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When the surface of a mirror is deformed in a prescribed time-dependent way, it experiences 
a dissipative force exerted by tlie vacuum field. In order to  obtain the dissipative force, we 
calculate the scattered fields in the long-wavelength approximation. We show that dissi- 
pation and fluctuations are related as predicted by linear response theory. The dissipative 
force is usually interpreted as a radiation reaction force. We confirm such interpretation by 
explicit evaluation of the radiated energy. 

I. Introduction 

The most known mechanical effect of vacuum fields 
is the Casimir attractive force between two mirrors at 
restll]. However, interesting quantum effects may occur 
even with a single mirror in vacuum. One such effect 
is the creation of pliotons out of the vacuum state as 
a result of non-uniform motion of the mirror. Moore 
was apparently the first to  consider quantum fields with 
moving boundarie~[~I.  Following Moore's work, Fulling 
and Davies derived tlie energy-momentum tensor in the 
case of a single mirror, sliowing the effect of emission 
of rad ia t i~n[~I .  As was done in Ref.[2], they considered 
a one-dimensional approximation (1D) for the electro- 
magnetic field, thus allowing propagation only normal 
to  the surface of a flat perfectly-reflecting mirror. Since 
their approach relies on the conforma1 invariance of the 
one-dimensional wave equation, it cannot be easily gen- 
eralized to  the realistic three-dimensional case (3D). 

A completely different approach was employed by 
Ford and Vilenltin to tacltle the problem for a mass- 
less scalar field in 3 ~ [ ~ 1 .  In order to allow for the 
computation of the motional corrections to the energy- 
momentum tensor, they took additional approxima- 
tions, not present in the previous 1D calculations. They 
considered the non-relativistic limit, and accordingly 

computed the motional effects to  first order in the mir- 
ror's velocity and its derivatives. Furthermore, they 
assumed the mirror's displacement to be much smaller 
than the field wavelengths relevant for the effect. As 
shown in Ref.[S], these two assumptions are related in 
a sense to be explained later. 

More recently, another interesting quantum me; 
chanical effect of the vacuum field was proposed by 
~arton[ '] .  Ile pointed out that the force between two 
standing mirrors is itself a fluctuating quantity, whose 
average value is the well ltnown Casimir result. He anal- 
ysed the fluctuations of the Maxwell stress tensor, not 
only for tlie case of two mirrors, but also for a single 
mirror a t  rest in vacuum. For the latter, he derived 
the spatio-temporal correlation function of the stress 
tensor, and tlie corresponding noise ~ ~ e c t r u m [ ~ ] .  Par- 
tially following his approach, Eberlein calculated time- 
averaged force fluctuations for the much more diffi- 
cult problems of ~ ~ h e r i c a l [ ~ I  and ~ ~ h e r o i d a l [ ~ ]  perfectly- 
reflecting mirrors. 

The connection between the force fluctuations for 
mirrors at rest of Refs. [6]-[9], on one hand, and the 
emission of radiation by moving mirrors of Refs.[2]- 
141, on tlie other hand, was suggested by Jaekel and 
~ e ~ n a u d i l ~ ]  (see also Ref.[ll] for a review on this sub- 
ject). As in classical electron theory, the emission of ra- 
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diation entails the existence of a radiative reaction force 
which works against the mirror's motion, tlius dissipat- 
ing its energy. The key point is that such dissipative 
force on a moving mirror may be immediately related to 
the force fluctuations upon a standing mirror tlirough 
linear response t h e ~ r ~ [ ' ~ ] .  For this to  apply, however, 
the dissipative force must be of course computed to first 
order in the mirror's velocity (and derivatives), ruling 
out relativi~t~ic motions. 

The argument goes as follows. The motional effect 
is described zj a perturbation of the free field Hamil- 
tonian taken for the mirror at rest. The work done by 
the mirror is given by 

where Sq( t )  is the mirror's displacement and F the force 
exerted by the field on the mirror. We then take SH as 
the Hamiltonian operator describing the applied per- 
turbation - note that F is ali operator for the field, 
whereas Sq(t) is a (classical) previously defined func- 
tion of time playing the role of a (small) perturbing 
parameter. Its Fourier transform Sq[w] is defined as 

The force on a moving mirror is then written as 

where the susceptibility X F F  [w] represents the response 
to  the applied perturbation. Its imaginary part pro- 
vides tlie dissipative force on a moving mirror. We liave 

where E F I " [ ~ ]  is the Fourier transform of the average 
force commutator 

taken over the unperturbed system, i.e., by consider- 
ing a mirror at resl. Eq. ( 4 )  then connects the force 
on a moving mirror with the fluctuations of the force 
on a mirror at rest, which is represented by I F F [ w ] .  

Such connection was extensively used in order to ob- 
tain the dissipative susceptibi)ities from the spectrum 
of fluctuations in a variety of problems, including mov- 

ing pistons[11~14] and spheres[14]. By evaluat- 
ing independenl,ly the fluctuations for a standing mirror 
and the dissipative force for a moving mirror, Eq. (4) 
was shown to be correct ir1 1~[ ' ' ]  as well as in case of 
a flat moving mirror in 3D ~ ~ a c e [ ~ ] .  

In this paper, we consider an initially flat mirror, 
whose surface is deformed during a finite time inter- 
val. We assume the mirror to  be a perfect reflector. 
Such approximation corresponds to the low frequency 
liinit of more consistent models which take into account 
a finite response time cliaracteristic of the mirror-field 
coupling (see Refs.[lO], [15] and [16]). Moreover, we 
completely neglect the effect of the dissipative force on 
the surface time evolution (recoil effect), tlius assuming 
that the mirror's surface is described by a previously 
defined function of time, which is imposed by some ex- 
terna1 ageiit. As discussed in Ref.[17], this assumption 
(whicli also uiiderlies tlie linear response theory out- 
lined above) is also consistent a t  low frequencies. 

By coinputing the scattered fields in the long- 
wavelength approximation, we derive the dissipative 
force on the movable part bf the rnirror. The prob- 
lein of a mirror subjected to a rigid motion, considered 
in Ref.[5], is then re-obtained as a particular case of our 
general result, which also allows us to  evaluate the force 
on a moving piston. In order to  malte a connection with 
fluctuations, we generalize Eqs. (1)-(5) to the case of 
non-rigid displacements. This step introduces Barton's 
stress tensor correlation function for a flat We 
show that fluctuations and dissipation are again related 
as predicted by linear response theory. 

For the particular case of rigid motion of the mir- 
ror, we analyse in more detail the process of plioton 
creation, by writing a linear transformation between in- 
put and output field operators. This result allows us to 
compute the radiated energy, which is then compared 
with the dissipative force to  show that the latter is in- 
deed the corresponding radiation reaction force. An 
explicit derivation of the radiated energy in the 1D ap- 
proximation is also found in' Refs.[18,19]. More recent 
3D calculations were performed for dielectrics with in- 
dex of refraction close to  0ne[~"1 as well as for collapsing 
dielectric ~ ~ h e r e s [ ~ ~ I .  

The paper is organized in the following way. In 
Sec. 11, we first compute the scattered fields and then 
the dissipative force. In Sec. 111, we show that dissipa- 
tion and fluctuations are related in the usual way. We 
also discuss some few particular examples of deforming 
surfaces. The input-output formalism is developed in 
Sec. IV. Finally, we summarize the main results of the 
paper in Sec. V. 
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11. Dissipative force in vacuum 

We suppose tliat the mirror's right-liancl surface ini- 
tially occupies the yz plane at tlie position z = O .  Each 
point of coordinates (y, z )  at the surface will tlieii move 
along tlie z-clirection according to tlie f~mction 

z = WY, z, t ) ,  (6) 

whereas tlie flat left-liand surface stays unperturbecl. 

Tlie effects relatecl to tlie vector nature of tlie elec- 

tromagnetic field were discussed in Ref.[5], in tlie case 
of rigid motion of a flat mirror. One reinarlíable differ- 
ence between tlie scalar and electroinagnetic problems 
is that no mass correction appears for tlie latter, due to 
an exact cancellation between tlie contributioiis from 

tranverse electric and magnetic waves. In this paper, 
liowever, we will be exclusively concerned witli tlie dis- 
sipative force, and thus ignoring dispersive components 

(and i11 particular m a s  corrections). Accordingly, we 

take for tlie salie of simplicity a scalar field @(r, t )  obey- 
ing the boundary condition 

@(Sq(y, z, t) ,  y, z, t) = O. (7) 

We sliall work with tlie Fourier representation de- 

r 

finecl by 

@[z, k l l l  w] = / dt 1 d2rlleiwte-ikll 'r~~ 0 ( x ,  q ,  t ) ,  (8) 

where r11 = yg + 22. We decompose tlie field as follows: 

ai corresponds to  waves inciclent on tlie mirror coming 
from tlie lialf-space corresponding to the positive z-axis 
(accordingly, we suppose x 2 O from now on). On the 
other liand, as corresponds to scattered waves, includ- 
ing 110th tlie normally-reflectecl wave, which is of zero 

orcler in Sq, and its first-order correction S Q ~ :  

S @ R [ z , k l l , ~ ]  may be calculated through tlie same 

straightforn~ard method employed in the case of flat 
moving ~nirrors[~] .  A formal derivation in terms of 
Green's fuiictions, suitable for tlie input-output formal- 
ism cleveloped in Sec. IV, is presented in Appenclix A, 
wliere tlie meaning of tlie superscript R is explain'ecl. 
We fincl 

R 
c12 b1 

SQ [z, k l l ,  w] = -2eixz" - -bq[kl l  - kíll  - w1]&@~[0, kíl, wl], ./ ikí,51wll) (2r)2 

wliere by[kll ,  w] is defined in terms of Sq(y, z , t )  as in 

Eq. (8), aiicl 

i;, = [(w + ia)2 - b,$'f2, r - O + ,  (12) 

is defined as a fuiiction in tlie complex plane of w witli 
a branch cut on tlie real axis between -kll antl E l l  (we 

take c = 1). 
Two importa.iit approximations are used in tlie 

derivation of Eq. (11). First, tlie fielcls are supposed 

to be slowly varying over a distaiice of tlie order of Sq 
(long-wavelengtli approximation) . Seconcl, the effect 

connected to  deforming tlie surface is supposed to be 
a small perturbation (JSaRI < I @ ] ) .  For tlie Ilirichlet 
boundary condition considerecl here, such perturbative 
approach is always valid in the long-wavelength limit. 

Ilowever, tl-iis would not be necessarily the case had we 

taken Neuinann boundary conditions (as discussed in 

Ref.[22], a simple counter-example is provided by tlie 
Wood's anomalies for diffraction gratings). 

Tlie normal-mode expansion of includes only 
wavevectors k witli negative x-components: 

Qi(1., t )  = 
d3k G a k e i k r e - i i t  + HC, (13) 

where I-IC represents tlie Hermitean conjuga.te of tlie 
prececling expression. 

The opera.tors uk obey the commutation rela.tions 

[cz,, .Ll] = ( 2 ~ ) ~ 6 ( k  - kl). (15) 

Using tlie notation introduced by Eq. (8), we liave 
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with K, given by Eq. (12), and where O denotes the step function. 
The force on the mirror is obtained from the stress tensor, which is given by 

In order to  compute the the component of the force along tlie x-direction, we need the S,, component near the 
rnirror's surface calculated up to first order in Sq. Since (dgQ>(x = O+))', (&<h(x = O+))' and (&@(a: = O+))' are 
a11 of second order, Eq. (17) yields 

The zero-th order term of Sxx(x = O+) corresponds 
to the pressure on a flat mirror at rest at  x = O. Its av- 
erage over the vacuum state is exactly cancelled by the 
corresponding value talren a t  the opposite side of the 
mirror. Therefore, it has no physical effect in connec- 
tion with the nverage force on tlie mirror. 011 the other 
hand, its fluctiiating properties are very important, and 
will be analysed in the next section. 

Accordingly, the average force is entirely due to the 
first-order correction < OinlSSx,[O+, kll,w]lOin >, the 
average being taken over the vacuum state with respect 

to the operators ak and a i .  Such state represents the 
incoming zero-point fluctuations corresponding to the 
asymptotic Iimit t - -a, when the mirror was still 
unperturbed. This point is clarified in Sec. IV, where 
we explicitly build up input and output field operators 
(the latter corresponding to the limit t -, co) to calcu- 
late the radiated energy. 

We calculate the force SFR upon a given region R of 
the mirror (probing region), which does not necessarily 
coincide with the deformed area. Up to first order in 
Sq, we have, in the frequency domain, 

where P R [ ~ ~ ~ ]  js the Fourier transform of the step func- 
tion defining the region R. 

We replace the expression for tbe total field @ given 
by Eqs. (9)-(1.1) into Eq. (18) and collect the linear 
terms in Sq. The average over the vacuum state is then 
calculated by talring the normal mode expansion of @i 

as given by Eq. (13). NTe use the shorthand notation 
< ... > to  represent the average over JOin > . The re- 
sulting expression is written as 

I 

with the susceptibility xss[kll, w ]  given by 

In Eq. (21), we have defined 

and 



328 Brazilian Journal o£ Physics, vol. 25, no. 4, December, 1995 

We interpret Li, and h,, as the z-components of the similar property occuring in the case of negative w). 
incident and scattered wavevectors, Accordingly, the dissipative force 6372 may be written 

ki = ki,X + kil l ,  

with (kil = JwiJ, and 

as 

6F~[wl = 1 - P R [ - ~ ~ ~ I X ' S S [ ~ ~ ~ ,  WI 6n[kll , w], (22) 

with Ik, I = Iwg+w I and kSll  = kiI1 +kll. Eqs. (20) shows 
that xss[kll, w] represents the effect of a given Fourier 
component (w, kl l)  of the time-dependent corrugation. 
According to Eq. (21), such effect is the outcome of a 
superposition of a11 the elementary processes in which 
a (travelling-wave) wavevector ki is scattered into k,. 

The dissipative force is related througli Eqs. (19) 
and (20) to the imaginary part of xss[kl l ,  w]. Accord- 
ingly, we define 

where xks [kll , w] and xSs [kll , w] are respectively real 
and pure imaginary. Only tlie values of wi and kill that 
satisfy the innequality 

contribute to ~ $ ~ [ k ~ ~ , w ]  in Eq. (21), since they en- 
tail real values for the variable L,,. It means that the 
evanescent waves generated in the scattering do not 
contribute to dissipation, a fact fully consistent with 
the association (to be proved in Sec. IV) between the 
dissipative force and the emission of radiation, since 
tliis latter is related exclusively to the generation of 
travelling waves. 

The region of integration in Eq. (21) may be fur- 
ther simplified because, if w is positive, the contribution 
from the high-frequency negative part of the spectrum, 
wi < -w, is cancelled by the positive part, wi > O (a  

For w > 0, the incident frequencies wi appearing in 
Eq. (23) are such that wi < O and wi +w > O (and vice- 
versa if w < O). Since positive and negative frequencies 
correspond, according to Eq. (16), to  annihilation and 
creation operators, Eq. (23) suggests that the dissipa- 
tive force is a consequence of photon generation. Such 
connection will be established in Sec. IV, for tlie partic- 
ular case of rigid motion. The condition JwiJ 5 JwJ justi- 
fies the use of tlie long-wavelength approximation in the 
derivation of Eq. ( l l ) ,  which becomes thereby closely 
related to the non-relativistic limit Idt6q(y, z,t)l « 1 
(see Ref. [5] for a detailed discussion). 

The integral in ,Eq. (23) may be solved to give 
a very simple expression for xSs[kllI w]. Before doing 
that,  however, we will compare this preliminary result 
with the correlation spectrum of the stress tensor for a 
flat mirror at rest. 

111. S tress tensor  f luctuat ions and the i r  connec- 
t i on  wi th  t h e  dissipative force 

We begin this session by showing that the result 
found above, Eq. (23), is in agreement with linear re- 
sponse theory. We work in the frequency domain, and 
define the spectrum of fluctuations of S,, at x = O as 

the average being taken over the vacuum state and for a flat mirror at  rest. 

We shall use the following representation['"] : 

where Iki, kz > is the two-photon state corresponding to the yavevect& k l  and k2:  
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The matrix elements in Eq. (25) may be readily obtained from the normal mode expansion of the field, which 

follows from Eqs. (9), (10) (taking the motional correction 6@ = 0) and (13): 

By replacing the above expression into Eq. (25) we get 

We compare Eqs. (23) and (27) by taking 11-1 = -wi 

and klll = -kql.  It  yields 

which is in full agreement with linear response theory, 

if 

= - d 2 q  Sxx (rII , i) SP('11, i) J (29) 
is taken as the perturbing Hamiltonian (Eq. (1) corre- 

sponding to th.e particular case of rigid motion). How- 

ever, we canno t make use of dispersion relations in order 

to relate Xks[kll, w ]  (which corresponds to the disper- 

sive part of the force) to Xgs[kll,  w], since our model 

is not valid at high frequencies. On the other hand, 

dispersion relations with subtractions are satisfied by 

the susceptibility function in the case of partially- 

transmitting frequency-dependent mirrors (which are 

taken to be transparent at high frequencies)[15]. 

A simple closed-form expression for Css [kll, w ]  was 

obtained in the case of the electromagnetic fieldL7]. A 

similar result :may of course also be derived for the 

scalar field considered here by employing a similar ap- 

proach. It is easier to work with the spectrum taken in 

the real space, which is defined as (see Eq. (24)) 

Replacing Eq. (27) into Eq. (30) leads to integrals in- 

volving Bessel functions. We refer to Ref. [7] for details 

of the derivation. The final result is written as 

where j3 is the spherical Bessel function of order three. 

We then come back to the reciproca1 space and use 

Eq. (28) to find 

According to Eq. (32), ~ $ ~ [ k ~ ~ ,  w] vanishes for Iwl < 
kII. As shown in Ref.[l4], this property may also be in- 

ferred directly from our starting point, Eq. (25). Here 

we show that it is related to Lorentz invariance of the 

vacuum field. For that end, we talte the following sur- 

face: 

which corresponds to a diffraction grating of period the force vanishes if R / K  5 1, as expected from Lorentz 

2 ~ l K  moving a.long the y-direction with (uniform) ve- invariance. Note however that the force is not necessar- 

locity Q / K .  Because of the property mentioned above, ily zero in the case of accelerated lateral motion of the 
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grating, because the region of space occupied by the re- 

flecting material obviously changes in time, conl,rary to 

wliat happens in tlie examples considered in Ref.[20]. 

More generally, Fourier components of tlie surface 

corrugation with kll > w do not contribute to the dissi- 

pative force. If 6 is a typical frequency of the perturba- 

tion, then the details of the corrugation in a length scale 

smaller than 1 / W  are irrelevant. In the static limit (i.e., 

a corrugated surface at rest) this typical Iength scale 

diverges, and lience the force (obviously) vanishes. 

Accordingly, the limit correponding to a small area 

of perturbation is defined by the condition GL < 1, 

where L is a typical dimension of the perturbed region. 

Then it follows that kII L < 1 for a11 those values that 

contribute to the force given by Eq. (19), even if the 

corrugation has larger values of kll (which would corre- 

spond to small spatial periods). As a consequence, we 

may write (using the notation introduced in Eq. (30)) 

where As is the area of the perturbed section S of tlie - 
mirror and < 6q(w) >s represents the spatial average 

of the displacement (or rather its Fourier transform) 

over the surface S. Furthermore, if the probing surface 

R is chosen so as to coincide with S, we have 

Replacing Eqs. (32), (34) and (35) into Eq. (22) leads 

TVe may also obtain Eq. (36) by using the configuration 

space and talting r11 = O in Eq. (31). 

Talring tlie opposite limit, we consider the force on 

tlie entire surface of the mirror (i.e., R is taken to be 

tlie whole yz plane). In this particular case, we recover 

the result found by Ford and ~ i l e n k i n [ ~ ] .  We have 

and then from Eq. (22) we obtain 

whicli may be evaluated from Eq. (32): 

The force given by Eq. (39) is proportional to the prob- 

ing surface AR as it should. Note that Eq. (39) applies 

even if the perturbed region of the mirror is small. How- - 
ever, < Sq(w) >R becomes very small in this case, since 

the average is taken over the very large surface R. 

The particular case of a moving piston may also 

be considered from Eqs. (22) and (32). If we take the 

probing surface R to be the surface of the piston, whose 

position is prescribed by the function 6 q ( t ) ,  we have 

and from Eqs. (20) a.nd (32) 

The opposite limits of infinite and very small pistons piston moving in the vacuum of the electromagnetic 

may be obtained frorn Eq. (41) by taking the suitable field[14], which was derived from linear response theory 

approximations for PR[kll]. The resulting expressions based on Eq. (29). The two results are very similar, ex- 

agree with Eqs. (36) and (39), which are however more cept for a numerical factor, which is possibly an effect 

general. of our approximative scalar model. In fact, the result 

for a infinite mirror describing a rigid motion, given by 
Eq. (41) may be compared with the result for a 
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Eq. (39) with < &(w) >R= Sq(w), is exactly equal to 

the contribution of the T E  electromagnetic waves to 

the dissipative force found in Ref.[5]. Adding the con- 

tributions of T E  and T M  waves leads to an expression 

with a different numerical factor, but with the same fre- 

quency dependence. In the next section, we consider in 

detail the radiation emitted in this particularly simple 

example. 

TV. Radiation f r o m  a moving  mi r ro r  

Henceforth we consider an infinite flat moving mir- 

ror, whose position is given by 

Furthermore, we assume that the mirror was initially 

a t  rest a t  x = 0, then set in motion during a Jini te  time 

interval, and finally placed again a t  z = O .  In order to 

analyse the process of photon generation, we derive a 

linear transformation between output and input field 

operators, which correspond to the limits t + m and 

t -s -m. 

Accordingly, we decompose the total field @ not as 

in Eq. (9), but rather take 

( )  = i ( )  + ( ) (42) 

Eqs. (9), (10) and (42) then provide the connection with 

the approach of Sec. 11: 

i 1 ) = i (  1 1 ,  ) - i 1 1  ) (43) 

According to Eq. (43), @i, corresponds to the total field 

in the case that the mirror is at rest at x = 0: 

@in(z = 0, r11 , t )  = O. (44) 

In Appendix A, we calculate 6aR by using r e t a r d e d  

Green functions. This means that, in a formal sense, 

@in(x, rll, t) = lim @(x, r l l , t ) ,  
t i - 0 3  

(45) 

clarifying the meaning of @i, as the input field (which 

must include both incident and normally-reflected 

waves as shown in Eq. (43), since the mirror already 

reflects the incident waves at t -t -m).  

We find, for positive vaIues of x ,  

with K, giveri by Eq. (12). This result should be 

compared through Eq. (43) with our previous result, 

Eq. ( l l ) ,  which is more general than Eq. (46) since it 

accounts for a.n arbitrary (small) perturbation of the 

mirror's surface (for example, as shown by Eq. (46), 

the parallel wavevector component kll is conserved in 

the case of an infinite mirror describing a rigid motion, 

but not in the case of a corrugated surface). 

Alternatively, we may make use of a d v a n c e d  Green 

I 

functions to solve the boundary condition of Eq. (7). 

In this case, the total field is written as 

@ ( x , ' l l , t ) = @ o U t ( ~ , ' l l , t ) + ~ @ ~ ( x , r ~ ~ , t ) ,  (47) 

where the output field @o,t approximates the total field 

when t + m .  We have 

@out(x = o, 1'11, t )  = O (48) 

as in Eq. (44), and 
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The first-order input-output transformation is found from Eqs. (42)-(49): 

We want to derive from Eq. (50) the transforma.tion between the annihilation and creation operators corresponding 

to tl-ie input and output fields. The normal mode expansion of the input field @i, is obtained from Eqs. (16) and 

The output field @,,t is expanded in terms of the same eigenfunctions used in Eq. (51) for the input field @in,  

since, according to Eqs. (44) and (48), they satisfy the same boundary condition. Therefore, we have 

where the annihilation and creation output operators, hk and b k ,  satisfy tlie usual free field commutation relations 

as in Eqs. (14) and (15). 

Eqs. (50)-(52) provide the desired input-output transformation: 

2it  " dw' 
bk = ak + L/ - ~ ( k : ) m b ~ [ l k l -  w'] B(wl)ak, - B(-wl)alk, 

Jír;l -00 2~ 

where the wavevectors k' are such that klll = kll  (ex- 

pressing the symmetry of translation along the plane of 

the mirror), Ik'l = IwlI and kh < O .  Eq. (53) is the cen- 

tral result in this section (a  similar relation was found 

in Ref.[23] for a 1D resonator with a moving wall). It  

shows that a given Fourier component of the mirror's 

motion at C2 = w - w' couples input creation opera- 

tors at negative frequencies w' to an output a.nnihila- 

tion operator at frequency w (respectively aTk, and úk 

in Eq. (53)). Therefore, IOin > is a low-frequency ex- 

cited state with respect to the output operators. In 

Appendix B, we use this property to compute the total 

radiated energy SE from Eq. (53). We find 

where A is the area of the mirror. Using Eq. (39), we 

may also write SE as 

Eq. (55) shows that the total radiated energy is equal 

to the total work done by the mirror, thus corroborat- 

ing the interpretation of S37&,, as a radiation reaction 

force. 

V. Conclusion 

The results found in this paper allow for the com- 

putation of the dissipative force on the mirror due 

to a small but otherwise arbitrary perturbation of its 

(initially flat) surface. Our model considers the low- 

frequency scalar scattering by a deformed perfectly- 

reflecting mirror. We have considered in detail some 

limiting situations, corresponding to perturbations of 

large and tiny regions of the mirror. For those cases, 

as weII as for the example of a moving piston, we 

have found a qualitative agreement with the results ob- 

tained for the electromagnetic field by maliing use of 

the fluctuation-dissipation theorem. 

In the second part of the paper, we have derived the 

linear transformation between input and output field 

operators, which provides an explicit representation for 

the motional emission of radiation. The total radiated 

energy is then compared with the result for the dissi- 

pative force. 
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Appendix A: Retarded and advanced solutions 

In this appendix, we construct retarded and ad- 

vanced solutions for the boundary condition given by 

Eq. (7) by making use of suitable Green functions. 

In the long-wavelength approximation, Eqs. (7) and 

(42) yield 

s @ ~ ( o ,  r l l , t )  = -Sq(t)dx@in(O, rll,t). (56) 

As in Sec. 11, we work in the reciprocal space, tliougli 

keeping the variable x in order to describe tlie mirror's 

trajectory. The retarded Green function in free space 

is then written as 

with E -, 0.f (see Eq. (12)). Tlie retarded Green 

function suitable for a Dirichlet boundary condition a t  

x = O,  to be clenoted as Ç ~ ( x ,  X O ,  kll) ,  is obtained from 

G;(x - xo, k l l )  by using tlie method of images: 

For x > 0, the retarded solution is then written in terms 

of GW(x, $0, k l l )  as 

R d 6@ [x, klllw] = S Q ~ [ X O  = O. k l l i ~ I B  @(x, xo = O, kl l ) .  
2 0  

(59) 
From Eqs. (5'7) and (58) we find 

Replacing Eqs. (56) and (60) into Eq. (59) leads to 

Eq. (46) in Sec. IV. 

A similar procedure is employed to derive the ad- 

vanced solution as given by Eq. (49). Instead of 

Eq. (57), however, our starting point is the advanced 

free-space Green function 

. -i[(w-ir)a-ki]*.lx-xo~ 
i e 

G ~ ( X  - X O ,  k l l )  = -- - 
2 [(w - i ~ ) 2  - ]e2]+ 

. (61) 
I1 

Appendix B: Energy radiated by a moving mir- 
ror 

In this Appendix, we compute the total radiated 

energy from the input-output tranformation given by 

Eq. (53). We take periodic boundary conditions on the 

yz plane over a square of surface A. The field operators 

are then renormalized according to 

where i is the index of the cell in the 2D reciprocal space 

to which k l l i  belongs. The commutation relations are 

as follows: 

The average photon number (Oin lbhz,;bkZ,i 10in) is ob- 

tained from Eqs. (53) and (63): 

where lkil = dkS+hll. state corresponding to  the input operators provides the 

In the limit t -+ oo, the field dynamics is governed total radiated ene%Y. We have 

by the Hamiltonian Hout, which is written in terms of 

the output operators brz,i and as fo~lows: 

where E0 and SE are of zero and second order in 
fiWk,,i 

Hout  = J $ ~(b!=,~bi . , i  + br.,ibls,i)- 2 (65) Sq. SE may be consistently calculated from the first- 
i order input-output transformation because second or- 

The average value of HOut taken over the vacuum der corrections to Eq. (53) would not contribute to 
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(OinIH,,tlOin) up to second order. E0 represents the (di- Eq. (66). Furthermore, we come back to the continuum 

vergent) zero-point energy for a mirror a t  rest, whereas by replacing 

SE corresponds to the total radiated energy. 
A c -+ - J d21ill. 

i ( 2 4  

We calculate SE by replacing Eqs. (64) and (65) into We arrive at tlie following expression: 

O" dk, d21q 
S E = ~ I ~ A ~  -/-+E.I~ 2n ( 2 ~ )  J -, -'li 2~ J- lbq[li - w1112, 

where k = Jm. Performing the integrals in tum Electrodynamics (Supplement: Advances in 

Eq. (67) leads to Eq. (54). Atomic, Molecular and Optical Physics), edited 
P. Berman (Academic Press, New York, 1993). 

12. R. Kubo, Rep. Prog. Phys. 29, 255 (1966). 
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