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Based on the generalized uncertainty principle (GUP), in which the quantum gravitational effects are taken
in to account, the corrected Beckenstein-Hawking entropy of the higher dimensional Reissner-Nordström black
hole, up to the square order of Planck length, is calculated. Using the corrected entropy, the black hole radiation
probability is calculated in the tunneling formalism, which is corrected up to the same order of the Planck length
and shows a more probable quantum tunneling.

Keywords: Generalized uncertainty principle, Higher dimensional R-N black hole, Black hole radiation

1. INTRODUCTION

Since the original analysis of black hole radiation was
done [1], several derivations of Hawking radiation were sub-
sequently presented in the literature [2]. None of them, how-
ever, corresponds directly to one of the heuristic pictures that
visualizes the source of radiation as tunneling. In this method
[3, 4], the particles are allowed to follow the classically for-
bidden trajectories, by starting just behind the horizon on-
ward to infinity. The particles then travel back in time, since
the horizon is locally to the future of the external region.
Thus the classical one particle action becomes complex and
so the tunneling amplitude is governed by the imaginary part
of this action for the outgoing particle. However, the action
for the ingoing particle must be real, since classically a parti-
cle can fall behind the horizon. This is an important point of
calculations of black hole tunneling. The essence of tunnel-
ing based calculations is, thus, the computation of the imag-
inary part of the action for the process of s-wave emission
across the horizon, which in turn is related to the Boltzmann
factor for the emission at the Hawking temperature. There
are two different methods to calculate the imaginary part of
the action: one is by Parikh-Wilczek [3] radial null geodesic
method and another is the Hamilton-Jacobi method which
was first used by Srinivasan et.al. [4]. Later, many people [5]
used the radial null geodesic method to find out the Hawking
temperature for different space-time metrics. Recently, tun-
neling of a Dirac particle through the event horizon was also
studied [6]. All of these computations are, however, confined
to the semiclassical approximation only. The issue of quan-
tum gravity corrections is generally not discussed. In [7] it
is found that the corrections to the temperature and entropy
by including the effects of back reaction knowing the mod-
ified surface gravity of the black hole due to one loop back
reaction for the Schwarzschild case by radial null geodesic
method. As an extension, in [8] also applied this method
for a noncommutative Schwarzschild metric. Recently, a
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problem in this approach has been discussed in [9] which
corresponds to a factor two ambiguity in the original Hawk-
ing temperature. From a pure theoretical point of view one
can expect that the properties of black holes might also have
played an important role in understanding the nature of grav-
ity in higher dimensions. This expectation has triggered the
study of black holes in higher dimensional gravity theories
as well as in string theory [10]. Whoever the emergence
of the TeV-scale gravity provides a motivation [11] for the
black hole experiments in the future accelerator such as the
CERN Large Hadron Collider. Thus, it is important to inves-
tigate the effect of the extra dimensions in the various prop-
erties of black holes. Even if a full description of quantum
gravity is not yet available, there are some general features
that seem to go hand in hand with all promising candidates
for such a theory. One of them is the need for a higher di-
mensional space-time, one other the existence of a minimal
length scale. The scale at which the running couplings unify
and quantum gravity is likely to occur is called the Planck
scale. At this scale the quantum effects of gravitation get as
important as those of the electroweak and strong interactions.
In this article through a suitable adaptation of higher dimen-
sional and the minimal length scale, we show that the quan-
tum tunneling probability is modified when quantum gravi-
tational effects are properly taken into account, with respect
to the Planck scale. We obtain the radiation tunneling of
a higher dimensional Reissner-Nordström black hole, using
the corrected Beckenstein-Hawking entropy obtained from
the GUP, in which the gravitational effects are taken into ac-
count.

2. THE CORRECTED BECKENSTEIN-HAWKING
ENTROPY

A natural candidate for charged black holes of higher di-
mensional is that of Reissner-Nordström d-dimensional so-
lution of Einstein field equation,

ds2 = f (r)c2dt2− f−1(r)dr2− r2dΩd−2, (2.1)
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where

f (r) = 1− µ
r(d−3) +

θ2

r2(d−3) .

The parameter µ is related to mass M of the black hole

µ =
8πGd

(d−2)Ad−2
M,

where Gd is the d-dimensional Newton constant. Ad−2 is the
of the unit (d−2)-sphere given by

Ad−2 =
2π(d−1)/2

Γ( d−1
2 )

.

The electric charge of the black hole is given by

Q2 =
(d−2)(d−3)

8πGd
θ

2.

There is an outermost horizon situated at

rh =
[
µ+(µ2−θ

2)
1
2

] 1
d−3

, µ2 > θ
2.

Let us consider the black hole as a d-dimensional cube of
size equal to twice its radius rh, the uncertainty in the posi-
tion of a Hawking particle, during the emission, is

∆x = 2rh = 2
[
µ+(µ2−θ

2)
1
2

] 1
d−3

=

[
Q2M

a2(d−3)

(
1+

√
1− a2

M2

)] 1
d−3

, (2.2)

where a2 = (d−2)
(d−3)

Q2Ad−2
8πGd

.

Using the usual uncertainty principle, uncertainty in the
energy of the Hawking particles is

∆E ≈ c∆p≈ ~c
∆x

= ~c

[
Q2M

a2(d−3)

(
1+

√
1− a2

M2

)] −1
d−3

.

(2.3)
It is easy to obtain the temperature of black hole in d-
dimensional space-time. The Hawking temperature is related
to the horizon radius by

T =
1

4πrh
=

1
2π∆x

. (2.4)

The Bekenstein-Hawking entropy is usually derived from the
Hawking temperature. The entropy S may be found from the
well known thermodynamics relation,

T =
dE
dS
≈ dM

dS
, (2.5)

where M means energy and T means temperature. From
(2.2), (2.4) and (2.5) we obtain

S = Area

[
a2(d−3)

Q2

] 1
d−3
[

M

(
1+

√
1− a2

M2

)] −2
d−3

×
∫

dM

[
M

(
1+

√
1− a2

M2

)] 1
d−3

+ const., (2.6)

where Area = 4πr2
h is the surface area of the black hole hori-

zon.
The evaporation of black hole would leave very distinctive

imprints on the detectors and temperature of such black hole
could be calculated. To study the quantum gravity effects
on the Hawking temperature, one can take into account the
gravitational effects trough the GUP. Recently GUP has been
the subject of much interesting works and a lot of papers
have appeared in which the usual uncertainty is modified at
the framework of microphysics as [12]:

∆x≥ ~
∆p

+L2
P

∆p
~

, (2.7)

where Lp is the Planck length. The term L2
P

∆p
~ in Eq.(2.7)

shows the gravitational effects to usual uncertainty principle.
Let us consider a quantum black hole, an attempt to measure
the radius of the black hole, more precisely that is, to make
rh small thus resulting an increase in ∆p, but according to
Eq.(2.7) for detection of small distances by going to very
high momenta, the behavior of the Heisenberg microscope
changes and a lower bound on the black hole radius rh could
be obtained. Setting 2rh as ∆xi and inverting Eq.(2.7) we
obtain

rh

L2
P

(
1−

√
1− L2

P

r2
h

)
≤ ∆p

~
≤ rh

L2
P

(
1+

√
1− L2

P

r2
h

)
. (2.8)

From Eq.(2.8) one can write

∆p
~

=
rh

L2
P

(
1−

√
1− L2

P

r2
h

)
=

1
2rh

+O(L4
P). (2.9)

Substitution in Eq.(2.7) leads to

∆x′ = ∆x
(

1+
L2

P

4r2
h

)
. (2.10)

Using Eqs.(2.4), and (2.10) we obtain the Hawking temper-
ature of d-dimensional black hole,

T ′ =
1

2π∆x

(
1+

L2
P

4r2
h

)−1

' T
(

1− L2
P

4r2
h

)
. (2.11)

The corrected entropy S′ may be found from the thermody-
namics relation (2.5),

S′(M) = S(M)+L2
PF(M), (2.12)

where S(M) is given in Eq.(2.6) and

F(M) =
1
4

Area

[
a2(d−3)

Q2

] 3
d−3
[

M

(
1+

√
1− a2

M2

)] −2
d−3

×
∫

dM

[
M

(
1+

√
1− a2

M2

)] −1
d−3

. (2.13)

Eq.(2.12) is the corrected entropy of a higher dimensional
charged black hole whose temperature is modified based on
the GUP.

One can show that the radiated energy, through Hawking
radiation is the same as that given in Eq.(2.3).
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3. BLACK HOLE RADIATION VIA QUANTUM
TUNNELING

Classical black holes are perfect absorbers, they accrete
their (irreducible) mass and no fraction of it can escape as
there are no classical allowed trajectories crossing the hori-
zon on the way out. It is interesting to note how the inclu-
sion of quantum effects allows, for particles in the Reissner-
Nordström geometry, to propagate through classically for-
bidden regions. This suggests that it should be possible to
describe the black hole emission process, in a semiclassical
fashion, as quantum tunneling. In the WKB approximation
the tunneling probability is a function of the imaginary part
of the action

Γ∼ e−2Im (I), (3.1)

where Im is the imaginary part and I is the classical action of
trajectory. Eq.(3.1) can be written as [13]

Γ∼ eS f

eSi
= e∆S, (3.2)

in which ∆S is the difference between final and initial values
of the black hole entropy.

The corrected Beckenstein-Hawking entropy in which the
gravitational effects are taken in to account is given by
Eq.(2.12), so that

∆S′ = ∆S +L2
P∆F, (3.3)

where

∆S = S(M−E)−S(M), ∆F = F(M−E)−F(M).

Substituting (3.3) in (3.2) we obtained

Γ
′ ∼ Γ eL2

P∆F , (3.4)

which shows the corrected tunneling probability up to the
square order of Planck length. Appearance of an exponential
coefficient in the corrected tunneling probability in Eq.(3.4)
predicts a generalized quantum tunneling through the hori-
zon of the Reissner-Nordström black hole, which obtains
from the quantum gravitational effects on the black hole ra-
diation.

4. CONCLUSION

Through the GUP, in which the gravitational effects
up to the square order of the Planck length are taken
in to account, we were able to calculate the corrected
Beckenstein-Hawking entropy of Reissner-Nordström black
hole in higher dimensional space-times. Using this corrected
Beckenstein-Hawking entropy, we have calculated the quan-
tum tunneling probability of the higher dimensional charged
black holes radiation, which contains a correction up to the
same order in the Planck length. The mathematical conse-
quence of these calculations is a more probable quantum tun-
neling through the horizon of the black hole, which comes
from the quantum gravitational consideration in the GUP.

[1] S.W. Hawking, Nature, 248(1974)30; Commun. Math. Phys.,
43(1975)199; [Erratum ibid. 46(1976)206].

[2] J.B. Hartle and S.W. Hawking, Phys. Rev. D, 13(1976)2188.
G.W. Gibbons and S.W. Hawking, Phys. Rev. D,
15(1977)2752.
S.M. Christensen and S.A. Fulling, Phys. Rev. D,
15(1977)2088.

[3] M.K. Parikh and F. Wilczek, Phys. Rev. Lett., 85(2000)5042;
M.K. Parikh, Int. J. Mod. Phys. D, 13(2004)2351; Gen Rel.
Grav. 36(2004)2419.

[4] K. Srinivasan and T. Padmanabhan, Phys. Rev. D,
60(1999)024007;
S. Shankaranarayanan, K. Srinivasan and T.Padmanabhan,
Mod. Phys. Lett. A, 16 (2001) 571; Class. Quantum Grav.,
19(2002)2671;
S. Shankaranarayanan, Phys. Rev. D, 67(2003)084026.

[5] Q.-Q. Jiang, S.-Q. Wu and X. Cai, Phys. Rev. D,
73(2006)064003; [Erratum ibid. 73(2006)069902];
Y.-P. Hu, J.-Y. Zhang and Z. Zhao, Mod. Phys. Lett. A,
21(2006)2143;
Z. Xu and B. Chen, Phys. Rev. D, 75(2007)024041;
C.-Z. Liu and J.-Y. Zhu, gr-qc/0703055.

[6] R. Kerner and R.B. Mann, Class. Quantum. Grav.,
25(2008)095014; arXiv:0803.2246;
R. DiCriscienzo and L. Vanzo, arXiv:0803.0435;
D.-Y. Chen, et al, arXiv:0803.3248; arXiv:0804.0131.

[7] R. Banerjee and B.R. Majhi, Phys. Lett. B, 662(2008)62.
[8] R. Banerjee, B.R. Majhi and S. Samanta, arXiv:0801.3583.
[9] T. Pilling, Phys. Lett. B, 660(2008)402;

E.T. Akhmedov, et al, Phys. Lett. B, 642(2006)124;
arXiv:0805.2653; Int. J. Mod. Phys. A, 22(2007)1705.

[10] G.W. Gibbons and K. Maeda, Nucl. Phys. B, 298(1988)741;
G.T. Horowitz and A. Strominger, Nucl. Phys. B,
360(1991)197.

[11] S.B. Giddings and T. Thomas, Phys. Rev. D,65(2002)056010;
S. Dimopoulos and G. Landsberg, Phys. Rev. Lett.
87(2001)161602;
D.M. Eardley and S.B. Giddings, Phys. Rev. D,
66(2002)044011.

[12] R. Adler, P. Chen, D. Santiago, Gen. Rel. Grav. 33(2001)2101;
X. Han, H. Li, Y. Ling, Phys. Lett. B, 666(2008)121;
Y-W. Kim, Y-J. Park, Phys. Lett. B, 655(2007)172;
K. Nouicer, Phys. Lett. B, 646(2007)63; L. Xiang, Phys. Lett.
B, 638(2006)519;
Z. Ren, Z. Sheng-Li, Phys. Lett. B, 641(2006)208; M. Mag-
gior, Phys. Rev. D, 49(1994)5182;
D. Amati. M. Ciafaloni, G. Veneziano, Phys. Lett. B,
197(1987)81;
S. Hossenfelder et al, Phys. Lett. B, 584(2004)109; Phys. Rev.
D, 73(2006)105013;
A. Farmany, S. Abbasi, A. Naghipour, Phys. Lett. B,
650(2007)33; [Erratum ibid. 659(2008)913]; Acta Physica



Brazilian Journal of Physics, vol. 39, no. 3, September, 2009 573

Polonica A, 114(2008)651;
M. Dehghani and A. Farmany Phys. Lett. B, 675(2009)460;
G. Veneziano Europhys. Lett. 2(1980)199; A. Kempf, J. Phys.
A, 30(1997)2093;
A. Kempf, G. Managano, Phys. Rev. D, 55(1997)7909; A. Far-

many, EJTP, 3(2006)12.
[13] P. Kraus, F. Wilczek, Nucl. Phys. B, 433(1995)403; Nucl.

Phys. B, 437(1995)231;
Kraus, E. Keski-Vakkuri, Nucl. Phys. B, 491(1997)249.


