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Coupling Constants of D∗DsK and D∗
s DK Processes
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We calculate the coupling constants of D∗DsK and D∗s DK vertices using the QCD sum rules technique. We
compare our results with results obtained in the limit of SU(4) symmetry and we found that the symmetry is
broken at the order of 40%.
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The knowledge of coupling constants in hadronic vertices
is crucial to estimate cross sections when hadronic degrees
of freedom are used. The kaon is one of the commovers
light mesons that can annihilate the charmonium in a nuclear
medium, given as result D and Ds mesons. Therefore, the ab-
sorption of charmonium by kaons in a nuclear medium can
be used to study the J/ψ suppression in heavy-ion collisions,
which is one of the signatures of the formation of the quark
gluon plasma (QGP) [1]. The processes of absorption of J/Ψ
by kaons can be visualized in the Figure 1.

To evaluate theoretically the cross section for these
processes, one can use the approach based on effective SU(4)
Lagrangians [2, 4]. The effective Lagrangians that describe
the processes represented in Fig.1 are:

LDsD∗K = igDsD∗KD∗µ(D̄s∂µK− (∂µD̄s)K)+H.c., (1)

LDs∗DK = igDs∗DKD∗µ
s (D̄∂µK̄− (∂µD̄)K̄)+H.c.. (2)

In this formalism it is necessary to know the form factors and
coupling constants in the hadronic vertices to obtain the cross
section. In ref. [2] it was shown that the use of appropriated
form factors can lead to a change in the value of the cross sec-
tion by a factor two. Also, the values of the coupling constants
used when D mesons are involved are evaluated using SU(4)
exact symmetry, which means that the coupling constants are
evaluated using the same values for the masses of the quarks
u, d, s and c. In this case, the values of the coupling constants

FIG. 1: Annihilation of J/Ψ by kaons given Ds, D∗, D∗s and D
mesons production.

for the two vertex of the right side in the processes, in Fig. 1,
are identical:

gDs∗DK = gDsD∗K =
g

2
√

2
. (3)

In this work we study the D∗DsK and D∗
s DK vertices using

the QCD Sum Rules technique [5], to evaluate the form factors
and to estimate the coupling constants.

We have been working on the problem of computing cou-
pling constants for others processes and have a consistent
method for this [6–14]. Following the QCDSR formalism de-
scribed in our previous works [6–14], we write the three-point
correlation function associated with the D∗DsK vertex, which
is given by

Γ(K)
µ (p, p′) =

∫
d4x d4y eip′·x e−i(p′−p)·y

〈0|T{ jD∗
µ (x) jK†(y) jDs †(0)}|0〉 (4)

for K meson off-shell, where the interpolating currents are
jD∗
µ = c̄γµd, jK = is̄γ5d and jDs = ic̄γ5s, and

Γ(Ds)
µν (p, p′) =

∫
d4x d4y eip′·x e−i(p′−p)·y

〈0|T{ jK
µ (x) jDs †(y) jD∗

ν
†
(0)}|0〉 (5)

for Ds meson off-shell, with the interpolating currents jK
µ =

ūγµγ5s, jDs = ic̄γ5s, jD∗
µ = ūγµc, with u, d, s and c being the

up, down, strange and charm quark fields respectively. In
both cases, each one of these currents have the same quantum
numbers as the corresponding mesons.

Using the above currents to evaluate the correlation func-
tions (4) and (5), the theoretical or QCD side is obtained. The
framework to calculate the correlators in the QCD side is the
Wilson operator product expansion (OPE). The Cutkosky’s
rule allows us to obtain the double discontinuity of the correla-
tion function for each one of the Dirac structures appearing in
the correlation function. Then we use spectral representation
over the virtualities p2 and p′2, holding Q2 =−q2 fixed. The
amplitudes receive contributions from all terms in the OPE.
The leading contribution comes from the perturbative term.
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mq ms mc mK mDs mD∗
s

mD mD∗

0.0 0.13 1.2 0.498 1.97 2.11 1.87 2.01

TABLE I: Masses of quarks and mesons used in the calculation of
the QCD sum rule. All quantities are in GeV.

fK[16] fDs [17] fD∗ [18] fD[20] fD∗
s
[19]

0.160 0.280 0.240 0.200 0.330

TABLE II: Decay constant used in the calculation of the QCD sum
rule. All quantities are in GeV.

The phenomenological side of the sum rule, which is writ-
ten in terms of the mesonic degrees of freedom, is parame-
trized in terms of the form factors, meson decay constants and
meson masses. We introduce the meson decay constants fK ,
fDs and fD∗ , which are defined by the following matrix ele-
ments

〈0| jK |K〉=
m2

K fK

ms +mq
, (6)

〈0| jDs |Ds〉=
m2

Ds

mc +ms
fDs (7)

and

〈0| jD∗
ν |D∗〉= mD∗ fD∗ε∗ν, (8)

where εν is the polarization vector of the D∗ meson. The QCD
sum rule is obtained by matching both representations, using
the duality principle. The matching is improved by perform-
ing a double Borel transform on both sides. The perturbative
contribution for both Eqs. (4) and (5) is given in details in
ref.[14]. We chose one structure that appear in both sides and
that has a good stability, which guarantees a good match be-
tween the two sides of the sum rule. The structures that obey
these two points are p′µ, in the case K off-shell, and p′µ p′ν in
the case Ds off-shell.

The Borel transformation [15] in the variables P2 =−p2 →
M2 and P′2 = −p′2 → M′2 allows to get the final form of
the sum rule, which allow us to obtain the form factors
g(M)

D∗DsK(Q2) where M stands for the off-shell meson.
We use Borel masses satisfying the constraint M2/M′2 =

m2
in/m2

out , where min and mout are the masses of the incom-
ing and outgoing meson respectively. The values of the para-
meters used in the calculation of the vertices are depicted in
Table I and in Table II

The continuum thresholds s0 and u0 are important para-
meters to control the pole contribution and can be expressed
in terms of the increments ∆s and ∆u (see ref. [14]). Using
∆s = ∆u = 0.5GeV for the continuum thresholds and fixing
Q2 = 1GeV2, we found a good stability of the form factor
g(K)

D∗DsK , as a function of the Borel mass M2, in the interval

3 < M2 < 5GeV2. In the case of the form factor g(Ds)
D∗DsK the

interval for stability of the sum rule is 2 < M2 < 5GeV2.

FIG. 2: g(K)
D∗DsK (squares) and g(Ds)

D∗DsK (triangles) form factors as a
function of Q2 from the QCDSR calculation of this work. The solid
(dotted) line corresponds to the monopole (exponential) parametriza-
tion of the QCDSR results for each case.

Fixing ∆s = ∆u = 0.5GeV and M2 = 3GeV2, we evaluate
the momentum dependence of both form factors. The results
are shown in Fig. 2, where the squares corresponds to the
g(K)

D∗DsK(Q2) form factor in the interval where the sum rule
is valid. The triangles are the result of the sum rule for the
g(Ds)

D∗DsK(Q2) form factor.
In the case that the K meson is off-shell, our numerical re-

sults can be parametrized by an exponential function (dotted
line in Fig. 2):

g(K)
D∗DsK(Q2) = 2.83 e−

Q2
4.19 → g(K)

D∗DsK = 3.01, (9)

where the coupling constant, g(K)
D∗DsK is given by the value of

the form factor at Q2 =−m2
K .

When the Ds meson is off-shell, our sum rule results can be
parametrized by a monopole form (solid line in Fig. 2):

g(Ds)
D∗DsK(Q2) =

9.01
Q2 +6.86

→ g(Ds)
D∗DsK = 3.02, (10)

where g(Ds)
D∗DsK is the coupling constant given by the value of

the form factor at Q2 =−m2
Ds

.
Comparing the results in Eqs.(9) and (10) we see that the

method used to extrapolate the QCDSR results in both cases,
K and Ds off-shell, allows us to extract values for the coupling
constant which are in very good agreement with each other.

In order to study the dependence of this results with the
continuum threshold, we vary ∆s = ∆u in the interval 0.4 ≤
∆s = ∆u ≤ 0.6 GeV. This procedure give us uncertainties in
such a way that the final results for the couplings in each case
are:

g(K)
D∗DsK = 3.02±0.15

and

g(Ds)
D∗DsK = 3.03±0.14.
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Now we study the D∗
s DK vertex. The treatment is similar to

the previous case. For details of the calculation see reference
[14]. The correlation functions are

Γ(K)
µ (p, p′) =

∫
d4xd4y eip′·x e−i(p′−p)·y

〈0|T{ jD∗s
µ (x) jK†(y) jD̄†

(0)}|0〉 (11)

for K meson off-shell, where the interpolating currents are
jD∗s
µ = c̄γµs, jK = iūγ5s and jD = ic̄γ5u, and

Γ(D)
µν (p, p′) =

∫
d4xd4y eip′·x e−i(p′−p)·y

〈0|T{ jK
µ (x) jD†(y) jνD∗s †

(0)}|0〉 (12)

for D meson off-shell, with the interpolating currents jK
µ =

ūγµγ5s, jD∗s
ν = c̄γνs, and jD = iūγ5c. We introduce the decay

constants fD and fD∗s , which are defined by the following ma-
trix elements:

〈0| jD|D〉 =
m2

D
mc +mq

fD, (13)

〈0| jD∗s
ν |D∗

s 〉 = mD∗s fD∗s ε∗ν, (14)

where εν is the polarization vector of the D∗
s meson.

In Fig. 3 the squares correspond to the g(K)
D∗s DK(Q2) form fac-

tor in the interval where the sum rule is valid. The triangles
are the result of the sum rule for the g(D)

D∗s DK(Q2) form factor.
In the case when the K meson is off-shell, our numerical re-

sults can be parametrized by an exponential function (dashed
curve in Fig. 3) and the coupling constant is extracted as the
value of the form factor at Q2 =−m2

K :

g(K)
D∗s DK(Q2) = 2.69 e−

Q2
4.39 → g(K)

D∗s DK = 2.87. (15)

When the D meson is off-shell, the sum rule results are repre-
sented by the triangles in Fig. 3, and they can be parametrized
by a monopole form (solid line in the figure). The coupling
constant is the value of the form factor at Q2 =−m2

D:

g(D)
D∗s DK(Q2) =

7.78
Q2 +6.34

→ g(D)
D∗s DK = 2.72. (16)

Studying the dependence of our results with the contin-
uum threshold, for ∆s,u varying in the interval 0.4 ≤ ∆s,u ≤
0.6 GeV, we obtain the following values, with errors, for the
couplings in each case:

g(K)
D∗s DK = 2.87±0.19

and

g(D)
D∗s DK = 2.72±0.31.

Concluding, we have studied the form factors and coupling
constants of D∗DsK and D∗

s DK vertices in a QCD sum rule

FIG. 3: g(K)
D∗

s DK (squares) and g(D)
D∗

s DK (triangles) form factors as a func-

tion of Q2 from the QCDSR calculation of this work. The dashed
(solid) line corresponds to the exponential (monopole) parametriza-
tion of the QCDSR results for each case.

calculation. For each case we have considered two particles
off-shell, the lightest and one of the heavy ones: the K and Ds
mesons for the D∗DsK vertex, and the K and D mesons for the
D∗

s DK vertex. In the two situations, the off-shell particles give
compatible results for the coupling constant in each vertex.
The results are :

gD∗DsK = 3.02±0.14 (17)

and

gD∗s DK = 2.84±0.31. (18)

We can compare our result with the prediction of the exact
SU(4) symmetry [4], which would give the following relation
among these numbers [4]: gD∗DsK = gD∗s DK = 5. Eqs. (17) and
(18) shows that the coupling constants in the vertices D∗DsK
and D∗

s DK are consistent with each other, but that they are
smaller than the value given by the SU(4) symmetry in the ref.
[4]. Therefore, we conclude that the SU(4) symmetry is bro-
ken by approximately 40% in the calculation performed here.
This is expected because the coupling constant obtained by
the exact SU(4) symmetry uses the same mass for the quarks
u, d, s and c. In this case there is not experimental value to
compare our results. However, we believe that our results are
very robust since they were obtained using two different ex-
trapolations in each vertex and we have obtained compatible
results from both extrapolations.
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