
Brazilian Journal of Physics, vol. 25, no. 4, December, 1995 

Molecular Dynamic Study of Fluid Flow 
Through a Porous Medium 

B. V. Costa: P. 2. Courat 
Departamento de Física, Universidade Federal de Minas Gerais 

Caixa Postal 702, 30161-970 Belo Horizonte, MG Brazil 

Received November 2, 1994; revised March 5, 1995 

Molecular Dynamics of a two dimensional fluid flow through a porous medium is presented. 
Altliought the simulation is a crude representation of the experimental process we observe 
some qualitative agreement with the phenomena that occur in experiments. 

I. Introduction 

The fluid diffusion through a porous medium under 

the action of an externa1 field is of great applied impor- 

tance from petroleum and chemical engineering to hy-
drology and chemical or nuclear waste storage. Recent 

catastrophes involving poisoned materials accidentally 

spread out on the Earth surface generated a great effort 

to understand the mechanism of how such a fluid pene- 

trate the ground poisoning the underground wa.ter or a 

river in the ne ighb~rhood[~-~] .  At the mesoscopic level 

the fluid flow through a porous medium depends on 

the detailed structure and geometry of the pore space. 

The presence of the solid part of the medium forces the 

streamlines to meander through the pore volume giving 

rise to a distribution of path lenghts. The streamlines 

through one pore may separate into different pores and 

also meet again in a later pore. The velocity along 

a single streamline also fluctuates being slow through 

narrow pores and in stagnant regions, and faster than 

the average flow in wide pores oriented parallel to the 

average flow. The particles in the fluid which are car- 

ried by the streamlines from one pore to another ap- 

pear to be effectively performing random walks tlirough 

the medi~rn["~]. The conventional classical mesoscopic 

description of such a phenomenum is provided by the 

convection-diffusion eq~at ion[ l -~]  

where C(< t )  is the fluid concentration and the dis- 

persion tensor D depends in general on the flow ve- 

locity c. Numerical solutions of eq. (1) can provide 

some insight into tliis problem since a suitable calcu- 

lation gives a detailed description at the mesoscopic 

level through which the process evolves. However, the 

amount of required computer time easily hecomes pro- 

hibitively long if the sizes of the simulated systems be- 

come large. Therefore, computer calculation of flow 

through a porous medium have so far taken a simpli- 

fied approach, describing the fluid as a continuous. The 

flow is governed by eq.(l) which suplemented by a num- 

ber of boundary conditions, are solved by finite-element 

methods[lO]. In this paper we present a molecular dy- 

namics (MD) simulation of the fluid flow through a 

porous rigid medium. Our simulation allow us to study 

the system at a molecular level. The system we study is 

chosen to be reasonably simplified in order to limit the 

intrinsic complexities of the process and to keep the 

required amount of computer time within reasonable 

limits. For example, our simulations are carried out in 

two dimensions and contain two types of particles which 

interact via a Lennard-Jones potential. Although such 

limitations prevent a quantitative comparison between 

simulational and experimental data, it is expected that 

many qualitative features observed in our 

occur in the actual experiments as well. 

simulations 
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11. The corriputer experiment 

The system we want to  simulate consists of a rigid 
substrate -the porous medium- and a fluid initially just 

over it ,  which is allowed to penetrate in the substrate 

under the action of a field in the -y direction (See 

Fig. 1). The substrate was created by distributing 

at random particles on a triangular lattice in such a 

concentration that the fluid may percolate. For the 

initial fluid configuration we distributed randomly the 
particles just above the substrate as shown in Fig. 1. 

Periodic boundary condition were is assumed in the x- 

direction throughout the simulations. All particles in 

the system interact with each other through a Lennard- 

Jones (LJ) potential 

U(r) = E [(f)" - (y] 
The potential U is spherical so that it depends only 

on the interparticle distance r. A repulsive part pre- 

vents particle-particle imploding while the attractive 

part binds one to  the other. Roughly a is the parti- 

cle hard core diameter. The potential has a minimum 

a t  E = 1 . 1 5 ~ .  We use different values for a and E,  de- 

pending if the interaction is between fluid-fluid (f-f) or 

fluid-substrate (f-s) particles. Their values were arbi- 

trarily chosen as E = l.O(l.5) for f-f(f-s) interactions and 

a = 1 .O(3.O) for the fluid (medium) hard core. There is 

no real loss of generality in such a choice since a11 quan- 

tities are rescaled by ~ j - j  and aj-j. In our simulation 

particles do not interact if their distance is larger than 

3a. Without such a cut-off, the simulation would be 

prohibitively slow. A11 the simulations are of molecu- 

lar dynamics type which means that  the particles move 

according Newton's equations of motion which can be 

easily derived from the Hamiltonian 

Figure 1. Initial condition used in our experiment. Open 
circles are fluid particles and full circles are particles in the 
solid porous medium. 

and the Hamilton's equations 

where Nf and Ns are respectively the number of par- 

ticles in the fluid and in the porous medium. r i j  is the 

distance between particles i and j and rai (a  = 1,2)  

represents the coordinates xi  and yi. Observe that there 

is no a kinetic energy term associated with the parti- 

cles in the porous medium, as mentioned before they 

are considered as static. The equations of motion were 

solved by using a forth order leap-frog scheme with 

small time steps At = 0 . 0 0 4 ~  J- (mj  is the 

mass of a particle in the fluid.). Before we go on with 

the simulation we need an estimate of the solid-fluid 

phase transition temperature (T,-,) for the system we 

use. Therefore, we carried out an independent simula- 

tion of a liquid strip with periodic boundary condition 
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in one direction and open in the other. In order to de- 

termine Ts-~ we started with a solid with 1200 particles 

at very low temperature. By solving the equations of 

motion we evoluted the system measuring the velocities 

of the particles (vi) from time to time. Of course the 

mean velocity < v 2  > is related to the the temperature 

of the systern by the equipartition theorem[ll] 

By renormalizing velocities we may control the system's 

temperature. At T S - )  the internal energy shoulcl show 

a jump which is just the latent heat associated with 

the solid-liquid transition. In Fig. 2 we show a plot 

of our results for three different initial conditions of en- 

ergy versus temperature. We observe tlie strip to freeze 

at T = 0.40, fragment and starts to evaporate around 

T = 0.45. The arrow in Fig. 2 shows our estimate 

for T,-, (N  0.43). Here, temperature is measured in 

units of k B / c  where kB is the Boltzmann's constant. 

Of course, this is not an accurate estimate of the criti- 

cal temperature but was good enough for our purpose, 

since we worked above T = 0.45. The number of par- 

ticles we have used in our simulations was 1500 in the 

solid distributed over an rectangle with sides L, = 20 

and L, = 30. For the fluid we have used 800 particles 

initially distributed in a region of sides L, = 20 and 

L, = 5.  

T 
Figure 2.  A plot of the internal energy versus temperature 
for a Lennard-Jones system with periodic boundary condi- 
tion in one direction and open in the other. The arrow shows 
the solid-liquid transition temperature. Units are defined in 
the text. 

Figure-3a. A cumulative picture. We liave used 104 time 
steps. 200 solid particles and 50 fluid particles to compose 
this picture. It shows the streamlines tlirough tlie pore vol- 
ume. 

Figure-3b. Final configuration of a simulation where we 
have used 103 time steps. 800 solid particles and 200 fluid 
particles. 

111. Resul t s  of the s imula t ion  

We measured two âspects of the fluid flow: the front 

flow pattern velocity and the pattern rugosity. Typical 

flow patterns are shown in Figures 3a-b and 4a-b. Fig- 

ure 3a and 4a are cummulative pictures and they show 

the channels from which fluid particles go along. Fig- 
ures 4a-b show configurations after 103 and 104 time 
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steps respectively. The full circles are particles of tlie 

solid porous medium while open circles are fluid parti- 

cles. In Fig. 4a at tlie central region where tlie sub- 

strate preseiits a liigher density we can see tliat tlie 

fluid particles cannot penetrate so easily as in the bor- 

der where the density is lower. In fact even for longer 

times we did not observe fluid penetration since it wets 

tlie substrate which becomes inpenetrable for tlie fluid. 

Figure 5 sho~vs the profile rugosity as a function of time. 

I t  is calculated as tlie fluctuation p =< (< y > -y)2 >, 
wliere < y > is tlie averagecl distance of fluid parti- 

cles to the inferior face of the solid at y = O .  It starts 

from p(t  = 0) = O reaching some constant value after 

a long enough time. Figure 6 shows tlie profile veloc- 

ity. It is calculated as the velocity of tlie center of mass 

of the fluid insicle the porous medium. Tlie initial ve- 

locity of the particles are chosen at ramdom directions 

but in such a way that the fluid temperature is about 

0.50. After each 50 time steps we renorn2alize velocities 

to mantain tlie temperature as 0.50 it means tliat tlie 

substrate works as a heatli reservoir. 

Figure-4a. A cumiilative picture after 104 time steps. 
We have used 1500 solid particles and 100 fluid particles. 
Figure-4b. Final configuration corresponding to tlie simii- 
lation in figure h. 

Figure 5. The rugosity as a function of time. We liave used 

configiir ations of 1500 solid particles and 200 fluid particles. 
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Figure 6. Tlie averaged velocity as a function of time. Tlie 
number of particles is the same as in the figure 3. 

IV. Conclusion 

Our simulations sliow the possibility of performing 

inolecular dynamics simulation of fluid flow throuh a 

porous medium. Although the simulations are not able 

to closeiy model the experiments and hard to compare 

cluantitatively we observe some qualitative agreement 

with the phenomena that occur in experiments. The 

streamlines may separate into clifferent pores and also 

meet again at a later pore. Fluid particles are slow. 

or even may bind in regions where the solid medium is 

more dense. The velocity and rugosity distribution as 

a function of time relax to their equilibrium values for 

long times. Such qualitative results show that molec- 

ular dynamics simulations may be a very usefull to01 

to understand the fluid flow through porous medium. 

It would be interesting to test the results of the sim- 
ulation against mesoscopic finite elements calculations. 

We are now extending our simulations t o  three dimen- 

sional systems and boundary conditions where the fluid 

is forced against the surface. of the porous medium by 
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a pressure field as in the process of water injection in 

oil wells. 
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