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We have studied the magnetization asa function of temperature for two sublattice itiner-
ant electron systems, using the functional integral formalism and talking into account the
clegeneracy of the d band. A numerical application is made to a model transition metal

intermetallic.

|. Introduction

In a recent paper!!! we have applied the functional
integral approach, in the static approximation, to de-
scribe the finite temperature magnetic properties of the
transition metal Laves phase intermetallics. In order to
simplify the formulation and to malte easier the numer-
ical calculations for these intermetallics, composed by
two sublattices, some approximations had to be intro-
duced.

The first approximation is to adopt a single band
Hubbard like Hamiltonian, considering five identical
”d” subbands. The second approximation concerns to
the description of the two sublattices of the intermetal-
lic. The homothetic band approach was used; in this
approach one starts from the dispersion relation asso-
ciated with the B sublatice, to whicli a model density
of stateis associated. The corresponding dispersion re-
lation for the A sublattice is proportional to the B one

and includes in general an energy shift.

The comparison between the numerical results ob-
tained in that work!!l and the experimental data for
the transition temperature, indicated that this picture
should be improved. In thiswork we extend our previ-
ous calculation{!] to take into account the degeneracy of
the d band, but keeping all the other approximations.
The inclusion of the degeneracy of the ”d” band en-
ables to account for the exchange effects on the magne-
tization and transition temperature of theintermetallic.
Theintroduction of thisterm in the Hamiltonian maltes
the calculation very complicated, but we hope to get a

higher magnetic transition temperature, as compared
toll).

I1I. Harniltonian

We start with the Hamiltonian including tlie de-
generacy of the d band and adapted to describe two
sublattice systems:

H=Ho+H{+Hf, )
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where af (a;-,) is the creation (anniliilation) opera-
tor of one electron with spin ¢ at tlie ! (j) site in the
r sub band (r = 1..5). ef.(eB.) is tlie d energy cen-
ter of the r-subbancl associated to the A(B) sublai-
tice. The terms T4, (TEE,,) represent the electron
hopping between 1I'(;;') sites of the same A(B) sublat-
tice and 7722, , is the hopping between sites of different
sublattice. TA(U¥®) is tlie local Coulomb energy in-
teraction associated with tlie d electrons in tlie same
subband of tlie A(B) sublattice; U4(UP) is tlie local
Coulomb energy interaction associated with the d elec-
trons in tlie different subbands of tlie A{B) sublattice.
Finally J4(J%) isthe local exchange energy interaction
of the “d” electrons in different subbands associated to
the same sublattice. It was shown in the literaturel?
that the interaction terms of the above Hamiltonian
(H{, HB) may be put in the following form

1 \ o
I ==3 > (i Chomiy +mip Ciumiy)  (5.0)

Iry!

HY = —%Z (n M,n mﬁ@ﬁ,mﬁ y  (5.D)
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wlierenft =" aff_aio; mit = Y., onr, with similar
quantities for the B sublattice and € and G’ (I =
or B) are matrices which elements are given by:

C"n= —(207 - JI) - (UI -2t JI)(SM, (6.a)

ol =T+ (U = 708, (6.D)

IT1. The Partition Function

In order to calculate the partition function of the
system described by the above Hamiltonian, we follow
tlie standard procedure used in the literature®!, namely
Feyman’s time ordering operator 75. In this way, this
partition function may be written as:

A

7 = TrTye” f Hoeds —fﬁdhzh (nlr 2t AmACA mt %

Xe

where 8 is given by 1/kgT.

Using the generalized Hubbarcl-Stratonovicli relationl®:

‘foﬁdszzm (nJrCrB;'”B"I'm Crmy ) . (M

e:tzﬂilDljtj :N‘l/d:ce_zj!x‘(Dl_jl)xj—ZI VELtjz ’ (8.a)
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wliere N isgiven by:

N = \] dze 2oq @i (D5 o=, VETuT; , (8.0)
We can write the above partition function as:
7 = TrThe™ 7 asto, _/lesda?f}-sdyﬁ.s (e_ [Las 3, et @A) o —izfinf
e [lasy, yﬁ(‘ffr:)"yﬁ/—yﬁm{‘r> %
R
e Jo 4 yﬁw‘*id“yﬁf—yﬁmﬁ) , (9)

wliere zft and y# are cliarge and spin fluctuating fields at tlie sites ! of tlie A sublattice and associated to the r
subband. Similar notation holds for the B sublattice. From here on we disregard the factor N, since it appears in
nuinerator and denominator of the averaged values. This partition function involvesimplicitly an integration over
tlie time dependence s of the fluctuating fields. At tliis point weintroduce our first simplification, namely the static

approximation, tliat neglects tlie time dependence. So one has:

Z = /H;,.dmlAdylA/erdwfclyfe_'@(q’(’”frl’fr”ﬁyﬁ)) (10)
where
q’(mﬁy{}_mﬁyﬁ) = \Ilo(mﬁyﬁxﬁyﬁ) + \Pl(mﬁ.y{,‘_wﬁyﬁ,) , {11.0)
Yo(ehyieiysy) = 3 (el (Ch) efh + yir (Ch) ™ uih) +
Irrf :
Z (a:ﬁ(CE: _lfcﬁvl + yﬁ(éﬁ.l)_lyﬁ./) s (11.b)
j?'f'l
1 ..
i (zhumabyl) = -3 In Tr e~ PHove5v5) (11l.¢)
Hy=Hy— Z(zxﬂn,‘,‘, + yfrmit) — Z(zxﬁ,nﬁ + yﬁ,mﬁ . (11.d)
Ir jr
|
In expression (10), in spite of the use of tlie static ap- field variables (v, x). The result is:

proximation, tlie calculatioii of this partition function
isstill very complex, due to a multipleintegration over

. . e . . VI:ZRr,xI EI_ZRrII
tlie charge aiid the spin fields associated to eacli sublat- i ris s G = r' Yirs
tice. We can simplify tliis calculation defining asuitable i i
set of new variables, reflecting tlie symmetry of tlie lat-

(12.a)

or tlie inverse transform:

tice. Suppose here that each sublattice of our model I N T I

Ty, — R—,/ Vit = R—I, I/ 12.%
intermetallic lias cubic symmetry. Then, we use the r ET-,:( it Ui 12,( e (120)
well known irreducible representations, (¢5, and e, ), to

transform the old charge and spin fields (x, y) into new wherethe R transformation matrix for thissymmetrym

isgiven by



N. A. deOliveiraand A. A. Gomes 305

the term ¥, may be rewritten as:

11 1 0 O

2 -1 -10 0

0 1 -1 0 0 (13) \I’O = 5‘, (Vlr rr’Vh + fi?D;f‘r flA;') +

0 0 0 1 1 [

0 0 0 1 -1 + 5‘1(,,],3 BB, + BDE.EE) . (19)
Using this transformation, we can write ¥, and ¥y in o
terms of the new variables in asimpler way. Firstly, where D! and D' are matrices given by

|
r1’ '—( 1)T(Cf{r’)_1 1_;'1’ rr' = (R—.1 T(Cfr ) 1Rr1' ) (15)

witli seven non-vanisliing elements for each sublattice

(U + 201 - J%)

Diy = 30T+ 80T — 4J)(2UT — U1 — JT) (16.0)

Diz = Dis=3Dj, = 2007 + 8%21—-*_4?7?)[(2—[?4"]1)U1 -7 (16.9)
Dy = 20T + 8(U(£I +4L§[f])l(2U’Ji)Uf —Jn (16.c)
Dia=Das = (r g7 fi;;)?gUlf) —TT=3) (16.d)
Dis = g qEZIJ;I;(JUII) ~3) (17.0)

Diy = Dis = 3Dj, = T iU; J}L)gl,)_ 71y (17.5)

Dis = 57 ErUz:Jt)?;If)— 77y (17.¢)

Di,=Dj; = ) (17.d)

(Ul +45HUwt -JH "
and zero otherwise.

At this point we use the saddle point approximation to eliminate some charge and spin fields!?!; we obtain for
each sublattice:

==y =0 , §=6&=6=0. (18)

In this way the only non vanishing elements of (14) are those involving D{,, Di,, D,, Di,, and similarly for the
terms involvirig DY. Remembering the dimensions of the irreducible representations for the cubic symmetry group,
we define the following fluctuating fields(l

I _ I . I __ qe¢l
le = 3Vjt H E]l = 3{71

vii=2], ; €l,=3¢, (19)
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where t and e represent ¢,, and e, subbands respectively. With these transformations, equation (14) finally takes
the form

o =Uf + 08 | (20.a)
\IIA - Ztht‘U!t + 4DA Vle + ]QDteylt VIe -+ gD glt + 4Dee le + 12D éi‘}gle s (20b)

vl —Z9Dn /i, +4DEvE, + 12DEv5VE + 9DEEE, +4DB 2, +12D 1EEEE

eeje tejt

(20.c)

je

where

In this situation, the only non zero elements in (23)

D}, =D}, D, =D are w}; wly; thisfact together with (18), resulting from
, . _, _, the saddle point approximation to the charge and spin
Deo = Dyy Dee = Dyy (21) fields, impliesthat we can rewrite this Hamiltonian H,

(22) in the same form of the Hamiltonian (2), replac-
ing the energy levels €}, by the following effective spin
It remains now to transform equation (ll.c) using the dependent energies

same procedure; in this particular case, this corre-
I _ I d I
sponds to rewrite the Hamiltonian (11.d) using the €ro = € = (Wi +0&,) (25.0)
transformation (12.b). One gets

D] = D14 = D{ll D{e = [7{4 = DA{]

where now r» =t or e, representing the ¢5; and e, sub
band. The liamiltonian becomes then:

ﬁo = Hp— E(“jl/} + U&Ar)w{i - Z( »+ O'f],,) jr o

i ir
(22)
where w!, is a column vector defined hy (R=1)Tnl, H = Z €y Qirg + Z Tt ot arrs
with elements given by fre Wro
I ZGJTO' Ajpplire + Z T] I ]ma] ro
Wi (( f1+n it + n73//3 jro ji're
w; 2n —nl, —nl./6
72 j2 3 AB( +
'U)]I~3 (71]2 ]3/2 (23) + Z I}j'ﬂ‘ (alraa’j“’ + a’_;'t‘oal"'g) . (256)
w;; (nds+ n]S/Q bro
Wijs (nj4 - nj5/2 . .
. V. Self consistent equations
Let us note that, the occupation number of each sub-
band, cubic symmetry, is equal to This new Hamiltonian H,, can be considered as de-
scribing an aloy, with an intrinsic disorder associated
(nj1) = (njs) = (njs) = (nfy) to the fluctuating fields; these obey a distribution prob-
(nly) = (nl) =(n],). (24)  ability given by

e=BUEL el v PP v PV D) o
Ve = T deRdeRdvf dvAdeP deP dvP dyBe- P vV TR TR (26)
In order to treat this disordered Hamiltonian we can use the CPA approximationl®; introducing the effective media
2 (528 ) to restore translation invariance, we obtain the effective Harniltonian (HeHy

P(f‘-AsA I/A‘ft gﬁ 1
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HeH = FO(2A sk

where the above unpertubed Hamiltonian Ho(ZA £4

Y4+ HA + HE |
) lias the same form of (25.b) with the sdf energy (=f,)

307

(27.a)

replacing the spin dependent energy levels (¢f, ). The term HA(HPB) is the local perturbation at /o and jo sites of

the A(B) sublattice, given by

A A A A
H” = Z(Glro - Era)aﬁ;rgaloro = yt I/rga;troalo"'g (27.8)
or o7
B B B — B
H® = Z(€jro - Erd)a;;raajorﬂ - Z Vra a;roro Gjora (27.0)
or ar

Using the irreducible representation of the cuhic
symmetry, the Green's function of the two coupled sub-
lattice system, defined by tne effective Hamiltonian
(27.a), may be represented by the following matrix,
with spin implicitly included

GA4 0 GAB 0
0 G&* 0 GiE
GEA 0 GEE 0
0 GB* o GBP
This propagator should satisfy the matrix Dyson’s
equation

(28)

G=g+gVG , (29)

where the unperturbed Green's functions (g), associ-
ated with Hamiltonian H9(S4 54 ), defined in terms
of the self energy, has a similar form as (28) and the
matrix potential (V) is given by the 2 x 2 matrix

VA 0 0 0
0 vA 0 0
0o 0 VB o
0 0 0 VP
Following the same procedure of [1] to solve Dyson's
equation, we obtain the propagator for the | = A,B

sublattice as

(30)

where renormalized propagator §/! above is defined as
in [1] by

g = gt + 15 Hjﬁ’ﬁ_)gﬁﬁr , (32.0)
_BB _ BB , BA VA AB 29 b
Gijm —gjj/,+yj10,—————-—(1_ VTAFTA)QIOJ-/,. . (32.b)

The propagator (32.a) renormalizes the motion of
electrons in the r subband, between sites of the same
A sublattice, including a hopping at jo site to the B
sublattice, where they are scattered by the local po-
tential V2 and a hopping back to the A sublattice;
a similar interpretation holds for (32.b). In equation
(31), the ienormalized local Green's function ## and
FB are defined from (32) as g5 an G2 respectively;
similarly FA and FB are defined as g4 and g5%. The
unperturbed Green's functions (g), involving the two
sublattices, are calculated using the homothetic band
approach(!l. In this approximation, westart from given
dispersion relations ¢x.(r = ¢,e) for the B subiattice
and assume the dispersion relations for the A sublat-
tice to be proportional to €x, with a coefficient «,.. The
coupling between sublatices again isproportional to e,
with coeficient .. So the unperturbed Green's function

VI
Ir __ -II =IT =11
Gijs, = Gijry + g”“"(_l_:—éf_ﬁ_;?jg“’"’ , (31) has the form
|
-1
z— 5 — oepy B 0 —Y1€kt 0
0 2 =20 — €p 0 —Ye€keD
k, = age [ € 33
9(k, ) ~=Yt€rt 0 z =B — ey 0 (33)
0 Ye€ke 0 z— 257 — €ke
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The unperturbed Green's function (intra and inter sublattice) associated with tlie r subband are explicitlly given
by:

F(2) = gitfa (2) = —— 73)(2;% = B B (B) = (e = B = BB, (349)
PR3 = 05720(2) = ooy gy — S — o BR)F(ER) ~ (+ = B, - oEL)F(EL)], (34D)
Yr — e -
JIJU (z) ZN(ar — 73)(Eﬁ-0 — E;'_a) [Era(EraF(Era) 1-E a)(E:aF(Eia) - 1)] ) (34'0)
E7, = m{uz e oz - SEl £ {[e - B, oz - 27)P-
~4[(z - (2 - BB )](er D)} ) (34.d)

where Zy is tlie number of nearest neighbours and F,.(EZ,) is tlie Hilbert transform of tlie density of states p-(e),
given by

pr(€)
= 35
Rk = [dehtO (3)
Taking the average of (31), remembering tliat < G4% >= gfrt and the < GBZ >= GfiF, the effective media

%A and 2, may be obtained from tlie following equations

P(Ere2vv P v Ve (E0v)
A g0A A j¢B 30B 3 B t Se t Se ¥t ro — 36.
Jactataaiacpactantet s e = (36)
Pl v v el vP B)VB(fB )
A JeA A jeB geB B B t Se t Se rg\Sr _ 36.b
/ e e vy B B P EA Eviwa P EBv VD) — (359
where P(EACAvAVAEE¢B VD) is tlie probability distribution defined by relation (26) where the free energy ¥ is

explicitly glven by{ ]

AABBBB AABBBB
‘I’(ft SeV e &t se ViV )-‘I'O(ft SeV o Gt se Vi Ve )+

2 / dzf(2)Im S In[1l ~ VA& v FA (2))+
_;_%/dzf(z)Ilen[l - Vg’* v F, o(z)]
+§ / dz f(z)Imza: In[1 — V2P P FE(2))]+

+—f; / dzf(=)Im Y [l = V2 (E2vIDFL(2)] (37)

where f (z) is the Fermi distribution function and z = € + 6, § — 0+. The expressions (36) form a coupled set of
two self consistent equations, for each » symmetry. These involve difficult multipleintegrationsover the fluctuating
fields of both sublattices, and must be solved simultaneously.

In order to simplify tlie numerical calculations, we neglect the the second order terms (g4% . g24). In this way,
the renormalized local Green’s functions 7Z(/4) defined through (32), reduce in this approximation to FZ(F4)
and tlie probability distribution may be writen as
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PEredviviePelvPul) = PAELE M vEvY) - PR(EPERVEVD) (38.0)
where
Pllelel iy e~BY(Elelv]v)) (38.)
Clerve) = Fomagtaaiereein =4 o B ‘
With

Vi eletvivl) = wiElelvivl) + . [ def(e)tm S nl = V€l EL )

+;2r- / dzd(z)Im Y In[l - VeI FL(2)] . (38.c)

Note that due to this simplification, one ends up with two independent free energies, each one associated to the
corresponding sublattice. A subtle point is that the inter sublattice coupling is incorporated implicitly via the
functions FL .
Using this approximation, tlie self consistent equations tliat determine the effective media reduce to
/dedgAdVAdVA Wﬁ(&\yf‘) PA(€A o (39'a)
C T VAR P A eR) = 0,

B B B, B ‘ég(éflé’{j
/ gy d€F dvy dvy T VB(EL v )Fg(z)PB(ﬁﬁfﬁl/ﬁyﬁ) =0. (39.5)
Now, for each r symmetry we have two sgif consistent equations, indirectly coupled via the Green's function F.
These equations involve an integration over charge and spin fields. As it is often made in the literature!® we can
eliminate the integrations over the charge field, by using the saddle point approximation, where the charge fields
are replaced by

—il 1 [ W44t -270/2 @07 - ) nd 10)

-l |7 3 2-2 (Uil -gh)/2 [nI] ; (
and the occupation number at r =t,e subbands of tlie | sublattice is

y '
nl = 2 nl, = —;/def(e)ImZU:Fr{,(z) ; z=¢+146, §—0T, (41)
I
the Green's function FZ (z) being given by (34). The magnetic moment for each sublattice is
The magnetic moinent associated to tlie » subband

of each sublattice, is calculated using tlie standard pro- MT=3m] +2m] . (42.9)

cedure of the functional integral method®l:

V. Numerical results

ml = 6Dy < € > +4D,, < & >, (42.0)
; _ ! _ p In thissection weillustrate the formalism devel oped
m, = 6D <& > +4Dec <& >, (42.0) here applying it to the case of ZrFes Laves phase inter-
the mean value being given by: metallic, with two sublattices A = Zr and B = Fe.
If the degeneracy in the Laves phase case is to be de-
<l 5o fdf{dfgf,{e“ﬁ‘l’l(dfi) ' (42.0 scribed rigorously, we need three irreducible represen-

T [deldelemPYI(EED tations; for the sake of simplicity we assume in this
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illustration tlie existence of only two irreducible repre-
sentations t2, and e,. In tliis first approacli we take
identical densities of states associated to the different
irreducible representations.

Note tliat other cliaracteristics of tlie Laves pliase
lattice are included in our picture, via the inter-
sublattice hopping, explicitly consiclered in the formal-
ism. In what concerns one electron states, tlie present
calculation is identical to that reported inl!l. We con-
clude that liere, the important effect of tlie degeneracy
is to introduce the Coulomb and exchange interactions
between different orbitals, not consiclered in tlie non-
degenerate version(!].

We start assuming tlie model density of states
adopted in a previous work®!, extracted from Terao
and Shimizu’s tight binding calculation!®l. This model
density of states enables the numerical solution of tlie
coupled equations (39), for a given set of parameters
which we specify now.

Firstly we adopt tlie following occupation num-
bers, for A and B sublattice, ancl for eacli subband
as: nf = nf = 1.457 and n#! = n2 = 0.505. Also, a
series of parameters shoulcl have their values estimated;
tliese parameters are the Coulomb and exchange inter-
action strengtlis. We adopted, to illustrate our results,
tlie following values: U4 = 0.3, U4 = 0.1, J4 = 0.05,
UB =0.6,UP =0.3, 7% = 0.1, all these being in units
of half-band widtli. We recal that 3d wave functions
of Fe are more contracted tlian tlie 4d ones associated
to Zr. We expect then higher values for the Coulomb
interactionsin the 3d case as shown above.

Another series of parameters already introduced
inl!] are the a and v values, pararnetrizing respectively
the homothetic 3d, 4d bands and the inter sublattice
hopping. It has been shown by Yamada and Shimizul™,
tliat the liybriclization between the spin polarized 3d
states ancl the higher energy states associated to the
4d or 5d atoms, plays a central role in explaining tlie
occurrence of ferriinagnetism in tliese compounds. In
tlie previous calculation!® it is sliown that alowing to
a spin clependence of the 7 parameter, the stability of
a ferrimagnetic phase is ensured at T = OK. Thisis
done by properly adjusting the v values. The numeri-
cal values of the above parameters, independent of the

subband, are taken equal to those adopted int"}, where
these values were obtained for low temperatures. Tlie
remaining parameters were adjusted in such away that
tlie low temperature saturation magnetization fits to
tlie observed data.

Tlie parameter space is aquite rich one and tlie spe-
cific role of each parameter requires a specia study; in
this work we only want toillustrate the effect of the ex-
change interactions in producing changes in tlie Curie
temperature. Here we show tlie following new result:
including degeneracy, only via the Coulomb and Ex-
change interactions, a change by afactor of the order 3
in the value of the transition temperature is obtained,
as compared to [1].

MAGNETIZATION (lL53)

R

M
-0.5 "H B |A 'R D S O T |
(4] 200 400 &00 800 1000 1200
TEMPERATURE(K)

Figure1. Temperatnre dependence of the magnetization (in
units of up) for A and B sublatice.

Infigure 1 is presented the temperature dependence
of the magnetizationin units of x5 for both sublattices.
Let us empliasize that a closer agreement with the ex-
perimental value of T, requires the explicit introduction
of more detailed one electron densities of states, com-
patible with Laves phase symmetry.

In conclusion , even in the case of more complex
systems like Laves phase compounds with stable rare
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earths, discussed within a combined Monte Carlo func-
tional integral method!®, tlie present formalismcan im-
prove the agreement with the experiments, in wliat con-
cerns the transition temperature.
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