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A Discrete Inhomogeneous Model for the Yeast Cell Cycle
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We study the robustness and stability of the yeast cell regulatory network by using a general inhomogeneous
discrete model. We find that inhomogeneity, on average, enhances the stability of the biggest attractor of the
dynamics and that the large size of the basin of attraction is robust against changes in the parameters of inho-
mogeneity. We find that the most frequent orbit, which represents the cell-cycle pathway, has a better biological
meaning than the one exhibited by the homogeneous model.
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1. INTRODUCTION

The eukaryotic cell exhibits a common process of division
into two daughter cells. This process consists of four phases
[1]: (i) G1 phase, in which the cell grows; (ii) S phase, in
which the DNA is replicated; (iii) G2 phase, that is a tem-
porally gap between the S phase and the next one; (iv) M
phase, in which the cell divides itself in two cells. In G1
phase the cell cycle rests in a stationary state until the cell size
reaches a critical value and the cell receive external signals
which allow it to go on the cycle. The cell-cycle regulation
machinery, which controls the growth and division processes,
is known for the budding yeast in detail, Saccharomyces cere-
visiae [2, 3]. In order to understand the budding yeast regu-
lation, several models have been proposed and discussed [2–
11]. Chen et al. [2] converted the regulation mechanism into a
set of differential equations with empirical parameters. Their
kinetic model has taken in account several physiological, bio-
chemistry and genetical details. Recently, Li et al. [3] intro-
duced a simple Boolean dynamical model to investigate the
stability and robustness features of the regulatory network.
They found that the cell-cycle network is stable and robust. A
stochastic version of this model, controlled by a temperature
like parameter, was latter studied [12]. The authors found that
the stationary state and the cell-cycle pathway are stable for
a wide range of the temperature parameter values. Other as-
pects related to the checkpoint efficiency of the Li et al. model
were also considered [13].

In this work we consider the inhomogeneous version of the
yeast cell-cycle introduced by Li et al. [3]. The cell cycle is
represented by a regulatory network and the dynamics is mod-
eled as a simple discrete dynamical system. The dynamics is
constrained by the network topology by means of some pa-
rameters (coefficients) related to each network link. The link
between nodes i and j determines the value of parameter Ki, j,
which is present in the time evolution rule. If the coefficient is
positive, the link represents an activation and it will be noted
as Ki, j = a(i, j) (a(i, j) > 0). On the other hand, a negative
coefficient Ki, j =−b(i, j) (b(i, j) > 0) represents an inactiva-
tion link. In the paper of Li et al. [3], the authors studied
basically the homogeneous model a(i, j) = b(i, j) = 1 for the
nodes with a link between them. At most they have consid-
ered only two kinds of intensity a(i, j) = ar and b(i, j) = ag.
However, the interactions are important for the dynamics and

are related to the constant rates of the kinetic equations, im-
plying that different contributions to activation or inactivation
may be present. We consider the most general inhomoge-
neous model of the yeast cell-cycle. Since that several dif-
ferent inhomogeneities represent the same dynamical model,
we eliminate all possible degeneracy by constructing a min-
imal set of parameters (coefficients). Such set represents all
kind of inhomogeneity and is very large. We find that the
big basin of attraction corresponding to the stationary state is
still robust to changes in the coefficients and that in the min-
imal set of coefficients a new orbit corresponding to the cell
cycle appears more frequently having a more feasible biolog-
ical significance. This means that this orbit is more robust
against change in coefficients than the orbit of the homoge-
neous model. Moreover, the mean basin size of the global
attractor is bigger than for the homogeneous case, when this
more frequent orbit is present.

2. THE DYNAMICAL MODEL

Our model is based on the deterministic Boolean model of
Li et al. [3] for the budding yeast cell-cycle regulation, which
is represented by the regulatory network shown in Fig. 1. Each
one of the 11 nodes, which represents proteins or protein com-
plexes, is represented by a variable S that takes the values 0
(the protein state is inactive) or 1 (the protein state is active).
The configuration of the system at time t is described by a vec-
tor ~S(t) = (S1(t),S2(t), . . . ,S11(t)) that represents the state of
the following proteins or complex proteins: (Cln3, MBF, SBF,
Cln1-2, Cdh1, Swi5, Cdc20, Clb5-6, Sic1, Clb1-2, Mcm1). A
configuration can be expressed in a short fashion by an integer
I if we define that I = ∑11

i=1 Si2i−1. For example, if only Cdh1
and Sic1 are active (S5 = 1 and S9 = 1), the related configura-
tion ~S = (0,0,0,0,1,0,0,0,1,0,0) corresponds to I(~S) = 272.

The state vector ~S describes the cell state in a specific time.
If one wants to capture the time evolution of the cell states,
one needs to address a dynamical model, in which there is a
time evolution rule. The configuration at time t + 1, ~S(t + 1)
is related to the previous one ~S(t) by the relationships

Si(t +1) =





1, if ∑ j Ki, jS j(t) > 0
0, if ∑ j Ki, jS j(t) < 0
Si(t), if ∑ j Ki, jS j(t) = 0 ,
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2 − MBF3 − SBF

1 − Cln3

4 − Cln1,2

5 − Cdh1

6 − Swi5

8 − Clb5,6

9 − Sic1

10 − Clb1,2

11− Mcm1/SFF

7 − Cdc20&Cdc14

FIG. 1: The yeast cell cycle regulatory network [3]. The nodes are identified by the proteins or complex proteins and by the number used in
the definition of the dynamical system. The continuous arrows mean activation and the dashed ones mean inhibition.

where Ki, j is the interaction between nodes i and j and i =
1,2, . . . ,11. If there is no link between the nodes, we have
that Ki, j = 0. Let us set our notation. When this link rep-
resents an activation, Ki, j = +a(i, j). Here a(i, j) is the in-
tensity of such activation. When the interaction represents an
inhibition we have that Ki, j = −b(i, j), with b(i, j) being the

inhibition intensity. The nodes 1, 4, 6, 7 and 11 have also
a time-delayed self-degradation mechanism. When Si(t) = 1
(i = 1,4,6,7,11) and ∑ j Ki, jS j = 0 from time t to t + td , we
will have that Si(t + td) = 0. From now on we will consider
td = 1. This evolution rule can be set in a more compact form:

Si(t +1) = Fi
(
∑ j Ki, jS j(t)

)
, where Fi(x) =





1, if x > 0
0, if x < 0
Si(t), if x = 0 .

If we name Ω as the entire state space vector, which is the space that contains the 211 = 2048 possible vectors ~S(t), and if
we name F the map defined by ~S(t +1) = F(~S(t)) = (F1(S1(t)), . . . ,F11(S11(t))), we can define a dynamical systems as the pair
(Ω,F), where F : Ω→Ω.

From Fig. 1 we can obtain the dynamical equations. For further use, let us write these equations as the trivial ones, namely

S1(t +1) = 0 ,

S4(t +1) = F4(a(4,3)S3(t)) ,

S7(t +1) = F7(a(7,10)S10(t)+a(7,11)S11(t)) , (1)
S11(t +1) = F11(a(11,8)S8(t)+a(11,10)S10(t)) ,

those involving one positive and one negative links

S2(t +1) = F2(a(2,1)S1(t)−b(2,10)S10(t)) , (2)
S3(t +1) = F3(a(3,1)S1(t)−b(3,10)S10(t)) , (3)
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the ones involving one positive and two negative links, and the symmetrical case,

S6(t +1) = F6(a(6,7)S7(t)+a(6,11)S11(t)−b(6,10)S10(t)) , (4)
S8(t +1) = F8(a(8,2)S2(t)−b(8,7)S7(t)−b(8,9)S9(t)) , (5)

one equation involving three negative and one positive links

S5(t +1) = F5(a(5,7)S7(t)−b(5,4)S4(t)−b(5,8)S8(t)−b(5,10)S10(t)) , (6)

and, finally, those involving three negative and two positive parameters

S9(t +1) = F9(a(9,6)S6(t)+a(9,7)S7(t)−b(9,4)S4(t)−b(9,8)S8(t)−b(9,10)S10(t)) , (7)
S10(t +1) = F10(a(10,8)S8(t)+a(10,11)S11(t)−b(10,5)S5(t)−b(10,7)S7(t)−b(10,9)S9(t)). (8)

In the paper of Li et al. [3], for all links one has a(i, j) = ag
and b(i, j) = ar, with ag = ar = 1 for the majority of results.
Now we will study the general inhomogeneous case. Set new
values to the coefficients means change the dynamical system
definition. But will these value changes actually define new
dynamical systems? Let U be a subset of Ω. If F(U) = F ′(U)
for all subset U , the dynamical systems (Ω,F) and (Ω,F ′) are
the same. In the inhomogeneous model, the dynamical system
is defined by the set C = {Ki, j;0≤ i≤ 11,0≤ j≤ 11}. Is that
possible that a class [C], which can contain more than one
set of coefficients C, defines the same dynamical system? If
this happens the non redundant inhomogeneities can be set by
choosing only one element of each class [C].

In order to find this minimal set we must consider two
points: (i) the rule for time evolution takes into account only
the sign of the sum ∑ j Ki, jS j(t), and (ii) the dynamical sys-
tems A and B are the same if, and only if,~SA(t +1) =~SB(t +1)
for all possible common initial condition ~S(t) in the state
space.

We will illustrate how to find the minimal set explicitly
for the dynamic of node 7, which is in equation 1. Note
that both terms in the sum have the same sign. Whatever
the values assumed by the pair C = {a(7,10),a(7,11)}, all
possible initial state combinations (S10(t),S11(t)), namely
D = {(0,0),(1,0),(0,1),(1,1)}, will result on the same case
(positive, negative or zero) for the sum ∑ j Ki, jS j(t), namely
S = {0,+,+,+}. But only the sign of the sum is important
for the evaluation of S7(t + 1), and we have that all the four
possible values of the pair C give the same map between S and
D. If two dynamical system have the same map between S and
D they are identical. So we have all the four possible pairs
defining the same dynamical systems what means that they
take part of the same class [C]. We only need to take a repre-
sentative pair of this class, being the simplest way to choose
C = (1,1). For all the other nodes the procedure is the same,
but we use computer programs to handle the calculations. The
equation 1 have only one class, with all coefficients set equal
one. The equations 2 and 3 have 3 classes, represented by
{(1,1),(2,1),(1,2)}. The equation 4 and 5 have 11 classes,
represented by

{(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,3,2),(2,1,1),

(2,1,2),(2,2,1),(2,2,3),(3,1,2)}.
The equation 6 has 67 classes and the equations 7 and 8 have
3265 classes. The minimal set that accounts for all the pos-
sible inhomogeneities has 32 · 112 · 67 · 32652 = 7,77× 1011

elements. This huge quantity means that we must use a nu-
merical simulation in order to sample this huge set.

3. RESULTS FOR THE INHOMOGENEOUS MODEL

First let us remind briefly the main results obtained by Li
et al. [3] for the homogeneous model with td = 1. From the
2,048 initial conditions, 1,764 converge to the fixed point I1 =
272 representing the biological G1 stationary state. The other
initial conditions converge to six fixed points (I2 = 0, I3 = 12,
I4 = 16, I5 = 256, I6 = 258 and I7 = 274). The pathway of the
cell-cycle network is started by perturbing the G1 stationary
state: Cln3 is turned on. Then the state of the model returns
to the G1 fixed point after 12 time steps. The evolution of the
proteins (or protein complexes), the so-called pathway of the
cell-cycle network Pathhomog=[273, 278, 286, 14, 142, 1678,
1736, 1632, 1888, 1376, 368, 304, 272], follows the biological
cell-cycle sequence.

We study the inhomogeneous model by randomly choosing
the coefficients from the minimal set of interactions. In a typ-
ical numerical study we have 106 samples. For each set of
coefficients we study the evolution from each one of the 2,048
initial conditions and determine the fixed points (or the rare
period-2 and period-3 cycles) with its attraction basin. The
G1 fixed point 272 is always present. In our simulations we
find that its minimal basin size is BSmin(272) = 11. It occurs
only in 0.34% of the minimal interaction set. More rare, the
maximal basin size BSmax(272) = 1999 found in our simula-
tions, appears in 0.23% of the interactions cases. In this case,
generally we have only 5 fixed points, instead of 7 found in
the homogeneous model. The mean basin size of the G1 fixed
point, BSmean(272) = 1622.9, is smaller than that of the Li et
al. model (BShomog(272) = 1764). However, 65.3% of the
interaction’s minimal set have BS(272) > 1764.

We study also the pathway of the cell-cycle network. For
each sample of coefficients, the temporal evolution of the
pathway begins with the perturbed state 273, which is the sta-
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TABLE I: Orbit with initial configuration being the perturbed stationary state. The column “Time” corresponds to the time steps; the columns
identified by the nodes correspond to the time evolution of this nodes; the column “Phase” corresponds to the cell cycle phases; the column
“I” correspond to the integer notation for the vector states. For Cdh1 in times 8 and 9 the notation 0/1 means that the left state corresponds to
Pathhomog and the right one to Path f req.

Time Cln3 Mbf SBF Cln1-2 Cdh1 Swi5 Cdc20 Clb5-6 Sic1 Clb1-2 Mcm1 Phase I
1 1 0 0 0 1 0 0 0 1 0 0 START 273
2 0 1 1 0 1 0 0 0 1 0 0 G1 278
3 0 1 1 1 1 0 0 0 1 0 0 G1 346
4 0 1 1 1 0 0 0 0 0 0 0 G1 14
5 0 1 1 1 0 0 0 1 0 0 0 S 142
6 0 1 1 1 0 0 0 1 0 1 1 G2 1678
7 0 0 0 1 0 0 1 1 0 1 1 M 1736
8 0 0 0 0 0 1 1 0 0 1 1 M 1632
9 0 0 0 0 0/1 1 1 0 1 1 1 M 1888
10 0 0 0 0 0/1 1 1 0 1 0 1 M 1376
11 0 0 0 0 1 1 1 0 1 0 0 M 368
12 0 0 0 0 1 1 0 0 1 0 0 G1 304
13 0 0 0 0 1 0 0 0 1 0 0 STATIONARY PHASE 272

tionary G1 state (272) with the Cln3 activation. Then we de-
termine the pathway and its time step. In 106 samples we
find 336 different pathways. The pathway Path f req = [273,
278, 286, 14, 142, 1678, 1736, 1632, 1904, 1392, 368, 304,
272] with 12 time steps is the most frequent. It appears in
10.9% of the minimal interaction set, while the pathway of
the Li et al. model appears only in 3.6% of the cases. If we
evaluate the average basin size of the G1 fixed point in the
ensemble of the cases having the most frequent pathway, we
find that BS f req(272) = 1866.7. Note that this average value
is large than BShomog(272) = 1764. The only difference be-
tween Path f req and Pathhomog is that in the phase M the cyclin
complex Cdh1 is turned on at time step 9 in Path f req instead
of time step 11 in Pathhomog, as it is shown in table I. Is this
difference meaningful?

The exit of phase M is controlled by the complex APC,
which is activated mainly by Cdc20 and Cdh1. The protein
Cdc20 actives APC that begins the degradation of Clb2 dur-
ing the transition metaphase-anaphase. The second phase of
the Clb2 degradation occurs by the linking of Cdh1 with APC,
during the telophase. Therefore, the Clb2 degradation needs a
sequential action [14]: (i) Cdc20 activating APC and (ii) Cdh1
linking to APC. Although the degradation by APC-Cdc20 is
enough to the exit of phase M, the degradation by APC-Cdh1
is essential to keep the G1 phase stable [15]. In the homoge-
neous model Cdh1 is turned on simultaneously with the turn-
ing off of Clb2, implying that the second degradation mecha-
nism is absent. On the other hand, this second mechanism is
present in Path f req because Cdh1 and Clb2 are both turned on
for two time steps. We can conclude that the early activation
of Cdh1 is more coherent with the Clb2 degradation mecha-
nism.

This results show that not just the big basin of attraction
of the stationary state is indeed robust against changes in the
coefficients, but with inhomogeneities this basin of attraction
gets bigger: 65,5% of the interaction’s minimal set have basin
size bigger than 1764, with a maximum value of 1999.

4. CONCLUSIONS

We found that the big basin of attraction is indeed robust
against change in the parameter Ki, j: 65,3% of the minimal
interaction set have BS(272) > 1764 and the maximum size
being 1999. Considering the orbit of the perturbed station-
ary state 273 we found that the most frequent orbit (Pf req) is
not the one exhibited by the homogeneous model: the orbit
Pf req appears in 10,9% of the minimum coefficient set while
Phomog appears only in 3,6%, that is, this orbit is more robust
against changes on the coefficients. Besides that, the subset of
the dynamical systems exhibiting Pf req has a mean basin size
BS f req = 1866,7 that is bigger than BShomog = 1764. Not just
more robust, but Pf req has a better biological significance as
we have shown by means of the earlier activation of Cdc1.
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