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We analyze tlie transformation of quantum fields under conforma1 coordinate transforma- 
tions from inertial to accelerated frames, i11 tlie simple case of scalar massless fields jn a 
tmo-dimensional spacetime, through tlie transformation of particle number and its spectral 
density. Particle number is found to be invariant under conforma1 coordinate transforma- 
tions to  uniformly acceleratecl frames, which extends tlie property already known for vacuum. 
Transformation of spectral density of particle number exhibits a redistribution of particles in 
the frequency spectrum. This redistribution is determinecl by clerivatives of phase operators 
with respect to frequency, that is by time ancl position operators clefined in such a manner 
that the redistribution of particles appears as a Doppler shift which depends on position in 
spacetime, in conformity with Einstein equivalence principle. 

I. Introduction 

Lorentz invariance of electromagnetism lies at tlie 

lieait of the theory of re la t i~ i ty [~] .  Tliis is true not only 

for tlie classical tlieory of electromagnetism, but also 

for the quantum theory. In particular, invariance of 

vacuum fluctuations under Lorentz transformations is 

needed to ensure that mechanical effects of these fluc- 

tuations preserve tlie relativity of uniform motioii in 

empty space. 

111 contrast with these universally acceptecl ideas, 

tlie interplay betweeii quantuin fields and accelerated 

frames lias been tlie object of much debate. Since 

~ i n s t e i n [ ~ ] ,  accelerated frames are commonly repre- 

sentecl by using Rindler clianges of co~rdinates[~I be- 

tween inertial and accelerated frames. These transfor- 

mations do not preserve the propagation equations of 

electromagnetic fields. Light rays appear curved in ac- 

celerated frames wliile frequencies undergo a shift dur- 

ing Iight propagation[2]. Such a representation of accel- 

erated frames ídso results in a transformation of vacuum 

into a thermal I ~ a t h [ ~ ] .  Tliis idea has apparently been 

easily accepted because of its association with tlie most 

spectacular effect predicted by quantum field theory in 

curved spacetime, namely thermal particle creation due 

to c~rva ture[~] .  It is nevertlieless clear that accelerated 

frames and curved spacetime are completely different 

physical problems, from the point of view of general 

relativity. Furthermore, the notion of particle number 

plays a central role in the interpretation of quantum 

field theory, and the fact t,hat it is not preserved in ac- 

celerated frames leads to  weighty paradoxes for quan- 

turn theory[61. These difficulties also raise doubts about 

the significance of the Einstein equivalence principle in 

Ilie quantum domain. Such a principle indeed relies on 

tlie very notion of particle number, as well as on the in- 

terpretation of frequency change from inertial to  accel- 

erated frames as a Doppler shift depending on position 

in ~ ~ a c e t i m e [ ~ ] .  If vacuum or 1-photon states may not 

be clefinecl in a consistent manner in inertial and accel- 

erated frames, it might appear hopeless to  attribute any 

significance to such a principle in the quantum domain. 

In the present paper, we show that the interplay 

between acceleration ancl quantum fields may be ana- 

lyzed in a consistent manner which allows to extend the 

Einstein equivalence principle to  the quantum domain. 
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Our approach makes use of the conformal symmetry of 

quantum theory of massless fields, lilte a scalar field in 

two-dimensional(2D) spacetime or the electromagnetic 

field in four-dimensional (4D) spacetime. For tlie sake 

of simplicity, we will restrict our attention here to  the 

2D case. 

I t  has been known for a long time that the symme- 

try related to  inertial motions, associated witli Lorentz 

transformations, can be extended for massless fields 

to  a larger group which includes conformal transfor- 

mations to  accelerated f r ame~[~ ] .  Light rays remain 

straight lines with such a representation of acceler- 

ated frames while frequencies are iiow preserved during 

liglit propagation. These transformations are known to 

fitL81 tlie relativistic definition of uniformly accelerated 

m o t i ~ n [ ~ I .  It has also been shown that vacuum remains 

unchanged under conformal transforrnations to acceler- 

ated frames[lO]. Here, we extend the latter property by 

demonstrating the invariance of total particle iiumber 

under such transformations. This proves the consis- 

tency of a point of view which maintains invariance of 

vacuum and particle number for inertial and acceler- 

ated observers. 

When a spectral decomposition of particle iiumber 

is introduced and the transformation of spectral den- 

sity frorn inertial to accelerated frames analyzed, field 

phase operators make an appearance. We will show 

that the resulting expressions correspond to quantum 

definitions for position in spa~e t i rne [~~I  wliicli comply 

with the requirement of the Einstein equivalence prin- 

ciple for tlie interpretation of acceleration on quantum 

fields in terms of Doppler shifts. It is well known 

that tlie definition of phase operators, wliich may be 

considered as conjugated to tlie number ~ ~ e r a t o r s [ ~ ~ ] ,  

leads to  a r n b i g ~ i t i e s [ ~ ~ ~ ~ ~ ] .  A lot of worlr lias been de- 

voted to cure tliese ambiguities (see[15] and references 

therein). However, the conclusions that we'will reach 

in the present paper will essentially be unaffected by 

these difficulties. . 

11. Conforma1 coord ina te  t ransformations 

In a two-dimensional(2D) spacetime, a free massless 

scalar field q5 (t, x) is the suin of two counterpropagating 

components: 

We use natural spacetime units (c = 1); t is the time 

coordinate, x is the space coordinate, u and v are the 

two light-cone variables. 

In the 2D case, conformal coordinate transforma- 

tions are those transformations which act separately on 

the two light-cone variables, and they are specified by 

arbitrary functions f and g describing the relations be- 

tween sucli variables in the two reference systems: 

The field transformation under conformal coordinate 

transformations is defined through: 

From now on, we consider only one (v) of the two coun- 

terpropagating components; the other one (SI) can be 

dealt with in exactly the same way. 

As well-known in Quantum Field Theory, the field 

transformation under coordinate transformations may 

be considered as generated by linear forms of the stress 

tensor, that is also quadratic forms of the fields[16]. In 

order to give explicit forms of these generators in the 

spectral domain, we introduce the Fourier components 

p [w] of the field p (u) according to the general defini- 

tion: 
clw 

a (u) = J ,a [WI e-ku (4) 

These components are related to  the standard annihi- 

'lation and creation operators: 

wliere 6' is the Heaviside function and 5 the Dirac dis- 

tribution. Tlie commutation relations of the Fourier 

components of the field are given by: 

TVe now define the generating function T [w]: 
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as the Fourier transform of the stress tensorl: 

We then introduce the generators T k  as the coefficients 
of the Taylor expansion of the generating function (k a 

positive integer): 

~x = {(--ia,)' T [w]) w=o = / u k ~  (u)  du (11) 

The commutators of these quantities with the field are 
obtained as: 

I 

The latter rdation precisely fits the action upon the 

field of an infinitesimal conformal coordinate transfor- 

mation. Denoting: 

with E an infi:aitesimal real number, one indeed deduces: 

This corresponds to equations (2-3) with an infinitesi- 

mal coordinate transformation: 

Notice that the generating function T [w] may also be 
associated with an infinitesimal coordinate transforma- 

tion: 

s f (u) = E exp (iwu) (19) 

This does not correspond to a real coordinate tranfor- 

mation which would necessarily involve opposite values 

of the frequericy2. 

In order to recover tlie known commutation rela- 

tions for the conformal generators[17*1", we write the 

commutator of the generating function with quadratic 

forms of the field: 

[T [w] , cp [w'] cp [w']] = - h{(w + w ') cp [w + w 7 cp [w "1 
+ (w + wff) cp [w'] cp [w + wlf]) 

(20) 

We then deduce the commutator of the generating func- 

tion evaluated at different arguments: 

[T [w] , T [w']] = ti (W - wl) T (w + wf) (21) 

A Taylor expansion of this relation provides commuta- 

tors characteristic of the conformal algebra (for positive 

integers k)3:  

111. Transformation of vacuum 

The conformal coordinate transformations preserve 

the propagation equation of massless fields, and there- 

fore their cornm~tators[~~].  However, not a11 of them 

preserve vacuum fluctuations. 

The vacuum state is defined by specific correlation 

functions: 

( )vac represents a mean value in the vacuum state. 

This means that annihilators vanish when applied to 

the vacuum state. Using expression (8) of the field com- 
mutators, one obtains the correlation function: 

Using transformation (20) of field quadratic forms, one 

then deduces the transformation of vacuum correlation 

functions: 

'In this dehition appear s~mmetric products of the field operators, rather than normally ordered products. As a consequence, the 
generating function describes the stress tensor associated with vacuum, as well as the stress tensor associated with particles. 

We may eniphasize that we are dealing with coordinate transformations of real Minkowski spacetime, here represented by real 
light-cone variables. The generating function (9), that is the Fourier transfonn of the field stress tensor, is not hermitian but satis- 
fies T ["It = T I-w]. The generators Tk are defined in equation (11) as hermitian operators, in contrast with common definitions of 
generators in Conforma1 Field Theory in 2D ~ ~ a c e t i r n e [ ~ ~ ] .  

3Note that the original Virasoro algebra is defined with negative and positive order non-hermitian generators. It is generated by 
&T [kn], where is a scale frequency. It also corresponds to a Laurent expansion in variable u of the function T (u) extended to the 
compiex 
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It is also worth writing the transformation of the vac- 

uum stress tensor, that is of the generating function 

itselfl: 

One then demonstrates, through a Taylor expansion of 

these relations in the frequency w, that the vacuum cor- 

relation function for field derivatives &cp (wliich corre- 

spond to Fourier components -iwcp [w]), as well as the 

vacuum stress tensor, are preserved by the infinitesimal 

generators To, Ti and T2 which respectively describe 

translations, Lorentz boosts and conformal transfor- 

mations from inertial to accelerated frames. This is 

no longer the case for the higher-order generators. In 

particular, the generator T3 changes the vacuum stress 

tensor in a manner whicli is consistent with tlie dissi- 

pative force felt by a mirror moving in vacuum with a 

non-uniform a c c e l e r a t i ~ n [ ~ ~ ~ ~ ~ ] .  

We thus recover the result of reference [10] for a 
massless scalar field theory in a 2D spacetime: the vac- 

uum is not invariant under the large group of confor- 

mal coordinate transformations (equation (2) with an 

arbitrary function f) .  It is invariant only under the 

smaller group of transformations generated by To, Ti 

and Tz. Those transformations correspond to tlie par- 

ticular case of liomographic functions5: 

In the following, we give some results for the large 

conformal group, but we focus our attention onto the 

smaller group of transformations which preserve vac- 

uum, and particularly onto the action of the accelera- 

tion generator T2. 

IV. Transformat ion  of par t ic le  n u m b e r  opera-  

t o r s  

We will denote n, the spectral density of particle 

number: 

2w 
n, = aia ,  = -0 (w) cp [-w] cp [w] 

f i  (28) 

The values at different frequencies are commuting quan- 

tities: 

[nu, nu!] = O (29)  

and the coinmutators with the field may be written 

from relations (8): 

[nu, cp [w']] = 2n (5 (w + w') - S (w - w')} cp [w'] (30) 

Tliis definition is such that tlie generat,or To, that 

is the field energy, lias its standard form in terms of 

number density: 

The total number n of particles is defined as the integral 

of nw : 

The number operators n, are defined for positive fre- 

quencies, and vanisli when applied to  the vacuum state. 

We come now to the main argument of the present 

paper, that is the transformation of particle numbers 

under conformal coordinate transformations. As an 

immediate consequence of transformation (20) of field 

quadratic forms, we deduce the transformation of the 

number density: 

[T [w] , n,~] = - 2 ~ ~ 0  (w') {(w - w') cp [W - w'] [w'] 

+ (w + w') cp [-w'] $9 [w + w']) (33) 

We obtain tlie transformation of tlie total particle num- 

ber by an integratioli: 

We then derive the effect of the infinitesimal generators 

by performing a Taylor expansion in tlie frequency w of 

the previous expressions. 

The total particle number n is preserved by tlie gen- 

erators To, Ti and T2: 

This property is well-known for the translations and 

Lorentz boosts. The new result is that a conformal 

transformation to an accelerated frame also leads to 

a redistribution of partides in the frequency domain, 

When written in termi of normally ordered products, commutation relations (21) between the generators include a further pure 
number. This central charge is determined by equation (26). 

5Note that the rnodification of the mean vacuurn stress tensor (T ( 2 ~ ) ) ~ ~ ~  under a conformal transformation associated with the 
function f is proportional to the Schwartzian derivative of f ,  which vanishes for homographic t r a n s f o r m a t i o n ~ [ ~ ~ ~ ~ ~ ] .  
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without any cliange of tlie total number of particles. 

I t  is consistent with tlie invariance of vacuuin in tlie 

homographic group generated by To, TI and T2, as dis- 

cussed in tlie previous section. It means tliat tlie no- 

tion of particle number is tlie same for accelerated ob- 

servers and for iiiertial ones, provided that acceleratecl 

frames are defined tlirougli conformal transformations. 

For the other generat,ors TkLs, tlie vacuum is no loiiger 

preserved and tlie total particle iiumber n is changed6. 

We now write tlie transforinatioii of tlie spectral 

density n, of particle number under tlie generators To, 

Ti and T2 which perserve tlie total number n. As ex- 

pected, tlie nuinber density is unclianged under a traiis- 

lation: 
1 
x[To,nwl = O (36) 

but clianged under a Lorentz boost: 

This latter cliange is a inere mapping i11 the frequency 

domain, associated with tlie Doppler shift of tlie field 

frequency. We tlien write tlie modification of tlie spec- 

tral density of particle number in a conformal transfor- 

mation from an inertial to  an accelerated fraine: 

1 
[T2,nw] = 28, {wlnw) 

2 ti (38) 
w 

m, = -Q (w) {cp [-wl cpl [wl + cp' [-wl cP [wl) ili 
(39) 

The quadratic form m, is hermitian. It may not be 

rewritten in terms of tlie density n, or its deriva- 

tives. In other words, the modification of n, under Tz 
amounts to a n:distribution of particles in the frequency 

domain, witliout any change of the total particle num- 

ber, as it was tlie case for tlie modification of n, under 

Ti, but this redistribution is no longer equivalent to a 

mere mapping of tlie cleiisity 11, in the frequency spec- 

trum. We will sliow later oii that tlie expression (39) 

may be interpreted as a Doppler sliift which depends 

on position in spacetime, in conformity with Einstein 

equivalence principie. 

V. Q u a n t u m  phase  a n d  phase- t ime ope ra to r s  

In the present section, we sliow how to obtain quan- 

tum operators associated with positions in spacetime. 

As a first step in tliis direction, we introduce oper- 

ators e, and 6, such tliat: 

As well-lmowii, these relations are not sufficient to de- 

fine phase operators since annihilators and creators are 

not modified hy a redefinition of the phases such tliat: 

Various definitioiis of tlie phase operators, for exam- 

ple tlie Susskind-Glogower definition[14] or the Pegg- 

Bariiett def i i i i t i~n[~~] ,  are connected through sucli re- 

clefinitions. We sliow below that the properties studied 

in the present paper may be stated independently of 

such ambiguities. 

We now list some properties which are satisfied 

for aiiy operators defined from relations (40-42); tliese 

properties clepencl only upon the field commutation re- 

lations (6-7). First, the exponential operators e, are 

cominuting variables, like tlie number operators (com- 

pare with (29)): 

[e,, e,,] = 0 (44) 

This is also the case for their adjoint operators eL: 

[e t ,  e?.] = O 

The commutation relations between operators e, (or 

e:) ancl tlie i i~~mber  operators nu satisfy: 

[n,, e,,] = -2rewt6 (w - wl) 6 (46) 

\/n;; [n,, e:,] = i r ~ e ' ,  a (w - w') (47) 

However, the exponential operators e, c10 not commute 

in tlie general case witli their adjoint operators eL: 

where II, projects onto vacuuni for field components 

at frequency w ,  and a, is a function of w which de- 

pends on the specific definitioii of the phase operator. 
- -- 

' ~ ~ t e  that the commutator (33) vanishes when applied to the vacuum state, for a rb i t ra r~  positive frequencies w .  However, vacuum 
and particle numbers are not invariant under generators Tk>> These properties are consistent since, as already mentioned, T [w] is not 
hermitian and real coordinate transformations involve the Gnerating function T [w] at negative frequencies as well as positive ones. 
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It follows that the exponential operators are not nec- 

essarily unitary and, hence, that tlie phase operators 

are not hermitian. One gets for example a, = 1 in 

the Susskind-Glogower definition[14], and a, = O in the 

Pegg-Barnett definition, which thus corresponds to her- 

rnitian phase ~ p e r a t o r s [ ~ ~ ] .  For a11 definitions, one may 

nevertheless write 

It follows tliat simple relations hold for states orthogo- 

na1 to vacuum, i.e. states such that tlie probability for 

having n, = O vanishes. 

We liave given definitions of tlie phase operators for 

a field having a wliole frequency spectruin, and not only 

for a inonomode field. We are thus able to  deal with 

frequency variation of the phase operators and, in par- 

ticular, to  consider the operators 6; obtained by differ- 

entiating phases 6, versus frequency, according to the 

Wigner definition of phase-times[22]. A lot of discus- 

sions have been devotecl to  the significance of such a def- 

inition, and of its relation with time observables whicli 

can be measured by various te~hniquesL~~1. Here, we 

will emphasize that tlie operators 6; c10 not commute 

with number operators and with energy, tlius pioviding 

quantum phase-times. 

Since the exponential opeiators e, coinmute (see 

relation (44)), the frequency derivative 6; o i  tlie phase 

may be defined from tlie frequency derivative e; of the 

exponential operator : 

I t  may be defined as well from tlie adjoint exponential 

operators e': 

(e')' = -iei ( 6 ~ ) ~  = -i ( 6 ~ ) ~  e; (52) 

It follows from relation (48) tliat the phase derivative 

6; is an hermitian operator, even for non-hermitian def- 

initions of the phase 6,: 

= -ie;e' = ie, (ei) '  = (c)' 
Using these properties and definitions (40-42), we 

may now rewrite the definition (39) of nz, as: 

The quadratic form m, is proportional to  the density 

n,, but also to tlie operator 6; which, as we shall see in 

tlie next section, has properties of a quantum position 

in spacetime. 

The operators 6; 1ia.ve been defined from phase op- 

erators, so that they are expected t o  have non vanish- 

ing commutators witli the number operators[12]. The 

definition of such commutators is affected by the am- 

biguities already d i s cus~ed [~~I .  We may however state 

tliem in a rigorous manner by evaluating the commuta- 

tors between tlie densities m, and n,l (for w > O and 

w' > O):  

[m,, n,~] = - 2 d '  (w - w') n, (56) 

These relations are unambiguously defined in any quan- 

tum state and they are consistent with Dirac-like com- 

mutators in states orthogonal to  the vacuum (states 

such that n, # 0): 

[h:, nu,] -Jnw = -2ni6' (w - w') n, (57) 

To derive this result, we have used relation (55) and the 

fact that n, and n , ~  are commuting variables. 

VI. Discussion 

A comparisoii between the relations (37) and (38), 
wliich describe respectively the effect of a Lorentz boost 

and of a change of acceleration on the number den- 

sity, shows that the latter is equivalent to  a Doppler 

shift of the field frequency whicli depends on the op- 

erator 6;. This property appears to  be quite close to 

a quantum expression of tlie Einstein equivalence prin- 

ciple, provided tliat 6; plays the role of a position in 

spacetime, in consistency with the Wigner definition 

of phase-times[22]. The semiclassical character of the 

Wigner definition makes its extension to  the definition 

of a quantum operator difficult. We show now that 

it is however possible to write down rigorous quantum 

statements with 6; used lilte a position in spacetime. 

To this aim, we evaluate commutation relations be- 

tween 6; and tlie energy operator To. Multiplying equa- 

tion (56) by frequency w' and integrating over w', we 

get (see equation (31)): 

[TO, m,] = itin, (58) 
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We may also introduce the integral m of the density 

m,, in the same manner as tlie total particle number n 

from the density n, : 

We deduce from the commutator (58): 

[TO, m] = ihn (60) 

We notice that the commutation relations between m 

and the creation and annihilation operators have a sim- 

ple form: 

. / [m, a,] -= za, [m, a'] = i (61) 

We now discuss these relations from the point of view 

of the quantum definition of positions in spacetime. 

We first discuss the spectral relation (55). S' ince n, 

is invariant in a translation, we deduce from relation 

(55): 

6 [To, S:] l/n, = ifinw (62) 

For states orthogonal to the vacuum state (n, # O), 

this has the form of a canonical commutator between 

To and 5:, thus defining 6: as a quantum phase-time. 

More exactly, To is the energy associated with the 

light-cone variable u, so that S,!,, has to be interpreted 

as a quantum operator U, having this variable u as its 

classical analog. The same manipulations applied to 

the counterpropagating field component S, would lead 

to the definition of a quantum variable V, haviilg the 

light-cone variable v as its classical analog. Combin- 
ing these two variables, it is therefore possible to define 

time- and space-lilte operators: 

5 ~ ( 9 )  uw 1: 7r, - tW 6$" s V, =7,+JW 

(63) 
which are conjugated to the field energy and momen- 

tum: 

[E, r,] = ih [P, J,] = -ifi (64) 

defined through: 

This provides quantum definitions of time and space 

operators r,. and [,, defined at each frequency w like 

the semiclassical Wigner definitions. 

In order to give a more explicit realisation of quan- 

tum positions in spacetiine, we now consider the in- 

tegrated relation (GO), in the particular case of a 1- 
particle state. As already discussed, the notion of a 

numbei state is preserved in conforma1 transformations 

to accelerated frames; precisely the total particle num- 

ber n is preserved. In particular, the definition of a 

1-particle state (n = 1) is the same for accelerated and 

inertial observers. For such a state, the commutator 

(60) now reads as a canonical commutator between the 

energy To and the operator m: 

This relation may be considered as associating a quan- 

tum position to tlie 1-particle state, precisely one po- 

sition for each light-cone variable. Following the same 

path as from equa.tion (63) to equation (65), we may 

then obtain time and space' operators T and J associ- 

ated with the state. 

In fact, the operator m is a generalization for quan- 

tum fields of the Newton-Wigner quantum position[ll]. 

This position, initially defined for a wavefunction, is 

here extended to 1-particle field states. To make this 

point explicit, we represent each 1-particle state by a 

function f of frequency or of position: 

where we have used Dirac-like ket notations for the ba- 

sis states: 

Equation (61) thus means that the operator m may be 

represented in the space of functions f either as the dif- 

ferential operator (-ia,) in tlie frequency domain, oi 

as the multiplication by u in the position domain: 

Its spectral density mw can be shown to be related to 

its symmetrised product with particle number density 

12,: 
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where : : denotes normal ordering: 

(72) 
This normal product vanishes when applied to 1- 

particle field states, so that for such states tlie density 

m, can be identifiecl, as an operator, with the sym- 

metrised product of position m and particle number 

density n,. Using tlie commutation relations (Gl), it 

ca.n then be rewritt,en under the form (55) with posi- 

tion rn substituted for 6:: 

1 
m, = - {m, n,} = Jn,m.Jn, 

2 
n = 1 (73) 

Finally, transforniations of particle number density to  

inertial or acceleratecl frarnes talie tlie simple form of 

Doppler shifts of tlie frequency ((37) and (38)): 

For 1-particle field states, the last relation can also be 

written: 

This Doppler sliift is proportional to the acceleration 

and to the Newton-Wigner position of tlie particle. 

We may now summarize the results obtainecl in this 

paper. In order to  talce advantage of the conformal sym- 

metry of massless field theories, we have represented ac- 

celerated frames by conformal transformations. Invari- 

ance of vacuum under such transformations was alreacly 

l c n o ~ n [ ~ ~ ] .  We liave demonstrated that total particle 

number was also iiivariant, tlius proving the consistency 

of a point of view where vacuum and number states are 

tlie same for iiiertial and accelerated observem. In con- 

trast with the cominon Rindler representation of accel- 

erated frames discussed in tlie introduction, this point 

of view allows to discuss the effect of accelera.tion on 

quantum fields in terms of a redistribution of particle 

in the frequency domain. Analyzing the transforma- 

tion of spectral density of particle nuinber from inertial 

to acceleratecl frames, we have shown that i t  may be 

interpreted in terms of Doppler shifts depending upon 

position in spacetime, in conformity with the Einstein 

equivalence principle. This position is defined as the 

frequency derivative of some phase operators, in anal- 

ogy with the Wigner definition of phase-times[221. In 

the particular case of 1-particle states, it is a generaliza- 

tion to Quantum Field Theory of the Newton-Wigner 

position operator initially defined for wavefun~tions[~~].  

Consiclered as a whole, these results constitute a step 

forward in tlie direction of a consistent interpretation 

of the Einstein equivalence principle in the quantum 

domain . 
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