forcing term to
depend on time. Indeed, by considering M(t) as a de-
creasing linear function, i.e., setting M (t) = M0−At,
where M0 is the applied moment at t = 0 and A is the
absolute value of the slope of M(t), we write
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Figura 3 - Force diagram for the various parts of the schematic system in Fig. 2. Notice that the moment is applied in the same sense
as the angular velocity ω(t) in such a way that the right door moves toward the right and, conversely, the left door moves toward the
left. The reaction forces at the right and left hinges, are RR and RL, respectively.

d

M (t)
2MDr

=
M0 −At

2MDr
= m0 − αt, (6)

so that a solution to Eq. (5) can be found in a similar
way as in Ref. [1]. We assume that the applied moment
acts up to time t = τ , at which the doors reach their
full aperture d with zero velocity, or

x (τ)− x (0) =
d

2
,

V (τ) = 0.

(7)

Furthermore, in order to define the initial conditions
for the differential equation (5), we take

V (0) = 0. (8)

3. Solving the dynamical equation

We are now ready to solve the dynamical equation (5).
Indeed, by substituting Eq. (6) into Eq. (5) we first
write

dV

dt
+

β

MD
V (t) = m0 − αt, (9)

so that the general solution for V (t) can be found [2]

V (t) = e
− β

MD
t


c +

t∫

0

e
β

MD
ξ (m0 − αξ) dξ


 , (10)

where the constant c can be evaluated by imposing the
initial condition (8), giving c = 0. By now evaluating
the integral on the right hand side of Eq. (10), we have

V (t) =
MD

β

[(
m0 + α

MD

β

) (
1− e

− β
MD

t
)
− αt

]
.

(11)
Let us now impose the condition V (τ) = 0 in

Eq. (7), so that
(

m0 + α
MD

β

) (
1− e

− β
MD

τ
)

= ατ. (12)

We now derive the position x (t) of the point par-
ticle with respect to its initial position x (0), by further
integrating Eq. (11) with respect to time, so that

x (t)− x (0) =
MD

β

[(
m0 + α

MD

β

)
t−

MD

β

(
m0 + α

MD

β

) (
1− e

− β
MD

t
)
− 1

2
αt2

]
. (13)

4. Calculating characteristic properties
of the system

In the previous section we have completely solved
the dynamical problem of opening (or closing) sliding
doors, assuming that the friction force on them had a
viscous character. In the present section we shall cal-
culate the time in which this process is accomplished.

Let us first evaluate the expression for the position
of the door at t = τ and set

d

2
= x (τ)− x (0) =

MD

β

[(
m0 + α

MD

β

)
τ+

MD

β

(
m0 + α

MD

β

) (
1− e

− β
MD

τ
)
− 1

2
ατ2

]
. (14)

Because of Eq. (12), we can rewrite Eq. (14) as
follows

d

2
=

MD

β

(
m0τ − 1

2
ατ2

)
. (15)

We can now solve the algebraic Eq. (15) for τ , ob-
taining the following solutions

τ± =
m0

α

[
1±

√
1− αβd

m2
0MD

]
. (16)

The largest solution is the one sought, since it gi-
ves a finite value of τ for very small β. In this case,
indeed, which we shall consider to be real (a door with
much too friction would be too difficult to open!) we
can make a third order expansion of the exponential
function in Eq. (12) and write
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(
m0 + α

MD

β

)(
β

MD
τ − 1

2
β2

M2
D

τ2+

1
6

β3

M3
D

τ3 + O

(
βτ

MD

)4
)

= ατ, (17)

where we shall retain only terms in which β appears to
second order or less. In this way

β

MD
τ

[
m0

(
1− 1

2
β

MD
τ

)
+ ατ

(
1
2

+
1
6

β

MD
τ

)]
= 0.

(18)
By setting to zero the term in parenthesis and by

solving, to first order in βτ/MD, the resulting algebraic
equation, we obtain

τC =
2m0

α

[
1− m0β

3αMD

]
. (19)

We may notice that this closure time τC is compa-
tible with the solution τ+ in Eq. (16) if the first order
expansion of the latter, namely

τ+ ≈ 2m0

α

[
1− αβd

4m2
0MD

]
, (20)

coincides with τC , as expressed in Eq. (20). In this
way, by simply comparing Eq. (19) and Eq. (20), we
have

α2 =
4m3

0

3d
. (21)

Finally, then, by substituting the value of α in
Eq. (19), we obtain

τC =
√

3d

m0

[
1− β

2MD

√
d

3m0

]
. (22)

From the above analysis we may notice that the ab-
solute value α of the slope of the applied moment is
expressed, in Eq. (21), in terms of the sole parame-
ters m0 and d, due to the fact that the speed of the
two doors is taken as null when the latter reach their
final positions. As a consequence, the closure time τC

is seen to depend on the parameters of the problem as
in Eq. (22).

In order to better understand the role played by the
parameter α in determining change in τC , let us take
β/MD = 0.1 s−1 and d = 2.4 m to be fixed parameters.
Let us then consider two different cases: the first for
m0 = 6.0 m/s2, the second for m0 = 12.0 m/s2. In
the second case the value of m0 is simply doubled with
respect to the first. In Fig. 4a and Fig. 4b the displa-
cement and the velocity of the right door, as function
of time, are shown for m0 = 12.0 m/s2, respectively.

Figura 4 - Displacement in meters (a) and velocity in m/s (b)
of the right door as a function of time, expressed in seconds, for
β/MD = 0.1 s−1, d = 2. m and for m0 = 12.0 m/s2. The
calculated closure time is τC = 0.764 s.

In Fig. 5, on the other hand, the applied moment
M , divided by 2MDr, is shown as a function of time
for the two cases. From Fig. 4a we notice the smooth
S-shaped motion of the right door, starting from rest
and ending its run with zero velocity; therefore, the
velocity of this door, shown in Fig. 4b, initially ri-
ses, until it attains a maximum value, and then decre-
ases, until it reaches again the t-axis at t = τC . The
different dynamical behavior of the door for two dif-
ferent values of m0 = M (0)/2MDr can be resumed
in Fig. 5, where the appropriate coefficient α, which
determines the downward slope of the curve, is calcu-
lated as in Eq. (21). From Eq. (21) it is clear that,
for higher values of the initially applied moment, the
parameter α must be larger, so that, by Eq. (22), it re-
sults that the closure time τC must be lower. Therefore,
the curve obtained for m0 = 12.0 m/s2 is truncated at
time t = τC = 0.764 s, while the curve obtained for
m0 = 6.0 m/s2, for which the parameter α is lower, has
a higher value of τC (1.075 s).

In order to see in more details for what range of m0

the closure time diminishes as m0 increases, we take the
derivative of τC with respect to m0, assuming β/MD

and d constant, obtaining

dτC

dm0
= − 1

2m2
0

(√
3m0d− βd

MD

)
. (23)
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Figura 5 - Two different curves of the applied moment M , di-
vided by 2MDr, as a function of time, expressed in seconds, as
defined in the text. Both curves are plotted for β/MD = 0.1 s−1

and d = 2.4 m. The dotted curve is for m0 = 6.0 m/s2, the
dashed one for m0 = 12.0 m/s2. Notice that the closure time for
the second curve is shorter since the parameter α is larger in this
case (see Eq. (21) in the text).

In this way, we obtain a negative value of dτC/dm0,
if the following relation is satisfied

m0 >
1
3

(
β

MD

)2

d. (24)

Given now that we only consider the case
βτC/MD << 1, and being the desired closure times
of the order of one second, we see that the inequality
in Eq. (24) can well be always satisfied for the charac-
teristic parameters of the present problem.

As a final remark, let us consider the instantaneous
power P (t) provided by the electric motor to the sliding
doors. By definition, we have

P (t) = M (t) ω (t) = M (t)
V (t)

r
. (25)

In Fig. 6 we show the time dependence of the instan-
taneous power provided to the doors by the electrical
motor. In particular, in Fig. 6a the value of P (t)/2MD

vs. t is shown, which gives the instantaneous power per
each kilogram of mass of the moving system necessary
to get the desired motion for three different values of
the normalized initially applied moment m0. Notice
that negative values of P (t) means that the motor is
applying an inverse torque to the sliding doors to make
them decelerate. In Fig. 6b, on the other hand, the
squared value of the quantity P (t)/2MD is shown for
the same three values of the parameter m0. The time
average value of the square root of the latter quantity is
indicative of the effective power dissipated by the mo-
tor (r.m.s. value). Notice, in this respect, that, as it
is possible to argue from Fig. 6b simply by inspection,
a lesser amount of energy is needed in decelerating the
sliding doors rather than in accelerating them, for the
given choice of parameters.

Figura 6 - Instantaneous power P , provided by the electrical mo-
tor to the sliding doors, divided by 2MD (a) and its square value
(b) for β/MD = 0.1 s−1, d = 2.4 m, and m0 = 6.0 m/s2 (full
line), m0 = 10.0 m/s2 (dotted line), m0 = 12.0 m/s2 (dashed
line).

5. Conclusions

We have considered the problem of the closure of two
sliding doors. The rather simple way of realizing the
motion of both doors has led us to consider a simplified
model for describing the dynamics of the system. By
the adopted scheme, the system consists of two point
particles attached to a string, which runs over two ideal
pulleys. The problem is rather interesting, since it ma-
kes use of the commonly adopted models for initiating
the student to the study of the dynamics of point par-
ticles, and yet it is related to a frequently observed phe-
nomenon: The closing or opening of a sliding door.

The characteristic properties of these systems are
analyzed in details, by assuming that a viscous friction
force is present between the guides and the doors sup-
ports. The resulting first-order differential equation,
describing the motion of both doors, is solved and the
closure time τC is found by imposing smooth closing,
i.e., by taking the final velocity of the door be zero at
t = τC .

Finally, because of what has been found, the pre-
sent work can be useful not only as an application of
basic physics to commonly observed phenomena, but
also for engineering studies relating to the development
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of sliding doors with optimum closure or opening times.
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