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When the surface of a mirror is deformed in a prescribed time-dependent way, it experiences
a dissipativeforce exerted by tlie vacuum field. In order to obtain the dissipative force, we
calculate the scattered fields in the long-wavelength approximation. We show that dissi-
pation and fluctuations are related as predicted by linear response theory. The dissipative
force is usually interpreted as a radiation reaction force. We confirm such interpretation by

explicit evaluation of the radiated energy.

|. Introduction

The most known mechanical effect of vacuum fields
is the Casimir attractive force between two mirrors at
rest!!]. However, interesting quantum effects may occur
even with a single mirror in vacuum. One such effect
is the creation of photons out of the vacuum state as
a result of non-uniform motion of the mirror. Moore
was apparently the first to consider quantum fieldswith
moving boundaries!?. Following Moore’s work, Fulling
and Davies derived tlie energy-momentum tensor in the
case of a single mirror, showing the effect of emission
of radiation®. Aswas done in Ref.[2], they considered
a one-dimensional approximation (1D) for the electro-
magnetic field, thus alowing propagation only normal
tothe surface of aflat perfectly-reflecting mirror. Since
their approach relies on the conformalinvariance of the
one-dimensional waveequation, it cannot be easily gen-
eralized to the realistic three-dimensional case (3D).

A completely different approach was employed by
Ford and Vilenltin to tacltle the problem for a mass-
less scalar field in 3DM.  In order to dlow for the
computation of the motional corrections to the energy-
momentum tensor, they took additional approxima-
tions, not present in the previous 1D calculations. They
considered the non-relativistic limit, and accordingly

computed the motional effects tofirst order in the mir-
ror's velocity and its derivatives. Furthermore, they
assumed the mirror’s displacement to be much smaller
than the field wavelengths relevant for the effect. As
shown in Ref.[5], these two assumptions are related in
a sense to be explained later.

More recently, another interesting quantum me
chanical effect of the vacuum field was proposed by
Bartonl8l. He pointed out that the force between two
standing mirrorsis itself afluctuating quantity, whose
average valueisthewell Ithown Casimir result. He anal-
ysed the fluctuations of the Maxwell stress tensor, not
only for tlie case of two mirrors, but also for a single
mirror at rest in vacuum. For the latter, he derived
the spatio—temporal correlation function of the stress
tensor, and tlie corresponding noise spectruml™. Par-
tially following his approach, Eberlein calculated time-
averaged force fluctuations for the much more diffi-
cult problemsof sphericall® and spheroidal® perfectly-
reflecting mirrors.

The connection between the force fluctuations for
mirrors at rest of Refs. [6]-[9], on one hand, and the
emission of radiation by moving mirrors of Refs.[2]-
[4], on tlie other hand, was suggested by Jaekel and
Reynaud!!) (see also Ref.[11] for a review on this sub-
ject). Asin classical electron theory, the emission of ra-
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diation entailstheexistence of aradiativereaction force
which works against the mirror's motion, tlius dissipat-
ing its energy. The key point is that such dissipative
force on amoving mirror may beimmediately related to
the force fluctuations upon a standing mirror tlirough
linear response theory!'2. For this to apply, however,
the dissipative force must be of course computed tofirst
order in the mirror's velocity (and derivatives), ruling
out relativistic motions.

The argument goes as follows. The motional effect
is described as a perturbation of the free field Hamil-
tonian taken for the mirror at rest. The work done by
the mirror is given by

§H = —F &q, (1)

where 8¢(¢) isthe mirror's displacement and F theforce
exerted by thefield on the mirror. We then take § H as
the Hamiltonian operator describing the applied per-
turbation — note that F is an operator for the field,
whereas §¢(t) is a (classical) previously defined func-
tion of time playing the role of a (small) perturbing
parameter. Its Fourier transform églw] is defined as

bqlw] = /dt et §q(t). (2)
The force on a moving mirror is then written as
§Flw] = xrrlw] 8qlw], 3)

where the susceptibility xrr[w]represents the response
to the applied perturbation. Its imaginary part pro-
vides the dissipativeforce on a moving mirror. We have

Imxrrlw] = ErF W), (4)

where éppr[w] is the Fourier transform of the average
force commutator

érr(t) = 5 < [F(), FO)] >, )

taken over the unperturbed system, i.e., by consider-
ing a mirror at rest. EQ. (4) then connects the force
on a moving mirror with the fluctuations of the force
on a mirror at rest, which is represented by &ppw].
Such connection was extensively used in order to ob-
tain the dissipative susceptibi/lities from the spectrum
of fluctuations in a variety of problems, including mov-
ing planes*®l, pistons(*1:14] and spheres(!4. By evaluat-
ing independently thefluctuationsfor a standing mirror
and the dissipative force for a moving mirror, Eq. (4)
was shown to be correct in 1DI!% as well as in case of
aflat moving mirror in 3D spacel5].
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In this paper, we consider an initially flat mirror,
whose surface is deformed during a finite time inter-
val. We assume the mirror to be a perfect reflector.
Such approximation corresponds to the low frequency
liinit of more consistent models which take into account
a finite response time cliaracteristic of the mirror-field
coupling (see Refs.[10], [15] and [16]). Moreover, we
completely neglect the effect of the dissipative force on
the surface time evolution (recoil effect), thus assuming
that the mirror's surface is described by a previously
defined function of time, which isimposed by some ex-
ternal agent. As discussed in Ref.[17], this assumption
(whicli also uiiderlies tlie linear response theory out-
lined above) is also consistent at low frequencies.

By coinputing the scattered fields in the long-
wavelength approximation, we derive the dissipative
force on the movable part of the rnirror. The prob-
lein of a mirror subjected to a rigid motion, considered
in Ref.[5], isthen re-obtained as a particular case of our
general result, which also allows usto evaluate the force
on amoving piston. In order to maltea connection with
fluctuations, we generalize Eqgs. (1)-(5) to the case of
non-rigid displacements. This step introduces Barton's
stress tensor correlationfunction for aflat mirrort™. We
show that fluctuations and dissipation are again related
as predicted by linear response theory.

For the particular case of rigid motion of the mir-
ror, we analyse in more detail the process of photon
creation, by writing a linear transformation between in-
put and output field operators. Thisresult allowsus to
compute the radiated energy, which is then compared
with the dissipative force to show that the latter isin-
deed the corresponding radiation reaction force. An
explicit derivation of the radiated energy in the 1D ap-
proximation is also found in' Refs.[18,19]. More recent
3D calculations were performed for dielectrics with in-
dex of refraction close to onel?®! aswell asfor collapsing
dielectric spheres{?1l,

The paper is organized in the following way. In
Sec. II, we first compute the scattered fields and then
the dissipativeforce. In Sec. 111, we show that dissipa-
tion and fluctuations are related in the usual way. We
also discuss somefew particular examples of deforming
surfaces. The input-output formalism is developed in
Sec. I'V. Finally, we summarize the main results of the
paper in Sec. V.
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I1. Dissipative force in vacuum

We suppose that the mirror’s right-liancl surface ini-
tially occupies the yz plane at tlie position z = 0. Each
point of coordinates (y, z) at the surface will then move
along tlie z-direction according to tlie function

© = 6q(y, 2,1), (6)

whereas tlie flat left-hand surface stays unperturbed.

Tlie effects relatecl to tlie vector nature of tlie elec-
tromagnetic field were discussed in Ref.[5], in tlie case
of rigid motion of aflat mirror. One remarkable differ-
ence between tlie scalar and electroinagnetic problems
is that no mass correction appears for tlie latter, due to
an exact cancellation between tlie contributions from
tranverse electric and magnetic waves. In this paper,
liowever, we will be exclusively concerned witli tlie dis-
sipativeforce, and thusignoring dispersive components
(and in particular mass corrections). Accordingly, we
take for tlie sake of simplicity ascalar field ®(r,t) obey-
ing the boundary condition

$(8q(y, #,1),y,2,1) = 0. (7)

We dliall work with tlie Fourier representation de-

r

fined by
JERTRIES /dt /d%ueiwte‘*kn‘rn 3(z,ry,t), (8)
where x| = yi+ z2. We decompose tlie field as follows:
®fz, ky,w] = ®;fz, ky, w] + Bz, Ky, w]. (9)

®; corresponds to wavesinciclent on tlie mirror coming
from tlie lialf-space corresponding to the positive z-axis
(accordingly, we suppose x > 0 from now on). On the
other hand, @, corresponds to scattered waves, includ-
ing both tlie normally-reflectecl wave, which is of zero
orcler in éq, and its first—order correction §®:

Oz, ky,w] = ~ @[~ Ky, w] + 68" [z, k), w].  (10)

§@%[2,ky,w] may be calculated through tlie same
straightforward method employed in the case of flat
moving mirrorst®). A formal derivation in terms of
Green's functions, suitablefor tlie input-output formal -
ism cleveloped in Sec. IV, is presented in Appenclix A,
wliere tlie meaning of tlie superscript R is explained.

We find

: dw’ d?k}
R — Ko Il _ . —
0= 2 [ T K= 00 K1) (1

wliere 6¢fk), W] is defined in terms of 8¢(y,2,t) as in
Eq. (8), and

o= w17 = kY T o, (12)

is defined as afunction in tlie complex plane of w witli
abranch cut on tlie real axis between k| and k|| (we
take c=1).

Two important approximations are used in tlie
derivation of Eq. (11). First, tlie fidds are supposed
to be dowly varying over a distaiice of tlie order of dq
(long—wavelengtli approximation). Seconcl, the effect
connected to deforming tlie surface is supposed to be
a small perturbation (|6®%] < |®|). For tlie Dirichlet
boundary condition considerecl here, such perturbative
approach is aways valid in the long—wavelength limit.
However, this would not be necessarily the case had we

taken Neumann boundary conditions (as discussed in
Ref.[22], a simple counter-example is provided by tlie
Wood’s anomaliesfor diffraction gratings).

Tlie normal-mode expansion of ®; includes only
wavevectors K witli negative X-components:

Bk [ kr ik THC, (13)
‘I)i 1‘,'5 — —_ —;ake e
(x,1) ./(kxgo) (27")3 2k

where HC represents tlie Hermitean conjugate of tlie
prececling expression.
The operators aj. obey the commutation relations

[(lk, CLk,] =0, (14)

lag, b, ] = (27)%6(k — X'). (15)

Using tlie notation introduced by Eq. (8), we have
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hlwl —m,,x t
512 [H(w)a—-n,£+k" + 9(—w)an,£-k”] , (16)

z

[:c k), w] = 6(x2)

with &, given by Eq. (12), and where 0 denotes the step function.
The force on the mirror is obtained from the stress tensor, which is given by

Sij = ~8;90;® + -;-6,~j [(Ve)? - (8:2)%]. )

In order to compute the the component of the force along tlie x-direction, we need the Sz, component near the
mirror’s surface calculated up to first order in Sg. Since (8, ®(z = 01))?,(9,®(z = 0%))? and (8;®(z = 0%))? are

all of second order, Eq. (17) yields

Sez[0F Ky, w)

The zero-th order term of S, (z = 0%) corresponds
to the pressure on aflat mirror at rest at x = Q Its av-
erage over the vacuum state is exactly cancelled by the
corresponding value talren at the opposite side of the
mirror. Therefore, it has no physical effect in connec-
tion with the average force on tlie mirror. On the other
hand, itsfluctiiating properties are very important, and
will be analysed in the next section.

Accordingly, the average force isentirely due to the
first-order correction < 0;]65::[0%, k), w]|0in >, the
average being taken over the vacuum state with respect

|

d2k||

§Frlw] = )2

PR[-——k”]

where Pr[ky] is the Fourier transform of the step func-
tion defining the region R.

We replace the expression for tbe total field ¢ given
by Egs. (9)-(1.1) into Eq. (18) and collect the linear
termsin Sg. The average over the vacuum stateis then
calculated by taking the normal mode expansion of &®;
as given by Eq. (13). We use the shorthand notation
< ... > to represent the average over |0;, > . The re-
sulting expression is written as

< 68zs[e = 01, Ky, w] >= xsslky, w]bglky,w], (20)

/ /(2 3x [0+ k”—k’”,w— ']6x®[0+,k'||,w’]. (18)

-

to the operators aj. and ai‘(. Such state represents the
incoming zero-point fluctuations corresponding to the
asymptotic limit t — —oo, when the mirror was still
unperturbed. This point is clarified in Sec. 1V, where
we explicitly build up input and output field operators
(the latter corresponding to the limit t — o) to calcu-
late the radiated energy.

We calculate theforce 8 Fr upon agiven region R of
the mirror (probing region), which does not necessarily
coincide with the deformed area. Up to first order in
éq, we have, in the frequency domain,

< Oin|65zx[w = 0+;k||;w]l0in >, (19)

with the susceptibility xss(ky,w] given by

o [ dwi [ APk
= — inlkse. (21
xssllgu =in [ G2 [ Zbokd) itk 1)
In Eq. (21), we have defined
k z = —(wz-z - kzﬁ)llz

and

ko = [(wi +w +i€)” — (ke + k||)2]1/2.
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We interpret k;, and h, as the z-components of the
incident and scattered wavevectors,

ki = k% Ty,
with |k;| = |w;|, and
k, = ksmi'*‘ks[l;

with |k3[ = |w,-+w| and k"” = ki“ +k“‘ Egs. (20) shows
that xsslky, W represents the effect of a given Fourier
component (w,k)) of the time-dependent corrugation.
According to Eq. (21), such effect is the outcome of a
superposition o all the elementary processes in which
a (travelling—wave) wavevector k; is scattered into k,.

The dissipative force is related througli Egs. (19)
and (20) to the imaginary part of xss{k), w]. Accord-
ingly, we define

xsslky,w] = xsslky, w] + xsslky, @],

where xss[ky,W and x%§g[kj,wW are respectively real
and pure imaginary. Only tlie values of w; and k; that
satisfy the innequality

|wi +w| > [kiy + k|

contribute to x4k, w] in Eq. (21), since they en-
tail rea values for the variable L,, It means that the
evanescent waves generated in the scattering do not
contribute to dissipation, a fact fully consistent with
the association (to be proved in Sec. 1V) between the
dissipative force and the emission of radiation, since
tliis latter is related exclusively to the generation of
travelling waves.

The region of integration in Eq. (21) may be fur-
ther simplified because, if w is positive, the contribution
from the high-frequency negative part of the spectrum,
w; < —w, is cancelled by the positive part, w; > 0 (a

]

Csslk,w]

similar property occuring in the case of negative w).
Accordingly, the dissipative force §F= may be written
as

§Frlw] = / o il =5 Prl=KIxssky, o] Sqlky,w], (22)

ki)

with x%s[ky,w] given by
(2 )go(kzx)g(ksx)]kmiksx

]:iﬁ/;i-i—:i -

For w > 0, the incident frequencies w; appearing in
Eq. (23) are such that w; < 0 and w; +w > 0 (and vice-
versa if w < O). Since positive and negative frequencies
correspond, according to Eq. (16), to annihilation and
creation operators, Eq. (23) suggests that the dissipa-
tiveforce is a consequence of photon generation. Such
connection will be established in Sec. 1V, for tlie partic-
ular case of rigid motion. The condition |w;| < |w]| justi-
fiesthe use of tlie long—wavelength approximationin the
derivation of Eq. (11), which becomes thereby closely
related to the non-relativistic limit |8,6¢(y, z,t)] < 1
(see Ref. [5] for a detailed discussion).

The integral in Eq. (23) may be solved to give
a very simple expression for x%s[ky,w]. Before doing
that, however, we will compare this preliminary result
with the correlation spectrum of the stress tensor for a
flat mirror at rest.

XfSI'S [k",w

II1. Stress tensor fluctuations and their connec-
tionwiththe dissipativeforce

We begin this session by showing that the result
found above, Eq. (23), isin agreement with linear re-
sponse theory. We work in the frequency domain, and
define the spectrum of fluctuations of S;; at x = 0 as

_ /dt/dz,r”eiwze-iku-rll < 0]Sas (0% + 1)), £)S24(0,0)|0 >, (24)

the average being taken over the vacuum state and for a flat mirror at rest.

We shall use the following representation[t4:

C’ss[k“,w] =

a3k Pk
i [ G | s

5(k|| k1" - k2||)5(w — k1 — k2)

x| < ki, k2|Sz0(0,0)[0 > |2, ‘ (25)

where k1, ks > is the two—photon state corresponding to the wavevectgrs k; and ks.
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The matrix elementsin Eq. (25) may be readily obtained from the normal mode expansion of the field, which
followsfrom Egs. (9), (10) (taking the motional correction §& = 0) and (13):

_ (2hk1xk2z)2

| < ki,ko|Sp0(0,0)|0 > |2 = 2222 (26)

By replacing the above expression into Eq. (25) we get

kiks

Coslky,w] = 552 [ dks fe, g i,y PR 00w = k1) — iy = Ty )

X\/iﬁf —klﬁ\/(w—kl)z— (ky — k). (27)

We compare Egs. (23) and (27) by taking k) = —w;
and k1|| = —ki”. It ylelds

xgs[k”,w] = ’2%(033[](”,60] - Css[——k”, —w]), (28)

which isin full agreement with linear response theory,
if

6H = —/dzr”Sm(I‘”,t) bq(xy,t) (29)
is taken as the perturbing Hamiltonian (Eq. (1) corre-
sponding to the particular case of rigid motion). How-
ever, we cannot make use of dispersion relations in order
to relate x's¢lky,w] (which corresponds to the disper-
sive part of the force) to x’s[ky,w], since our model
is not valid at high frequencies. On the other hand,
dispersion relations with subtractions are satisfied by
the susceptibility function in the case of partially—
transmitting frequency—dependent mirrors (which are
taken to be transparent at high frequencies)!*sl.

A simple closed-form expression for Css[ky,w] was
obtained in the case of the electromagnetic field™, A
similar result may of course also be derived for the
scalar field considered here by employing a similar ap-

proach. It iseasier to work with the spectrum taken in
the real space, which is defined as (see Eq. (24))

2
Css(r),w) = / (—C%%e-ikn'rncss[k”,w]. (30)

Replacing Eq. (27) into Eq. (30) leads to integrals in-
volving Bessel functions. We refer to Ref. [7] for details
o the derivation. Thefinal result is written as

Loeno), (61

- 2
CSS(r[[aw) = 3 94,3
’ II

where js is the spherical Bessel function of order three.
We then come back to the reciprocal space and use
Eq. (28) to find
ih
Xsslky,w] = mg(wz — k) (w” — k)% (32)
According to Eq. (32), x%s[kj, W vanishesfor |w| <
kj. As shown in Ref.[14], this property may also be in-
ferred directly from our starting point, Eq. (25). Here
we show that it is related to Lorentz invariance of the
vacuum field. For that end, we take the following sur-
face:

6q[ku,w] = 47r36q0[6(ky — K)6(k,)b(w — Q) + 8(ky + K)6(k,)6(w + )], (33)

which corresponds to a diffraction grating of period
27/ K moving along the y—direction with (uniform) ve-
locity €2/ K. Because of the property mentioned above,

theforce vanishesif /K < 1, asexpected from Lorentz
invariance. Note however that theforceis not necessar-
ily zero in the case of accelerated lateral motion of the
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grating, because the region of space occupied by the re-
flecting material obviously changes in time, contrary to
wliat happensin tlie examples considered in Ref.[20].
More generally, Fourier components of tlie surface
corrugation with ky > w do not contribute to the dissi-
pative force. If @ isatypical frequency of the perturba-
tion, then the details of the corrugationin alength scale
smaller than 1/@ areirrelevant. In the static limit (i.e.,
a corrugated surface at rest) this typical length scale
diverges, and hence the force (obviously) vanishes.
Accordingly, the limit correponding to asmall area
of perturbation is defined by the condition @L < 1,
where L isatypical dimension of the perturbed region.
Then it follows that kjL < 1 for all those values that
contribute to the force given by Eq. (19), even if the
corrugation has larger values of &y (which would corre-
spond to small spatial periods). As a consequence, we
may write (using the notation introduced in Eg. (30))

Sqlky,w] = /dzrngl(ru,w) = As < bg(w) >s, (34)

where Ags isthe area of the perturbed section S df tlie
mirror and < 6~q(w) >s represents the spatial average
of the displacement (or rather its Fourier transform)
over the surface S. Furthermore, if the probing surface
R is chosen so as to coincide with S, we have

Prn ~ As. : (35)

Replacing Egs. (32), (34) and (35) into Eq. (22) leads

N
1k C[2k“
PRl = 5357 | @y

The opposite limits of infinite and very small pistons
may be obtained frorn Eq. (41) by taking the suitable
approximations for Pr[k)]. The resulting expressions
agree with Egs. (36) and (39), which are however more
general.

Eq. (41) may be compared with the result for a

to
. ﬁA§w7
T 95325 773

We may also obtain Eq. (36) by using the configuration

§Fr < bq(w) >s . (36)

space and taking rj = 0 in Eq. (31).

Taking tlie opposite limit, we consider the force on
tlie entire surface of the mirror (i.e., R is taken to be
tlie whole y2z plane). In this particular case, we recover
the result found by Ford and Vilenkin®. We have

Prooolky] = (27)76(ky), (37)
and then from Eq. (22) we obtain
5FRmoo = Xislky = 0,w]AR < bg(w) >=,  (38)

which may be evaluated from Eq. (32):

5

hw ~
sigzga AR < 8w >r . (39)

8FR o =1

Theforce given by Eq. (39) is proportional to the prob-
ing surface Az asit should. Note that Eq. (39) applies
even if the perturbed region of the mirrorissmall. How-
ever, < 6q(w) > becomes very small in this case, since
the average is taken over the very large surface R.
The particular case of a moving piston may aso
be considered from Egs. (22) and (32). If we take the
probing surface R to be the surface of the piston, whose
position is prescribed by the function é¢(t), we have

8qlky, w] = Prlk)] bg(w), (40)

and from Egs. (20) and (32)

|Prlky)P(w? = k) Sg(w). (41)

piston moving in the vacuum of the electromagnetic
field™4 which was derived from linear response theory
based on Eq. (29). The two results are very similar, ex-
cept for a numerical factor, which is possibly an effect
of our approximative scalar model. In fact, the result
for ainfinite mirror describing a rigid motion, given by
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Eqg. (39) with < 6~q(w) >r= b¢(w), is exactly equal to
the contribution of the TE electromagnetic waves to
the dissipative force found in Ref.[5]. Adding the con-
tributions of TE and TM waves leads to an expression
with a different numerical factor, but with the same fre-
guency dependence. In the next section, we consider in
detail the radiation emitted in this particularly simple
example.

IV. Radiation from amoving mirror

Henceforth we consider an infinite flat moving mir-
ror, whose position is given by

z = 8q(t).

Furthermore, we assume that the mirror was initially
at rest at X = 0, then set in motion during a finite time
interval, and finally placed again at z = 0. In order to
analyse the process of photon generation, we derive a
linear transformation between output and input field
operators, which correspond to the limitst — oo and

{— —x.

6<I>R[a:,k”,w] = - einﬂ”z/

with &, given by Eq. (12). This result should be
compared through Eqg. (43) with our previous result,
Eq. (11), which is more general than Eq. (46) since it
accounts for an arbitrary (small) perturbation of the
mirror's surface (for example, as shown by Eq. (46),
the parallel wavevector component k; is conserved in
the case of an infinite mirror describing a rigid motion,

but not in the case of a corrugated surface).

Alternatively, we may make use of advanced Green

(5<I>A[x,k“,w]: _e—in;x/(;

(lw'|2kp)

331

Accordingly, we decompose the total field ¢ not as
in EqQ. (9), but rather take

<I>(m,r”,t) = ®in(z, r”,t) + §<I>R(:c,r||,t). (42)

Egs. (9), (10) and (42) then provide the connection with
the approach of Sec. II:

r|,t) = @i(:c,r“,t) — ®i(—z,x) t). (43)

According to Eq. (43), ®;, corresponds to the total field
in the case that the mirror is at rest at x = O:

Qin(z =0,1y,1) =Q (44)

In Appendix A, we calculate 5&% by using retarded
Green functions. This means that, in a formal sense,

Bin(e,1), 1) = lim 3(z,r),1), (45)

clarifying the meaning of &, as the input field (which
must include both incident and normally-reflected
waves as shown in Eq. (43), since the mirror already
reflects the incident waves at ¢ — —oo).

We find, for positive values of X,

dw’
-2—7r~5q[w — w0, ®in [0, k”,w’], (46)

f

functions to solve the boundary condition of Eq. (7).

In this case, the total field is written as
O(z,r),t) = <I>out(a:,r”,t) + 6<I>A(a:,r||,t), (47)

where the output field ®...« approximates thetotal field

whent — oo. We have
Dout(z = 0,1,2) =0 (48)

asin Eq. (44), and

dw’

—5(][0.) - w’]&xéout[o,k”,w’] (49)

w/lzk“) Qﬂ'
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The first-order input-output transformation isfound from Egs. (42)-(49):

@out[x, k”’ w] =

dw

Dinlz, ky, w] —21sm(fﬁxm)/——(9( ’2~k“)6q[w— w']

X 0y ®in]0, ky, 0], (50)

We want to derive from Eq. (50) the transformation between the annihilation and creation operators corresponding
to the input and output fields. The normal mode expansion of the input field @i, is obtained from Egs. (16) and

(43):

Qin[a:;k”: ]"“ —QIQ(K:D) I |

z) [H(w)a_h sk, T+ 6(— w)alxi_k"]. (51)

The output fidd @, isexpanded in terms of the same eigenfunctions used in Eq. (51) for the input field &;,,
since, according to Eqs. (44) and (48), they satisfy the same boundary condition. Therefore, we have

Pout [z, ky, w] = —2i0(k2)

o) [P@)_ ey + 0Dy - (52

where the annihilation and creation output operators, 4. and bL, satisfy the usual free field commutation relations

asin Egs. (14) and (15).

Egs. (50)-(52) provide the desired input-output transformation:

Nk, /°°0\N'

=%t A

where the wavevectors k' are such that k') = ky (ex-
pressing the symmetry of translation along the plane of
the mirror), [k’| = |’| and k., < 0. Eq. (53) is the cen-
tral result in this section (asimilar relation was found
in Ref.[23] for a 1D resonator with a moving wall). It
shows that a given Fourier component of the mirror’s
motion at & = w — ' couples input creation opera-
tors at negative frequencies '’ to an output annihila-
tion operator at frequency w (respectively “T_k/ and by
in Eq. (53)). Therefore, [0;, > is a low-frequency ex-
cited state with respect to the output operators. In
Appendix B, we use this property to compute the total
radiated energy SE from Eq. (53). Wefind

— dw Wb 2
68 = A [ S bl (60)

where A is the area of the mirror. Using Eq. (39), we
may also write & as

§E = — / ;’_“’WRW[ I (—iw)sqle].  (55)

Eqg. (55) shows that the total radiated energy is equal
to the total work done by the mirror, thus corroborat-

VISl — o] (0 ey - 0(=Yal ). (53)

ing the interpretation of 6 Fr_, ., asaradiation reaction
force.

V. Conclusion

The results found in this paper alow for the com-
putation of the dissipative force on the mirror due
to a small but otherwise arbitrary perturbation of its
(initially flat) surface. Our model considers the low-
frequency scalar scattering by a deformed perfectly-
reflecting mirror. We have considered in detail some
limiting situations, corresponding to perturbations of
large and tiny regions of the mirror. For those cases,
as well as for the example of a moving piston, we
have found a qualitative agreement with the results ob-
tained for the electromagnetic field by making use of
the fluctuation-dissipation theorem.

In the second part of the paper, we have derived the
linear transformation between input and output field
operators, which provides an explicit representation for
the motional emission of radiation. The total radiated
energy is then compared with the result for the dissi-
pative force.
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Appendix A: Retarded and advanced solutions

In this appendix, we construct retarded and ad-
vanced solutions for the boundary condition given by
Eqg. (7) by making use of suitable Green functions.

In the long—wavelength approximation, Egs. (7) and
(42) yield

§0%(0,xy,1) = —6q(t)8: ®in(0,xy,2).  (56)

As in Sec. II, we work in the reciprocal space, though
keeping the variable x in order to describe the mirror’s
trajectory. The retarded Green function in free space
is then written as

r i ei[(w+ie)2—kﬁ]1/2-|x—xo|
Cule =20 k) = 3 o ior = e

(57)

with £ — 0% (see Eqg. (12)). The retarded Green
function suitable for a Dirichlet boundary condition at
x = 0, to be clenoted as G%(z, o, k), is obtained from
GE(z — z0,kj) by using the method of images:

Qf(:c, zo, k) = Gf}(:c —zo, k) — Gﬁ(m +z0,ky). (58)

For x > 0, theretarded solution is then written in terms
of gf(m,mo,k”) as

a
6(I)R[$’k”!w] = 6¢R[$0 = O,k”’w]b_(l—?; Gf(m,mo = Qk”)
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Replacing Egs. (56) and (60) into Eqg. (59) leads to
EQ. (46) in Sec. IV.

A similar procedure is employed to derive the ad-
vanced solution 6®4 as given by Eq. (49). Instead of
Eq. (57), however, our starting point is the advanced
free-space Green function

e—i[(w—ie)z—kﬁ]%-lx—xol

1
5 T kﬁ]% (61)

Gi(z = 2o, k) = -

Appendix B: Energy radiated by a moving mir-
ror

In this Appendix, we compute the total radiated
energy from the input—output tranformation given by
Eqg. (53). We take periodic boundary conditions on the
yz planeover asquare of surface A. The field operators
are then renormalized according to

1

bkxvi = \/Zbkzi"f‘k",.’

(62)
where i istheindex of the cdll in the 2D reciprocal space
to which kj, belongs. The commutation relations are
as follows:

(59) 1 /

i 1 )= Ve — 37 3

From Egs. (57) and (58) we find [bkasis by 1 = 2m8(ka — )35 (63)

The average photon number <0in|b;rc,,ibkz,il0in) is ob-

050G (%, w0, ky) |, 0= (llwHO? k122 g0y tained from Egs. (53) and (63):
|
ak2 Kl gy ‘

(Oinlb;t,,ibkx,iloin) = ﬁ 5 w'? — k)2 [8q[[ks| — ]I, (64)

t -

where lkil = \/kg + k"?.

In the limitt — oo, the field dynamics is governed
by the Hamiltonian Hgy¢, Which is written in terms of
the output operators b, ; and b,tmi as foflows:

i

dk o1d
How = [ 5= Z:(bl.,,,-bk,,i + b, b5 1) - (65)

The average value of Ho,t taken over the vacuum

state corresponding to the input operators providesthe
total radiated energy. We have

(Oin!Houtloin) =FEy+ 6E; (66)

where Ey and SE are of zero and second order in
6q. SE may be consistently calculated from the first—
order input—output transformation because second or-
der corrections to Eqg. (53) would not contribute to
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{Oin| Hout|0in) Up tosecond order. Ey represents the (di-
vergent) zero—point energy for amirror at rest, whereas
SE corresponds to the total radiated energy.

We calculate SE by replacing Egs. (64) and (65) into

©dk, [ &k, 5 F
6E=4EAA g?r—/ggﬂglkwl \l,o

where k = /&2 +Icﬁ. Performing the integrals in
Eq. (67) leads to Eq. (54).
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