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The evolution of the cosmological scal efactors isstudied in aten dimensional universe with
the normal three space adjoined to a six dimensional space with positive, negative or zero
curvature and the matter content admitting a viscous fluid and a monopole configuration in

a background of a cosmological constant.

|. Introduction

Early universe cosmology has become a fashionable
and fertile field of investigation ever since the incep-
tion of inflation to explain the cosmologica puzzles of
flatness, horizon and absence of monopoles from tlie
present universel!l. Old inflation{!], new inflation(?!,
chaotic inflationl®!, and extended inflation(4l all offer
us a mechanism by which the initial state of the false
vacuum can expand the universe at a rapid rate to re-
solve the horizon problem and then by either fine tuning
or the intermediary of a Brans-Dicke scalar, new infla-
tion, chaotic inflation and extended inflation can offer
us a mechanism by which the true vacuum can perco-
late. The central problem of all inflationary cosrnology
centers on the mechanism by which galaxies were ini-
tially seeded and large scale structure evolved. Galaxy
formation is primarily concerned with two questions,
what were the seeds of large scale structure (density
perturbatiom or topological defects) and what kind of
maitter (hot or cold dark matter) was active in nucleat-
ing around these seeds to produce the generic origin of
large scale structurel®. One of the most beautiful fea-
tures of inflationisthat it makesuse of the scalar sector
of particle theory (Higgs sector) with the Higgs poten-
tial providing the driving force for inflationl®l. After

tlie original proposal for inflation in the early eighties,
higher dimensions attracted the interest of many theo-
rists because of the attractive features of supei-gravity
theories and super-string theory which sought to give
us a generic reason for a G.U.T. group and a low en-
ergy standard model along with a primitive origin of
Einstein gravity and higher curvature corrections!”=2].
Low energy manifestations of the super-string would
be extra neutral gauge bosons in the range (100 - 400
GeV)[10 along with an extra scalar gravitational field
(dilaton) that may provide the scalar field necessary
in extended inflation®. To model the ten dimensional
cosmology that emerges from the super-string, we fol-
low the observation of Myung and Cho who suggested
that once the field theory limit is reached the conver-
sion of massive string modes to massless modes can be
modeled by a dissipative fluid with an bulk viscosity
term representing the conversion process and resulting
entropy production processi*ll. Actually bulk viscos-
ity proportional to the curvature squared was shown
by Gurovich and Starobinsky!'2! to represent vacuum
polarization in a background gravitational field and we
have shown that bulk viscosity proportional to the cur-
vature squared leads to inflation in any number of di-
mensionsfor aflat space topology!3l. If we also repre-
sent the vacuum effects of quantum fields by a cosmo-
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logical constant Gleiser!4] and Accettal’®] have pointed
out that if compactification begins tlie vacuum effects
of quantum fields will drive the universe to a deSit-
ter expansiori in all dimensions, however if a monopole
configuration is present, it will stabilize tlie compact-
ification process. Admitting the presence of all tliese
competitivephenomenawestudy aten dimensional cos-
mology with the matter represented by a viscous fluid
in the presence of a monopole configuration, we also
consider a background cosmological constant to repre-
sent tlie vacuum effects of quantum fields and allow it
to be positive, zero or negative. In a previous note!*¢l
we have studied a similar cosmological scenario only in
that study we did not consider a background cosmolog-
ical constant and did not allow for negative and zero
curvature in the six dimensional space. The equations
for R3, Rs (three and six dimensional scale factors) are
difficult to solve but we are able to study the small time
evolution away from tlie initial state by using a power
series expansion about tlie initial state.

II. Ten dimensional cosmology amitting viscous
fluid, monopolecondensation and a background
cosmological constant

We begin our analysis by writing the metric for a
ten dimensional space with topology of a closed, open or
flat three dimensional liomogeneous isotropic space ad-
joined to asix dimensional isotropic and homogeneous
six space of positive, negative or zero curvature. Tlie
form of the metric is

-1
Jur = R3Giy (1)
RéGmn

Here u,v» =0,..9;7,5=1,2,3; myn=4,..9.

For the Ricci component corresponding to Eq. (2.1)

we havelt?] B .
Rs Re
Ryo = 3]—%; + GR—G
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For the total action of gravity plus matter in the
background of the cosmological constant we have

c* :
L= 167TG(R+2A)\/—9+.CM+»CF, (3)

(G = ten dimensional gravitational constant).

Here A is the cosmological constant, Las isthe La-
grangian of matter, and £r is the Lagrangian of anti-
symmetric tensor field generating the monopole config-
uration.

In 10 dimensions we have

1
Lp= FF,“,F‘“’«/—g (4)

where Fy, is tlie antisymmetric gauge field, and K =
27* from normalization in 10 dimensions.

Varying Eq. (3) with respect tog, gives
1 87
R;w - §Rg,u1/ - Ag;w = _'_C‘;‘4—T;w ) (5)
where
2 O0Lm 2 OdCp

Tw: + .
= =g og =i og

From Eq.4 we have for the gauge field energy momen-
tum tensor

4 s
(Tu)r = = FuaF = g;‘{ FapF*? (uv=0,..9). (6)

For tlie energy momentum tensor of matter we choose

the phenomenological representation of all non-gauge
matter to take on the form of the energy momentum
tensor for a dissipative fluid [16]

Tyy = (}-j + U, U, + gl,,,l’5 — &y (7
with
Ky = Uy YUy Y U+ U0 F U UM
_ 9 .
P=P+ (—9-77—§> Usg
where U, is the expansion, £ is the coefficient of bulk
viscosity and # is the coefficiente of shear viscosity.

Calculating the components of Eq. (7) we have us-
ing comoving coordinates
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Using Eg. (6) we have

(U°=1, U*=0,a=1,..9) Too = 2. f2
K
Too=c¢ 6
00 _ Ty = R;fozgif (11)
_ Rs
T = Pgiy — 20| = | s 8 2
J 9ij U(R&))gf ( ) Tmn=7f629mn
. 89
- Rs with trace
Ton = P -2 = "
mn Imn n (R6> Im T = T’wg/.w - —'3—_{6'-)“(? (12)
and where We use the summation F,, F** = 6f2. Eq. (5)
T = Tpg™ = —c+9P — 67;5-—12 52 9) can be written as
R3 Re
1 1
for thetrace of the energy momentum tensor of matter. Ry = —k [Tp,v - nguu} - ZAg‘“’ (13)

For the monopole configuration we choose [17] where T is the sum of Eq. (9) and Eq. (12) and

k= 87G1o/C*.
When the sum of Eq. (8) and Eg. (11)is substi-
FouFl =0, FnpFF = f2gmn (fs = const) (10) tuted in Eqg. (13) we obtain with the use of Eq. (2)

Fiijﬂ =90, Foquf‘ = FﬂuFét - 0>Fqu#l =0,

3R3 6R6 <f6 + ¢ ' A
iy  ORe o 2 14
Rt T ’“[—%( 272~ c+ 9P ~6nke — 1298 (-1) | T 7 (14
. 2 . .
Ks Rj Rs 6RsRs gfé+P %R A
_ =~k - 15
[Rg‘*‘]g +2(R3) +R6R3j| [—%[———fs—e-}-gP 6773 —1277_‘1] 4 (15)
N2 . P—-QnEfL
( : 3o A
[t () ] 4 o
6 6 alts -1 (——fﬁ—e+9p 6ne "12’736)
using
_ 3Rs  6R
P:P+< Zp— f)( 2 RG) (17)
6

and the equation of state P = ¢/9 for the massless string modes. We find after eliminating P and ¢ from Eq. (14),
Eg. (15) and Eq. (16),

. ] . 2
Loy 18l 150 (o) 418 () —safele | |
—_— — -+ %A , (18)
ok (B - s6nie + 36n 8 + gk + 185%3)
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l
We now consider the special cases of Eg. (18) and If However
Eq. (19
q. (19) b2 (132, s
A< K 90 234
Case I Bl _ 1Y °
ase 5 (50 — m3)
K3 = Ks = 0, B3 = R3oe™, Rs = Roo e”(8 = 8 > 0 and we get expansion of the six space.
0, a> 0), (expanding three space and static six spaces)
Eg. (2.18) and Eq. (2.19) give
0. (218) and Eq. (2.19) giv p—
0= [18 2’+L(§ff2+36 a+9£a) +—5—A
54 K6 TN 36 K3 = K = 0, Rg = Reoe®, Rs = Rage®*, (n = € =

0, no viscous effects) we have from Eq. (18) and Eq.

1 132 5
2 2 _ (19)
o =5 [ 90 k‘( f6+72na+9£a>] 36A

and equating the valuesd a2 in both equations we find

5o 180ﬂ2 _aﬂ+84kf6+ Sa ()
135 A + 135 /¢ 54K
— 1% 7 K
—2Tnk — B¢k (200 and
Thus if
135,  135/2 s 005 90, 216ap 13%k7
ST A of =-galt o - — Ak - (23)

(negative cosmological constant) we wili get inflation in From Eq. (22) and Eq. (23) we have

the three space for a> 0.
2
P (1026) — a4 = 468 fsk + 15A

Case I1 b4 K 36

Ky = K¢ = 0, Rz = R306°'t(a = O),Rs =
Reoe” (B < 0), (compactification of six space).

i 2 = x5 46812k _ 15
Eq. (18) and Eq. (19) give f=a ( 15‘ ) 1026 ( fé -3 A) (24)
1 8412 5A oAk
2= (- 245 ( 2206 _ =
= ( 1808 L( 2 36nﬂ+18€ﬂ>] + 2
4 x 54 54 (468f%k 1 )
— 2 —_—
0= 2 ( 904% — ~(E2—f£-—72 s+18e8)| + 22 ﬂ‘i\/"‘ ( 1026 ) + 1026( Ak T3
54 J; *36
and equating the two values of 3% we obtain Substituting Eq. (24) back into Egq. (23) we may

solvefor a which will generate positive a for a range of
the parameters fs and A.

(21) We note that positive a with negative 8 (taking -
signin Eq. (24) will generate an expanding three space
and contracting six space. We also have positive a with

R ICRTPEL 0 2T )

U

—--“-34— - 90"7]" + 234( k&) - skt
For 4 < 0, the cosmological constant is

BIE (132 81 positive 8 which will generate expanding three space
o |
S (& -5 and six space.
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Case |V

For the most general situation K3, K¢ # 0 we may
solve Eq. (18) and Eq. (19) by a power series about ;.

Given Rs(to), Ra(to), Re(to), Rs(to), we may find
Rs(to), Rs(to) from Eq. (18) and (19).

We may aso find the higher derivatives of R3 and
Rs at ¢y by differentiation of Eq. (18) and Eg. (19)
and write

Re(t) = Ra(to)+1323(to)(t—to)JfRﬁ‘*(“)g’:z‘!@_2
Re(t) = Re(zfo)Jrlffe(fo)(t—150)*”j%(’f")g:éf_())j
(25)

We note that a positive A will have a tendency to
expand Rs and K3 from Eqg. (18) and Eqg. (19). Also
from Eqg. (18) and Eq. (19) the magnitude of £ and 7
will determine the evolution of Rs and R3. If £ and 7
depend on the curvature squared#3, then the evolu-
tion of Rg and B3 will be modified so asto be dominated
by tlie curvature dependent viscosity term.

III. Conclusion

The combined system of viscous fluid, monopole
configuration and the cosmological constant represents
a moclel that in a phenomenological manner can model
various features of the early universe. We note aso
that by adding a second monopole configuration of a
second gauge field we have more arbitrariness in tlie
parameters fs, h, £ and 7 tliat would lead to a com-
pactification of the six space. From Eq. (18) and Eq.
(19) we note that the monopole configuration impeded
the contraction of the six space and also impedes the
expansion of the three space in the second derivatives of
the scale factors. The only way to follow the evolution
of R3 and Rs in thegeneral case is through a numerical
analysis given the initial conditions. If this is done the
large timeevolution would befound from Eq. (25) with

the liigher derivatives calculated from Eq. (18) and Eq.
(19) at t =to.
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