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The particle and heat transport in a transverse circular cross-section tokamak, with high
longitudinal particlevelocities, wereextensively studied in many works. Here we arestudying
the particle and heat transverse fluxesin tokamak configurations with an elongated cross-
section. Thiswork isageneralization of the Wong and Burrel [Phys. Fluids 25, 1863 (1982)]

study for this case.

1. Introduction

The neutral beam injection isone of the main meth-
ods of the auxiliary plasmaheating and current drivein
tokamaks{!). Due to the beam injection, the plasmaro-
tates in the toroidal direction and then new interesting
plasma dynamics problems appear, mainlyin the trans-
port theory. Although the plasma toroidal velocity is
supposed, now!?l, to be smaller than the sound veloc-
ity, sinceit is convenient to improve the power deposi-
tion and correspondingly to increase the ion tempera-
ture, it is necessary to know the transport coefficients
in atokamak plasmawith particle sound toroidal veloc-
ities. The poloidal and toroidal rotation in a tokamak
have been under consideration for decadest®=7, both in
collisionall®%:51, and weakly collisional® "l plasmas.

The particle and heat transport in a transverse
circular cross-section toroidal plasma, with particle
high longitudinal velocities, were studied earlierl”=1%.
Here, we are considering the particle and heat trans-
versefluxesin toroidal configurationswith an elongated
cross-section. Thiswork isa generalization of the Wong
and Burrell”] study for this case.

I1. Basic egiiations

As in Ref. [7], we use the drift kinetic equation!®
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Hereh =B/B, Vg =c[E x h]/B, wp =eB/Mec.

We wish to find a solution of Eq. (1) in the coor-
dinate system x' ={r, 8,¢} with the circular magnetic
surfaces and with the straight magnetic field lines. In
this case, the radial coordinate r is equal to r = v/Iils,
where I; and I, are the minor and the large half-axis
of the torus elliptical cross-section, respectively. The
values § and ¢ are the poloidal and toroidal angles.

In thiscoordinatesystem, the magneticfield hasthe
followingform

B =B, <1 + €*cosf + %écosze) , (2)

where A = ¢*(exp(29) — 1)/9?, e = ecexp(—1n/2),
n=In(la/11), ¢ = r/R and R isthetoruslarge ra-
dius. In the circular cross-section tokamak, the values
of Aand n areequal to zero and €* = E
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We'll find tlie solution of Eq.(1), in the r-
approximation, with the equilibrium Maxwell distribu-

tion function
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WhereWZ:v_zL+wﬁ, w=v-v Jf=
fo + f, V) is the particle mean velocity along the
rnagnetic field. Using Eq.(2), we derive the solution of
Eq.(1) as
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+7ré(u)a—8g [7‘—} (-u + 2U) (1/)1 + -1-1/)2> + qf;D (cos@ + gcos%>] } ,

€

where

2
D= %U-&- (w” + Vll) [w” (U— 2%) +W (U ~Ug+ Up)} ,

‘¢:¢1+¢2)

u:w||+%(Ug—Up), U=U9+UT<

__1 o
P Mwgn 8r’

Here tlie poloidal velocity Uy is equal to

eV?
Ug = EF,

V? and h? are the contravariant coinponents of tlie ve-
locity V and tlie unit vector h, where

V=Vh+Vp+V, V,= 6—7%[11 x Vel (5)

The values U, and Uz are the particle drift ve-
locities. We suppose, also, that the electric fiedd has
the form E = —V$. The expressions P/u and 6(u)
in Eq.(4) denote the Cauchy principal value and the
delta-function, respectively.

1 = 158108 + a.cos8,

Py = Wo,81n26 + 1ho.c0528,
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III. Absence of the high poloidal velocity regime

It is well-known that for a circular cross-section
tokamak, the poloidal velocity Up is rnuch smaller than
the plasmasound velocity ¢, where ¢? = (T; +Te)/Mz~
[9], [11], for both a collisiona and for a weakly-
collisional regimes. We can prove that in tlie elliptical
torus thisvalue will be of the level of the drift velocities.

Suppose, that Uy is greater than the drift velocities
Up and Ur. In this case, we can omit the drift termsin
Eq.(4) and we have,

U =U,, ’UZIUH-{-%UQ, (6)
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Assume, also, that
b = * (10050 + Pa.c0520). (7)

We need to find the radial particle flux

where ” ;7 denotes the kind of particle and

=G 45 (©)

The integration here is along the magnetic field line.

l .
Tn; = /dv < fi%]— >, (8) Asit can be seen, from Eq.(1), the radial velocity is
|
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Using now Egs.(4), (8)-(10), we ohtain
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where v2, = 2T;/M;, ¢ is the safety factor, ¢ = ¢'/x’,
¢ and y are the toroidal and poloidal inagnetic fluxes.
From Eq.(11), we see, that the ambipolarity condition

D eiTa; =0 (12)
J
can not be fulfilled, as we have in Egs.(11),(12) the
sum of the squared values. Conseguently, the station-
ary poloidal velocities around the sound velocitiesin the
elliptic toltamalt, asin a circular cross-section tokamalt,
do not exist.

IV. Electricfied potential

We use now that Uy; < c,. In this case, we can
derive the perturbed particle densities

. o ein ~ €nM; A
n; = / dvfi; = --%sz— T J V” (cosﬂ + ZcosQ&)
(13)

I-lere, the small terms, that are of the same order of
magnitude as the drift terms, are omitted.
From the quasineutrality condition, we have

> ein;=0. (14)
J
After some algebra, the potential ) can be calculatecl
~ e;n
b= —————————E] ]] <c039 + écos?&) (15)
i LTi
Now, we can write the values fy; and dr;/dt in the
form



244 V. S Tsypin et al.
|
fj = __e?q__\/__ 8(u) [Uaj + Ur; (a: - g)} (z+Gj) (sz’n@ + %sin%) , (16)
dr; ¢ . A
-4 - ! - . 17
T 5 RB ' (z+ G;) (sm@ +3 szn26) (17)
l
Here, z = Mjv? /2T; and Now, we can get the radial particle and heat fluxes.
MV o The last one is defined below
ekﬂ»k k
A AT PR I s el IO
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V. Particle and heat fluxes.

Using Eqgs.(16), (17) and the definitions Eqs.(8) and
(19), wefind

__numemet (0 AN Y\ Ui (a3
njvr;qLj/m €*? A? 1 UT 1.,
Irj =~ g = M?(”‘g’ Usj 3+2G;+ 5G] | + 5= (9+2G; = 5G7 |- (21)

If we make the ellipticity equal to zero,i.e. € = e and
A = 0, we obtain the Wong and Burrel [7] expressions
for the fluxes.

V1. Conclusion.

As it follows from tlie ambipolarity condition,
Eq.(12), and from tlie particle fluxes, Eq.(20), this con-
dition isthe same, asin tlie circular cross-section toka-
mak, and hence the ambipolar poloidal velocity value
is the same. The ellipticity influences only the values
of the fluxes. For tlie usual value A =~ 1 (asin JET
- Joint European Torus), this influence is given by the
ratio e*2/¢2, which equalstheratio/; /l,. Thisisthe de-
creasing factor of the neoclassical fluxesin the elliptical
tokamak. We see, also, that the fluxes are proportional

to the temperature gradients ;. This can be shown
by using tlie ambipolarity condition, Eq.(12), and the
substitution of the obtained expressions for Us; into
Eqgs.(20), (21).
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