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where C, is ali operator acting on the small relevant 

system. For example, in the case of spontaneous emis- 

sion, C = a- where a- is the Pauli loweriiig spin 

operator and i? is the energy loss rate to the reservoir. 

Another example is C = J--a, describing 

loss (at a rate y) to the cavity walls at a temperature 

characterized by the plioton occupation numbei. n. 

11. Q u a n t u m  jumps 

The method is the f~ l lowing[~~  

One calculates the time evolution of the wave func- 

tion from I$(t)) to Id(t + St)) in 2 steps: 

a) A non-normalized wave function ~+(')(t  + St)) is 

obtained from a "continuous evolution" with a non- 

Hermitian Hamiltonian: 

iii H = H ~ - - C C A C ~ ,  
m 

in such a way that, for small St: 

Since H is non-Hermitian, one has to renormalize the 

wave function: 

[ iH,&] [ i ~ i b t ]  < +'(t + St)lq5'(t + St) >=< p ( t ) l  1  + - I +-  Id(t) >= 1 - 6~ , 

where 

Spm = 6t < d( t ) lc~cml4( t> > . (7) 

b) Between ( t )  and (t +St) there is a finite possibility of 
a quantum jump. To decide wliether a quantum juinp 
has occured, one cliooses a random number r between 
O and 1. 

Since we choose (St) small, oiie cai1 always have 

However, at some rare occasions, r < Sp and a quan- 
tum jump occurs, and the wave function can be one of 
tlie states: 

with a relative probability ( S p m / S p )  with respect to the 
various jump processes. It is not difficult to prove, that 
with the rules given above, if one averages the possible 
outcomes at time t ,  starting from some initial state, the 
result coincides with p,(t), provided the initial state is 
the saine in both cases. 

6p « 1. 
111. The s t a t e  diffusion p i c tu re  

Now, usually r > S p  and no quantuin jump occurs 
and The other approach is to write the time evolution 

described in equation (1) as a Stochastic Schrodinger 

1d(t + 6t) >norrnaliaed= 
Idl(t + St) > . (7) Equation, given by:[6-8] ' 

d-i 

where dtm is a complex Wiener process characterized by 
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where M represents the mean over the probability 
distribution, where the Ito calculus is implied here, 
thus keeping differentials up to second order. Once 
more, it is straightforward to prove that this Stochastic 
Schrodinger Equation, when averaged over many such 
"quantum trajectories" , gives back the master equation 

(1). 
In both rnetliods described above, one has the dis- 

tinctive advantage of solving N equations, instead of 
N 2 equations, for the density matrix, where N is the 
state space dimension. 

IV. Application. The Raman laser 

We consider a doubly resonant optical cavity, where 
the ground st,ate, intermediate and excited states are 
labeled by O, 1 and 2 respectively. (Figure 1). 

2 

Figure 1. The level atom inside tlie double cavity. 

Lasing tak'es place in the 11 > -12 > transition cou- 
pled to the first mode with a coupling constant ga. 011 

the other hand tlie second cavity mode is resonant with 

the 10 > -11 > transition with coupling constaiit gb. 

We will assume that the cavity is "bad" for tlie mode b, 
so that it contains a very low photon number and acts 

as a recycling mode. Finally, SZ is the pump that drives 

the 10 > -12 > transition. 

I 

The Hamiltonian of the system is: 

H = itiga(au2i-atu12)+ihgb(b~o-btuo1)+ih~(u2~-uo2) , 
(11) 

and the damping terms are characterized by: 

Ya + T;-(apat - atap - pata) 

For the numerical analysis of this problem, we have used 

the state diffusion picture, Eq. (19). 

In the reference 11, a superradiant laser is described, 

where the collective behaviour is, at least in part, de- 

scribed by the "passive" mode b. Physically, this is 

a low finesse mode thus justifiying the adiabatic eli- 

minitation. It is simple to show["] that if one writes 

the Heisenberg equations for the system, this adiabatic 

elimination is mathematically equivalent to a collective 
decay from the level 1 to the ground state. On the 

other hand, previous workers[l2?l3) found that in a one 
Atom Raman Laser (without b-field) and with a detun- 

ing of the order of the atom-field coupling constant, one 

could prepare a low plioton number eigenstate of a sin- 

gle damped cavity mode coupled to a single three level 

atom. 

We could in principle, monitor the photon number 

of tlie b-field that will provide information or influence 

the atomic populations and hence, the lasing mode. If 
we write the state vector of the system as: 

from eq. (B), one can write: 
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In equation (14) we have omitted the terms in tlie direction of 14 >. This is justified for complex fluctuations 

satisfying eq. (10).[~] Introducing tlie expression of IS, > (eq. 13) into (14) and after some simple algebra, one gets 

the following differential recursion relation for the expression coefficientes: 

We take as initial condition for eq. (15) 

The stochastic terms dt,, dtb,  dti2 and dtol are com- 

plex numbers and are obtained through a usual nor- 

mally (gaussian) distributed independent random se- 

quence for both the real and the imaginary parts, with 

á variance S t / 2  and zero mean value, according to eq. 

(10). 

According to the above discussion, we iterate nu- 
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Figure 3. Average photon number (upper curve) and Man- 
dei's Q-factor (lower curve) for the same parameters as in 
figure 2, except gb = 2. 

problems that otherwise would be very difficult to 
handle. We reviewed two different ways of attaclting 
this problem, namely via quantum jumps or stochastic 
Schrodinger equation. These two methods when aver- 
aged over many trajectories, give baclt the master equa- 
tion with the irreversible or bath terms. 

The first way (quantum jump) can be interpreted, 
if viewed from the measurement theory viewpoint, 
as photodetection and the second way (Stochastic 
Schrodinger) as heterodyne field measurement scheme. 
Finally, we analyze the example of the Raman Laser, 
using quantum trajectories generated numerically with 
the Stochastic Schrodinger approach. 

We find, that by introducing an auxiliary b-field in 
the model, one can generate sub Poissonian fields with 
a non negligible number of photons, which represents 
an advantage over previous work.[12] 

Finally, we think it is of interest t o  explore a Raman 
or Superradiant Laser with severa1 atoms to test impor- 
tant properties, such as N2 emission, bright squeezing, 
etc. This will be the subject of a future publication. 
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Figure 4. Average photon number (upper curves) and Man- 
dei's Q-(factor/lower) curve, for tlie same parameters as in 
figure 2, except gb = 2.5. 

The upper curve in each case is the a.verage plio- 
ton number and the lower curve is the Mande1 Q,- 
parameter, defined as: 

We notice that for increasing g,, Q, goes down, thus 
enhancing the non classical behaviour, reaching a min- 
imum value of Qa m -0.5 for gb = 2.5. For larger gb 
values, Q, increases again. It is interesting to notice 
that this field state with low photon number fluctua- 
tions has a no11 negligible intensity (photon number) as 
compared with previous results where the photon num- 
ber is the order of ~ n i t ~ . [ ' ~ ]  

V. S u m m a r y  and discussion 

The method of the quantum trajectories is a pow- 
erful to01 to solve either analytically or numerically 
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