Spin-Lattice Relaxation and Spatially Non-Uniform Fast Ionic Motion

M. Engelsberg and Ricardo E. de Souza

Departamento de Física Universidade Federal de Pernambuco 50670-901 Recife, Pernambuco, Brazil

and

Hsu Chang Toshiba America MRI, Inc. 280 Utah Avenue, South San Francisco California 94080, USA

Received November 2, 1995

Dispersive motional relaxation of $1 \, \mathbf{F}$ nuclei in the superionic conductor beta-PbFz, lightly doped with monovalent I <+ ions, i studied by nuclear magnetic resonance (NMR). A microscopic model of the spatially non-uniform motion of **'9** nuclei in this slightly disordered system, correctly predicts a wide range of observations which resemble glassy behavior. The model predicts tlie stretchecl exponential decay of the magnetization in the rotating frame, the value of tlie exponent and its change when the doping level is varied, the scaling of the decays with temperature and rotating field for a given doping level and the observed departures from simple relaxation theory.

Relaxation in disorderecl systems has attracted considerable interest in recent years mainly as a consequence of some universal features that appear to be associated with the phenomenon. Such is tlie case, for example, with the stretched exponential time dependence of the relaxation of form $\exp(-(t/\theta)^{\beta})$ with $0 < \beta < 1$, first introduced by Kohlrausch[1,2] to describe mechanical creep in glassy fibers, which has been found to be at least as ubiquitous and probably even more so than purely exponential relaxation^[3]. Another characteristic feature of glassy systems is a non-Arrhenius behavior whereby correlation times are increasing more rapidly at low temperatures. The stretched exponential behavior could of course be explained in a simplistic way by assuming that in a disordered system there exists a probability distribution of relaxation times. If the overall time dependence of the process consists of additive contributions, one could obtain any desired time dependence by integrating over an heuristic probability

distribution. It has been pointed^[4] that such an approach explains neither the universality of Kohlrausch's law nor its microscopic origin, therefore emphasizing the need of a more general approach. More recently^[5,6] systematic clepartures from Kohlrauscli's law were observed in the higher frequency regime of the dielectric relaxation of various glassy systems. Even then, a universal scaling function was still found to correctly describe the relaxation for a wide range of frequency and temperature witli stretched exponential behavior still prevailing in the low frequency regime.

Although a variety of quite general concepts which may underlay the universality of dispersive relation in disordered and glassy systems have been proposed^[4,7], few detailed microscopic models applicable to specific examples have been put forward. It has been proposed^[6] that a convenient starting point for a microscopic theory may be found in the relaxation of systems clisplaying a simpler type of disorder than the one found in structural glasses. Thus, orientationally disordered glasses for example, which have been shown to also exhibit universal features^[6], may be more amenable to theoretical inodeling.

The superionic conductor $PbF_2^{[8,9]}$, doped with small amounts of KF may constitute another example of a system of this type. In this paper we present 60 MHz ¹⁹F rotating frame nuclear spin-lattice relaxation (RFNSLR) measurements in the beta phase of PbF_2 doped with small amounts of KF. The data include temperature and rotating field dependences in crystals with two different concentrations of K^+ . The fluorite beta phase of PbF_2 displays high anionic mobility reaching values typical of molten electrolytes at temperatures in the vicinity of 700 K. Moreover sufficient mobility to cause motional narrowing of the NMR line can be frozen in in PbF_2 , even at temperatures as low as 200K, by the addition of small amounts of monovalent $(K^+, Na^+)^{[10]}$ or trivalent ions^[11] such as Eu³⁺.

Figure 1. Decay of the rotating frame magnetization in beta- PbF_2 : K^+ (sample A) for $B_1 = 6.8$ gauss and T = 198K. The solid line was calculated from Eq.6 at T = 197K with the two adjustable parameters used in all calculations: the fluoride vacancy prefactor $\tau_{v\infty} = 8.5 \times 10^{-14}$ sec and its activation energy E, = 0.185 ev/ion. The slope of the dashed line gives Ti,.

Figure 2. Scaling plots of the decays of the magnetization in the rotating frame for four values of B_1 and various temperatures in the range 178K < T < 253K. The solid lines are theoretical fits from Eq.6. Fig.2a (top): scaling plot for sample A (0.054 mol % KF) as a function of reduced time $(t/\bar{T}_{1r})^{\beta}$ with $\beta = 0.63$. Fig.2b (bottom): scaling plot for sample B (0.0088 mol % KF) as a function of reduced time $(t/\bar{T}_{1r})^{\beta}$ with $\beta = 0.70$.

RFNSLR in pure PbF_2 , at temperatures in the motionally narrowed line regime (300K < T < 520K), appears to be well described, within the framework of the Bloembergen-Purcell-Pound (BPP) theory^[9,12], by a single fluorine jump rate. In contrast, for $PbF_2: K^+$ in a lower temperature range (160K < T < 400K) but still corresponding to an equivalent motional regime, this description is no longer possible and a dispersive relaxation with a distribution of jump rates appears to prevail. Fig.1 shows a typical non exponential decay of the ¹⁹F magnetization in the rotating frame for a radio-frquency field of amplitude $B_1 = 6.8$ gauss at T = 198K in a sainple containing 0.054 mol % KF (sample A). The external magnetic field \vec{B}_0 was along [100]. Even though a rotating frame spin-lattice relaxation time cannot be defined in the usual way from data.such as those of Fig.1, it is still useful to introduce a characteristic time \bar{T}_{1r} , obtained froin the slope of the initial clecay shown by the dashed line of Fig.1. This permits a more concise description of the temperature and rotating field dependences of the relaxation rates also providing a scaling parameter to display the universality of the clecays.

Fig.2a shows the scaling of the decays for various teinperatures and rotating field amplitudes in sainple A whien plotted as a function of reduced time $(t/\bar{T}_{1r})^{0.63}$. Fig.2b shows decays for sample B (containing 0.0088 mol % of KF) exhibiting similar scalifig when plotted as a function of $(t/\bar{T}_{1r})^{0.70}$. In Fig.3, the temperature dependence of \bar{T}_{1r} for sample A is shown nt two different values of B_1 , whereas Fig.4 shows temperature dependence of B_1 .

Figure 3. Experimental (\Box) and theoretical (+) values of \overline{T}_{1r} as a function of inverse temperature iii Sample A for $B_1 = 6.8$ gauss. Theoretical values were obtained from the decays of Eq.6 by the same procedure outlined for the experimental data and shown by the dashed line of Fig.1. Experimental (\bigcirc) and theoretical (\times) values of \overline{T}_{1r} are also shown for $B_1 = 25.0$ gauss. The slopes of the high temperature asymptotes are 0.18 ev/ion whereas the low temperature slopes are 0.24 ev/lon.

The experimental data of Fig.3 resemble the the-

oretical predictions of the BPP theory with a single jump rate. Bowever, the asymptotes on hoth sides of the minima have cliffereiit slopes (0.18 ev/ion and 0.24 ev/ion). This could be interpreted as an apparent non-Arrhenius behavior with the relaxation rate decreasing faster at low teinperatures. Furthermore, the rotating field dependence ineasured at four different values of B_1 (6.8 G, 13.0 G, 18.9 G and 25.0 G), on the low temperature side of the ininima, yields $\bar{T}_{1r} \propto B_1^{1}$ instead of a quadratic dependence.

Figure 4. Experimental (\Box) and theoretical (+) values of \bar{T}_1 , as a function of inverse temperature for $B_1 = 6.8$ gauss in Sample A. Theoretical values were obtained from Eq.6 by the same procedure used in Fig.3. Experimental (\bigcirc) and theoretical (\times) values of \bar{T}_{1r} are also shown for Sample B.

NMR probes the relaxation of ${}^{19}F$ magnetic moments caused by mobile defects, which in the present case, are fluoride vacancies created by doping with monovalent alkaline ions which substitute^[13] for divalent Pb^{2+} . For this type of disorder, the probability distribution of ${}^{19}F$ residence times τ_F can be modeled. Consider a single K^+ ion substituting for Pb^{2+} at the center of a sphere of radius R containing inany fluorine nuclei and let r be the radial distance from the K^+ ion to a charge-compensating fluoride vacancy (F_{ν}) . Neglecting thermally induced defects in the temperature range of the experiment, the motion of fluorine nuclei can be assumed to be controlled by the spatially nonuniform probability distribution of fluoricle F_{ν} vacaiicies. At low temperatiires, and because of the Coulomhic attractioni binding K^+ : F_{ν} pairs, fluoride vacancies can be found with significant probability only for small values of r and fluorine motion only takes place in the vicinity of the doping ions. As the temperature increases and the K^+ : F_{ν} pairs clissociate, a larger fraction of fluorines become mobile.

Denoting by $P(r,T)4\pi r^2 dr$ the probability of finding a fluoride vacancy within a spherical shell of radius' between r and r + dr and by $n_F 4\pi r^2 dr$ the number of fluorine nuclei within the same volume, the jump rate $1/\tau_F$ of a fluorine can be related to the jump rate $1/\tau_{\nu}$ of the vacancy by:

$$1/\tau_F = (P(r,T)/n_F)(1/\tau_{\nu}) , \qquad (1)$$

where $n_F = 3.778 \times 10^{22} \text{ cm}^{-3}$ is the number of fluorines per unit voluine. Furthermore, the fluoricle vacancy motion within the sphere or radius R is assumed to be characterized by a single resiclence time with an Arrhenius dependence on temperature as $\mathbf{r}_r = \mathbf{r}_r = \exp(E_\nu/kT)$.

For the proposed model of bound K^+ : F_{ν} pairs, tlie probability density P(r,t) can be written as:

$$P(r,T) = e^{-\Phi/kT} / \int_{\Omega} e^{-\Phi/kT} d\Omega$$
 (2)

where $\Phi(r, T)$ is the potential energy of a fluoride vacancy at a distance r from a K^+ dopant and the integral extends over the volume Ω_a of a sphere of influence suirounding a single K^+ ion.

The Coulomb attractioii between the effective positive charge of a fluoride vacancy and the effective negative charge of a monovalent dopant ioii is shielded by the ionic atmosphere. For the relatively low concentration of mobile defects in our samples, the net effect can be described by a simple Debye-Hückel^[14,10] potential:

$$\Phi(r,T) = -[e^{\lambda b}/(1+\lambda b)](q^2/\epsilon r)e^{-\lambda r} , \qquad (3)$$

where $\lambda = (6q^2/\epsilon kTR^3)^{1/2}$, q is the electronic charge, $\epsilon \cong 30$ is the large static dielectric constant of this superionic conductor, R denotes the radius of a sphere containing a, single dopant ioii and b is the distance of closest approach between the fluoride vacancy and the K⁺ ion. For the fluorite structure of beta-PbF₂, b = 2.58Å. We further assume that each ¹⁹F is relaxed chirectly by the fluctuating dipolar fields of neighboriiig mobile nuclei and that spin diffusion between more distant nuclei within a sphere of iiifluence is slow compared with direct RFNSLR rates. For a ¹⁹F spin at a distance r from the center of a sphere of influence, the rotating frame relaxation rate $1/T_{1r}$ predicted by the BPP theory is then given by ^[9]:

$$1/T_{1r} = W\tau_F(\mathbf{r},T)/[1+4\omega_1^2\tau_F^2(\mathbf{r},T)], \qquad (4)$$

where $\omega_1 = \gamma_F B_1$ ($\gamma_F = 2.5166 \times 10^4$ gauss/sec) and $W = 0.44 \times 10^{10} \text{sec}^{-2}$ is approximately equal to the rigid lattice contribution to the second moment.

The time evolution of the magnetization parallel to \vec{B}_1 (along z), can be obtained from Eq. 4 by adding the coiitributions from all nuclei within the sphere of radius R containing a single dopant ion. Bowever, giveii the disorder introcluced by the random nature of thie dopiiig process, tlie radius R must be regarded as a random variable with a probability density Q(R) to be determined. Since the substitution of sites by a given average concentration of dopants can be expected to follow a binomial distribution, the probability that a sphere of radius R contains a single dopant ion can be calculated. Moreover if the spliere of radius R contains many Pb^{2+} sites with very small K^+ occupation probability, as in tlie present case, tlie binomial distribution becomes, to a very good approximation, a Poisson distribution. The probability tliat a sphere containing a single K^+ ioii has a.radius between R and R + dR, is then given by:

$$Q(R)dR = 4\pi R^2 n_d e^{-n_d(4/3)\pi R^3} dR / \left(\int_b^\infty 4\pi \rho^2 n_d e^{-n_d(4/3)\pi \rho^3} d\rho\right)$$
(5)

The final time evolution of the overall rotating frame magnetization $M_z(t)$, averaged over the Poisson distribution Q(R), can be obtained from Eqs.1-5:

$$M_z(t)/M_z(0) = \int_b^\infty Q(R) \left\{ [(3/4\pi)(R^3 - b^3)^{-1}] \int_b^R e^{-t/T_{1r}} 4\pi r^2 dr \right\} dR .$$
 (6)

Γ

Various comparisons between the predictions of Eq.6 and the experimental data are shown in Figs.1-4 where the only two adjustable parameters were $\tau_{\nu\infty} = 8.5 \text{ x } 10^{-14} \text{sec}$ and E, = 0.185 ev/ion. The average number of dopants per unit volume n_d was obtained from the known concentrations of Samples A and B and is better represented by an average radius $R = [3/(4\pi n_d)]^{1/3}$. For sample A, $\bar{R}_A = 30.4$ Å while for sample B, $\bar{R}_B = 55.3$ Å, whereas the shielding length of Eq. 3 is $(\bar{\lambda}_A)^{-1} \approx \bar{R}_A/2$ for sample A at T = 273K.

Fig. 1 shows a typical theoretical decay obtained by a numerical integration of Eq.6 for T = 197K and $B_1 = 6.8$ gauss in sample A. Figs. 2a and 2b show theoretical decays with $\beta = 0.63$ (sample A) and $\beta = 0.70$ (sample B) which also exhibit the scaling behavior with respect to temperature and rotating field amplitude found experimentally. Fig. 2b shows that β actually becomes closer to one as the degree of disorder is reduced.

Figs.3-4 show calculated values of \overline{T}_{1r} where each point is obtained by first computing the decay from Eq.6 and subsequently determining the time constant \overline{T}_{1r} by the procedure outlined in Fig.1.

The model yields the correct values of the exponent β for two different values of the concentration of dopants and accounts for the observed scaling with temperature and B_1 (Fig.2). It also quantitatively explains the shift in the temperature dependence of T_{1r} with concentration (Fig.4) as well as the observed departures from simple relaxation theory (Fig.3). Given the agreement between this wide range of data and the predictions of Eq.6 we conclude that a fairly complete microscopic description of dispersive motional relaxation caused by this type of mild disorder is possiblt. This may provide some clues for understanding the dynamics of glassy systems. The Poisson distribution, applicable to the dilute disorder prevailing here, leads naturally to Kohlraush relaxation of universal type under quite general conditions. This can also be verified analytically using the method of steepest descent to calculate, for simpler cases, the asymptotic behavior of integral such as that of Eq.6. The values of the exponents are determined not only by the degree of disorder but also by the spatial variation of the potential (Debye-Hckel) which for low temperatures, confines the motion of the magnetic dipole moments to localized regions around the randomly distributed centers.

Acknowledgments

We wish to thank Prof. Irving J. Lowe for hospitality and fruitful discussions and Prof. J.J. Fontanella for making available the crystals used in this work. We also thank CNPq (Brazil) for support (M.E. & R.E.S.).

References

- 1. R. Kohlrausch, Pogg. Ann. Phys. 91, 179 (1854).
- G. Williams and D.C. Watts, Trans. Faraday. Soc. 66, 80 (1970); K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 341 (1941).
- R. Bohmer, K.L. Ngai, C.A. Angell and D.J. Plazelr, J. Chem. Phys. 99, 4201 (1993).
- 4. R.G. Palmer, D.L. Stein, E. Abrahams and P.W. Anderson, Phys. Rev. Lett. 53, 958 (1984).
- P. K. Dixon, L. Wu, S. R. Nagel, B. D. Williams and J. Carini, Phys. Rev. Lett. 65, 1108 (1990).
- D. L. Leslie-Pelecki and N. O. Birge, Phys. Rev. Lett. 72, 1232 (1994).
- M. F. Shlesinger, Ann. Rev. Phys. Chem. 39, 269 (1988).
- T. Y. Hwang, M. Engelsberg and I.J. Lowe, Chem. Phys. Lett. 30, 303 (1975).
- J. B. Boyce, J. C. Mikkelsen, Jr. and M. O'Keefe, Sol. State Comm. 21, 955 (1977) (and references therein).
- H. Chang, M. Engelsberg and I.J. Lowe, Sol. State Ionics 5, 609 (1981); H. Chang, Ph.D., thesis, University of Pittsburgh (1981) (unpublished).
- A. Meijerink and J.C. Wright, Phys. Rev. B 447, 2970 (1993).

- N. Bloembergen, E.M. Purcell and R. V. Pound, Phys. Rev. 73, 679 (1948).
- G. C. Liang and A. V. Joshi, J. Electrocliem. Soc. 122, 446 (1975).
- 14. P. W. Debye and E. Hückel, Pliys. Z. Sowjetunion

24, 185 (1923). For a recent review of Debbye-Hückel theory and criticality see: RI. E. Fisher, J. Stat. Phys. 75, 1 (1994); Y. Levin, X.J. Li and M. E. Fisher, Phys. Rev. Lett. **73**, 2716 (1994).