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I. Introduction

Traditionally, to study a quantum optical system,
one deals with a reduced density matrix approach lead-
ing to a master equation!] of the density matrix of typi-
cally one or more modes of the electromagnetic field, af-
ter having eliminated all other degrees of freedom such
as atoms, reservoirs efc.

This approach has a strong emphasis on the evolu-
tion of the whole statistical system and does not deal
with the question of how an individual member of such
an ensemble evolves in time.

Alternatively, over the last few years, methods have
been developed to simulate numerically and up to a
point, also analytically, the “individual quantum trajec-
tories” a word coined by Carmichael!?. Two main line
of thought have appeared. On one hand, one method
is based on the continuous evolution of the system, un-
der a non Hermitian Hamiltonlan, as to include dissi-
pative effects, randomly interrupted by instantaneous
quantum jumpst®4, which, according to Wiseman and
Milburn,[®! could be possibly interpreted as a direct
counting of decaying quanta. This could, for instance
the event describing the absorption of a photon in walls
of a resonator. On the other hand, a second approach
consists in studying the evolution of a “quantum state

fluctuate with a Wiener process describing the coupling
of the system to the environment. From the measure-
ment viewpoint, this would correspond to a heterodyne
measurement of a field amplitude.[6-9]

Both methods, of course, converge in the sense that
the ensemble average leads to the usual Master Equa-
tion describing the system coupled to various reservoirs
and leading, typically, to gain and damping.[1%]

The plan of the present work is the following: In sec-
tions II and III, we briefly describe both the quantum
jump and Stochastic Schrédinger approach respectively.
Section IV is devoted to apply some of these ideas to
the Raman Laser and also explore the possibility of
cooperative effects. Finally section V is devoted to dis-
cussion. Before concluding this section, we should point
out that if one has a small system (s) coupled to.one or
more large reservoirs, one writes a linear equation for
the density matrix of the small system p, as

. 1
Ps — ﬁ'[ths] + Lrelax(ps) ) (1)

where Lieax(ps) is a relaxation superoperator describ-
ing various possible dissipative mechanisms, leading to
the spontaneous emission, damping of the field in a cav-
iy, ete.

For a very large class of relaxation phenomena, one

diffusion model”, where the “individual trayectories” can write:
|
1
Lecax(ps) = -3 Z(C:ncmpl +psCLCn) + Z CnpCl, (2)
m m
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where Cy,; is an operator acting on the small relevant
system. For example, in the case of spontaneous emis-
sion, C = vk o_ where o_ is the Pauli lowering spin
operator and k is the energy loss rate to the reservoir.
Another example is C = /¥( + 1)a, describing
loss (at a rate v) to the cavity walls at a temperature
characterized by the plioton occupation number 7.

II. Quantum jumps

The method is the following!?!
One calculates the timeevolution of the wave func-
tion from |¢(¢)) to |g(¢ T 62)) in 2 steps:

< qS/(t + 6t)|¢/(t + St) S=< ¢(1)(t)| [1+ iH;&] [I .

where

bp = (517 < SOVH - H'l6(1) >= Y bpm . (6)

with:

bpm = 6t < $()|CF,Cmlb(t) > | ()

b) Between (t)and (t+6t) thereisafinite possibility of
a quantum jump. To decide wliether a quantum juinp
has occured, one cliooses a random number r between
0and 1.

Since we choose (St) small, one can aways have
ép < 1.

Now, usualy r > ép and no quantum jump occurs
and

|¢'(t T 61) > .

|¢(t + 6t) >normalized =

div > =

+ E(Cm— < Cr >y)|Y > dé

where dé,, is a complex Wiener process characterized by

M. Orszag and R. Ramirez

a) A non-normalized wave function |[¢()(¢ + St))is
obtained from a "continuous evolution” with a non-
Hermitian Hamiltonian:

H=Hs= 23 Chom, 3)
m

in such a way that, for small &:

|6/t + 68) >= (1_ ’—};‘51> 6O > . @

Since H is non-Hermitian, one has to renormalize the
wave function:

iH16¢

: t _1
hH|¢>clt+§ [< Cl >y Cm

| lew>=1- 8, 6)

However, at some rare occasions, r < ép and a quan-
tum jump occurs, and the wavefunction can be one of
the states:

Cmld(t) >

/6P [t ’ ®

with a relative probability (6pm /dp) with respect to the
various jump processes. It is not difficult to prove, that
with the rules given above, if one averages the possible
outcomesat timet, starting from someinitial state, the
result coincides with p,(t), provided the initial state is
the sainein both cases.

l¢(t + (St) >=

II1. The state diffusion picture

The other approach is to write the time evolution
described in equation (1) as a Stochastic Schrodinger
Equation, given by:[6-21 -

20,’510,,1 - % < Cl >y< Cn >m] [ > dt

9)
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M{[Re(dé,)Re(dém)] = M{Im(d€n)Im(dém)] = bam

8t
2 ’

M(dén) =0 , M(Re(dén)Im(dém)) =0 ' (10)

where M represents the mean over the probability
distribution, where the Ito calculus is implied here,
thus keeping differentials up to second order. Once
more, it isstraightforward to prove that this Stochastic
Schraodinger Equation, when averaged over many such
"quantum trajectories”, gives back the master equation
(D).

In both methods described above, one has the dis-
tinctive advantage of solving N equations, instead of
N? equations, for the density matrix, where N is the
state space dimension.

IV. Application. The Raman laser

We consider a doubly resonant optical cavity, where
the ground state, intermediate and excited states are
labeled by Q 1 and 2 respectively. (Figure 1).

Figure 1. Thelevd aom inside tlie double cavity.

Lasing takes placein the |1 > —|2 > transition cou-
pled to the first mode with a coupling constant g,. On
the other hand tliesecond cavity mode is resonant with
the |0 > —|1 > transition with coupling constaiit g;.
We will assume that the cavity is “bad” for tlie mode b,
so that it contains a very low photon number and acts
as a recycling mode. Finaly, © isthe pump that drives
the [0 > —|2 > transition.

The Hamiltonian of the system is:

H= ihga(a.agl—at612)+ihgb(ba’w—-bf0'01)+ih9(0'20—0'02) ,
(11)

and the damping terms are characterized by:
Y12 -

Lecax p = "‘2"'(20121?0’21 — 021013p — pO21012)
2/';i(m’mp‘fm — 010001p — /J0'100'o1)

‘%lé‘l(apa'f - a'ap — pata)

+ + +

l;'i(bpbf — btbp — pbt) . (12)

For the numerical analysisd this problem, we have used
the state diffusion picture, Eq. (19).

In thereference 11, asuperradiant laser isdescribed,
where the collective behaviour is, at least in part, de-
scribed by the “passive” mode b, Physically, this is
a low finesse mode thus justifiying the adiabatic di-
minitation. It is simple to show(*! that if one writes
the Heisenberg equations for the system, this adiabatic
elimination is mathematically equivalent to a collective
decay from the level 1 to the ground state. On the
other hand, previous workers!!213) found that in a one
Atom Raman Laser (without b-fied) and with a detun-
ing of the order of the atom-field coupling constant, one
could prepare alow plioton number eigenstate of asin-
gle damped cavity mode coupled to a single three leve
atom.

We could in principle, monitor the photon number
o tlie bfidd that will provide information or influence
the atomic populations and hence, the lasing mode. If
we write the state vector of the system as:

[ >= Y Cinmli>Ina>Ims >,  (13)

$,n4,M0

from eg. (8), one can write:



386

M. Orszag and R. Ramirez

div) = [{galaoa —aTo12) + g5(boro — bt oo1)
Q(O’zo — 0’02) — ?%a"'a + ve < Ct+ >a— %b-l-b

+ 4+ o+

Y12 Yo1
v <bt >b— 7022+712 <031 > 019 — 011

2

Yo1 < 010 > 001} AL + \fraadla + /750dEy + /T12012dE12 + /Yo1001dE01] | > (14)

In equation (14) we have omitted the terms in the direction of |¢» >. Thisis justified for complex fluctuations
satisfying eg. (10).1°] Introducing the expression of | > (eq. 13) into (14) and after some simple algebra, one gets
the following differential recursion relation for the expression coefficientes:

dCi,na,nb(t)

i

At[b1 200V na + 101 041,00

- Ya/ naéi,lcb,na—1,71(l + gbéi,q vy + lco,na,nb+1

- gby nbéi,OC'l,na,nb-—l -+ Q(éi,ZCO,na,nb -

6i?002)nalnb)
Y12

1
- 5(7{1“(1 + 7bnb)0i,na,nb - T‘si,?CZ,na,nb)

You

e~ i,lcl,na,nb + e < CL+ > \/n'aC'i,na+1,n2

2

Yo < bt > \/MpCing npgn + 112 < 021 > 81032 0, 0]

+
+ Y01 < 010 > 6:,1C0,n0 0]

+  [VYavTar19€aCingt1,ny + V1Mo 4185Cing npt1

+  V712d6126i 102 1, ny + V701360165,0C5 0 ) (15)

We take as initial condition for eq. (15)

C'iynay'ﬂb(t = 0) = 6i,06na,06nb,0

The stochastic terms d¢,, d&, dé12 and d&y; are com-
plex numbers and are obtained through a usual nor-
mally (gaussian) distributed independent random se-
quence for both the real and theimaginary parts, with
4 variance §t/2 and zero mean value, according to eq.
(10).

According to the above discussion, we iterate nu-
merically eq. (15), doing it several times and averaging
the result. Since we wanted to monitor the system with
the field, we took some fixed parametres g, = 1, 2 = 1,
Yo = .05, v = 5., 712 = 0., v01 = 0.4 and taking g5 = .5
(Figure 2), g5 = 2. (Figure 3) and ¢ = 2.5 (Figure 4).

20

1.0

\ l! \ \/\\/J\/\wf \_/\J/\’L//\wvwv/ \

woll A M
\Jv
|

\
_1 .o 1 1 i
0.0 5000.0 10000.0 15000.0 20000.0

Figure 2. Average photon number (upper curve) and Man-
del’s Q-factor lower curve for g, = 1, g» = 0.5, 2 = 1,
Yo = .05, ¥» = 5; 12 = 0, Y1 = .4. The horizontal axis
shows the number of steps, with §¢ = .0025. 10 loops were
taken.
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Figure 3. Average photon number (upper curve) and Man-
dei's Q-factor (lower curve) for the same parameters asin
figure 2, except g, = 2.
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Figure 4. Average photon number (upper curves) and Man-
dei's Q-(factor/lower) curve, for the same parameters asin
figure 2, except g, = 2.5.

The upper curve in each case is the average pho-
ton number and the lower curve is the Mandel Q,-
parameter, defined as:

Qu = <n§>—<na>2_

< ng >
We notice that for increasing g,, @4 goes down, thus
enhancing the non classical behaviour, reaching a min-
imum value of Q, = —0.5for ¢, = 2.5. For larger g,
values, @Qq increases again. It is interesting to notice
that thisfield state with low photon number fluctua-
tions has a non negligibleintensity (photon number) as
compared with previous results where the photon num-
ber is the order of unity.!*?

1 (16)

V. Summary and discussion

The method of the quantum trajectories is a pow-
erful tool to solve either analytically or numericaly

problems that otherwise would be very difficult to
handle. We reviewed two different ways of attaclting
this problem, namely via quantum jumps or stochastic
Schrodinger equation. These two methods when aver-
aged over many trajectories, give back the master equa-
tion with the irreversible or bath terms.

The first way (quantum jump) can be interpreted,
if viewed from the measurement theory viewpoint,
as photodetection and the second way (Stochastic
Schrodinger) as heterodyne field measurement scheme.
Finally, we analyze the example of the Raman Laser,
using quantum trajectories generated numerically with
the Stochastic Schrodinger approach.

We find, that by introducing an auxiliary b-fidd in
the model, one can generate sub Poissonian fields with
a non negligible number of photons, which represents
an advantage over previous work.[!2

Finally, wethink it is of interest to explore a Raman
or Superradiant Laser with several atomsto test impor-
tant properties, such as N2 emission, bright squeezing,
etc. This will be the subject of a future publication.
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