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A model of coupled vibrational modes, interacting through anharmonic effects and subject 
to the action of an external source of energy that drives the system away from equilibrium, is 
considered. It is shown that the nonlinear equations that describe the dissipative evolution 
of the macroscopic state of the system admit a solution which evidences complex behavior in 
such system. It consists in the emergence of a phenomenon that resembles the Bose-Einstein 
condensation in the ideal gas of bosons in equilibrium at low temperatures, but in this case in 
nonequilibrium conditions, and, then, it implies in a transition between dissipative structures 
in Prigogine's sense. This paper presents a detailed extension of a short communication to 
appear in Physica D. 

I. Introduction 

Nonlinearity in physical, chemical, and biological 

systems is the source of new and unexpected complex 

behavior. Complexity manifests itself particularly in 

two lrind of situations related to dynamical systems: 

One is chaotic behavior in mechanical systems, where 

the idea that a system can be both deterministic yet 

unpredictable is a novelty with healthy development in 

recent years. The other is the case of open systems 

driven far from equilibrium by intense external sources, 

where it is possible to find the emergence of ordered 

patterns at the macroscopic scale['I; the present paper 

belongs to this area. 

The concept that many-body systems sufficiently 

far from equilibrium and governed by nonlinear ki- 

netic laws may display self-orga.nized ordered struc- 

tures at  the macroscopic level, as observed in many 

cases, has been brought under unifying approaches such 

as dissipative s t r u c t ~ r e s [ ~ ~ ~ 1 ,  ~ ~ n e r ~ e t i c s [ ~ ] ,  and macro- 

c o n ~ e ~ t s [ ~ ]  . 

We deal in this paper with a system of harmonic 

oscillators (as vibrational modes) driven farther and 

farther away from equilibrium by an external source 

that pumps energy on the system, while it is in contact 

with an external thermal bath consisting of a system 

of vibrational modes. Harmonic oscillators play an im- 

portant role in the description of physical systems: we 

can mention their fundamental role in the description 

of lattice vibrations in solids (phonons in the quantized 

form), as well as in the description of the dynamics 

of excitations lilre plasmons, polaritons, plasmaritons, 

magnetoelastic waves, etc. They are also present in the 

description of biomaterials as normal mode excitations, 

for example in long chains of macromolecules coupled 

by peptide groups sustaining dipolar oscillations. In 

these materials (solid state or biological) high frequency 

(infrared region) polar modes and low frequency acous- 
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tic modes are usually present, both interacting through 

anharmonic effects, like in the model presented in Sec- 

tion IV. 

For the study of the dissipative systems of oscillators 

described a t  the beginning of the preceding paragraph, 

we resort to a seemingly powerful, and also elegant 

and concise, mechano-statistical formalism, namely, the 

Nonequilibrium Statistical Operator Method (NSOM). 

It has been bhe object of several approaches which, as 

we liave ~hown[~] ,  can be placed within the context 

of a unifying variational procedure based on Jaynes' 

Predictive Statistical ~echanics[']. The NSOM allows 

for the construction of a nonlinear quantum transport 

theory - a far-reacliing generalization of the Chapman- 

Enskog's and also Mori's methods - that describes the 

evolution of Lhe system at the macroscopic leve1 in ar- 

b i t r a r ~  nonequilibrium situation~[~I. Among the dif- 

ferent NSOM we resort here to the use of Zubarev's 

approach[gl and what we have called fourth order ap- 

proximation in the theory of relaxation (FOART for 

short)f8], which introduces the nonlinearities responsi- 

ble for the complex behavior of the system of nonequi- 

librium oscillators. 

We derive the equations of evolution for the popu- 

lation of the vibrational modes characterized by a fre- 

quency dispersion relation. We take a periodic distri- 

bution of the oscillating centers, and then the wave vec- 

tor in the dispersion relation runs over a Brillouin zone, 

like, for example, polar modes in s ~ l i d s [ ~ ~ ]  or dipolar vi- 

bration centers in biopolymers[llJ. The bath, composed 

of a subsystem of acoustic-like vibrations is assumed 

to remain, through a very effective thermal contact, in 

equilibrium witli an ideal reservoir a t  temperature T. 

In the next sections, after tlie derivation and dis- 

cussion of the equations of evolution provided by the 

NSOM-FOAR'T we proceed to a numerical approximate 

calculation, looking for the values of the populations of 

the vibrational modes in the steady state in terms of the 

intensity of the external energy pumping source. Our 

results clearly evidence a complex behavior consisting 

of a phenomenon conjectured by F 'rohl i~h[~~I (we cal1 it 

Frohlich effect) namely, that after a critica1 value in the 

intensity of the external pumping source is achieved, in 

a cascading-down process, the vibrational modes trans- 

fer large part of the energy they are receiving to a 

set of vibrational modes with the lowest frequencies 

(those of large wave vectors at the zone boundary in 

our model). Excitations are then accumulated in these 

modes largely increasing the value of their populations. 

111 that way we have a steepily increasing population in 

the vibrational states with the lowest energy at the ex- 

penses of those with larger energies; there occurs then 

a phenomenon akin to a Bose-Einstein condensation, 

not for phases in equilibrium, but in nonequilibrium 

dissipative structures. It  should be stressed that this 

notable and unexpected phegomenon is a result of non- 

linearities in the equations of evolution that describe 

the macroscopic state of the system a s  dissipative pro- 

cesses develop in it. 

The paper is organized as follows: in the next sec- 

tion it is presented a brief review of the theoretical 

background to be used in the calculations. In Section 

111 we derive the equations of evolution for the vibra- 

tional mode populations, and their general aspects are 

discussed. In Section IV we proceed to the presenta- 

tion of numerical calculations that clearly characterize 

the results. In the last section we briefly review and 

comment tlie results. 

11. Theoretical background 

The NSOM can be considered as a generalization 

of the statistical formalisms based on Boltzmann and 

Gibbs fundamental ideas. Different approaches have 

been developed by several authors, relying on either 

heuristic arguments, or using projection operator tech- 

niques. A unifying approach based on a variational 

principle is described in Ref. [6]. 

The NSOM is based, in any of its formulations, 

on Bogoliubov's assertion (principle of correlation 

weakening)[13] that in general there exists a hierarchy 

of relaxation times such that as time goes on the system 

keeps loosing memory of the previous evolution, so that 

an ever decreasing number of variables is enough for the 

description of the macroscopic state of the system. This 

contraction is connected with the separation from the 

total Hamiltonian of strong interactions with certain 



274 Brazilian Journal of Physics, vol. 25, no. 4, December, 1995 

symmetries[14]; tliese interactions are those related to  

the fast relaxing processes. In the contracted clescrip- 

tion, tlie macroscopic state of the system is character- 

ized by a reduced set of tliermodynamic variables, say 

Qj(t) with j = I ,  2, ..., n ,  wliicli are the average values 

witli the nonequilibrium statistical operator (NSO) of a 

corresponding set of dynamical variables Pj, the NSO 

being a functional of tliese and only tliese variables. 

The clioice of these variables is iiot unique and one 

of tlie fundamental questions of tlie tlieory consists in 

defining in some sense tlieir ~ o m ~ l e t e n e s s [ ~ ~ ] .  One way 

to perform sucli choice, associated to tlie NSOM, wliicli 

is shown to be closely connectecl with pliei~oiiienological 

irreversible t~ i e rmod~namics [~~] ,  is based on tlie sepa- 

ration of tlie total Hamiltonian into two parts, namely 

where H. contains tlie liinetic energies and the part 

of the interactions that produce very rapid relaxatiori 

processes, and H' is related to the slow relaxation pro- 

cesses. Further, quantities Pj and the relevant part of 

the Hamiltonian, Ho,  are connected by what we term 

Peletmiiisliii-Ziibarev's symn~etry condition, nainely 

in an appropriate quaiitum representatioii, and where 

a j k  are c-numbers. In this way it may be said that tlie 

fast relaxing variables Iiave been eliminated froin tlie 

clescription and tlie macrostate of the system is cliarac- 

terized iii terins of tlie contracted description generated 

by tlie set of slow relaxing variables. 

As a,lready meiitioned, the NSOM can be houglit 

under a uiiifying approach resorting to a variational 

principle, mmely .Jaynes' principle of inaximization of 

information e i i t r 0 ~ ~ [ ~ 1 ,  with memory efl'ects and ad lioc 

liypotliesis[G]. The process consist in inaximizing Gibbs 

functional 

SG(~) = -Tr{p(t) 111 p(t)) , (3) 

where p is tlie NSO, suhject to tlie constraints that tlie 

set of macrovariables Qj  (t) are those that properly de- 

scribe the macroscopic state of tlie system, and that 

wliere to L t' < t ,  with t o  being the initial time of 

preparation of tlie system and t the time a measure- 

ment is performed. Eq. (4) introduces a dynamical 

character in the information (after-effects) since these 

coiiditions involve tlie evolution of tlie system from tlie 

initial time of preparation to (to be understood as much 

larger than the relaxation times in Bogoliubov's hier- 

archy associated to  the principle of correlation weak- 

ening) up to  time t .  Tlie formal character of Eqs. (4) 

must be noticed, where one makes the assumption that 

tliere is a knowledge of the values of variables Q j  on 

tlie time interval (to,  t) .  However, this information- 

gathering interval can, and should, be reduced to infor- 

ination recorded at a unique time: the formalism pro- 

duces equations of evolution for variables Qj(t) whicli 

give tlieir values at any time t > to  , once initial values 

Qj  (to) provided. 

We omit the details of the description of tlie vari- 

ational procedure, and refer the reader to  the work of 

Ref. [6]. It suffices to  say that the Lagrange multi- 

pliers introduced by the variational method introduces 

are specified i11 a special way, in order: (1) to fix an 

initial condition from which proceeds the irreversible 

evolution of the macroscopic state of the nonequilib- 

rium many-body system, what introduces frorn the out- 

set a condition for dissipativity in an ad hoc manner; 

(ii) to  introduce a set of functions Fj(t) such that they 

have tlie role of intensive variables thermodynamically 

conjugated to the intensive variables Qj(t), to  generate 

complete connection with phenomenological nonequi- 

libriuin thermodynaniics; and (iii) to  separate the NSO 

iiito two parts 

where the first term, F(t), is an auxiliary generalized 

Gibbsian distribution which defines the instantaneous 

values of the macrovariables, and pl(t) carries the in- 

formation on tlie microscopic dynamics relevant to the 
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description of the irreversible evolution of tlie macro- 

scopic state of the system. The auxiliary distribution 

is given by 

$ ( t ) = = i n T r  exp - x F ' j ( t ) P j  , (7) { ( )I 
ensures its normaliúation. 

Conditiori (ii) above, pla.cec1 on the variational La- 

grange multipliers, requires tlie additional property 

which also provides for the simultaneous normalization 

of botli p(t) and p(t), (namely Eq. (7) in the Iast case), 

and makes of +(t) a generating functional in the sense 

that 

defines tlie conjugation of botli kind of variables (F 

and Q) in the context of pl~enomenological irreversible 

tlierrn~d~narnics[~~~~]. 

Particular cases of the NSOM given in the litera- 

ture are recovered within the variational method [Cf. 

Ref. 61, in particular Zubarev's NSO['], which is to be 

used in our analysis of the system of nonequilibrium 

oscillators in next section. 1t is given by 

I 
where p is gi-ven by Eq. (6) witli the first time in the ensures the irreversible evolution of the system from 

argument refering to the time dependerice of tlie tlier- initial preparation, and goes to zero after the trace op- 

modyna.mic variables F j ( t l )  and the second stands for eration in the calculation of average values has been 

the time evolution of operators Pj(tl - t )  in Heisen- performed. Integration by parts in Eq. (10) alIows to 

berg's representation. E is a positive infinitesimal that rewrite Zubarev's NSO in the form 

dt'ec(t'-')L ln 17(1', t' - t )  
dt' 

which can be put in the form of Eq. (5) [6,9]. It is wortli noticing tliat Zubarev's NSO satisfies a modified Liouville 

equation of the type 

ln pt(t) = - ~ [ h  pL (t) - In P(t , O)] , 

I 

i.e. a Liouville equation (L is tlie Liouvillian of tlie i.e. the state characterized by the initial values 

system) witli an infinitesimal source that breaks the, Qj(-CO) of tlie macrovariables with no correlation 

otherwise valid, time reversal symmetry. We note that among them; for t > to(= -oo) tlie term p l ( t )  is present 

the initial condition for the NSO is and with it the irreversible evolution and correlation of 

the variables under the dynamics generated by the sys- 

P€(--..) = P(-00, O) , (13) 
tem Hamiltonian. 
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The NSOM seems to be a powerful mechano- 

statistica1 formalism for the treatment of systems arbi- 

trarily away from equilibrium. In particular it provides 

mechano-statistical foundations for phenomenologlcal 

irreversible thermodynamics[' 6j. Also, within its 

~ c o ~ e [ ~ ] ,  Glansdorff-Prigogine thermodynamic criterion 

of evolution, Prigogine's theorem of minimum entropy 

production, and Glansdorff-Prigogine (in)stability cri- 

terion are verifiedL2]. Further, within the framework of 

the NSOM it is possible to construct a response func- 

tion theory for far-from-equilibrium systems and an 

accompanying nonequilibrium thermodynamic Green 

function formali~rn[~]. But the most important part in 

the NSOM is the construction of a nonlinear quantum 

transport theory for the basic variables, fundamental 

in a11 applications since they give the description of the 

irreversible evolution of 'the macroscopic state of the 

system. We have 

and using the separation of Eq. (5) after some mathe- 

matical manipulations we are left with the equation[l71 

where 

= 

and 

dFk(tl) STr{[H1(t - t'), Pj(t - tl)P(t', O)) +ET k s f i  (t') 

Eq. (15) is a far-reaching generalization of Mori's 

equations[ls]. Tlie first two terms, J( ' )  and J ( ' )  are, in 

Mori's terminology, precession terms, and the collision 

operator of Eq. (16c) is, differently to Mori's theory, a 

liighly nonlinear term in the basic variables; also it is 

nonlocal in space (for simplicity we have omitted the 

possible space dependence of quantities P), and it con- 

tains memory effects. 

The collision operator of Eq. (16c) is extremely dif- 

ficult to handle in practical calculations. In Ref. [8] we 

show that, using the properties defined by Eqs. (1) and 

(2), the complicated collision operator of Eq. (16c) can 

be rewritten through the use of an appropriate operator 

for the propagation of the past history of the motion - 
in terms of an infinite series of collision integrals which 

are instantaneous in time (given as averages over the 

auxiliary NSO of Eq. (6) at  the time of measurement) 

I 

and organized in increasing powers n of the interaction 

strengths, namely 

with the construction of quantities J!") described in 

Ref. [8]. 

The form of the collision operator given by Eq. (17) 

permits to introduce approximations by means of a 

truncation of the series of partia1 collision operators in 

a given order of the interaction. The lowest order that 

introduces relaxation effects is a truncation in second 

order in the interaction strengths: it renders the equa- 

tions Markovian in character and we have called itfs] 

the second order approximation in relaxation theory, 

SOART for short. It  is usually referred to in the liter- 
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ature as the linear theory of relaxation[lg], a name we 

avoid because of the misleading term linear that indi- 

cates a certain approximation in operator p' in Eq. (5) 

and in the expression for the information-entropy pro- 

duction in the NSOM. In SOART the equations of evo- 

lution are a set of coupled and, in principle, highly non- 

linear integrodifferential equations [J(') and and J(l) 

are given by Eq@. (lG), while J ( ~ )  is in Ref. [8] given 

by Eq. (62a)l. 

As remarked in the Introduction, for the treatment 

of the problem of studying nonlinear dissipative har- 

monic oscillators, we resort to the fourth order approx- 

imation FOA RT, which introduces, besides ~( '1 ,  ~ ( ' 1 ,  
and ~ ( ~ 1 ,  the partia1 collision operators J ( ~ )  and J ( ~ ) ,  

given by Eqs. (62b), (62c) and (GB) in Ref. [SI. 

We cal1 the attention to the fact that the differ- 

ent ~ ( " 1 ,  with n 2 2, are composed of severa1 types 

of terms that can be summarized as being associated 

to three kind of contributions, namely: (a) the equiv- 

alent of the rionequilibrium statistically averaged con- 

tribution of the Born series in perturbation theory; (b) 

terms that carry the effect of the change in the nonequi- 

librium macrostate of the system during the irreversible 

evolution; and (c) terms that involve the effect of the 

past liistory of evolution (memory effects). 

The partia1 collision operators J(") are more and 

more intrincake with increasing n,  producing a large 

number of contributions of the three types just men- 

tioned. We anticipate that in the calculation up to  

n = 4 for the equations of evolution of the populations 

of the vibrational modes in the system being consid- 

ered, because of the characteristics of the Hamiltonian 

and of the basic macrovariables, only contributions of 

the type (a) are present. 

111. Equa t ions  of evolut ion fo r  the v ibra t iona l  

m o d e s  

We consider a pqriodic array of harmonic oscilla- 

tors which have associated vibrational modes, consist- 

ing of a high frequency branch with frequency disper- 

sion relation L!<, and a low frequency branch (acoustic- 

like branch) with frequency dispersion relation SZF The 

wave-vector f runs over a reciproca1 space (Brillouin) 

zone. Further, an externa1 source continuously pumps 

energy on the upper branch of oscillators, while the 

acoustic-like branch is taken as a thermal bath con- 

stantly kept a t  temperature 'T through a good thermal 

contact with a reservoir. 

We write for the system Hamiltonian 

H = H o + H 1 ,  

according to the requirement of the NSOM 

(I)], where 

with 

In these equations a(at) and b(bt) are the annihilation 

(creation) operators of the vibrational modes and of 

the vibrational modes of the thermal bath, respectively. 

The two terms in H. are the Hamiltonians of the free 

subsystems. H; accounts for the interaction between 

the pumping source and the vibrational modes, with cp 

and <p+ being annihilation and creation operators for 

the excitations in the source, also incorporating the 

coupling strength. The other two terms, H: and H4 

are the contributions of the anharmonic interactions 

between both types of vibrations that will contribute 

to  the equations of evolution: they correspond to the 

decay of one vibrational mode into two of the thermal 

bath, and of one vibrational mode and one of the ther- 

mal bath into one of the latter (and their Hermitian 

conjugates). Momentum conservation has been taken 

into account. 

To deal with this system in NSOM the first step, as 

noted in Section I1 is to define the basic set of variables 

deemed appropriate for the description of its macro- 

scopic state. We choose the population of the vibra- 

tional modes, 
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partia1 collision integrals of Eq. (17) up to  tiie fourt,li 
t v,-(t) = Tr{cia nqpE(t)} , (24) order only, namely 

and the ltinetic energy of tlie thernial bath, 

where p,(t) is Zubarev's NSO for tliis case, witli the 

auxiliary NSOM-operator [Cf. Eq. (6)] given by 

wliere B = l/KT, with T being the constant teinpera- 

ture of the thermal bath, aiid F,-(t) is tlie nonequilib- 

rium thermodynamic parameter conjugatecl to the dy- 

namical variable populatioii of tlie vibra.tioiia1 inodes; 

H B  is tlie Hamiltonian of the free thermal batli; a,nd 

d ( t )  [Cf. Eq. (7)] is tlie Massieu-Planck fuiictiona.1 en- 

suring the norma.liza.tion of the NSO. It sliould be noted 

tliat tlie symmetry condition of Eq. (2) is satisfiecl, with 

a11 n being null. 

We are left witli the tasli of evaluating the equa- 

tion of evolution for the population of the vibra.tiona1 

inodes, what we do resorting to tlie NSOM-FOART, 

tliat is to  say a.n equation of evolution containing tlie 

cl 
-vf(t) clt = J p ( t )  + J f ) ( t )  + JF ) ( t )  + J:)(t) + $'(t) , 

(27) 
with the collision integrals J(') and J ( ' )  given by Eqs. 

(1Ga) and (16b), and tlie others, as noted in last sec- 

tioii, given in Ref. [8] by Eqs. (62a), (62b), (62c) and 

( E ) ,  where, of course, quantity Pj is here o$q. We re- 

cal1 that tlie other basic variable, namely, the energy of 

tlie tliermal bath of Eq. (25) is assumed to be constant 

in time and determined by the temperature T, that of 

equilibrium with the reservoir. 

The calculation of Eq. (27) is lengthy and 

l a b o r i ~ u s [ ~ ~ ] ;  without going into the details we note that 

because of the particular'forms of the Hamiltonian, the 

auxiliary NSO, and tlie basic variables, severa1 contri- 

butions vanisli, iiamely ~ ( ' 1 ,  J('), and J ( ~ ) .  Moreover, 

of the multiple possible contributions to J ( ~ )  and ~ ( ~ 1 ,  

involving the three types (a), (h), and (c) described at 

tlie end o i  Section 11, they simply reduce to  tliose of 

type (a), namely, tlie equivalent of tlie nonequilibrium 

statistical average of the second and fourth order con- 

tributions to the Born series in quantum perturbatioii 

tlieory. We finally obtain, 

where 

plays tlie role of the reciproca1 of a relaxation time, and 



It  should be noticed that the terms that appear in 

the expression for í - I  [Eq. (29)] are contributions from 

~ ( ' 1 ,  while those with coefficieiits A come from d4). 
Furthermore, 

is the population in equilibrium of the thermal bath 

modes, 

v! = [exp(Bt.Ja) - i]-' , (34Õ) 

is the population in equilibrium of the pumped modes, 

and we have expressed the time-dependeiit correla- 

tions involving the operators associated to the external 

source in terms of a spectral density, namely 

wliere I,- is tlie iiitensity of the source at frequency w 

in its Fourier spectrum. 

The equation of evolution, Eq. (28), for the pop- 

ulation of the f-mode, is composed of severa1 contri- 

butions: the first is the one associated to the pumping 

effects (from the external source) that brings the system 

further and further away from equilibrium with increas- 

ing values of I (the intensity of tlie source); the second 

contribution accounts for tlie relaxation of the excess 

population, created by the source, to the thermal bath 

diminishing tlie value of the population; the one con- 

taining A (and arising from 5(4)) contains a nonlinear 

contribution, expressed by the product v p q  I i which 

can produce either a relaxation or an excitation effect 

depending on the sign of the difference wu - wq 1 .  For a 

given mode ftl-iis term tends to increase its population 

at the expense of the other modes f 1  if it is verified 

I 

that wg 1 > WP This clearly implies that the energy 

pumped by the external source on the different modes 

would tend to be transferred to  the modes with the 

lowest frequency in a cascading-like process. 

With an external source acting continuously, after a 

transient time has elapsed a steady state must follow, 

i.e. d v l d t  = O. It should be stressed that the steady 

state in the absence of the source [I = O in Eq. (28)] is 

the equilibrium state, as can be verified using Eq. (28). 

Let us next look for the characteristics of this steady 

state. First, it is worth noticing that according to the 

NSOM [Cf. Eqs. (8)] in tlie present case it follows that 

In equilibrium F; = Bhw, and Eq. (36) is the Planck 

distribution of the populations. Consider now the sta- 

tionary nonequilibrium situation when, after some sim- 

ple algebraic steps, we can obtain from Eq. (28) in 

tlie stationary state that the nonequilibrium intensive 

variable Fn can be written as 

and, hence, 

where the quantity ,u, is defined by the expression 



Brazílían Journal of Physics, vol. 25, no. 4, December, 1995 

and 

Eq. (38) is an interesting alternative form of 

Eq. (28) in the stationary state: it is formally a 

Bose-Elnstein distribution with temperature /3-' and 

a quasi-chemical potential p; for each mode. We Cal1 

the attention to the fact that this quasi-chemical po- 

tential is a complicated functional of the population of 

a11 the modes. Further, the quasi-chemical potential 

per mode vanishes in the limit of vanishing pumping 

source, and then Eq. (38) becomes the Planck distribu- 

tion in equilibrium, but with a non vanishing pumping 

source py is positive and growing with the increasing 

intensity of the source. Thus, tlie most favorecl mode 

- the one with the lowest frequency - may be lead to a 

situation when, for a sufficiently higli intensity of the 

source, its quasi-chemical potential may approach its 

frequency and a Bose-like condensation would follow. 

We analize this possibility in next section on the ba- 

sis of a simplified model. As a final word in this sec- 

tion we note that the concept of Bose-Einstein distri- 

butions with non-zero quasi-chemical potential in the 

nonequllibrium populations of bosons, that a.re oth- 

erwise Planckian in equilibrium, have been used by 

Landsberg for the populations of photons in the case 

of the steady state between radiation and an electron- 

hole plasma in semiconductors[21], and by Frohlich for 

the characterization of the populations of dipolar wave 

excitations in biophysical ~ ~ s t e m s [ ' ~ ] .  

IV. Numerical  solutions for  a model  system 

The equations of evolution for the different modes 

are a set of nonlinear integro-differential equations that 

couple a11 the modes. To perform numerical solutions 

we resort to a simplified model: Noticing the already 

referred effect that the modes at the lowest frequency 

receive the energy pumped on a11 the other higher fre- 

quency modes through the term 

in a cascading-down process, we introduce a crude 

model consisting in concentrating the effect of the 

pumping modes in only one (say q = O at the high- 

est frequency), associated with a degeneracy factor, go, 

accounting in average for a11 the others, and the modes 

with the lowest frequency, (at the boundary zone) which 

we characterized by wave-vector 6, and a degeneracy 

SQ. 
We verify the following properties: 

ATy = ~ ~ p @ ~ ~ m ~  , ( 4 2 4  

and for Q being a boundary zone vector there follows 

tlie "nesting" condition 

Qphq = Q 6 - a p  , (42b) 

and we introduce next a Debye model, namely we take 

Qp = slp'l, where s is the group velocity of propagation. 

Finally we take the matrix elements VfF as depending 

only on the momentum transfer, and we write V(q) for 

them. After performing the integration in 3 in the ex- 

pression for TT of Eq. (29) we find an expression for the 

matrix element in term of the relaxation time, the latter 

to be taken as a phenomenological parameter, namely 

where V is the volume of the system. In the proposed 

model introducing Eq. (43) in the expression for the 

quantity A of Eq. (31) and, after that, performing the 

integrations in 5 we find five vanishing contributions, 

namely those associated with A(l) given by 

In Eq. (44) we have introduced the quantities, 
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where 

with 

moreover, 

where 

ako, 

where 
1 r(? = W Q  - (A,,,.J/~s~Q~)(Q, - 5 , ~ ) ~  - -(w - + w,=j + w y )  , 

0 Q 2 Q 

and finally 

The two coupled equations of evolution are then 

where 

It is worth noticing that Eqs. (45) are of the type 

of Lotka-Voltera's predator-prey equations[22]. The de- 

generacy coefficients g are proportional to the extension 

of the system; we take for them the expressions 

where ao and aQ (with both smaller than one, and 

ao i- OQ -< 1) :stancl then for the fraction of the num- 

I 

ber of the two types of modes that in our model are 

contained in the Brillouin zone. 

To obtain a computational solution we need to intro- 

duce numerical values for the different parameters. For 

illustrative purposes only, we choose those correspond- 

ing to the polar semiconductor GaAs, namely, Q = 
5.6 x 10' cm-'; s = 5 x 105 cm sec-'; = 4.3 x lOI3 

sec-'; wo = 5.4 x 1013 sec-l; WQ = 4.5 x 1013 sec-l; 

TO 2 TQ 2 10'' sec; further we take T = 300I<. There 

are two open parameters in the calculations, namely, 
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ao and a ~ .  We solve the equations for different values 

of them, i.e. we test the dependence of the behavior of 

the system on them. 

Using the values stated above for the different pa- 

rameters we find that the two coupled equations (45) 

in the stationary state can be transformed in the two 

following equations, namely 

where 

and the bar in indicates the stationary value of the 

population. 

We have talten a variable pumping intensity I. , but 

for the purpose in what follows of a better characteriza- 

tion of the phenomenon we put IQ = O ,  i.e. the lowest 

frequency modes are not excited by the externa1 source. 

Fig. 1 shows the dependence of the steady-state 

populations of both types of modes with the pumping 

intensity, for the choice ao = 0.2, a~ = 10-4, while in 

Fig. 2 we display the case ao = 0.6 and a~ = IO-~.  

Figure 1. The populations of tlie pumped modes, vo, and 
of tlie lowest frequency modes, UQ, as a function of tlie in- 
tensity of the source. Parameters (Y (see text) are indicated 
in tlie iipper left corner. 

Frohlich efleci is clearly evidenced: after a suf- 

ficiently intense pumping intensity is reached, which 

we cal1 16, tliere follows a very steep (near "explo- 

sive") increase of the population of the lowest frequency 

modes, while it is observed a saturation of tlie "pump- 

ing" modes. 

Closing this section we look for some asymptotic 

forms, meaning I. » 16, for the equations in the sta- 

tionary state, that would help to clarify some of the 

numerical results. After the critica1 point has been sur- 

passed, v8 is very large; then v8 is much larger than v0 8 
and 1, and tliis is also valid for vo. Hence, using Eqs. 

(45) we obtain a couple of equations for the stationary 

asymptotic populations f i A ,  namely 

and 
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Figure 2. Idem as in figure 1 for two other values of param- 
eters @. 

From Eq. (49b) we find the asymptotic saturation 

value of vo, namely 

and replacing this value in Eq. (49a) we find that 

asymptotical1:y 

where we have introduced the quantity 

Eq. (51) clearly tells us that the saturated value 
of v0 is smaller when larger the number of externally 

pumped modes (go), when larger the relaxation time of 

the low freque:ncy modes (ro), and when larger the bi- 

linear coupling coefficient (AoQ), as should be expected. 

On the other hand, Eq. (52), tells us that the popu- 

lation of the "exploding" mode grows linearly with the 

power of the external source pumping the higher fre- 

quency modes, with a proportionality factor depending 

on the ratio of the number of externally pumped modes 

to the number of the lowest frequency modes, hence a 

very large number. Further, the term in the square 

bracltet indicates that the critica1 pumping intensity 

needs be much larger than the values I: of Eq. (53), 

evidently larger and larger when smaller and smaller is 

ao which, we recall, is a measurement of the fraction 

of modes in the Brillouin zone pumped by the external 

source. 

Let us now look for the asymptotic value of the 

quasi-chemical potential p ~ .  One has 

p ~  = T i Q  - ,F1 ln 

and using Eq. (52) we obtain that 

PQ ? fwQ - kT[(aQ/aO)~Q(lo - I,*)]-' . (55) 

This last equation demon'strates, as the curve of Fig. 

3 shows, that the quasi-chemical potential of the low- 

est frequency mode tends asymptotically to  the energy 

of the mode as I. tends to  infinity, but, otherwise, re- 

mains slightly below that value for I. larger than the 

critica1 value. Such difference is, for I. > I,*, roughly 

bTaQ/aOrQ 10, that goes to zero with increasing 10. 

\o2 103 I o4 105 106 107 
INTENS I TY ,Io (sec-I) 

Figure 3. The dependence on the intensity of the source of 
the quasi-chemical potential of the lowest frequency modes. 

Consequently, such very small value implies in the 

resulting complex behavior consisting in the occurrence 
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of a near Bose-Einstein-like condensation in a nonequi- 

librium dissipative macrostate of the system of vibra- 

tional modes, wliose dynamics is governed by appropri- 

ate nonlinear laws. 

V. S u m m a r y  and concluding r emarks  

We have analized the nonequilibrium macroscopic 

state of a system of excited (by the action of an ex- 

terna1 energy pumping source) vibrational modes, that 

are in contact (through an anharmonic interaction) 

with a thermal bath of lower-lying in frequency vibra- 

tional acoustic-Iike modes. For that purpose we re- 

sorted to  the use of the nonlinear quantum transport 

theory derived from the nonequilibrium statistical op- 

erator methodL8]. High order relaxation effects - up to 

fourtli order in the interaction strengths - were intro- 

duced, what produced the nonlinear contributions that 

are shown to be relevant for the emergence of complex 

behavior in the system. 

We liave explicitly obtained tlie equations of evolu- 

tions for the populations of tlie vibrational modes, be- 

ing able to show that a particular bilinear term can pro- 

duce a remarkable effect of transferring, in a cascade- 

like process, the energy the different modes are receiv- 

ing to the mode with the lowest frequency. In a formal 

writing a Bose-Einstein-lilte distribution is introduced 

for the population of the vibrational modes, charac- 

terized by the temperature of the bath and a quasi- 

chemical potential for each mode. The latter is iero 

at equilibrium (absence of the externa1 source), as it 

should to produce the well known Planck distribution, 

but becomes non-vanishing and increasing with increas- 

ing source power. Hence, the one for the mode of lowest 

frequency may approach, and eventually coincide, with 

this frequency, leading to an "explosion" in population 

of such mode. 

A numerical solution for a model system is described 

in Section IV. In fact we were able to show that, there 

exists a critical value of the pumping power beyond 

which an enormous increase in the population of the 

lowest frequency modes is produced, at the expenses of 

a11 the other modes. As shown, the quasi-chemical po- 

tentials of the lowest frequency modes tend only asymp- 

totically (source intensity going to infinity) to  coincide 

with the value of the modes' frequencies. However, 

the populations of the lowest frequency modes increase 

enormously, while those of the a11 other modes achieve 

almost saturation. Hence, there follows a kind of Bose- 

Einstein condensation in tlie sense that the distribution 

in the modes corresponds to  a large accumulation in 

tlie lowest energy state. But i t  should be emphasized 

that this occurs in a dissipative structure (nonequilib- 

rium conditions) after a critica1 pumping intensity is 

achieved. 

The dependence of the phenomenon on the proper- 

ties of the system and its main characteristics has been 

discussed in Section IV. Here we only emphasize that 

this unexpected complex behavior arises as a result of 

the nonlinear characteristics of the kinetic equations in 

tlie nonequilibrium dissipative state of the system. AS 

indicated in the Introduction we cal1 the phenomenon 

Frohlich eflect after Frohlich ~ u ~ ~ e s t i o n s [ ~ ~ ~ ,  of which 

ours is a detailed calculation invoking high order relax- 

ation effects. 

Concerning real systems where the situation here 

described may be present, we can mention two cases. 

One is that of polar semiconductors where there are 

higli frequency optical modes and low-frequency acous- 

tic modes. We have considered the case when the opti- 

cal modes are excited through the indirect photon car- 

rier absorption process in doped rna te~ia l s [~~] .  It is pos- 

sible to show that the Frohlich effect is present, but at 

such too high levels of laser power that would produce 

extensive damage in the sample, and so is not experi- 

mentally ac~ess ib le [~~] .  The reason is the very low ef- 

ficiency of tlie pumping procedure. Additional studies, 

introducing excitation by means of high intensity elec- 

tric fields, are under way. Another case is that of dipo- 

lar vibrations in biopolymers and other biological ma- 

ter ial~,  excited by metabolic processes, and in contact 

with a therrnal bath[11112]: Exact model c a l c~ l a t i ons [~~]  

seem to show that this is a quite appropriate candidate 

for the actual occurrence of Frohlich effect. 

Finally, we anticipate that preliminary r e ~ u l t s [ ~ ~ ]  

seem to show that the behavior of the system is even 

more complex, in the sense that beyond the critica1 

intensity for the emergence of Frohlich effect, excita- 

tions in the system a t  the lowest frequency propagates 

in a coherent fashion, with almost no dissipation, and 

being of the solitary wave type. It is worth men- 

tioning that the characteristics of the curve of popu- 
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lation vs. intensity of the pumping source (e.g. fig- 

ures 1 and 2 in this paper), taking together with the 

single-frequency ("monochromaticism~'), and dissipa- 

tionless propagation of the exc i ta t ion~[~~I ,  describes a 

phenomenon similar to that of laser action. 
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