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We have studied the magnetization a.s a function of temperature for two sublattice itiner- 
ant electron systems, using the functional integral formalism and talking into account the 
clegeneracy of the d band. A numerical application is made to a model transition metal 
intermetallic. 

I. Introduction 

In a recent paper[l] we have applied the functional 

integral approach, in the static approximation, to de- 

scribe the finite temperature magnetic properties of tlie 

transition metal Laves phase intermetallics. In order to 

simplify the formulation and to malte easier the numer- 

ical calculations for these intermetallics, composed by 

two sublattices, some approximations had to be intro- 

duced. 

The first approximation is to adopt a single band 

Hubbard like Hâmiltonian, considering five identical 

"d" subbands. The second approximation concerns to 

the description of the two sublattices of the intermetal- 

lic. The homothetic band approach was used; in this 

approach one starts from the dispersion relation asso- 

ciated with the B sublatice, to whicli a model density 

of state is associated. The corresponding dispersion re- 

lation for the A sublattice is proportional to the B one 

and includes in general an energy shift. 

The comparison between the numerical results ob- 

tained in that worl<[lI and the experimental data for 

the transition temperature, indicated that this picture 

should be improved. In this work we extend our previ- 

ous calculation[ll to  take into account the degeneracy of 

the d band, but keeping a11 the other approximations. 

The inclusion of the degeneracy of the "d" band en- 

ables to account for the exchange effects on the magne- 

tization and transition temperature of the intermetallic. 

The introduction of this term in the Hamiltonian maltes 

the calculation very complicated, but we hope to get a 

higher magnetic transition temperature, as compared 

to[l]. 

11. Harniltonian 

We start with the Hamiltonian including tlie de- 

generacy of the (i band and adapted to describe two 

sublattice systems: 
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lrõ l l i rr 'o  

1 HP = $JA C n i f o n c - a  + S U A  C ri$,n$-, + S ( ü A  - J ~ )  C n$,n&, , 
lrõ lar#r' Iar f  r' 

where n ~ , ( a j , , )  is the creation (anniliilation) opera- H: = --C 1 (nE~;,n:. + m j r C r r l m j , . )  B B  B ( 5 . ò )  
tor of one electron with spin ã at tlie 1 ( j )  site in the 4 

jrr' 

r sub band (r = 1 . . .5 ) .  E & ( E ~ , )  is tlie c1 energy cen- 

ter of the r-subbancl associated to the A(B) snb1a.t- 

tice. The teirms 7;;?tri (?;er,) represent the electron 

hopping between l l l ( j j ' )  sites of the same A(B) sublat- 

tice and ~f:, , is the hopping between sites of different 

sublattice. UA(UB) is tlie local Coulomb energy in- 

teraction associated with tlie cl electrons in tlie same 

subband of tlie A(B) sublattice; ÜA(ÜB) is tlie 1oca.l 

Coulomb energy interaction associated with tlie c1 elec- 

trons iii tlie different subbands of tlie A(B) sublattice. 

Finally JA(J " )  is the local exchange energy interaction 

of the "cl" electrons in different subbands associated to 

the same sublattice. It was shown in the ~iterature[~] 

that tlie interaction terms of the above Hamiltonian 

(H:, H?) may be put in the following form 

1 
I = -- ( n n  + n n )  ( 5 . a )  

4 
lrr' 

wliere ni, = C,  a ~ , a l , , ;  mj$ = C, anl,, with similar 

quantities for the B sublattice and C1 and C' (I = A 

or B) are matrices which elements are given by: 

c,',, = - ( a o 1  - J I )  - ( u l  - 2 U 1  + J I ) S , , ~  ( 6 . ~ )  

111. The Partition E'unction 

In order to calculate the partition function of the 

system described by the above Hamiltonian, we follow 

tlie standard procedure used in the l i t e ra t~re[~] ,  namely 

Feyman's time ordering operator To. In this way, this 

partition function may be written as: 

where /3 is given by l / b ~ T .  

Using the generalized Hubbarcl-Stratonovicli re la t i~n[~] :  
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wliere N is given by: 

N = dxe J - cji ~ ~ ( ~ , ; ~ ) x i - ~ ~ L F i t i x ~  , 

We can rvrite the above partition function as: 

wliere x$ and y$ are cliarge aiid spin fluctuating fields a t  tlie sites l of tlie A sublattice and associated to  the r 

subband. Similar notation holds for the B subhttice. From here on we disregard the factor N, since it  appears in 

nuinerator and denominator of the averaged values. This partition function involves'implicitly an integration over 

tlie time dependence s of the fluctuating fields. At tliis point we introduce our first simplification, namely the static 

approximation, tliat neglects tlie time dependence. So one has: 

In expression (10), in spite of the use of tlie static ap- 

proximation, tlie calculatioii of this partition function 

is still very complex, due to  a multiple integration over 

tlie charge aiid the spiii fields associated to  eacli sublat- 

tice. We can simplify tliis calculation defining a suitable 

set of new variables, reflecting tlie symmetry of tlie lat- 

tice. Suppose here that each sublattice of our model 

intermetallic lias cubic symmetry. Then, we use the 

well known irreducible representations, (tag and eg), to  

transform the old charge and spin fields (x, y) into new 

I 

field variables (v, x). The result is: 

or tlie inverse transform: 

where the R transformation matrix for this ~ymmet ry [~ ]  

is given by 
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the term may be rewritten as: 

1 1  1 0 0  
2 -1 -1 o o 

(13)  A A A A 
QQ = C ( Y > T D ~ ~ ' ~ /  + EbDrr16r) + 

lrr' 

B B B  + C (vjr~rTivJTI + 6:D:lt)r) i (14) 
jrrl 

Using this transformation, we can write @o and @i in 

terms of the new variables in a simpler way. Firstly, where D' and D' are matrices given by 

witli seven non-vanisliing elements for eacli sublattice 

I D : ~  = = 
(J' - 2Ü') 

(U' + 8Ür - 4J')(2Ü1 - U' - J') ' 

= (u' + J')  
3(U1 + 4J')(Ur - J') ' 

= = 
- J * )  

(U' f 4J1)(UI  - J') ' 
and zero otherwise. 

At tliis point we use tlie saddle point approximation to eliminate some charge and spin f ield~[~];  we obtain for 

each sublattice: 

I I I  v z = v 3 = v 5 = 0  , <;=<;=<:=o.  (18) 

In this wa.y the only non vanishing elements of (14)  are those involving D!~, 0i4, D!~, and similarly for the 

terms ínvolvirig D'. Remembering the dimensions of the irreducible representations for the cubic symmetry group, 

we define the following fluctuating f ield~[~] 
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where t and e represent tzg and eg subbands respectively. With these transformations, equation (14) finally talres 

the form 

where 

It remains now to transform equation (1l.c) using the 

same procedure; in this particular case, this corre- 

sponds to  rewrite the Hamiltonian (1l.d) using the 

transformation (12.b). One gets 

(22) 
where wj',. is a column vector defined hy ( ~ - ' ) ~ n f , ,  

with elements given by 

- I I +n; +nf3/3 - 
(h:, ; n:, - nfJ6 

(1zj2 - nj3/2 
w:~~ (1zf4 + 125512 

- 4 5  (nf, - nf5/2 - 
Let us note that, the occupation number of each sub- 

band, cubic symmetry, is equal to  

In this situation, the only non zero elements in (23) 

are wil wi4; this fact together with (18), resulting from 

the saddle point approximation to  the charge and spin 

fields, implies that we can rewrite this Hamiltonian H. 
(22) in the same form of the Hamiltonian (2), replac- 

ing the energy levels E;,. by the following effective spin 

dependent energies 

where now r = t or e, representing the t2, and eg sub 

band. The liamiltonian becomes then: 

lro ll'ro 

IV. Self consistent equations 

Tliis new Hamiltonian H. can be considered as de- 

scribing an alloy, with an intrinsic disorder associated 

to the fluctuating fields; these obey a distribution prob- 

ability given by 

A A A A B B B B -  
A A A A B B B B  p(lt ue L ut Ve - J d F ~ d E ~ d v f d 3 d [ ~ d < $ d V ~ d V $ e e P * ( E t  <e " t  "e c t  Cs " t  "e 

In order to  treat this disordered Hamiltonian we can use the CPA approximation[3]; introducing the effective media 

c&(c:~) to restore translation invariance, we obtain the effective Harniltonian ( H e f f )  : 
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~ ~ f f  = HO(C$C,B,) + H ~  -I- , (27 .a) 

where the above unpertubed Hamiltonian I ? ( c ~ c ~ )  lias the same form of (25.b) with the self energy (Cf,) 

replacing the spin dependent energy levels (E(.,). The term H A(H B)  is tlie local perturbation at 10 and jo sites of 

the A(B) sublattice, given by 

H" = C(ti',, - ~ ~ u ) a ~ , , ~ i n r u  = C K$a~Touioru (27.8) 
u r  ur 

H B  = x ( ~ $ ~  - c ~ ~ ) ~ ~ ~ , , ~ ~ ~ ~ U  = v ~ a ~ r u u j o v ~  (27. C) 

Using the irreducible representation of tlie cuhic 

symmetry, the Green's function of the two coupled sub- 

Iattice system, defined by tne effective Hamiltonian 

(27.a), may be represented by the following matrix, 

with spin implicitly iiicluded 

This propagator slioulcl satisfy the matrix Dyson's 

equation 

where the unperturbed Green's functions (g), associ- 

ated with HamiItonian H'(c$c$), defined iii terms 

of the self energy, has a similar form as (28) and the 

matrix potentid (V)  is given by the 2 x 2 matrix 

Following the same procedure of [l] to solve Dyson's 

equation, we obtain the propagator for the I = A, B 
sublattice as 

where renormalized propagator ij" above is defined as 

in [I] by 

The propagator (32.a) renormalizes the motion of 

electrons in the r subband, between sites of the same 

A sublattice, including a hopping at jo site to the B 

sublattice, where they are scattered by the local po- 

tential yB and a hopping back to the A sublattice; 

a similar interpretation holds for (32.b). I11 equation 

(31), the ienormalized local Green's function I'A and 

F B  are defined from (32) as an jzr respectively; 

similarly FA and FB are defined as g$? and g$:. The 

unperturbed Green's functions (g), involving the two 

sublattices, are calculated using the homothetic band 

approach['l. In this approximation, we start from given 

dispersion relations 6 k T ( r  = t ,  e)  for the B subiattice 

and assume the dispersion relations for the A sublat- 

tice to be pioportional to  with a coefficient e,. The 

coupling between sublatices again is proportional to €a,, 

with coeficient 7,. So the unperturbed Green's function 

has the form 
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The unperturbed Green's function (intra and inter sublattice) associa.ted with tlie r subband are explicitlly given 

by: 

B BB 1 
Fru(z> = yjjru(z> = [(z - c$ - aE;) F(E&) - (Z - C& - a ~ , f , )  F (E$,)] , (34.b) 

(ar  - y;)(ETSb - EFu) 

E$ = 
1 

{[(z - C: + a (z  - C:)] f {[z -C$ + ff(z - ~ f ~ ) ] ~ -  
2(ar - 

-4[(r - xfo(z - ~ ~ o ) ~ ( a r  - y:)}"2} , (34.4 

where ZN is tlie number of nearest neighbours and F,(E$) is tlie Hilbert transform of tlie density of states P,(E), 

given by 

Talcing tlie average of (31), remembering tliat < G$? >= yAA 33' and the < C:! >= gBB, 33'- the effective media 

C$ and C; may be obtained from tlie following equations 

where P ( ~ ~ ( ~ v $ v $ [ ~ [ ~ v ~ v ~ )  is tlie probability distribution defined by relation (26) where the free energy !l! is 

explicitly given by[2] 

A A A A B B B B  A A A A B B B B  
Q(St S e  " t  " e  Et S e  1'1 " e  ) = Qo(Et S e  "t "e St S e  " t  " e  )+ 

where f (z) is the Fermi distribution function and z = E + iS, S -. O+.  The expressions (36) form a coupled set of 

two self consistent equations, for each r symmetry. These involve difficult multiple integrations over the fluctuating 

fields of both sublattices, and mpst be solved simultaneously. 

In order to simplify tlie numerical calculations, we neglect the the second order terms (gAB . gBA)- In this way, 

the renormalized local Green's functions pB(FA)  defined tlirough (32)) reduce in this approximation to F ' (F~)  

and tlie probability distribution may be writen as 
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where 

With 

I I I I I  
,-OQZ(E:E~v:v~) 

P (St Sevt ve )  = I = A  or B J d[:d(edv,'dv,le-P*I(tft:v:v,') 

Note that due to this simplificatioii, one ends up with two independent free energies, each one associated to the 

corresponding sublattice. A subtle point is tliat the inter sublattice coupling is incorporated implicitly via the 

functions F,~. 

Using tliis ap~roxirnation, tlie self consistent equations tliat determine the effective media reduce to 

A A A  1 d e  d t f  d ~ t  d ~ f  líu(C. ) 
lJ A (et A A A A  te vt Ve  ) = 0 l 

1 - V,A,(Jfv,n)F,$(z) 

B  B B  

J <yF d<: d ~ ? d l / f  
v . " ( F r V r )  B B B  p B  ( & S e V t V e ) = o . .  B B B B  

1 - V,u (J r  )F,Bo(f) 

Now, for each r symmetry we have two self consistent equations, indirectly coupled via the Green's function F:. 

These equations involve an integration over charge and spin fields. As it is often made in the literaturef31 we can 

eliminate the integrations over the cliarge field, by using the saddle point approximation, where the charge fields 

are replaced by 

-i./ (U -t 4Ü1 - 2 .J1)/2 (2Ü' - J') [ -i.: ] = [ 3 2  - 2 (11 + 2Ü1 - J 1 ) / 2  ] [ ] ' 
and the occupation number at r = t ,  e subbands of tlie I sublattice is 

the Green's function F;,,(Z) being given by (34).  

The magnetic moinent associated to tlie 1- subband 

of each sublattice, is calculated using tlie standard pro- 

cedure of the functional integral metliod13]: 

m: = BD,, < 5; > +4& < td > , (42.u) 

me = 6Dte < 5: > +4Dee < Sé > (42.b) 

the mean value being given by: 

The magnetic moment for each sublattice is 

M' = 3m: + 2me . (42.S) 

V. Numerical results 

In this section we illustrate the formalism developed 

liere applying it to the case of ZrFea Laves phase inter- 

metallic, witli two sublattices A = Zr and B = Fe. 

If the degeneracy in the Laves phase case is to be de- 

scribed rigorously, we need three irreducible represen- 

tations; for the sake of simplicity we assume in this 
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illustration tlie existente of only two irreclucible repre- 

sentations tag and e g .  In tliis first approacli we take 

identical densities of states associated to the different 

irreducible representations. 

Note tliat other cliaracteristics of tlie Laves pliase 

lattice are included in our picture, via the inter- 

sublattice hopping, explicitly consiclered in the formal- 

ism. In what concerns one electron states, tlie present 

calculation is identical to that reported iii[ll. We con- 

clude that liere, the important effect of tlie degeneracy 

is to introduce the Coulomb and exchange interactions 

between different orbitals, not consiclered in tlie non- 

degenerate ~ersioi i [~] .  

We start assuming tlie model density of states 

adopted in a previous ~ ~ o r l í [ ~ ] ,  extracted from Terao 

and Sliiinizu's tight bindiiig calcn~ation[~]. Tliis model 

density of states enables the numerical solution of tlie 

coupled equations (39), for a given set of parameters 

which we specify now. 

Firstly we adopt tlie following occupation num- 

bers, for A and B sublattice, ancl for eacli subbancl 

as: n t  = n: = 1.457 aiid nf = ne = 0.505. Also, a 

series of parameters shoulcl have their values estimated; 

tliese parameters are the Coulonib and excliangc inter- 

action strengtlis. We adopted, to illustrate our results, 

tlie following values: uA = 0.3, ÜA = 0.1, J* = 0.05, 

U* = 0.6,ÜB = 0.3, J~ = 0.1, a11 these being in units 

of half-band widtli. We recall that 3cl wave functions 

of I;è are more contracted tlian tlie 4d ones associated 

to  Zr. We expect then liiglier values for the Coulomb 

interactions in the 3d case as shown above. 

Another series of parameters already introduced 

in[l] are tbe a aiid values, pararnetrizing respectively 

the homothetic 3c1, 4d ba11cls ancl the inter sublattice 

hopping. It has been shown by Yainada and ~liirnizu[~],  

tliat the Iiybriclization between the spin poIarizec1 3cl 

states ancl the higher energy states associated to the 

4d or 5d atoms, plays a central role in explaining tlie 

occurrence of ferriinagnetism in tliese compounds. In 

tlie previous calc~lat ion[~]  it is sliown that allowing to 

a spin clependence of the 7 parameter, Lhe stability of 

a ferrimagnetic phase is ensured at T = O K .  This is 

done by properly adjusting the y values. The numeri- 

cal values of the above parameters, independent of the 

subband, are tal~en equal to  those adopted inL1], where 

these values were obtained for low temperatures. Tlie 

remaining parameters were adjusted in such a way that 

tlie low temperature saturation magnetization fits to 

tlie observed data. 

Tlie parameter space is a quite rich one and tlie spe- 

cific role of each parameter requires a special study; in 

this worlr we only want to  illustrate the effect of the ex- 

change interactions in producing changes in tlie Curie 

temperature. Here we show tlie following new result: 

including clegeneracy, only via the Coulomb and Ex- 

change interactions, a change by a factor of the order 3 

in the value of the transition temperature is obtained, 

as compared to [I]. 

2.0 - 

TEMPERATURE (K) 

Figure 1. Temperatnre dependence of the magnetization (in 
mits of p ~ )  for A and B siiblatice. 

In figure 1 is presented the temperature dependence 

of the magnetization in units of , u ~  for both sublattices. 

Let us empliasize that a closer agreement with the ex- 

perimental value of T, requires the explicit introduction 

of more detailed one electron densities of states, com- 

patible with Laves phase symmetry. 

In conclusion , even in the case of more complex 

systems like Laves phase compounds with stable rare 
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earths, discussed within a combined Monte Carlo func- 

tional integral metliod[", tlie present formalism can im- 

prove tlie agreement with the experiinents, in wliat con- 

cerns the transition temperature. 
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