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The evolution of the cosmological sca le factors is studied in a ten dimensional universe with 
the normal three space adjoined to a six dimensional space with positive, negative or zero 
curvature and the matter content admitting a viscous fluid and a monopole configuration in 
a background of a cosmological constant. 

I. Introduction 

Early universe cosmology has become a fashionable 

and fertile field of investigation ever since the incep- 

tion of inflation to explain the cosmological puzzles of 

flatness, horizon and absence of monopoles from tlie 

present universe[']. Old inflationL1], new inf lat i~n[~l ,  

chaotic inf lat i~n[~] ,  and extended inf lat i~n[~]  a11 offer 

us a mechanism by which the initial state of tlie false 

vacuum can expand the universe at a rapid rate to re- 

solve the horizon problem and then by either fine tuning 

or the intermediary of a Brans-Diclte scalar, new infla- 

tion, chaotic infla.tion and extended inflation can offer 

us a mechanism by which the true vacuum can perco- 

late. The central problem of a11 inflationary cosrnology 

centers on the mechanism by which galaxies were ini- 

tially seeded and large scale structure evolved. Galaxy 

formation is primarily concerned with two questions, 

what were the seeds of large scale structure (density 

perturbatiom or topological defects) and what ltind of 

matter (hot or cold dark matter) was active in nucleat- 

ing around these seeds to  produce the generic origin of 

large xa l e  ~ t ruc ture[~] .  One of the most beautiful fea- 

tures of inflation is that it makes use of the scalar sector 

of particle theory (Higgs sector) with the Higgs poten- 

tia1 providing the driving force for inf lat i~n[~] .  After 

tlie original proposal for inflation in the early eighties, 

higher dimensions attracted the interest of many theo- 

rists because of the attractive features of supei-gravity 

theories and super-string theory which sought to give 

us a generic reason for a G.U.T. group and a low en- 

ergy standard model along with a primitive origin of 

Einstein gravity and higher curvature cor rec t i~ns[~-~] .  

Low energy manifestations of the super-string would 

be extra neutra1 gauge bosons in the range (100 - 400 

Gev)[lO] along with an extra scalar gravitational field 

(dilaton) that may provide the scalar field necessary 

in extended inf lat i~n[~] .  To model the ten dimensional 

cosmology that emerges from the super-string, we fol- 

low the observation of Myung and Cho who suggested 

that once the field theory limit is reached the conver- 

sion of massive string modes to  massless modes can be 

modeled by a dissipative fluid with an bulk viscosity 

term representing the conversion process and resulting 

entropy production process[ll]. Actually bulli viscos- 

ity proportional to the curvature squared was shown 

by Gurovich and ~ t a r o b i n s k ~ [ ' ~ ]  to  represent vacuum 

polarization in a background gravitational field and we 

have shown that bulk viscosity proportional to the cur- 

vature squared leads to  inflation in any number of di- 

mensions for a flat space t ~ ~ o l o g ~ [ ' ~ ] .  If we also repre- 

sent the vacuum effects of quantum fields by a cosmo- 
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logical constant  leis ser['^] and ~ c c e t t a [ ' ~ ]  have pointed 

out that if compactification begins tlie vacuum effects 

of quantum fields will drive the universe to  a deSit- 

ter expansiori in a11 dimensions, liowever if a monopole 

configuration is present, it will stabilize tlie compact- 

ification process. Admitting the presence of ali tliese 

competitive phenomena we study a ten dimensional cos- 

mology with the matter represented by a viscous Ruid 

in the presence of a monopole configuration, we also 

consider a ba.ckground cosmological constant to repre- 

sent tlie vacuum effects of quantum fields and allow it  

to  be positive, zero or negative. In a previous note[16] 

we have studied a similar cosmological scenario only in 

that study we did not consider a background cosmolog- 

ical constant and did not allow for negative and zero 

curvature in t.he six dimensional space. The equations 

for R3, R6 (three and six dimensional scale factors) are 

difficult to  solve but we are able to study the small time 

evolution away from tlie initial state by using a power 

series expansion about tlie initial state. 

11. Ten  dimensional  cosmology ami t t i ng  viscous 

fluid, monopo le  condensa t ion  and a background 

cosmological cons tan t  

We begin our analysis by writing the metric for a 

ten dimensional space with topology of a closed, open or 

flat three dimensional liomogeneous isotropic space ad- 

joined to a six dimensiond isotropic and l-iomogeneous 

six space of positive, negative or zero curvature. Tlie 

form of the metric is 

For the Ricci component corresponding to Eq. (2.1) 

have[17] 

For the total action of gravity plus matter in the 

background of the cosmological constant we have 

(G = ten dimensional gravitational constant). 

Here A is the cosmological constant, .Ln[ is the La- 

grangian of matter, and .CF is the Lagrangian of anti- 

symmetric tensor field generating the monopole config- 

uration. 

Iii 10 dimensions we have 

1 
LF = -F,,F*"J-g 

Ir' (4) 

where Fp, is tlie antisymmetric gauge field, and I( = 
$n4 from normalization in 10 dimensions. 

Varying Eq. (3) with respect to  g,, gives 

where 

From Eq.4 we have for the iauge field energy momen- 

tum tensor 

For tlie energy momentum tensor of matter we choose 

the phenomenological representation of a11 non-gauge 

matter to take on the form of the energy momentum 

tensor for a dissipative fluid [16] 

I(,, = U,;, + U,;, + U, + uXu,;X + u,uXu,;A 

where is the expansion, J is the coefficient of bulk 

viscosity and 17 is the coefficiente of shear viscosity. 

Calculating the components of Eq. (7) we have us- 

ing comoving coordinates 



Brazilian Journal of Physics, vol. 25, no. 4, December, 1995 

and 

for the trace of tlie energy momentum tensor of matter. 

For the rnonopole configuration we choose [17] 

Using Eq. (6) we have 

6 2 Too = 7ifo 

where we use the summation Fl,,FpV = 6 fz. Eq. (5) 

can be written as 

where T is the sum of Eq. (9) and Eq. (12) and 

k = 8rGlo/C4. 
Wlien the sum of Eq. (8) and Eq. (11) is substi- 

tuted in Eq. (13) we obtain with the use of Eq. (2) 

using 

and tlie equation of state P = ~ / 9  for the massless string modes. We find after eliminating P and i from Eq. (14), 

Eq. (15) a.nd Eq. (16), 
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We now consider the special cases of Eq. (18) and If However 

K3 = 1(6 = 0, R3 = R30eQt, Rs = &o ePt(P = p > O and we get expansion of the six space. 
O,  a > O), (expanding three space and static six spaces) 

Eq. (2.18) and Eq. (2.19) give 
Case I11 

O, no viscous effects) we have from Eq. (18) and Eq. 

and equating the values of a2 in both equations we find 
180 18 84kf; 5 p2 =--p2+-a2-ap+- 
54 54 

+ -A , (22) 
1;;~ + -"g - 54K 36 

CY = 2 K .  
-27qk - TEk (20) and 

Thus if 
135 135fs' < o 
-A+- 
16 2.K 

(negative cosmological constant) we wili get inflation in 
From Eq. (22) and Eq. (23) we have 

the three space for a > 0. 

Case  I1 

K3 = K6 = O,  R3 = R30eat(a = O), R6 = 
~soe@(,O < O), (compactification of six space). 

Eq. (18) and Eq. (19) give B2 = f f 2  (= 4 x 54) + -- 54 (468f@ + EA) (24) 
1026 54K 36 

1 b2 = 54 (-180p2 + 1. (7 - 3 6 6 +  

and equating the two values of B2 we obtain Substituting Eq. (24) back into Eq. (23) we may 

solve for a which will generate positive a for a range of 

the parameters fs and A. 
y ( & - & ) A - q ( + + $ & )  B = -  3Gvh 
----- i:$ i- &(A$) - gkt (21) We note that positive a with negative B (taking - 

:!34 
sign in Eq. (24) will generate an expanding three space 

For /3 < 0, the cosmological constant is 
and contracting six space. We also have positive a with 

positive p which will generate expanding three space 

and six space. 
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Case IV 

For the most general situation K 3 ,  IC6 # 0 we inay 

solve Eq. (18) and Eq. (19) by a power series about to .  

Given R3(t0), ~ 3 ( t o ) ,  R~( to ) ,  Rc(tO), we may find 

 to), ji6(t0) from Eq. (18) and (19). 

We may also find the higher derivatives of R3 and 

R6 a t  to by differentiation of Eq. (18) and Eq. (19) 

and write 

We note that a positive A will have a tendency to 

expand R6 and R3 from Eq. (18) and Eq. (19). Also 

from Eq. (18) and Eq. (19) the magnitude of < and 17 

will determine the evolution of R6 and R3. If < and 77 

depend on the curvature ~ ~ u a r e d [ ' ~ l ~ ~ I ,  then the evolu- 

tion of R6 aiid R3 will be modified so as to  be dominated 

by tlie curvature dependent viscosity term. 

111. Conclusion 

The combined system of viscous fluid, monopole 

configuration and the cosmological constant represents 

a moclel that in a phenomenological manner can model 

various features of tlie early universe. We note also 

that by adding a second monopole configuration of a 

second gauge field we liave more arbitrariness in tlie 

parameters f6, h, < a.nd tliat would lead to a com- 

pactification of the six space. From Eq. (18) aizd Eq. 

(19) we note that the monopole configuration impeded 

the contraction of the six space and also impedes the 

expansion of the three space in the second derivatives of 

the scale factors. The only way to follow the evolution 

of R3 and R6 in the general case is through a numerical 

analysis given the initial conditions. If this is done the 

large time evolution would be found from Eq. (25) witli 

the liigher derivatives calculated from Eq. (18) and Eq. 

(19) a t  t = t o .  

Acknowledgement  

I would like to thank the Physics Department at 

Williams College and Harvard University for the use of 

their facilities. 

References 

1. A. Guth, Phys. Rev. D23,  347 (1981). 
2. P. J .  Steinhardt ancl M. S. Turner, Pliys. Rev. 

D29,  2162 (1984). 
3. A. D. Linde, Pliys. Lett. B 129 ,  177 (1983). 
4. E. W. Icolb, D. S. Salopek and M. S. Turner, Phys. 

D42,  3925 (1990). 
5. S. Veeraraghavan and A. Stebbins, Astro. Phys. 

J. Lett., 395, L-55 (1992). 
6. S. Coieman, Phys. Rev. D15,  2929 (1977). 
7. J.  W. Moffat, Can. J. Phys. 64, 651 (1986). 
8. M. B. Green and J .  H. Schwarz, Phys. Lett. 

B149, 117 (1984). 
9. D. J. Gross and E. Witten, Nucl. Phys. B277, 1 

(1986). 
10. J .  L. Rosner, Comments Nuclear and Part. Pliys. 

15, 195 (1986). 
11. Y. S. Myung and B. H. Cho, Mod. Phys. Lett. 

A l ,  37 (1986). 
12. V. Z. Gurovich and A. A. Starobisky, Sov. Phys. 

J.E.T.P. 50, 844 (1979). 
13. C. Wolf, Phys. Lett. A127, 129 (1988). 
14. M. Gleiser, Proc. of the 13th Texas Symposium 

in Relativity and Astrophysics, (1987) p.67. 
15. F. Accetta, Proc. of the 13th Texas Symposium 

in Relativity and Astrophysics (1987), p. 74. 
16. C. IVolf, Astron. Nachr. 314, 1 (1993). 
17. M. Gleiser, S. Rajpoot and T .  G.  Taylor, Ann. 

Phys. (N.Y.) 160,  299 (1985). 


