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We analyze tlie transformation of quantum fields under conformal coordinate transforma-
tions from inertial to accelerated frames, i1l tlie simple case of scalar massless fields jn a
tmo-dimensional spacetime, through tlie transformation of particle number and its spectral
density. Particle number is found to be invariant under conformal coordinate transforma-
tionsto uniformly acceleratecl frames, which extends tlie property already known for vacuum.
Transformation of spectral density of particle number exhibits a redistribution of particlesin
thefrequency spectrum. This redistribution is determinecl by clerivatives of phase operators
with respect to frequency, that is by time ancl position operators clefined in such a manner
that the redistribution of particles appears as a Doppler shift which depends on position in
spacetime, in conformity with Einstein equivaence principle.

|. Introduction

Lorentz invariance of electromagnetism lies at tlie
heart of the theory of relativityl!l. Tliisis true not only
for tlie classical tlieory of electromagnetism, but also
for the quantum theory. In particular, invariance o
vacuum fluctuations under Lorentz transformations is
needed to ensure that mechanical effects of these fluc-
tuations preserve tlie relativity of uniform motion in
empty space.

In contrast with these universally acceptecl ideas,
tlie interplay betweeii quantuin fields and accelerated
frames lias been tlie object of much debate. Since
Einstein[?!, accelerated frames are commonly repre-
sentecl by using Rindler clianges of coordinates!®! be-
tween inertial and accelerated frames. These transfor-
mations do not preserve the propagation equations of
electromagnetic fields. Light rays appear curved in ac-
celerated frames while frequencies undergo a shift dur-
ing light propagation{®l. Such a representation of accel-
erated frames also resultsin atransformation of vacuum
into a thermal bath®!. Tliis idea has apparently been
easily accepted because of its association with tlie most

spectacular effect predicted by quantum field theory in
curved spacetime, namely thermal particle creation due
to curvaturel®). It is nevertlieless clear that accelerated
frames and curved spacetime are completely different
physical problems, from the point of view of genera
relativity. Furthermore, the notion of particle number
plays a central role in the interpretation of quantum
field theory, and the fact that it is not preserved in ac-
celerated frames leads to weighty paradoxes for quan-
turn theoryl6l. These difficulties also raise doubts about
the significance of the Einstein equivalence principle in
the quantum domain. Such a principleindeed relies on
tlie very notion of particle number, as well ason the in-
terpretation of frequency change from inertial to accel-
erated frames as a Doppler shift depending on position
in spacetimel?. If vacuum or 1-photon states may not
be defined in a consistent manner in inertial and accel-
erated frames, it might appear hopelessto attribute any
significance to such a principle in the quantum domain.

In the present paper, we show that the interplay
between acceleration and quantum fields may be ana-
lyzed in a consistent manner which alowsto extend the
Einstein equivalence principleto the quantum domain.
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Our approach makes use of the conformal symmetry of
quantum theory of masslessfields, lilte a scalar field in
two-dimensional (2D) spacetime or the electromagnetic
field in four-dimensional (4D) spacetime. For tlie sake
of simplicity, we will restrict our attention here to the
2D case.

It has been known for a long time that the symme-
try related to inertial motions, associated witli Lorentz
transformations, can be extended for massless fields
to a larger group which includes conformal transfor-
mations to accelerated frames!”l. Light rays remain
straight lines with such a representation of acceler-
ated frames while frequencies are now preserved during
liglit propagation. These transformationsare known to
fit[8! tlie relativistic definition of uniformly accelerated
motion®). It has also been shown that vacuum remains
unchanged under conformal transforrnations to acceler-
ated frames['%!. Here, we extend the | atter property by
demonstrating the invariance of total particle number
under such transformations. This proves the consis-
tency of a point of view which maintains invariance of
vacuum and particle number for inertial and acceler-
ated observers.

When a spectral decomposition of particle number
is introduced and the transformation of spectral den-
sity from inertial to accelerated frames analyzed, field
phase operators make an appearance. We will show
that the resulting expressions correspond to quantum
definitions for position in spacetime!*!! which comply
with the requirement of the Einstein equivalence prin-
ciple for tlie interpretation of acceleration on quantum
fields in terms of Doppler shifts.
that tlie definition of phase operators, which may be
considered as conjugated to tlie number operators(!?,
leads to ambiguities!!3 4. A lot of work lias been de-
voted to cure tliese ambiguities (see*® and references
therein). Howcver, the conclusions that we*will reach
in the present paper will essentially be unaffected by
these difficulties.

It is wel known

I1. Conformalcoordinate transformations

In a two-dimensional (2D) spacetime, afree massless
scalar field ¢ (t, x) isthesuin of two counterpropagating
components:

u=t—2 v=t+z (1)

¢ (t,z) = (u)+9 (v)
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We use natural spacetime units (c = 1);t is the time
coordinate, x is the space coordinate, u and v are the
two light-cone variables.

In the 2D case, conformal coordinate transforma-
tions are those transformations which act separately on
the two light-cone variables, and they are specified by
arbitrary functions f and g describing the relations be-
tween sucli variables in the two reference systems:;

u=f(u) v=9(v) (2)

The field transformation under conformal coordinate
transformationsis defined through:

P e (u) =2 (7) 3)
From now on, we consider only one (¢) of the two coun-
terpropagating components; the other one (%) can be
dealt with in exactly the same way.

As well-known in Quantum Field Theory, the field
transformation under coordinate transformations may
be considered as generated by linear formsof the stress
tensor, that is also quadratic forms of the fields!*él. In
order to give explicit forms of these generators in the
spectral domain, we introduce the Fourier components
o [w] of the field ¢( u) according to the general defini-
tion:

dw )
go(u):/?z—; Jw] e (4)

These components are related to the standard annihi-
'lation and creation operators:

o] = ﬁ(ﬁ(w)aw—kﬁ(—w)af_w) (5)
(o, 0] = [ab,al| =0 (6)
[aw,'ajd,] = 2m6(w—w') (7

wliere 6 is the Heaviside function and é the Dirac dis-
tribution. Tlie commutation relations of the Fourier
components of the field are given by:

ol ol = 6w + ) 0

We now define the generating function T [w]:

Tl = [ @t ellplote] O
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as the Fourier transform of the stress tensor':

T (u) = (Bup (v))? (10)

We then introduce the generators T; as the coefficients
of the Taylor expansion of the generating function (k a
positive integer):

Th = {(-i00)* T o] Jumo = / T (ydu (1)

The commutators of these quantities with the field are
obtained as:

—Aw+u)elw+u] (12)
—h(=i0.)* {welw]}  (13)

[Tlw], ol =
(T, ¢ [W])

The latter relation precisdy fits the action upon thé
fidd of an infinitesimal conformal coordinate transfor-
mation. Denoting:

€
Splw] = = [Tk, o ] (14)
with e an infi:aitesimalreal number, oneindeed deduces:
b (u) = —euf By (u) (15)

This corresponds to equations (2-3) with an infinitesi-
mal coordinate transformation:

T = u+6f(u) (16)
bp(w) = P-p=—6f@Wap(@)  (17)
6f(u) = eu® (18)

Notice that the generating function T [w] may also be
associated with an infinitesimal coordinate transforma-
tion:

§f (u) = eexp (iwu) (19)

This does not correspond to a real coordinate tranfor-
mation which would necessarily involve opposite values
o the frequency?.

In order to recover the known commutation rela-
tions for the conformal generatorsi!?8l, we write the

commutator of the generating function with quadratic
formsaf the fidd:

[T, e ¢’ = —a{@Te)ewtw]el”]
twto)elW]ew+w}
(20)

Wethen deduce the commutator of the generating func-
tion evaluated at different arguments:

[T, Tl =tw-u)Twto) (22)

A Taylor expansion o this relation provides commuta-
tors characteristic of the conformal algebra (for positive
integers k)3:

[T, Ter] = ik (k' — k) Teqrr—1 (22)

III. Transformation of vacuum

The conformal coordinate transformations preserve
the propagation equation of masslessfields, and there-
fore their commutators('®l. However, not all of them
preserve vacuum fluctuations.

The vacuum state is defined by specific correlation
functions:

(plwlowvac =0 w) 0 () plw], oWl (23)

( )vac represents a mean vaue in the vacuum state.
This means that annihilators vanish when applied to
thevacuumstate. Using expression (8) of thefield com-
mutators, one obtains the correlation function:

(ol ol vac = 0 @) 6w +a) (24

Using transformation (20) of field quadratic formé, one
then deduces the transformation of vacuum correlation
functions:

([Tl ele k" Mvac =
h? (0 (W) - 8 (—w")) 6 (w+ ' + ") (25)

1In this definition appear symmetric products of the field operators, rather than normally ordered products. As a consequence, the
generating function describes the stress tensor associated with vacuum, as well as the stress tensor associated with particles.

2We may emphasize that we are dealing with coordinate transformationsd real Minkowski spacetime, here represented by real
light-conevariables. The generating function {9), that is the Fourier transfonn o the field stress tensor, is not hermitian but satis-
fies T{w])! = T[-w]. The generators T are defined in equation (11) as hermitian operators, in contrast with common definitions of

generatorsin ConformalField Theory in 2D spacetimel!8},

3Note that the original Virasoro algebrais defined with negative and positive order non-hermitian generators. It is generated by
h-lﬁT [kQ], whereQ isa scale frequency. It also corresponds to a Laurent expansionin variable « of the function T (u) extended to the

complex pla.ne[m] .
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It is also worth writing the transformation of the vac-
uum stress tensor, that is of the generating function
itself*:
h?w3

([T], T W vac = 58 (@ +4/) (26
One then demonstrates, through a Taylor expansion of
these relations in thefrequency w, that the vacuum cor-
relation function for field derivatives d,¢ (wliich corre-
spond to Fourier components —iwe [W]), as well as the
vacuum stress tensor, are preserved by the infinitesimal
generators Ty, T3 and 7> which respectively describe
translations, Lorentz boosts and conformal transfor-
mations from inertial to accelerated frames. This is
no longer the case for the higher-order generators. In
particular, the generator 73 changes the vacuum stress
tensor in a manner whicli is consistent with tlie dissi-
pative force felt by a mirror moving in vacuum with a
non-uniform accelerationl!:2%],

We thus recover the result of reference [10] for a
massless scalar field theory in a 2D spacetime: the vac-
uum is not invariant under the large group of confor-
mal coordinate transformations (equation (2) with an
arbitrary function f). It isinvariant only under the
smaller group of transformations generated by Tg, T
and T3. Those transformations correspond to tlie par-
ticular case of liomographic functions®:

au—+b

cu+d
In the following, we give some results for the large
conformal group, but we focus our attention onto the
smaller group of transformations which preserve vac-
uum, and particularly onto the action of the accelera-
tion generator T5.

T = ad—be=1 (27)

IV, Transformation of particle number opera-
tors

We will denote n, the spectral density of particle
number:

no=alas = 0@ eIl (3g)

Thevalues at different frequencies arecommuting quan-
tities:
(1, nw] =0 (29)
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and the coinmutators with the field may be written
from relations (8):

el =2 (5@ tw) —sw-w) oW (30)

Tliis definition is such that tlie generator Ty, that
is the field energy, lias its standard form in terms of
number density:

> dw

To = (To)yac +/o 'Q;an (31)

Thetotal number n of particlesisdefined astheintegral

n:/ —C{(ﬁnw (32)
0

27

of n,:

The number operators n, are defined for positive fre-
guencies, and vanisli when applied to the vacuum state.

We come now to the main argument of the present
paper, that is the transformation of particle numbers
under conformal coordinate transformations. As an
immediate consegquence of transformation (20) of field
guadratic forms, we deduce the transformation of the
number density:

[T, 2] = =200 (W){(W = ) p[w - w]plw]

twtu)pl-wlpwtw]} (33

Weobtain tlie transformation of tlie total particle num-
ber by an integration:
T el - wlp ]
(34)
We then derive the effect of the infinitesimal generators
by performing a Taylor expansion in tlie frequency w of
the previous expressions.

(Tl],n) = -

J0

Thetotal particle number nis preserved by tlie gen-
erators Ty, T1 and Ts:

1 1 1
E[To,’n]-—E[Tl,n}—;ﬁ[Tz,n]—O (35)
This property is well-known for the translations and
Lorentz boosts. The new result is that a conformal
transformation to an accelerated frame also leads to

a redistribution of particles in the frequency domain,

4When written in terms of normally ordered products, commutation relations (21) between the generators include a further pure

number. This central charge is determined by equation (26).

5Note that the modification of the mean vacuurn stress tensor (T (u))ys. under a conformal transformation associated with the
function f is proportional to the Schwartzianderivatived f , which vanishesfor homographictransformations(:8:191,
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without any cliange of tlie total humber of particles.
It is consistent with tlie invariance of vacuum in tlie
homographic group generated by Ty, 71 and 75, as dis-
cussed in tlie previous section. It means tliat tlie no-
tion of particle number is tlie same for accelerated ob-
servers and for iiiertial ones, provided that acceleratec
frames are defined tlirougli conformal transformations.
For the other generators Tj;»3, tlie vacuum is no longer
preserved and tlie total particle iiumber n is changed®.

We now write tlie transforinatioii of tlie spectral
density n,, of particle number under tlie generators 75,
Ty and Ty which perserve tlie total number n. As ex-
pected, tlie nuimber density is unclianged under a trans-

lation: ’
- - 36
Zh [TO: nw] 0 ( )
but clianged under a Lorentz boost:
1
o [T1,ny] = 0w {wny} (37)

This latter cliange is a inere mapping in the frequency
domain, associated with tlie Doppler shift of tlie field
frequency. We tlien write tlie modification of tlie spec-
tral density of particle number in a conformal transfor-
mation from an inertial to an accelerated fraine:

Z%;—[Tz,nw] = 20, {wmu} (38)
m, = 28 {plwly W]+ [-elp k)
(39)

The quadratic form m,, is hermitian. It may not be
rewritten in terms of tlie density n. or its deriva-
tives. In other words, the modification of n, under 75
amounts to aredistribution of particlesin the frequency
domain, without any change of the total particle num-
ber, asit was tlie case for tlie modification of n,, under
Ti, but this redistribution is no longer equivalent to a
mere mapping of tlie cleiisity n,, in the frequency spec-
trum. We will diow later on that tlie expression (39)
may be interpreted as a Doppler shift which depends
on position in spacetime, in conformity with Einstein

equivalence principle.

V. Quantum phase and phase-time operators

In the present section, we diow how to obtain quan-
tum operators associated with positions in spacetime.

As afirst step in this direction, we introduce oper-
ators e and §, such that:

Ay = CwyTNw (40)
al = noel (41)
Cw = gibe (42)

As well-known, these relations are not sufficient to de-
fine phase operators since annihilators and creators are
not modified hy a redefinition of the phases such tliat:

TNy =0 (43)

€w — Cw T+ Ty

Various definitioiis of tlie phase operators, for exam-
ple tlie Susskind-Glogower definition*4 or the Pegg-
Barnett definition!?!); are connected through sucli re-
clefinitions. We sliow below that the properties studied
in the present paper may be stated independently of
such ambiguities.

We now list some properties which are satisfied
for any operators defined from relations (40-42); tliese
properties depend only upon the field commutation re-
lations (6-7). First, the exponential operators € are
cominuting variables, like tlie number operators (com-
pare with (29)):

[ew, €] = 0 (44)

This is also the case for their adjoint operators ef,:
[ef el ] =0 (45)

The commutation relations between operators ¢ (or
el)) and tlie number operators n,, satisfy:

—2me,§ W — w') \/ne (46)
2 nwzeL,a(W -w)  (47)

[nw)en] \ nw’ =
N [nw, BLI]

Il

However, the exponential operators e do not commute
in tlie general case witli their adjoint operators el :

ewel =1 (48)
eL ew = 1—a, 0, (49)
where II,, projects onto vacuuni for field components

at frequency w, and a, is a function of w which de-
pends on the specific definitioii of the phase operator.

' ~ ~ that the commutator (33) vanishes when applied to the vacuum state, for arbitrar-positive frequenciesw. However, vacuum
and particle numbers are not invariant under generators Ty>3- These propertiesare consistent since, as already mentioned, T [w] is not
hermitian and real coordinate transformations involvethe generating function 7" [w] at negative frequencies as well as positive ones.
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It follows that the exponential operators are not nec-
essarily unitary and, hence, that tlie phase operators
are not hermitian. One gets for example a = 1in
the Susskind-Glogower definitionl!4], and & = 0in the
Pegg-Barnett definition, which thus corresponds to her-
rnitian phase operators(11. For all definitions, one may
nevertheless write

nwe:[,ew = el eu/Mw = V1w (50)

It follows tliat simple relations hold for states orthogo-
nal to vacuum, i.e. states such that tlie probability for
having n,, = 0 vanishes.

‘We have given definitions of tlie phase operators for
afield having a wliolefrequency spectruin, and not only
for a inonomode field. We are thus able to deal with
frequency variation of the phase operators and, in par-
ticular, to consider the operators é,, obtained by differ-
entiating phases é,, versus frequency, according to the
Wigner definition of phase-times(22l. A lot of discus-
sions have been devotecl to the significance of such a def-
inition, and of its relation with time observables whicli
can be measured by various techniques®¥. Here, we
will emphasize that tlie operators 6/, do not commute
with number operators and with energy, tlius pioviding
quantum phase-times.

Since the exponential opeiators € coinmute (see
relation (44)), the frequency derivative §,, of tlie phase
may be defined from tlie frequency derivative e/, of the
exponential operator:

e, = 18, e, = ie,d,, (51)

It may be defined as well from tlie adjoint exponential
operators e];:

€ =-—iel (&) =—i(g)'el  (52)

It follows from relation (48) tliat the phase derivative
8!, isan hermitian operator, even for non-hermitian def-
initions of the phase 6;

5, = —iel,el, =i, (e]) = (6,)' (53)

Using these properties and definitions (40-42), we
may now rewrite the definition (39) of m,, as:

]
Mo = g {(a"‘,)T ay — al,a{d} (54)
My = +/Mwb,/Mw (55)
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The quadratic form m,, is proportional to the density
n, but alsoto tlie operator §/, which, aswe shall seein
tlie next section, has properties of a quantum position
in spacetime.

The operators §/, have been defined from phase op-
erators, so that they are expected to have non vanish-
ing commutators witli the number operators!!?l. The
definition of such commutatorsis affected by the am-
biguities already discussed(!4/. We may however state
tliem in arigorous manner by evaluating the commuta-
tors between tlie densities m,, and n,, (forw > 0 and
w' > 0)

[my, nw] = =278’ W — w') ny, (56)

These relations are unambiguously defined in any quan-
tum state and they are consistent with Dirac-like com-
mutators in states orthogonal to the vacuum (states
such that n,, # 0):

S (8], n] i = =2718 (W — W) n,, (57)

To derivethis result, we have used relation (55) and the
fact that n,, and n, are commuting variables.

V1. Discussion

A comparisoii between the relations (37) and (38),
wiliich describe respectively the effect of a Lorentz boost
and of a change of acceleration on the number den-
sity, shows that the latter is equivalent to a Doppler
shift of the field frequency whicli depends on the op-
erator §/,. This property appears to be quite close to
a quantum expression of tlie Einstein equivalence prin-
ciple, provided tliat &, plays the role of a position in
spacetime, in consistency with the Wigner definition
of phase-times(?2. The semiclassical character of the
Wigner definition makes its extension to the definition
of a quantum operator difficult. We show now that
it is however possible to write down rigorous quantum
statements with §, used like a position in spacetime.

To this aim, we evaluate commutation relations be-
tween é/, and tlieenergy operator Ty. Multiplying equa-
tion (56) by frequency W and integrating over ', we
get (see equation (31)):

[Ty, mw] = ihn., (58)
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We may also introduce the integral m o the density
m, in the same manner as tlie total particle number n

from the density n,,:

* dw
m = . %mw (59)
We deduce from the commutator (58):
[Ty, m] = ikn (60)

We notice that the commutation relations between m
and the creation and annihilation operators have a sim-
ple form:

[m,a] = 1tal, [m,al] =i (al)! (61)

We now discuss these relations from the point of view
of the quantum definition of positionsin spacetime.
Wefirst discuss the spectral relation (58). Since n,,
is invariant in a translation, we deduce from relation
(55):
Vi [Tod.) /g = ihn, (62)

For states orthogonal to the vacuum state (n, # O),
this has the form of a canonical commutator between
Ty and é.,, thus defining 6/, as a quantum phase-time.

More exactly, Ty is the energy associated with the
light-cone variable u, so that ¢/, has to be interpreted
as a quantum operator U,, having this variable u asits
classical analog. The same manipulations applied to
the counterpropagating field component ) would lead
to the definition of a quantum variable \/ having the
light-cone variable v as its classical analog. Combin-
ing these two variables, it is therefore possible to define
time- and space-like operators:

6LIIJ(¢) =Vo=1w+&

(63)
which are conjugated to the field energy and momen-
tum:

6{{)(‘#) Uw =Tw — ﬁw

[Er] =ik [Péu] = —if (64)

defined through:
E=T{ + T P=TF -TH  (65)

This provides quantum definitions of time and space
operators 7, and &, defined at each frequency w like
the semiclassical Wigner definitions.

In order to give a more explicit realisation of quan-
tum positions in spacetiine, we now consider the in-
tegrated relation (60), in the particular case of a 1-
particle state. As already discussed, the notion o a
numbei state is preserved in conformaltransformations
to accelerated frames; precisely the total particle num-
ber n is preserved. In particular, the definition of a
1-particle state (n =1) is the samefor accelerated and
inertial observers. For such a state, the commutator
(60) now reads as a canonical commutator between the
energy 7 and the operator m:

[Th, m] = ik n=1 (66)

Thisrelation may be considered as associating a quan-
tum position to tlie 1-particle state, precisely one po-
sition for each light-cone variable. Following the same
path as from equation (63) to equation (65), we may
then obtain time and space operators 7 and ¢ associ-
ated with the state.

In fact, the operator m is a generalization for quan-
tum fields of the Newton-Wigner quantum position(!1].
This position, initially defined for a wavefunction, is
here extended to l-particle field states. To make this
point explicit, we represent each 1-particle state by a
function f of frequency or of position:

0= [ Ffelle=[ drwivn @
Q T —o0

where we have used Dirac-like ket notations for the ba-
sis states:

al, | vac) (68)
00 dw twu
/0 3¢ | w) (69)

|w)
| w)

Il

Equation (61) thus means that the operator »z may be
represented in the space of functionsf either as the dif-
ferential operator (~i9,,) in the frequency domain, or
as the multiplication by u in the position domain:

. [ dw , 00
m|f):—z/ —2-f[w]|w):/ du u f(u)|u)
0 ™ — 00
(70)
Its spectral density m,, can be shown to be related to
its symmetrised product with particle number density

Ny:

1 1
3 {m,n,}= §(mnw + nem) = my+ :mn, ¢ (71)
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where : : denotes normal ordering:
. x> d 7
cmn, = %/0 ;7;— {(afu,)T al agra, — al,alafulaw}

(72)
This normal product vanishes when applied to 1-
particle field states, so that for such states tlie density
m, can be identifiecl, as an operator, with the sym-
metrised product of position m and particle number
density n,. Using tlie commutation relations (61), it
can then be rewritten under the form (55) with posi-
tion m substituted for ¢/,:

My = %{ mnw} = \/ﬁm\/ﬁa n=1 (73)

Finally, transformations of particle number density to
inertial or acceleratecl frarnes take tlie simple form of
Doppler shifts of tlie frequency ((37) and (38)):

% Oy {wny, } (74)
" 20, {o/mst, Az} (T5)

For 1-particle field states, the last relation can also be
written:

[Tl ) nw] =

[T2> nw] =

;ﬁ [T2, nw] = 20w {w\/ﬁ;m\/%} n=1 (76)

This Doppler shift is proportional to the acceleration
and to the Newton-Wigner position of tlie particle.
We may now summarize the results obtainecl in this
paper. In order to talce advantage of the conformal sym-
metry of masslessfield theories, we have represented ac-
celerated frames by conformal transformations. Invari-
ance of vacuum under such transformationswas alreacly
knownl!%, We have demonstrated that total particle
number was also iiivariant, thus proving the consistency
of a point of view where vacuum and number states are
tlie same for iiiertial and accelerated observers. In con-
trast with the cominon Rindler representation of accel-
erated frames discussed in tlie introduction, this point
of view allows to discuss the effect of acceleration on
guantum fields in terms of a redistribution of particle
in the freqguency domain. Analyzing the transforma-
tion of spectral density of particle nuinber from inertial
to acceleratecl frames, we have shown that it may be
interpreted in terms of Doppler shifts depending upon
position in spacetime, in conformity with the Einstein
equivalence principle. This position is defined as the
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frequency derivative of some phase operators, in anal-
ogy with the Wigner definition of phase-times/22. In
the particular case of 1-particle states, it is a generaliza-
tion to Quantum Field Theory of the Newton-Wigner
position operator initially defined for wavefunctionsf1l,
Consiclered as a whole, these results constitute a step
forward in tlie direction of a consistent interpretation
of the Einstein equivalence principle in the quantum
domain.
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