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We re-examine resonance fluorescence showing that a mathematical advantage is realized 
when using semiclassical dressed states. In the present dressed-state treatment 
yields exact results with a fraction of the effort required when working in the usual bare-state 
basis. 

I. In t roduct ion  

Resonance fluorescence from a two-leve1 atom driven 

by a monochromatic light field, is one of the fun- 

damental problems in quantum optics, (see Fig. 1). 
It  was theoretically predicted[l] and experimentally 

obser~ed[~I in the early 70's. Studies in this area have 

been extended to include modification of the sponta- 

neous emission in an electromagnetic re~onator[~] and 

subnatural line narrowing in the fluorescence from a 

driven three-leve1 atam[*]. 

In the present paper we show that the mathemat- 

ics of the usual analysis can be simplified by going 

to a dressed-state basid5]. In section 11, working in 

the semiclassical dressed-state basis, we show that we 

can reduce the coupling between the equations of mo- 

tion of the density matrix elements, which substantially 

reduces the calculational effort. In Appendix A, we 

present a detailed solution of the matrix equations of 

motion. Section I11 deals with the two-time correla- 

tion function and in section IV, we analyze the spec- 

trum both in the weak and strong driving field limits. 

Furthermore, in Appendix B, we review the main fea- 

tures of resonance fluorescence in the strong driving 

field limit by applying the secular approximation. The 

spirit of the present paper is meant to be tutorial. 

11. Descript ion i n  the dressed-state  basis 

Consider a two-leve1 atom (upper level Ia) and lower 

level Ib)) interacting with a radiation field of frequency 

v, then the total Hamiltonian in the rotating wave ap- 

proximation can be written as 

' 3 t = b a l a ) ( a I + f ù J b l b ) ( b l + X t  (1) 

where 

AR 
'lit = -(lo)(ble-iut + Ib)(aleiut) . 

2 (2) 

The ,Rabi frequency R is defined as 
/ 

and assumed to be real, where p is the dipole matrix el- 

ement between the upper level and the lower level and 

8 is the electric field amplitude of the driving radia- 

tion field. For the case of resonance (v = w ,  - wa) the 

interaction picture Hamiltonian is now given by 

Including the relaxation between the atpmic levels, we 

describe the given syste& by a master equation, 
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Figure 1. Two-leve1 atom driven by a continuous monochromatic laser field of frequency v. Spectrum of the spontaneous 
emission shows central peak at v and sidebands at v f  the Rabi frequency, 0. Physical origin of spectrum can be understood 
via dressed states, see insert lower riglitliand corner. 

where p is the density matrix of the atom and the oper- 

ator L accounts for the relaxation processes. With the 

atomic operator a = Ib)(al the damping part is given 

by 

Y t  Lp := --(o a p  - 2apat + p t a )  , 
2 (6) 

where y is the radiative decay rate from the upper level 

to the lower level. 

Here we cai1 diagonalize the interaction Hamiltonian 

where 

are the eigenstates of the semiclassical interaction 

Hamiltonian with eigenvalues Q/2 and -R/2, respec- 

tively. With these semiclassical dressed states, t he 

equations of motion of the density matrix elements are 

obtained from Eqs.(5) and (6) as follows 

The advantage of the dressed-state basis is clearly 

seen in Eq.(9); the equation for p++ is decoupled from 

the rest and the problem involves only 2 x 2 matrices. 

We remind the reader that the usual (bare-state) treat- 

ment involves the three coupled equations, 

Y R 
Pba = --Pba + iapaa + i- , 2 2 

The solution of Eq.(9a) is readily obtained as 

1, 
p++ ( t )  = e-7t12p++(~) + s ( l  - e-7t12) . 
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To solve for p+- and p-+, it is convenient to rewrite 

Eqs.(Sb,c) in matrix form as 

where 

As shown in Appendix A, we diagonalize the niatrix M as 

where the eigenvalues of M are given by 

cos 6 sino i4 

U = (  
,where tano = -(Q - p )  . 

-sino cos 8 Y 

Eq.(12) can now be written as 

which allows the formal solution 

It follows that 

R(t) = u ~ - ~ ~ u - ~ R ( o )  + U D - ' ( ~  - e - D t ) ~ - l ~  . 

Using Eqs.(A7) and (Ag), we have 

- e-37t14 [p+- (O) (tos pt - - p-+ (O) -sin,ut P+- - 
P 4P I 

and p-+ (t) = p;- (t). 

111. Two-time correlation function values of the atomic operators. Since (a(t)) = p,be-'"t 

for the resonant case, we may write 

According to the Lax-Onsager regression theoremIG] , 
the two-time correlation function can be determined 1 

(.(t))eZut = Paa = 2 ( 2 ~ + +  - 1 - P+- + P-+) , (21) 
from a knowledge of single-time expectation values. We 

are therefore interested in the single-time expectation by using the relation 
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where i , j  = a ,  b and a ,  = +, -. Now following 

Eq.(A10) in Appendix B ,  we have 

Here we have used paj = T r ( l j ) ( i l p ) ,  T r ( p )  = 1 ,  and the a i ( t )  are given in Appendix A. The two-time correlation 

function is now formally identical to the single-time expectation value ( ~ ( t ) )  except that p(0 )a t (0 )  is used instead 

of p(0) in Eq.(23). We find 

Noting that a+ = la)(bl, we have 

Since we are interested in the steady state, and note that the initial time t = O is any time after reaching steady 

state 

On substituting Eqs.(26) and ( A 1 2 )  into Eq.(25),  we obtain the explicit expression for the two-time correlation 

function as 

where the dimensionless constants P and Q are given tered by a two-leve1 atom driven by an incident field 

by is obtained by taking the Fourier transform of Eq.(27), 

that is 
2812 - y2 p=-- y 10R2 - y2 
2612 + y2 , Q = -  4p 2R2 + y2 . (28)  00 

S(u)  K ~e 1 dt eLt ((o (0 ) )o t ) )  . (29)  

IV. Spectrum. of the resonance fluorescence 
Substituting Eq.(27) into Eq.(29) and performing the 

Now the pomer spectrum of the radiation field scat- integration, we obtain the expression for the spectrum 
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where 

37 a* = -Pf ( V &  P - w ) Q .  
4 (31) 

Let us first consider the weak field limit (Q < 714). 

From Eq.(15) we have /i i714 in this limit and 

P Z - 1 ,  Q Y i  (a < $) , (32) 

Therefore, in Eq.(27) we have P+iQ + -2, P-i& + 0, 

and together with e-"* % eyt14 we can easily see that 

the second aricl t,hird terms in tlie bracliet cancel each 

other. Consequently, tlie spectrum in Eq.(30) consists 

of a delta function centered at tlie field frequency v.  

On the other hand, in the strong field limit 

(S2 > 714, i.e., p E Q), the first term in Eq.(30) van- 

ishes and 

Y P " 1 ,  Q " 0  ( 4 ~ ~ )  , (33) 

so that we have 

Therefore we can again see that there are three pealrs 

at v - S2, v ,  V +  Q, and that the widths of the peaks are 

3714, 712, 3714, respectively. The ratio of their heights 

is 1: 3: 1, so that the integrated intensities of tlie three 

peaks are in the ratio 1: 2: 1. Finally we recall, as is 

shown in Appendix B, that the strong field limit can be 

simply obtained upon making a secular approximation. 

Appendix  A: Reciproca1 eigenvectors 

In order to solve the Eq.(12) we seek the eigenstates 

and eigenvalues of M such that Mvi = Aivi, where 

i = 1,2; and write U = (vl v2) so that 

Liliewise, we need the inverse of U ,  which we may find 

by conventional matrix methods, and can write as a 

matrix of row vectors 

It may help tlie student of modern quantum me- 

clianics to note that vi - li), and - {jl. 
Note that 

U = (;i ) (v, v2) 

since 

iíi . v j  = Sij . (A.4) 

On the other hand, the expression for UU-I again 

shows tliat 

uu-' = (v, v,) ( f; ) 

since vlVl + v2V2 = 1 by completeness and Zi . e j  = S i j .  Consequently U - ~ M U  = D as per Eq. (14). 
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In view of the fact tliat D is diagonal, we may write 

Furthermore, we have 

e-'lt cos2 8 + e-'atsin28 (-e-'lt + e-X2tsin28 cos 8 
(-e-'lt + e-X2tsin28 cos 8 e-xltsin28 + e-'lt cos2 8 (A.7) 

and 
'-e-x2t 8 - sino cos 8) + - (sin28 - sino cos 8) 

UL)- ' (~ - e - D t ) ~ - l ~  = 1-ei32f . (A.8) 
(sin28 - sino cos 8) + 7 (cos2 8 - sino cos 8) 

Noting that 

2 R i7 cos 6 - sin28 = - , sin8 cos 6 = - 
P 8~ 

we can obtain. tlie solutions for p+-(t) and p-+(t) as in Eq.(20). By using Eq.(22) we can simply transform back 

to the bare-state representation, yielding 

~ a a ( t )  = b l  (t) + b2 (t)pab(O) + b3(t)~ba (0) + b4 (t)paa (0) , 

where the coefficients are found to be 

and 

Appendix B:: Secular approximation strong field limit by a secular approximation. Let us 

focus on Eq.(9). In the strong field limit (such that 

Here we present a simple way to obtain the main R B y/4), we may ignore the last two terms in Eq.(Sb) 

results for the resonance fluorescence spectrum in the (because they will lead to rapidly oscillating terms), 
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and write and get the solution 

b+- E - (2 +ia) p+- . (B.1) 

Similarly for p-+, we have 

Substituting Eq,(B3) (together with Eq.(ll)  for 

i-+ i - (7 - i ~ )  p-+ , (B.2) pt+ ( t ) )  into Eq.(21) gives 

1 3 ~ t / 4  -int - 
(õ(t))eiut = -[(2~++(0) - l ) e - ~ ~ / ~  - (p+- (0)e- e 

2 
c.c.)] . 

Now using the Lax-Onsager theorem as in Eq.(24), we find 

As noted before, the initial time t = O can be chosen at any time after reaching steady state, and the strong field 

limit gives 

Therefore, we have 

In the strong field limit Eq.(B7) is now identical to 35,  1426 (1975); R. E. Grove, F. Y. Wu, and S. 

Eq.(27) in Section 111, and readily shows the main fea- Ezekiel, Phys. Rev. A15, 227 (1977) 

tures of the resonance fluorescence spectrum given in 3. For a recent review, see Cavity Quantum Electro- 
dynamics, ed. by P. R. Berman, Adv. At. Mol. 

Eq.(30). 
Opt. Phys., Suppl. 2 (Academic, New York 1994) 
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