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This article reviews previously employed methods to study several valence electronic transitions, optically
forbidden or not, enhancing intensity through vibronic coupling. Electronic transition dipole moments were cal-
culated using several ab initio methods including electron correlation. In this method the square of the electronic
transition dipole moments are directly calculated along the normal coordinates of vibration and then expanded
with a polynomial function. Afterwards, analytical vibrational integration using harmonic wave functions, of
the square of the transition moments function, allows us to obtain partial (i.e. for each vibrational mode) and
total optical oscillator strengths (OOS), for the vibronic transition of interest. We illustrate the accuracy of the
method through valence transitions of benzene (C6H6), formaldehyde (H2CO), acetone (C3H6O) and formic
acid (HCOOH).

I. INTRODUCTION

Absolute intensities of excitation processes, either through
photon absorption or electron impact, have been calculated
for a long time. At the beginning of these type of calculations,
empirical wave functions were used while nowadays the more
accurate ab initio methods are employed. The great major-
ity of these works used the Born-Oppenheimer approxima-
tion, that is, the separation of the electronic, vibrational and
rotational wave functions at the equilibrium geometry. This
approach is very accurate when the separation between the
electronic and the vibrational motions is well established. In
the opposite situation, when the coupling between the elec-
tronic and the vibrational motions (i.e., the vibronic coupling)
is strong, this procedure fails. In other words, since molecules
are constantly vibrating, they may undergo geometry distor-
tions that induce electronic-vibrational transitions otherwise
symmetry forbidden. In these cases the oscillator strengths
have contributions from molecular vibration, and the dynam-
ics of nuclei may change the selection rules through the cou-
pling between the electronic and nuclear movements. These
changes in selection rules are particularly important for cer-
tain transitions that although being dipole forbidden, appear
with considerable intensity in the optical spectrum.

Vibronic coupling is also relevant to the rate of radiation-
less internal conversion of one electronic state to another, both
with the same multiplicity. Internal conversion (IC) is quite
common in photochemistry: many photodissociation reac-
tions proceed through IC from the excited to the ground state
potential energy surface. Although the method we present
here does not allow the complete calculation of rate constants
of IC processes, we still can draw conclusions concerning it,
as will be shown in the study of formic acid. The knowl-
edge of the vibronic effects involved in IC effects is crucial
for understanding photodissociation mechanisms and dynam-
ics [1, 2].

The theory of vibronic coupling and intensity of symmetry-

forbidden transitions [3] have been established long ago by
Herzberg and Teller [4]. They have set the principles that
control which normal vibrations make a transition allowed,
and how to calculate band intensities from the knowledge of
the molecular electronic wave functions in its equilibrium nu-
clear configuration. The Herzberg-Teller theory employs a
first-order perturbation expansion in the usual way of quan-
tum mechanics [5].

Although a general theory of vibronic coupling is now well
established [2], practical calculations based on ab initio wave
functions are scarce. Most of the previous studies concerned
formaldehyde and benzene. Murrell and Pople [6] applied the
Herzberg-Teller theory to the1B2u and1B1u transitions in ben-
zene to obtain relative intensities. Shortly afterwards, in 1957,
Pople and Sidman [7] applied the perturbation expansion to
study the optically forbidden electronic transitionA2 ← A1 in
theH2CO molecule. Other related works are discussed in the
results and discussion section.

In most of the published works, the closure relation was
used to sum all the final vibrational states of the final elec-
tronic state along with perturbation theory to take into account
the vibronic coupling between the different electronic states.
Other theoretical calculations followed, considering the vi-
bronic coupling through perturbation theory and using sum
rules to account for all the vibrational states of a particular
electronic state or to obtain individual vibronic intensities [2].

The closure relation has also been extensively used for other
purposes by spectroscopists [8–12]. Among its applications,
the closure relation was used to normalize the experimental
electron impact excitation cross sections [12], to calculate
dissociation cross sections within the reflection approxima-
tion [10, 13], and to determine zero-point corrections to ver-
tical excitation energies [11]. In several situations the experi-
mental spectrum does not present vibronic resolution, even for
small molecules. In such cases the experimental optical oscil-
lator strengths (OOS), and the equivalent property for electron
impact, the generalized oscillator strength (GOS), are deter-
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mined for the whole electronic band, i.e., the sum of the vi-
bronic levels associated with a particular electronic excitation
process. These reasons contributed to the interest in apply-
ing the closure relation as in the original procedure employed
by Murrel and Pople [6], as did other theoretical calculations
concerning vibronic coupling [14–16] or direct electronic ex-
citations [17, 18].

Contrary to the widespread use of the closure relation, the
application of perturbation theory to describe the coupling be-
tween the different vibronic states was subject to some con-
troversy. Orlandi and Siebrand [19] pointed out that, since
this procedure considers only selected couplings, it may lead
to significant errors. Ziegler and Albrecht [20] have discussed
these problems in a work on Herzberg-Teller vibronic excita-
tions of benzene. They have /*determined the OOS using a
closure relation and directly calculating the electronic matrix
elements along the normal coordinates and assuming a linear
dependence on the coordinates. Four years later, in 1978, Van
Dijk et al. [21–23] also directly calculated the electronic ma-
trix elements along the normal coordinates for the individual
vibronic bands of theA1 → A2 electronic transition ofH2CO.
They obtained the OOS fitting the electronic matrix compo-
nents to a polynomial function and using the closure relation
for the excited vibronic states.

A crucial step in the study of systems involving excited
electronic states is the quality of the corresponding wave func-
tions. Early attempts to study vibronic coupling, like the ones
discussed above, lacked the possibility of using good qual-
ity wave functions. In our previous works reviewed here we
stress the importance of the electronic wave functions.

This article reviews previously employed methods to study
several electronic transitions, valence or inner-shell, optically
forbidden or not, through photon absorption [24–28] and elec-
tron impact [29], enhancing intensity through vibronic cou-
pling. We illustrate its usefulness through the valence tran-
sitions of benzene (C6H6) [28], formaldehyde (H2CO) [24],
acetone (C3H6O) [25] and formic acid (HCOOH) [30] that
we have studied.

II. THEORETICAL FRAMEWORK

A. General considerations

There are some electronic transitions that, although op-
tically forbidden due to symmetry restrictions, appear with
moderate intensity in the spectrum. The reason is vibronic
coupling, which was first explained by Herzberg and Teller [4,
31, 32]. In the Herzberg-Teller effect the vibrational motion
and the electronic degrees of freedom can no longer be sepa-
rated. In this case, the total vibronic symmetry,Γel⊗Γvib =
Γvibronic, must be examined. In the general case, in order to
calculate the transition intensity and evaluate the allowed (in
the vibronic sense) transitions, it is necessary to examine the
transition moment integral

〈ψvibronic|µ|ψvibronic〉
whereµ is the dipole function.

The intensity of the vibronic transition depends on the de-
gree of mixing of the vibrational and electronic wave func-
tions. Basically, there are two approaches available to cal-
culate this intensity. One is through first-order perturbation
theory [2, 31] which applies as long as this mixing is not too
extensive. In this approach, the coupling is taken into account
through matrix elements involving the electronic wave func-
tions of both states and the derivative, with respect to the nor-
mal coordinates, of the Coulomb interaction potential between
electrons and nuclei - this is the perturbation term to the equi-
librium electronic molecular hamiltonian. The excited-state
wavefuntion becomes mixed with other (or others) zeroth-
order electronic state(s) through the perturbation term. In
most situations the interaction is considered to take place be-
tween two electronic states. The corresponding interaction
matrix between two excited states, divided by the energy sep-
aration between them, determines the magnitude of the vi-
bronic coupling. This term is separated from the electronic
transition dipole moment, which is calculated at the ground
state equilibrium geometry. The second approach, the direct
method, which we use, is discussed in the next section. When
available, our results are compared with values obtained from
perturbation theory.

B. The direct method

The direct method, with small variations, has been applied
before by other authors [21–23, 33]. The starting point of the
calculation is the Born-Oppenheimer approximation for the
total wave function,

Ψkv = ψk(r ;Q)χkv(Q) (1)

wherer represents the coordinates of the electrons andQ the
coordinates of the nuclear vibrational normal modes. In turn,
ψk andχkv are the electronic and vibrational wave functions
for the(k,v) vibronic state.

The optical oscillator strengthf (E)kv←00 for excitation
from thev= 0 vibrational level of the (ground) electronic state
k = 0 to thev vibrational level of thek-th electronic state as-
sumes the form

f (E)kv←00 =
2
3

∆Egk|〈χkv(Q)|M0k(Q)|χ00(Q)〉|2 (2)

where∆E is the excitation energy of the vibronic transition
kv← 00, gk is the degeneracy of the final state and the elec-
tronic transition dipole moment, in atomic units, is given by

M0k(Q) =−〈ψk(r ;Q)|
n

∑
i=1

r i |ψ0(r ;Q)〉 (3)

Now we make crucial approximations in three steps. First,
we sum over all discrete vibrational levels and integrate over
the continuum of thek-th electronic band. Second, we re-
place the transition energy∆E, corresponding to the energy
difference between the vibrational levels of the two electronic
states, by an average valuēE, usually taken as the electronic
energy difference, either calculated or measured. Third, after
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expanding the square modulus of matrix element and using
the completeness relation for the vibrational states of the fi-
nal (k) state,∑v |χkv(Q)〉〈χkv(Q)|= 1, we obtain, for the total
intensity of the whole band [6], the following result:

f (E)k←0 = ∑
v

f (E)kv←00

=
2
3 ∑

v
∆Egk|〈χkv(Q)|M0k(Q)|χ00(Q)〉|2

=
2
3

Ēgk〈χ00(Q)|M2
0k(Q)|χ00(Q)〉 (4)

Note that in this expression only the normal modes of one
of the states, usually the ground state, is involved and tran-
sitions are from the (ground) vibrational state (v = 0). The
normal modes coordinates and the corresponding ground state
frequencies, used in the calculations were obtained, in most
cases, at the Moller-Plesset second-order (MP2) level.

We now assume that the total dipole transition moment is
the sum of the transition dipole moments for each normal
mode vibrationL that contributes to the band intensity. One
then gets,

M0k(Q) = ∑
L

M0k(QL)

= ∑
L
−〈ψk(r ;QL)|

n

∑
i=1

r i |ψ0(r ;QL)〉 (5)

In turn, the nuclear wave function|χ00〉 is expressed in the
framework of the harmonic approximation as

|χ00(Q1,Q2, . . . ,QJ)〉=
J

∏
L=1

|ξL(QL)〉, (6)

where|ξL(QL)〉 are the wave functions of each normal mode
in the ground state. Combining Eq. (4) to Eq. (6), we obtain
for the OOS summed over theJ vibrational modes of thek-th
excited state

f (Ē) =
2
3

Ēgk∑
L
〈ξL(QL)|M2

0k(QL)|ξL(QL)〉 (7)

The integral in Eq. (7) over the harmonic functionsχ00(QL)
is straightforward. Calculations ofM0k(QL) for the molecules
studied were done with post Hartree-Fock methods, includ-
ing Configuration Interaction (CI) and Complete Active Space
Self Consistent Field (CASSCF) wave functions, for several
multiple values ofQL along each ground state normal mode
coordinate contributing to the vibronic coupling. Afterwards,
M2

0k(QL) is expanded as a power series,

M2
0k(QL) = M2

0k(0)+a1(QL)+a2(QL)2 + ... (8)

where{a j} are numerical constants obtained through fitting of
the calculated values. If the transition is optically forbidden,
the first term in Eq. (8) should be zero, otherwise it will be
expected to be the dominant one. For a dipole forbidden tran-
sition, the remaining expansion terms account for the transi-
tion intensity. The result of the above expansion is to simplify

the problem through the calculation of the transition dipole
momentM0k only along the normal coordinates, thereby lim-
iting it to J sections of potential energy surface. The effect of
the assumption, Eq. (8), is that vibronic transitions induced by
correction terms to it, for instance, via crossed terms, are not
taken into account. It should be noted that Eq. (7) does not
employ the Franck-Condon, or vertical, approximation, that
would imply the calculation of the excited state vibrational
wave functions and the corresponding overlap integral with
the ground state vibrational functions.

It is through the use of multiconfiguration methods for the
two electronic wave functions,ψ0 and ψk, calculated along
each normal mode coordinateQL, that vibronic effects, in-
cluding the effect of other excited electronic states, are taken
into account. When we write the vibrational ground state
wave function as a product of harmonic functions, and use
the completeness for the excited state vibrational wave func-
tions, we neglect the intermode coupling in both electronic
states [22]. Besides, if we use the normal coordinates for the
ground state along with the completeness for the excited state,
i.e., we use only the ground state normal modes, as we have
done, we neglect rotation of the normal coordinates with re-
spect to each other, the so-called Duschinsky effect [22, 34]
and anaharmonic effects. The accuracy of these approxima-
tions, including the fitting of the transition dipole moment
calculated along the normal coordinates, is given by the com-
parison between the calculated OOS per mode and the experi-
mental results, when available. We illustrate it presenting our
results in the next section.

III. RESULTS AND DISCUSSION

We now illustrate the range of applicability and the accu-
racy of the methodology just described through the a selection
of molecules we studied.

A. Benzene,C6H6

Benzene is a textbook case of vibronic transitions [31, 35].
The valence transitions11B2u← X̃ and11B1u← X̃, symme-
try forbidden, appear with considerable intensity in the optical
spectrum due to vibronic coupling. Several theoretical stud-
ies investigated one or both transitions, using perturbation the-
ory [6, 14, 36], and/or including the Duchinsky effect [37–40].
The older works have mostly used semiempirical wave func-
tions, while the more recent ones employed Complete Active
Space Self Consistent Field (CASSCF) electronic wave func-
tions.

We have studied both symmetry forbidden transitions [28].
The electronic wave function used was a CASSCF(6,6)/cc-
pvdz which was built from six valenceπ orbitals and 6 elec-
trons, perfectly adequate to describe theseπ → π? transi-
tions [40]. The molecular orbitals to calculate the transition
dipole moments were state averaged for each transition, an
approach that improves the accuracy of the transition dipole
moments by providing a balanced description of each pair of
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states [41]. For the ground state frequencies and optimiza-
tion we have used the CASSCF(6,6)/6-31G** method. For
each normal mode, the ground state CASSCF frequencies em-
ployed to compute the harmonic integrals in Eq.( 7) have been
scaled by 0.92. Our computed vertical transition energies for
each state are4.90eV (B2u) and 6.20eV (B1u), being used
as the average energȳE in Eq. (4) to obtain the oscillator
strengths for each normal mode.

We first discuss the11B2u← X̃ transition. The transition
dipole moments belong to thee1u (x andy in-plane compo-
nents) anda2u (z out-of-plane component) irreducible repre-
sentations (D6h symmetry). Thus, this transition is optically
forbidden by symmetry reasons, and hence the first term in the
expansion of Eq. (8) should vanish [35]. However, through the
vibrations ofeg andb1g symmetries, higher-order terms will
become nonzero. Since there is nob1g vibration in benzene,
only the in-planee2g degenerate modesν6, ν7, ν8, andν9 will
contribute in first-order to the band intensity [40].

Some of the fits of the computedM2
0k(QL) values, for both

transitions, using Eq. (8), included only up to second-order
terms, and some to third-order. Note that, for the expansion
of the transition dipole squared in Eq. (8), it is necessary to
consider only positive values of the displacement along a nor-
mal coordinate sinceM2

0k(QL) is an even function [25] of the
normal modes considered here.

In Table I we present the total integrated OOS and the con-
tribution from each vibrational normal mode to the11B2u tran-
sition, and other available results. Although Metzet al. [42]
claim that the inclusion of the Duchinsky effect may raise the
theoretical results for this transition by about20%, the ex-
perimental results of Fischeret al. [43] have not shown any
marked contribution of the Duchinsky effect. We have not
included this effect in our calculations.

The experimental spectra around the 4.9 eV region show
more than 25 vibronic bands originated from theν6,ν7,ν8 and
ν9 inducing modes. The vibronic bands from theν6 inducing
mode is responsible for about90%of the total OOS, and their
components61

01n
0 (n = 0−5) are clearly identified in the op-

tical spectra. The other vibronic modes, from theν7,ν8 and
ν9 inducing modes, are not as easily identified in the optical
spectra as the modeν6 and, as expected, Table I shows some
discrepancy concerning the relative intensities of the experi-
mental results. In particular, the experimental results of Cal-
lomon [44] do not report any contribution from theν8 mode,
and the measurement of Stephensonet al. [45] shows a con-
tribution of0.6%.

Table I shows that, except for the results of Ziegler and Al-
brecht [20] and Metzet al. [42], the other theoretical and ex-
perimental results agree that the inducingν6 mode is respon-
sible for about90%of the total OOS of these vibronic bands.
Nevertheless, they do not agree, in general, for the absolute
values for the OOS as well as on the relative contributions of
the other inducing modes (ν7,ν8 andν9).

The theoretical results presented in Table I employed dif-
ferent methods both in the calculations of the wave functions,
used to determine the electronic matrix elements, and in the
method utilized to determine the vibronic coupling. Table I
shows that they can affect both the absolute values, and the

relative contributions of the different inducing modes.
Among the methods that considered perturbation theory

to calculate the vibronic coupling, the early results of Al-
brecht [20] clearly overestimates the intensities of these vi-
bronic bands. Both Roche and Jaffé [14] and Metzet al. [42]
used the semiempirical CNDO function, although the latter
took into account a possible coupling of the electronic states
by more than one vibration. Their total OOS values differ by
some20% and are larger than the experimental results. Un-
fortunately, Orlandiet al. [37] presented only relative values
for the OOS. Their results seem to underestimate theν9 in-
ducing mode intensity and overestimate the intensity of theν8
inducing mode, a trend also observed in the Metzet al. [42]
calculations.

Ziegler and Albrecht [20] directly calculated the OOS em-
ploying a procedure similar to the one we used, and used
CNDO semiempirical wave functions. Their total OOS value
presented a good agreement with the other CNDO results, and
also overestimates bothν8 andν9 inducing modes.

The theoretical results of Bernhardssonet al. [40] em-
ployed a CASSCF wavefunction, similar to the one used in
the present calculations. Both sets of the total OOS values are
lower than the other theoretical values, the results of Bern-
hardssonet al. [40] being within the reported error bars for
both sets of experimental results [46, 47] while our results
are within only one of the experimental results of Pantoset
al. [46]. While both sets of calculations roughly agree on the
contributions of theν7 andν9 inducing modes, our calcula-
tions indicate a larger contribution from theν8 than the calcu-
lations of Bernhardssonet al. [40] and the measurements of
Callomon [44] and Stephensonet al. [45].

On should bear in mind when comparing all these results
that, except for the contributions of the61

01n
0 (n= 0−5) for the

ν6 inducing mode, the other experimental contributions from
the 11B2u are difficult to determine. The reason is that they
correspond to very low intensity vibronic bands (about1/100
of those bands from the11E1u excited state) and theν7,ν8 and
ν9 inducing modes are related to more than 20 vibronic bands
not easily attributed in the experimental spectrum. Therefore,
we suggest new experimental measurements in order to fur-
ther investigate these bands and clarify the comparisons with
the theoretical results.

Concerning the11B1u←X̃ transition, its theoretical study
is more complicated than the previous one since theB1u state
is the second valence one, its surface is flat and distorted [40],
and other modes contribute to the band intensity. The direct
products of the irreducible representationsb1u⊗e1u⊗ a1g =
e2g andb1u⊗a2u⊗a1g = b2g show that in addition to thee2g
normal mode one should include for this transition also the
b2g modes.

The total OOS value for the11B1u is experimentally easier
to determine than for the11B2u, because it is about 10 times
more intense. In fact, the experimental results of Pantoset
al. [46] and Brithet al. [48] are in good agreement. Unfor-
tunately, the same is not true with respect to the relative con-
tribution of the different inducing modes. The spectrum in
this region presents an ambiguous vibronic attribution [47].
Therefore, the measured contributions of the inducing modes
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TABLE I: Integrated optical oscillator strengths divided by10−4 ( f/10−4) for the transition11B2u← X̃ in benzene. The contributions from
each inducing mode are also given. Normalized values are indicated in brackets.

Theoreticala Experimental

Mode this work Ref. [42] Ref. [37] Ref. [40] Ref. [20] Ref. [45] Ref. [44] Ref. [46] Ref. [47]

ν6 3.348 (100.0) 5.9 (100.0) (100.0) (100.0) 4.98 (100.0) (100.0) (100.0)4.7±0.94 6.48
ν7 0.1222 (3.7) (3.0) (5.8) 0.08 (1.7) (3.6) (5.9)
ν8 0.1341 (4.0) 1.38 (23) (5.8) (0.4) 2.48 (49.8) (0.6) · · ·
ν9 0.1965 (3.6) (0.3) (4.0) 0.4 (8.3) (1.8) (2.3)

Total 3.80 7.28 5.35 7.94

a Other theoretical results: Roche e Jaffé [14] reported9.0×10−4 while Albrecht [36] calculated60.0×10−4.

should be considered only as indicative.

Table II reports the computed OOS integrated results. Ex-
cept for the theoretical results of Roche and Jaffé [14], all
the other calculations presented OOS values in fair agreement
with the experimental results. The calculations of Roche and
Jaff́e [14], that employed perturbation theory to account for
the vibronic coupling and CNDO semiempirical wave func-
tions, strongly disagree with other experimental and theoreti-
cal results.

Table II shows that our results and the theoretical results
of Ziegler and Albrecht [20] do not agree on the relative
contributions of the inducing modes. Despite the fact that
Ziegler and Albrecht [20] employed the CNDO semiempirical
wave function and the present work considered theab initio
CASSCF method, both sets of calculations predicted similar
total OOS values for these transition.

When we compare our results and those of Bernhardssonet
al. [40] in Table II which also employedab initio CASSCF
wave functions, we see that both calculations agree that the
major contribution comes from theν9 induced mode followed
by theν8 mode. On the other hand, we estimate a lower con-
tribution to the vibronic bands coming from theν6 than did
Bernhardssonet al. [40] . Concerning this transition, contrary
to the other one, the present results for the total OOS show a
better agreement with the experimental results [46, 48] than
those of Bernhardssonet al. [40] .

It is interesting to observe that the older theoretical result of
Ziegler and Albrecht [20] and Roche and Jaffé [14], both with
CNDO wave functions, as well as the experimental measure-
ments, assign the largest contribution to theν8 normal mode,
followed by theν6 mode. The present results and the other
CASSCF [40] calculations clearly indicate that the main con-
tribution comes from theν9 inducing mode followed byν8.
These results claim a new experimental analysis.

B. Formaldehyde,H2CO

Formaldehyde is another system for which vibronic cou-
pling has been subject of several studies [7, 15, 15, 21, 22, 24,
49]. TheH2CO molecule is planar in the ground state, and
the A2 ← A1 electronic transition corresponds to moving an
electron from the highest molecular occupied orbital,2b2, to
the first unoccupied orbital,1b1. This transition appears in the
valence optical spectrum around 4 eV [50–52], and for long
has been attributed to vibronic effects [7, 32].

The H2CO molecule has six vibrational modes: three
of them of thea1 representation do not contribute to vi-
bronic coupling, while two ofb2 (in-plane C-H antisymmetric
stretching and bending) and one ofb1 (out-of-plane bending)
representations do contribute. We calculated [24] the OOS us-
ing the method presented in last section for the active modes.

The electronic wave functions for the ground and excited
electronic states, at the equilibrium geometries and the dis-
torted geometries along the normal modes, were calculated
with the single and double multireference configuration inter-
action method (MRCI). The molecular orbitals were expanded
in a gaussian basis set (10s,6p,1d)/[10s,4p,1d] for carbon and
oxygen and a (5s,1p)/[3s,1p] basis for the hydrogens atoms
previously used [18, 53]. The virtual space was built from the
24 low-lying virtual orbitals.

Table III shows our theoretical results for each normal mode
and the total OOS and the comparison with previous theoret-
ical and experimental results. Only the present results and
those of Van Dijk et al. [21–23] and Kemper et al. [23] directly
calculated the electronic transition dipole moments. The other
theoretical work treats the vibronic coupling via perturbation
theory. Table III shows that vibronic coupling perturbation
theory is not able to take into account the inducing in-plane
modesQ5 (antisymmetric stretching) andQ6 (antisymmetric
bending) ofb2 symmetry, thereby strongly underestimating
the corresponding contributions to the total OOS. This situ-
ation prevails even with the modified methodology used by
Roche and Jaffé [14] and Johnson [15] that included correc-
tions due to the rearrangement of the electronic cloud, usually
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TABLE II: Integrated OOS divided by10−4 ( f/10−4) for the transition11B1u← X̃ in benzene. The contributions from each inducing mode
are also given. In brackets are the normalized quantities. Except for Ref. [48], the other results are from theoretical calculations.

Mode this work Ref. [40] Ref. [20] Ref. [14] Ref. [48](exp.) Ref. [46](exp.)

ν4 (b2g) 9.863 (1.3) · · · 0.6 10 0
ν5 (b2g) 8.137 (1.1) (2.6) · · · · · · 0
ν6 (e2g) 14.33 (1.9) (8.1) 162.8 150 190
ν7 (e2g) 9.838 (1.3) · · · 6.6 0.0 0
ν8 (e2g) 239.9 (31.8) (30.0) 681.6 2000 750
ν9 (e2g) 754.0 (100.0) (100.0) 58.8 100 0

Total 1036 760 910 2300 940±94 900±180.0

not taken into account in the perturbation approach to vibronic
coupling [2].

The direct method used by van Dijk et al. [21, 22] and Kem-
per et al. [23] presents a ratio between the induced modes
consistent with the experimental results of Strickler and Barn-
hart [51] as well with the present results. On the other hand,
the van Dijk et al. [21–23] absolute OOS (i.e., the integrated
results) are more than a order of magnitude higher than our
results and the experimental results. We try to rationalize
this unexpected difference in the following way: although
these authors used CI wave functions, they used a double zeta
gaussian basis set without polarization functions on the carbon
and oxygen atoms, an approach that could generate inaccurate
molecular orbitals for the CI, with consequences for the OOS
values calculated from them.

Table III shows that the agreement between our OOS results
and the experimental values is quite good, both for the to-
tal OOS and the separate contributions originating from each
normal mode. Note that the contribution due to theQ4 mode
(out-of-plane bending) is far the greatest, even though the con-
tributions from the modesQ5 are not negligible.

C. Acetone,C3H6O

The absorption spectrum of the acetone molecule,C3H6O,
in the near ultraviolet has been studied for long [32, 54–58].
The first singlet electronic transitionA2 ← A1 corresponds to
an excitationn→ π?, the same type of transition studied for
the formaldehyde,H2CO, discussed in the last section. This
transition is also symmetry forbidden but through vibronic
coupling it gains intensity and appears in the spectrum.

The ground state geometry was optimized and the cor-
responding vibrational frequencies obtained at the MP2/6-
311G?? level. The electronic dipole transition moments, nec-
essary to obtain the OOS, were calculated with the multirefer-
ence configuration interaction MRCI/6-311+G?? method. A
total of 72821 configurations were used for the MRCI [25],
which used molecular orbitals constructed with the modified
virtual orbital (MVO) approach [59]. The vertical energy thus

obtained for then→ π? transition was 4.43 eV, the harmonic
frequencies were scaled by 0.9496 [60], values used for the
OOS calculation. SinceM2

0k(QL) is a even function, we can
perform the vibrational integration over positive values ofQL
and multiply the result by two.

Table IV reports our OOS values, the theoretical values of
Liao et al. [58], both separated for each normal mode, and
experimental results for the total OOS [54, 56]. Concerning
the total OOS, our result, Liao et al.’s [58] calculation and the
two experimental values [58] agree quite well despite the low
absolute values. On the other hand, our distribution over the
normal modes and Liao et al.’s, are quite distinct. Liao et al.
obtained that94% of the total OOS are due tob1 symmetry
inducing modes, the remaining contribution being caused by
b2 modes. According to them, thea2 modes have a negligible
contribution. Our results show thatb1 is the dominant mode,
but with a smaller contribution of66.3% to the total oscil-
lator strength. Other contribution is6.8% for the b2 modes,
which agrees quite well Liao et al.’s results. The major differ-
ence comes from thea2 modes, which according to us have a
weight of26.9% on the total OOS while for them this mode
almost does not contribute. Both theoretical results agree that
CO out of plane wagging mode is the most effective one to
borrow intensity.

The disagreement between our results and Liao et al’s, the
former based on the perturbation theory, concerning the mode
distribution contributing to the total OOS also happened with
the formaldehyde molecule [24], discussed in the last section.
Concerning formaldehyde, there are available experimental
results [51] separating contributions from each mode to the
total OOS, that favored our calculations over the perturbation
method in the Herzberg-Teller framework. The latter tends to
overestimate certain modes and underestimates others while
the present direct method shows a much better agreement with
the experimental distribution - see Table III. Experimental re-
sults on this transition, with mode contribution separation like
in formaldehyde, would be very interesting for the compari-
son between the two theoretical approaches.
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TABLE III: Contribution per vibrational mode to the OOS (×10−3) for the 1A2 ← X1A1 electronic transition in formaldehyde.Q4, Q5 and
Q6 are inducing modes.

References Q4(b1) Q5(b2) Q6(b2) Total OOS
Theory

[7] 0.3 ∼= 10−4 ∼= 10−4 0.3
[14] 0.13 6×10−3 0 0.13
[15] 0.17 10−3 1.2×10−4 0.17
[71] 0.51 10−3 0.66 1.17
[72] 0.29
[16] 0.053 ∼= 10−3 ∼= 10−3 0.053
[21] 4.62 3.06 0.87 8.55
[33] 2.27 0.74 0.19 3.20

Present results 0.143 0.040 0.024 0.21

Experiments
[50] 0.24
[52] 0.2
[73] 0.3
[51] 0.158 0.062 0.020 0.24

TABLE IV: Optical oscillator strength values (OOS) values (this work), theoretical values of Liao et al. [58], both separated for each normal
mode, and experimental results for the total OOS [54, 56] in acetone

Mode OOS (present)%(present) OOS(teo) [58] OOS(exp) [54] OOS(exp) [56]
Q2(a2) 7.60×10−5 22.36 3.5×10−7

Q10(a2) 1.50×10−6 0.31 1.71×10−8

Q11(a2) 1.41×10−5 4.15 2.75×10−9

Q12(a2) 3.96×10−7 0.09 7.81×10−8

Q13(b2) 2.01×10−6 0.59 1.10×10−7

Q14(b2) 5.27×106 1.55 2.73×10−6

Q15)(b2) 1.33×10−6 0.39 2.00×10−7

Q16(b2) 8.74×10−6 2.57 6.32×10−7

Q17(b2) 3.94×10(−6) 1.16 6.39×10−7

Q18(b2) 3.74×10−4 0.11 5.99×10−7

Q19(b2) 1.46×10−6 0.43 1.77×10−5

Q20(b1) 1.07×10−5 3.15 1.58×10−5

Q21(b1) 1.53×10−9 0.00045 9.55×10−7

Q22(b1) 5.67×10−5 16.67 8.78×10−5

Q23(b1) 1.43×10−4 42.10 1.82×10−4

Q24(b1) 1.49×10−5 4.37 5.26×10−5

Total 3.40×10−4 100 3.62×10−4 4×10−4 4.16×10−4

D. Formic acid, HCOOH

Formic acid, HCOOH, is an important intermediate in the
oxidation of unsaturated hydrocarbons in combustion, one of
the most abundant pollutants in the atmosphere, and was iden-
tified in interstellar clouds [61, 62]. Absorption of a photon of
248 nm (4.99 eV) excites HCOOH from the ground (S0) to the
first excited (S1) electronic state (A′′← A′). This transition is
a n→ π? taking place in the carbonyl moiety [63]. After the
transition, the molecule dissociates into two main channels,
CO+ H2O (1) andCO2 + H2 (2). At this wavelength, disso-
ciation on theS1 surface, intersystem crossing, or funneling
through aS0/S1 conical intersections to the ground state are
all energetically inaccessible [64]. Therefore, it was put for-
ward recently [62, 64, 65] that formic acid vibrationally re-

laxes from theS1 to theS0 state via internal conversion and/or
fluorescence. Vibronic coupling can enhance the fluorescence
probability (i.e, its optical oscillator strength), as we have
shown above for other cases, and is responsible for the inter-
nal conversion process [2, 31]. In particular, since formic acid
is planar in theS0 state and pyramidal in theS1 state, it can be
expected a priori, due to geometrical distortion, considerable
vibronic effects for the transition. Ng and Bell measured the
absorption spectrum [63] and, by analogy withn→ π? tran-
sitions in formaldehyde and formyl fluoride, suggested that
C=O stretching (modeν3) and CH bending (ν8, also from
modeν4), should be in the spectrum with considerable con-
tribution. We present results for the trans-HCOOH [30] since
it is the most stable conformer, the only one with measured
spectrum and because our classical trajectory calculations for
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TABLE V: Optical oscillator strengths (OOS) for theS1← S0 transition including vibronic contributions per mode, their summed contribution
and total OOS which includes equilibrium geometry plusQ-dependent terms (i.e. vibronic contributions) in formic acid

Normal Mode OOSa OOS/normalized Mode type
Eq. geometry contribution 1.14×10−3

ν1 8.90×10−7 0.00 OH stretching
ν2 5.98×10−6 0.024 CH stretching
ν3 2.04×10−4 0.82 C=O stretching
ν4 5.16×10−5 0.21 CH rock
ν5 3.10×10−6 0.012 OH bending
ν6 3.08×10−5 0.12 C-O stretching
ν7 −4.58×10−6 -0.018 OCO deformation
ν8 2.49×10−4 1.00 CH wagging out-of-plane
ν9 −3.21×10−5 -0.13 torsion

Q-dependent contribution 0.508×10−3

Total OOS (eq. value +Q-dep. terms) 1.65×10−3

a contribution per mode

both dissociations [66] show that the branching ratios of the
two reactions are quite similar for both conformers (i.e., the
trans and the cis ones).

We calculated the optical oscillator strength arising from
the vertical transition and the contributions from each nor-
mal mode due the vibronic coupling [66] - results are shown
in Table V. The ground state normal frequencies com-
puted at MP2/cc-pVTZ level were scaled by 0.950 while
to calculate the oscillator strengths we used state-averaged
CASSCF(10,8)/cc-pVTZ electronic wave functions. We used
as the average transition energy 6.11 eV, the state-averaged
CASSCF electronic transition energy, which compares well
with theS1 ← S0 transition energy of 4.99 eV [64]. The ver-
tical oscillator strength computed at the equilibrium geome-
try is 1.14×10−3 and the sum due to the contributions from
each normal mode amounts to0.508×10−3, a 45%increase
over the vertical value. Vibronic coupling major contribu-
tions come from CH bendings (mostly modeν4, and mode
ν8), C=O (ν3) and CO (ν6) stretchings, with the remaining
modes almost not contributing. It is interesting to note that
OCO deformation (ν7) and torsion (ν9) modes have negative
contributions, i.e., they contribute to decrease the band inten-
sity in relation to the equilibrium geometry. This might be due
to the geometric distortion upon the transition, with these nor-
mal modes being connected to the change from planar to pyra-
midal shape and the OCO angle decreasing its value. We pre-
viously derived negative contributions to the band intensity in
a similar calculation of methyl formate [27]. Concerning the
most important contributions to the band spectrum, we have
just confirmed Ng and Bell [63] suggestions: C=O stretching
and CH bendings are the most important contributions to the
vibronic spectrum.

Unfortunately, we could not find in the literature any ex-
perimental or theoretical value of optical oscillator strengths,
either per-mode or total, for this transition. This should be at-
tributed to a very diffuse vibrational structure of theS1 ← S0
transition. This diffuseness is due both to the short life time
of formic acid in the excited state and to the large geometric
change upon the transition [67]. These spectroscopic features,

along with dimerization of HCOOH [63, 67], greatly raise the
spectrum complexity. Consequently, the present theoretical
calculated oscillator strengths are especially valuable for the
formic acidS1 → S0 transition.

It should be noted that the formalism we have presented for
the vibronic coupling does not allow the complete calculation
of the rate of internal conversion (i.e., its numerical value).
However, since the electronic part of the coupling element of
the rate of IC is completely equivalent to the acceleration elec-
tronic dipole transition moments [49, 68], we make inferences
about this process. The acceleration electronic transition mo-
ments, together with the velocity and the usual length (Eq. 3)
matrix forms, are completely equivalent for exact wavefunc-
tions [69]. Concerning accurate, but not exact, wavefunctions,
like the CASSCF functions we used, the three forms should
be comparable. Therefore, in the following we use our op-
tical oscillator strengths results, which depend on the square
of the electronic transition dipole moments, to obtain relative
values of the per-mode contribution to the internal conversion
process.

After internal conversion and/or fluorescence, the HCOOH
molecule is left with enough energy to overcome theS0 en-
ergy barriers leading to the dissociation channelsCO+ H2O
(1) andCO2 +H2 (2). It was recently suggested both experi-
mentally [62, 70] and theoretically [64] that the CH bendings
(specially the CH out of plane wagging) and CO stretchings
(specially the C=O mode) would be the most important nor-
mal modes involved in the vibronic coupling responsible for
the internal conversion/fluorescence processes. Although the
branching ratio of the reactions (1) and (2) is essentially dy-
namically independent of the way the molecule at the transi-
tion state is initially excited (i.e, random distribution of vibra-
tional states or selective excitation of vibrational modes), as
we have shown with our classical trajectory calculations [66],
the present results shed light on the details of the internal
conversion/fluorescence processes driven by vibronic effects.
We see in Table V, specially the normalized optical oscillator
strengths per mode column (excluding the equilibrium geome-
try contribution), that our results fulfill previous expectations:
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the CH wagging out of plane (ν8) and the C=O stretching (ν3)
modes are the most important contributions to the vibronic
coupling, that is, to the internal conversion between theS1 and
S0 electronic states. The other CH bending (CH rock, mode
ν4) and an OH bending (ν5) have also some contribution, with
the remaining modes giving very small contributions or small
negative ones.

Summarizing: we have done calculations of the oscilla-
tor strengths for the transition between statesS0 and S1 of
formic acid. We have also calculated the contribution to the
oscillator strength coming from each mode besides the equi-
librium geometry value. Our results show that vibronic ef-
fects can increase the oscillator strength value almost50%,
therefore raising the intensity of excitation and radiative de-
cay processes. The main vibronic contribution to the oscilla-
tor strength is due to CH bending and C=0 stretching modes,
thereby confirming previous spectroscopic assumptions. We
have also used these results to rationalize the internal conver-
sion/fluorescence processes between the two electronic states.
In particular, we have confirmed the previous suppositions
concerning it: The CH bending and the C=O stretching modes
are the most important contributions to the internal conversion
between statesS1 andS0.

E. Conclusion

We have discussed an approach to include vibronic effects
for calculations of optical oscillator strengths. In this method,
the square of the electronic transition dipole moments are di-
rectly calculated along the normal coordinates of vibration
and then expanded in a polynomial function. After that, ana-
lytical vibrational integration using harmonic wave functions,
of the square of the transition moments function, allows us to
obtain partial (i.e. for each vibrational mode) and total opti-
cal oscillator strengths (OOS), for the vibronic transition of
interest. We have put forward the possibility of employing
this method to discuss internal conversion processes. We have
presented applications of the method to valence transitions
of benzene (C6H6), formaldehyde (H2CO), acetone (C3H6O)
and formic acid (HCOOH).
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[3] H. Köppel, W. Domcke, and L. Cederbaum, Adv. Chem. Phys.
57, 59 (1984).

[4] G. Herzberg and E. Teller, Z. Physik Chem.B 21, 410 (1933).
[5] A. Messiah,Quantum Mechanics(John Wiley and Sons, New

York, NY, 1966).
[6] J. N. Murrell and J. A. Pople, Proc. Phys. Soc. Lond. A69, 245

(1956).
[7] J. Pople and J. W. Sidman, J. Chem. Phys.27, 1270 (1957).
[8] M. Inokuti, Rev. Mod. Phys.43, 297 (1971).
[9] M. Inokuti, Y. Itikawa, and J. Turner, Rev. Mod. Phys.50, 23

(1971).
[10] J. W. Liu and S. Hagstrom, Phys. Rev. A3181, 1994 (1994).
[11] E. R. Davidson and A. A. Jarzecki, Chem. Phys. Lett.285, 155

(1998).
[12] R. A. Bonham and R. S. Barbieri, Phys. Rev. A45, 7929 (1992).
[13] M. C. Barbatti, L. P. G. Assis, G. Jalbert, L. F. S. Coelho,

I. Borges Jr., and N. V. de Castro Faria, Phys. Rev. A59, 1988
(1999).
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