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In this paper a method for the analytical treatment of the dielectric permeability tensor is 
developed and analysis of the wave heating and current drive is carred out for magnetized 
plasma structures with an equilibrium field aligned current. Electron Landau and transit 
time magnetic pumping absorptions of waves is consiclered. Simple expressions for the 
current drive hy the Alfvén and fast waves are obtained. This current drive is discussed 
in terms of "gradient" effects, including the effect of the resonant ancl nonresonant current 
clrive. The infiuence of all electric fielcl on current drive is clemonstrated on the basis of 
numerical solutions of the Binetic equation with landau-Folilier-Planck collision operator. 

I. Introduction 

Nowadays, Alfv6n waves (AW) are widely usetl 

for plasma production, resonant licating of mag- 

netized plasmas and current clrive in laboratory 

experirnents[1-3]. In the nearest future, this prograin 

will be under investigation in tlie TCA/Br - Brazilian 

tokamak with Alfvén wave h e a t i ~ ~ & [ ~ ] .  

Past years, the tlieory of the Alfvén waves had 

been intensively stfudied (see t,he init,ial paper[5] and 

r e~ i e - c l r s [~~~>~] ,  and referentes therein) not only in con- 

nection with laboratory experiments, but also in space 

plasmas applications["ll]. In space pliysics, there 

are some proposals about particle acceleration ancl 

solar chromosplieric and coronal heating by Alfvén 

w a v e ~ [ ~ " - ~ ~ ] .  

The classical Alfvén wavesL5] in homogeneous plas- 

mas are degenerated modes. The properties of Alfvén 

waves depend strongly on the magnetic field struc- 

ture and on the ratio of the Alfvén phase velocity 

to tlie electron thermal v e l o ~ i t ~ ( c ~ / v ~ , ) [ ~ ~ ~ ~ ~ ,  where 

CA = ~ ~ / 2 / - ,  and use = JE. Tlie 

waves in the Alfvén waveband are divided into fast 

magneto-sonic waves (FMSW), global Alfvén waves 

(GAW), wliich depend on the magnetic field struc- 

ture, kinetic (KAW) and quasielectrostatic (QEAW) (or 

"cold") Alfvén waves in magnetized pla.smas with hot 

(cA < use)  ancl cold (cA > vse) electrons, and, finally, 

surface Alfvén modes (SAM), which c10 not have a ra- 

dial wa.ve structure. This last mode appears only iii 

bounded or layered plasmas. 

To study different applications of the Alfvén waves 

for plasma heating and current drive, severa1 impor- 

tant questions arise and their theoretical solution is of 

paramount importance to understand the general AW 

effects in plasmas: 

a What is the structure of Alfvén waves in inho- 

mogeneous plasmas? 

0 How Landau damping, transit time magnetic 

pumping (TTMP), and collisional clissipation of 

AV1 vary with the curvature and the gradients of 

the ambient, magnetic field, and with the changing 

of the plasma density and ternperature profiles? 

What will be the distribution of absorbed power 

and current drive profile in different magnetic 

field configurations? 
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fined through the local polar coordinates: 

v1 = v l c o s u ,  = vLs inb ,  u3 = v I1 

wliicli are variecl in tlie region: 

O 5 v 1  < 03, O 5 ã < 2a, -00 < U J J  < 0.3. 

Foi. future analysis we expand the perturbed dis- 

tribution f~inction in Fourier series over angle a in the 

velocity space, 

T h e  first three coefficients fO,,,b in the above equation tlie perturbed clistribution function, which are relatecl 

are inost important  for the dielectric tensor evaluatioii. t o  the particle gyration. Assuming that  tlie Larmor 

fo is related t,o tlie perturbed distribution function av- raclius is much smaller than the radial wave field inho- 

eraged over particle gyrations in the magnetic field and inogeneity, we evaluate the set of the  linear ecluations 

f,. , f ú  (wlieie inclex " 1" is omittecl) are corrections of for ,fo,,,i, f iom the Vlasov's equation (1): 

1- 
Here, tII = th, + hsm/r  and k b  = h,m/r - khe are the tions oc px / l n r lT ,  we find expressions for f, , fb and fo. 
parallel ancl biiiormal components of the  wave vector. Tliese functions will be used for the  calculations of the  

In the  next step, combining the Equations (5'6) anel norinal ( j i ) ,  binormal ( j2 )  and parallel ( j s )  components 

(4) and taking into account only first order drift correc- of the oscillating current density: 
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where tlie summation is carried out for all Itinds of the isk)Ekr where 6,k is the Kronelter syrnhol. 

plasma particles (a  = e, i l ,  ...). 
After integration of Eqs. (7-9) over the veloc- Here, we present a11 nine components of the dielec- 

ity space we can ohtain the dielectric tensor-operator tric permeability tensor. The most of them are differ- 

i,k using the following relations: j, = i(fI/47~)(6,~. - ential operators on r,  and they are labeled as iSk :  

kll voe 
€33 = &- { (1 + 

A, - X N ~ V S ~  A - ---- X T ~ ~ V ? ~  [I - (i - 2 ~ , ~ ) h , ]  

a I/ T e  wwc, ~ w w , ,  

where w p ,  = 4nNo,e~/iL!l, is the plasma frequency, 

is the usual plasma dispersion function, and tlie radial inhomogeneity parameters 21, ,YN, XT are defined as 
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They are, respectively, the shear parameter of tlie heli- permeability tensor iik cari he simplified taking into ac- 

cal magnetic field, X I ,  and the logarithmic derivatives count the well known approximations of tlie function, - 

of tlie equilibrium clensity No and temperature T of the T/t'(Z,), for 2, « 1 and 2, > 1. 

plasma particles. These components are necessary for 

the analysis of the plasma eigenmodes, wave heating 111. ~ ~ ~ ~ ~ t ~ - h ~ d ~ ~ d ~ ~ ~ ~ i ~  interpretation of 
and current drive prohlems. dielectric permeability tensor 

Note that in the expressions of til, we keep only 

the most important terms, which are proportional to 

the electron current velocity ( vokli/Q), tlie squared gy- 

rotropy parameter, ( R 2 / ~ z i ) ,  and tlie radial graclients of 

the density (,yNvr/wc) and temperature ( V ~ X ~ / W , ) .  If 

we omit the tensor components i13, iS1, i32 ,  iZ3 and ex- 

clude tlie terms witli X N ,  xs, we obtain the well-lino~vn 

result of References [6,17,18] for the dielectric perme- 

ahility of the cylindrical plasmas in a helical magnetic 

field. Moreover, we take into account Doppler shifts, 

kllvO, i11 the plasma dispersion function, which can be 

important for the analysis of the resonance zone condi- 

tion of the collisionless wave dissipation in the moving 

plasma witli "hot" electrons. The components of the 

As was shown above, tlie direct method of the eval- 

uation of a dielectric permeability tensor was used hy 

means of the calculation of currents in a plasma on the 

basis of the kinetic equation. However, it is interesting 

and sometimes important, to demonstrate the magneto- 

hydrodynamic (MHD) way of evaluating the dielectric 

permeability tensor and its interpretation. Such an ap- 

proach helps us to gain physical understanding of the 

prohlem and show the macroscopic parameters of the 

plasma (pressure, viscosity and so on), from which the 

dielectric permeability tensor can be derived. With this 

purpose, it is convenient to proceecl from hydrodynamic 

equations[14~1g] for the ions and electrons, which are 

valicl for a11 collisional regimes, 

Bere, we use the well-known designationi: m, is tlie pmticles. 
+ 

mass, N, is tlie density, V, is the macroscopic veloc- In a weakly collisional plasma the friction between 
4 

ity, p, is an isotropic part of the pressure, ir", is the particles for the transverse motion is usually negligibly 
+ 

viscosity tensor of the n-kind particles; R, is the fric- small and can be omitted. Definitions of p, and T I ( ,  

tion force between the particles of n -1iind and other (see, for e ~ a r n ~ l e , [ ~ ~ ] ) ,  are given by expressions: 

where F, is the distribution function of ions or elec- na1 component of t,he viscosity which is important for a 

trons, wliich should be determined from the kinetic fully ionized and weakly collisional plasma for different 

equation, and tu11 = v11 - 210. problems (the transverse viscosity is proportional to a 

Below, we will take into account only the longitudi- 
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collision frequency and the  oblique (magnetic) viscosity are small in our case). The  viscosity equation is used 

take into account tlie finite Larmor radius effects wliich as 

wliere h is tlie unit vector of the magnetic field. To scopic values of the plasma are oscillating with the fre- 

simplify tlie calculation procedure of tlie dielectric per- queiicy w and ions ancl electrons have mean velocities 

meability tensor, we need to  evaliiate only the scalar v",, tlie oscillating transverse current can be found from 

values p, and ~11,. Eq.(20), using Eq.(22): 

Assuining tha t  the  electric field ancl otliers macro- 

Note tha t  Eq.(23) is valid for an arbitrary ma.gnetic 

field configuration. The  t e m  p, - 0.5nll, is in f x t  tlie 

transverse pressure p l ,  and p, + rllo is tlie longitudi- 

nal pressure p//,, wliich is the reason tl-ie 1ongitudiiia.l 

viscosity, TII,, is equal to  2(pll, - pi,)/3.  

For further simplification, we suppose tlie tolíamak 

to  be axially-symmetric with circular magnetic surfaces 

I 
(it can be also a so1a.r plasma), and the  plasma particle 

conclitions to  be in tlie "plateau" regime (there are no 

trapped part,icles iii this regime) and toroidal effect,s are 
+ 

taken into accorint only in t,he 1 . 5 ~ ~ ~ , 8 ~ 1 n B ~  t,erm. I t  

is coiivenient to proceed from tlie clrift líinetic equation 

(see, for e~arnple,[~"1):  

Here 

- "vil = LE~,  - $ i .  a l , ~  + u l l ~ E  . (i. ali, 
clt m, 

where F = FM $ fC + fT, and Fnf is the Msxwell distribution function. 



After some simplification, we find the expression for the oscillating part of the distribution function fca in 

"cylindrical" approximation and P = 8 i r p o / ~ $  < 1: 

where 

w; = w - kI1voa, ~2 = - w C ~ v ~ , / c ~ .  

The "toroidal" oscillating part f~ of the distribution function, which we use in the 

1 .5allaVllnBo term, follows from Eq.(24): 

and C is a toroidal angle. 

Using Eq.(22) and neglecting voa in comparison with the thermal velocity VT,, we find: 

3 - 
-allaVllnBo = - icNoaToa 
2 2w Bo R2 {(-i21 + [ÊL x h]) Q?) + ( i ~ ;  + [E; x h]) Q(-)} , 

Now, it  is possible t o  calculate the " cylindrical" parts of p, and 'i'll, vahes. Using Eqs.(21) and (25), we find 

+ 

Using Eqs.(23) and (28)' we find as a result the expression for the transversal current j ~ ,  

where 
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I 

Note also that in the case k l l ( k ) v ~ i « w ~ k l l ( 4 ) v T ,  compared with Pile and iill, and are omitted. We can 

we have - Pe, i.e. the longitudinal pressure pll see that the Landau damping in the transverse current 

is approximately equal to  zero if we take into account is derived from the pressure 6, and the viscosity "ile 

only parts of p, and depending on Landau damp- Substitution of Eq.(28) into Eq.(29) results in the 

ing. The corresponding parts of $i and "li are small as components of the dielectric permeability tensor: 

The operators L ~ , ,  iz,, &ITOI, M~,, GII, are applied to  a11 quantities, which are in the right hand side of them, 

including the electric field components. 

To derive the remaining cornponents of the dielectric permeability tensor, Eg,, it is necessary to take into account 

drift terms in the drift kinetic equation, i.e., F, has to be replaced by F,-+F, + AF,, where 

We proceed from expressions Eqs.(9) and (24 ). As a result, we find 



A. G. Elfimov et al. 

In conclusion to  this section, we can say that the 

MND method of the dielectric permeability tensor eval- 

uation may be used as an alternative to  the method of 

the direct solution of the kinetic equation, which is de- 

veloped in Section 2. This method can help us to  clarify 

the underlying physics in an arbitrary geometry of the 

magnetic field. The tensor components, which are ob- 

tained by means of both methods, coincides. The MHD 

method can simplify the calculations of the dielectric 

permeability tensor in complicated magnetic fields be- 

cause we need t o  find only three scalar perturbed val- 

ues in MHD equations: pl, ,  pila and jllff. The toroidal 

terms in Eqs. (30) - (35) (connected with the DF)  
terms) can be used in the investigation of the global 

Alfvén waves in a complicated geometry (for example, 

in tokamaks). 

IV. Current drive analysis 

In this section, using the cylindrical plasma model 

(see Section 11), we analyze the current drive produced 

by Alfvén waves. Density, temperature, and current 

profile are assumed to be diffusive along the radial vari- 

able and homogeneous along the magnetic field lines; 

and the plasma is magnetized, so that the Larmor radii 

of the electrons and ions are smaller than the radial 

inhomogeneous plasma parameters ( x N , ~ ) .  
The modeling of kinetic effects produced by 

Coulomb collisions have wide applications in plasma 

physics problems connected with the current drive, RF 

plasma heating in closed and open magnetic devices. 

For the mathematical description of those problems, 

nonlinear integro-differential spatially uniform kinetic 

equation of Landau-Fokker-Planck (LFP) type is usu- 

ally used (see References [14,15]). To take into account 

weak collision effects, u,i < R, the Landau form of the 

collision operator in the kinetic Eq. (1) is considered 

for electrons. We suppose that the collision frequency 

is sufficient (vei > Wb,  where LJb is the elec.tron bounce 

frequency in the wave field) to  neglect the nonlinear 

effects of electrons captured by the wave field[22]. 

IV.l Analytical treatment 

To describe the plasma interaction of a wave packet 

absorbed by electrons due to Landau dumping, we pro- 

ceed from Eqs.(l,2). We represent the distribution 

function as a sum (Fo + f) of the quasistationary and 

perturbed parts as discussed in Section 2. The per- 

turbed part is proportional to the wa.ve field amplitude. 

Averaging Eq. (1) for electrons and ions over time or a 

spatial period of Alfvén waves along the magnetic field 

lines, multiplying these equations by the momentum 

m,,ivll, integrating in velocity space, and combining the 

equations for electrons and ions, we obtain the average 

current density equation: 



Brazilian Journal of Physics, vol. 25, no. 3, September, 1995 

In the above equation the braclrets < ... > de- 

note averaging over a period of the wave oscillations. 

Note that above equation was obtained i11 the two fluid 

magneto-hydrodynamic model by  lima[^^] and that 

equation follows from the generalizecl Ohm's lad l"  for 

wealtly collisional plasmas. Further, the corrections as- 

sociated with oscillations o i  the ions in the wave fielcls 

will be neglected because o£ the small electron-ion mass 

ratio m,/m;. The oscillations of plasma density and 

current are proportional to the oscillations of tlie RF 

fields, which is chosen in one mode approximation: 
- 
Er,B,z = E1.,8,, (r)  exp i(m0 + k z  - Rt).  (41) 

where (m, k) are poloidal ancl axial wave numbers, re- 

spectively. 

As the next step, we find the relation between the 

density and current oscillations from the eq~a t~ ion  of 

continuity, and the magnetic and electric field oscilla- 

tions from the induction equation: 

i -+ ic L fi(e) = --diz!jye), B = --rotE; 
eR R (42) 

where 32) = -(iR/4T)&$$Ép and &(a9 is the electrori 

part of the dielectric permeability tensor for low fre- 

quencies R < w,; , see Eqs. (10-18). 

Substituting Eqs. (41) and (42) into Eq. (40), we 

obtain the value of tlie parallel current: 

lelkll < jll >N -- 
me veia {P" -5 a 

[ ~ r n ( r ~ ~ ) E ~ ) ] } .  
(43) 

wliere Pe = ~ e ( j $ ~ ) ~ i ) / 2  is the density of the dissi- 

pated power as defined by analogy to the homogeneous 

I 

plasma case (.Pe). For homogeneous plasmas, the first 

term of Equation (43) is the driven current, calculated 

in[241251, which is proportional to the dissipated power 

Pe N ( R / ~ T ) I ~ ( E ~ ~ ) ~ E ~ ~  1 2 .  The second term is the gra- 

dient c ~ r r e n t [ ~ ~ > ~ ~  connected to  the gradient of the den- 

sity over the radius and clecreasing the wave amplitude 

due to the wave dissipation. This current contains the 

helicity injection ~ u r r e n t [ ~ ~ ~ ~ ~ ~ ~ ~ ] .  

Furthermore, we assume the geometric optic ap- 

proximation over the radial coordinate to  study the 

wave polarization: 

Substituting Eq.(45) into the Maxwell's equations 

(2), we obtain the ratio of the parallel and binor- 

mal electric field components for low frequency waves 

(R < wci): 

Ell  , - 
(€11 - ~ ~ ' $ 6 2 2  - Ar,? - NIf) - Nt(c22 - N1;) 

Ea N,2NaNll + fz,(N; + Nlf - €11) + €i3N,N// 

(46) 
where N = g c / ~  is refractive index, which will be used 

in the next equation only. This formula will be useful 

for current drive analysis. 

For kinetic Alfvén wave (KAW) we find the disper- 

sion relation (see, for e ~ a r n ~ l e [ ~ I ) :  



Using the ahove equatioii we estimate the ICAW current 

drive (relatecl to the wave dissipation hy electron) as 

where simple current drive is presented hy the expres- 

sion: 

The first term in the Equation (48) is tlie simple 

current drive (jcd) anel the second one is the helicity in- 

jection current. If the liinetic Alfvén wave is a standing 

wave along toroidal ancl poloidal directions, we should 

consider the current drive from waves with kll = k [ k i l  ( 

and kl, = &Jktl and finally we obtain only the helic- 

ity injection (or gradient) current. The local driving 

efficiency (the ratio of current to dissipated power) of 

ICAW current drive is higher hy one order of niagni- 

t,ude than the simple current drive efficiency of travel- 

ling KAW (jh/P, N 10j,d/P,). 

For global Alfvén wave (GAW) and fast inagneto- 

sonic wave (FMSW)(see, for e ~ a r n ~ l e [ ~ ] ,  the value of the 

parallel oscillatory current will be approximately equal 

zero, due to a high parallel conductivity. Based on t,his 

condition, we evaluate: 

After suhstituting this equation into Eq. (43), we ob- 

tain: 

Re(1 - A,) XN - 2Im(L,) 
1 7 ) 2 ( h e )  Re(k,) 

Where XN is the radial inhomogeneous density parame- 

ter, A, = 1 - 7.  The first term in Eq. (50) is the simple 

current drive and the second one is the giadieiit (and 

helicity) current drive. If the GAW are standing waves 

(Lil = &lkll(  and k, = f (k,() the first term of Eq.(50) 

will disappear and only tlie gradient current drive will 

exist. 

The value of the GAW gradient (nonresonant) cur- 

rent drive will be 

So, the local efficiency of Alfvén wave current drive 

can be increased by one order of magnitude due to non- 

resonant gradient forces when ICAW phase velocity is 

sniall, c~ « vs,, and GAW phase velocity is large, 

C* > VT,. This additional nonresonant current drive 

will not depend on tra.pped particle effects, whicli is 

supposed to reduce strongly the Alfvén current drive in 

t ~ k a m a k s [ ~ ] .  

IV.2 Numerical treatment 

In this subsection, for modeling of the current drive 

ancl R F  plasma heating in tokamaks and space plasma 

configurations, we shall consider the two dimensional 

in tlie velocity space and spatially uniform LFP kinetic 

operator in tlie approximation of the isotropic Rosen- 

blutli potentials (see Ref. [15]). We assume that the 

magnetic surfaces in a tokamak are circular and coaxial. 

The equation uncler consideration has been obtained 

from the drift ltinetic equation with the collision inte- 

gral and under the quasi-linear assumption for narrow 

AcPl,<vPh Alfvén wave packet[27-34], where AcPh is the 

width of the packet, cph is the phase velocity, and V T ~  

is the tlieimal electron speed. 

It is assumecl that the action of the waves, with the 

pliase velocity considerably exceeding the thermal ion 

speed (cPm>vT,), leads to a slight and unimportant dis- 

tortion of the ion distribution f~lnction. Therefore, the 

ion distribution is not changed very much and can be 

chosen as Maxwellian with a fixed initial temperature 

T = T , ( O )  = T,(O). The RI? field action on the quasis- 

tationary distribution function can be described in the 

quasilinear approximation. The wave absorption due to 

Landau damping (for example, kinetic Alfvén waves) is 

talten into account hy tlie quasi-linear operator, D, f ,  

in tlie form, 

Further, this operator will be written down in spherical 

coordinates. We confine ourselves to tlie approximation 

where the quasi-linear diffusion coefficient is 

constant within the phase resonance region and equals 

to zero in the other part of the velocity space: 
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const., if /v, - cphl < Acph 
0, otherwise. 

T o  present the  form of the  lrinetic equation we shall malie the usual normalization procedure for the  velocity, 

the  t ime and distribution function: 

I 
As usual, the notations Ne,i, e, me denote electron for the new variables is 

and ion densities, charge and mass of electrons, respec- 
- 

tively; lnhc,,,l is the  Coulomb logarithm. af = &{f} + Bf - Êf; t > O, (52) d t  

where f(v,  p ,  1) is the electron distribution function, 

and the specific type of the collision operator in the 

Now, omitting the  sign 'tilde', tlie kinetic equation right part  is presented in the  f ~ r r n [ ~ ~ ] :  

Here, 

+ -+ 
where v = li71 - modulus of the velocity; p = v'. BIIV'JJBJ and -1 5 p = vll/v 5 1. 

T h e  initial electron distribution has the Maxwellian form. The distribution function moment N,(v = m) 

corresponds t o  tlie density of particles, the  energy of particles and the parallel current of tlie system are defined in 

spherical coordinates as follows: 

T o  investigate the  influence of an  externa1 e1c:ctrical field we include in Equation (52) the  operator ÊfL3'1, which 

has the  following form: 

where y is the ratio between the electrical field E and the so called Dreicer field, ED, = 4 ~ e ~ n l n ( A ~ , , ~ ) / T , ;  for 

tokamak plasmas y < 0.01 as a rule. 
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Figure 1. Plot of the deviation of the distribution func- 
tion from Maxwell distribution Sf over module of the nor- 
malized velocity v,  for the parallel LL = 1 (I), antiparallel 
p = -1 (3) and perpendicular p = 0 (2) directions, rela- 
tively to the magnetic field in the velocity space, wlien tlie 
normalized qiiasi-linear coefficient Do is equal to 1.8 (solid 
line) and 0.1 (dashed line) when the normalized phase ve- 
locity is cA/vse = 0.6. 

In the computer solution of tlie problem, the numer- 

ical algorithms, which are based upon the completely 

conservative finite difference scheme [321331, are used. 

If the discrete model (difference scheme) possesses only 

approximate analogs of the conservation laws, then this 

can lead to  the accumulation of errors in the anal- 

ysis of non-stationary and nonlinear problems. The 

completely conservative difference scheme reflects some 

symmetry properties of the nonlinear kinetic equation 

in a discrete case. This scheme maintains two distri- 

bution function moments (integrals), which are corre- 

spond to  the density (N,) and energy (I) in the plasma 

system. 

Under the influence of t,he RF diffusion operator, 

the initial distribution changes its form. The distribu- 

tion function takes an anisotropic shape and the current 

hegins to he driven. The increasing current saturates in 

time. Up to this moment of time, N 10 t ~ ,  the current 

reaches the most high value jD while the quasilinear 

operator forms "plateau)' in the distribution function 

in the velocity region v, cph. The most intensively 

Coulomb diffusion affects in the thermal velocity re- 

gion, cph N v ~ , ,  see Fig.1, that has result in increasing 

of the maximum of the dissipated power and the possi- 

bly achievable current. 

Certainly, the value of the current depends on the 

phase velocity, cph, the magnitude of the diffusion coef- 

ficient Do and the width of wave packet AcPh, and rises 

with their increasing. The current dependence on the 

coefficient Do and width Acph is essentially nonlinear 

as shown in Fig.2. 

Figure 2. The evolution of the normalized current density 
in normalized time for the following parameters: phase ve- 
locity c,h = 0.6, electrical field y = E/ED,  = .O1 (dotted 
lines) and 0.0 (solid Iine), quasilinear diffusion coefficient 
Do = 1.8 (solid circle) and 0.0 (empty circle). 

In the super thermal velocity region v > vth, the 

electrical field influence on the electron distribution 

function, leads to the creation of distribution tails, 

which have substantial nonmaxwellian character. The 

value of the Olimic current is jll = coHEll, where c o ~  

and E are the plasnia conductivity and electrical field, 

respectively. 

Note that the total current density in plasma sys- 

tem, presented in Fig.2, does not equal the sum of cur- 

rents, which are induced separately by different mech- 

anisms. The additional significant current appeared in 
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plasma due to  plasma conductivity stimulation by RF 

field under its combined action with the sta,tionary elec- 

tric field. T h a t  result is not evident for Alfvén wra.ves 

heating (in comparison with the  lower hybrid current 

drive, ~ e e [ ~ ~ ] )  because of large distance between tlie ac- 

tive regions of influence of the electric field operator 

and the  quasilinear operator. The  total current can be 

represented as a sum of different currents: 

Here, jD is the driven current, which is equal to  qP,  

where 7 is current drive efficiency, that  is clefined as 

ratio of the  current drive to  the  dissipated power, P; 
aQLE is the current stimulated by Alfvén waves in 

the  quasi-linear approximation ancl jni is the nonlinear 

~ u r r e n t [ ~ ~ I .  

To  take into account tlie influence o€ trapped par- 

ticles on the  Alfvén current drive, we acld t,o the 

right hand part  of Eq.(53) tlie angle diffusion opera- 

tor as in[291341, whicli represents a simplified forrn of 

the  trapped particle collision opcrator, see Ref.[35]: 

This operator acts within the region v 1  > v cos p N 

v f l  occupied by the trapped particles, where tlie 

bounce frequency vb > v,,. The toroidicity parameter 

E = corresponds to  the trapped angle of elec- 

trons; for example, if E = 0.04 then Ap N 0.2. 

Figure 3.  Plot of the deviation of the distribiition functiori 
from Maxwell distribution 6 f over module of the normalizecl 
velocitg v ,  for tlie parallel ( p  = 1) and antiparallel (/L = -1) 
directions, relatively to magnetic field in tlie velocit~r space, 
when tlie normalized qiiasilinear coefficient Do is equal 1.8 
(dasliecl line is for the trapped electron case) and tlie pliase 
velocity cph = 0.6. 

The  current is basically carried by supertherinal 

electrons in the absence of trappecl particles. The  result 

of the action of trappecl particles is the isotropization 

of the  distribution function for velocities zl > cplL J1/n. 
Thanlis to  tha t  fact, thc  value of the current de- 

creases, whicli is directly related t o  tlie anisotropy of 

tlie distribiition function. In Fig.3, tlie electron distri- 

bution splittirig over "directions" p is shown in the  case 

of the trapped particle to be ahsent ancl present. 

Note tha t  in Fig.2 and Fig.3 the deviations, S f  = 

(f - f,)/f,, of the  electron clistrihution, f ( v ,  p , t ) ,  

from Maxwellian form are shown. In spite of the  strong 

decreasing oi' the current magnitude in the  case of 

trapped particles, the stimulated plasma conductivity 

effect under combined action of electrical and RF fields 

is lcept in this case to0[~~1]. T h e  presence of the trapped 

particles and the  electric field modify tlie scaling of tlie 

current drive efficiency. 

5. Conclusions 

In this paper a method of the  evaluation of the cli- 

electric perineability tensor in a magnetized plasma is 

demonstrated in the  cases of the  large aspect ratio tolta- 

mal< (the "plateau" regime) and cylindrical magnetic 

field configurations with inhomogeneous plasmas. The 

magneto-hydrodynamic and direct kinetic approaches 

are usecl, and their equivalence are shown. S h e  toroidal 

corrections of tlie permeability tensor are fonnd using 

tlie MHD approach. 

A general proceclure of thc  current clrive calculation 

is developed for the cylindrical plasma moclel. The  an- 

alytical expression for the  longitudinal current drive by 

time - averaged electromagnetic forces is obtainecl and 

the influence of the  plasma inhomogeneity ( the "gradi- 

ent" effect) on the current drive is discussed. I t  is shown 

that  the  efficiency of KAW and GAW current drive due 

to  Iielicity injection and "gradient" eff'ects are higlier 

by one order of the magnitude in comparison with the 



A. G. Elfimov et al. 

current driven by travelling KAW and GAW. 

The numerical investigation of the Alfvén current 

drive is carried out on the base of the drift ltinetic equa- 

tion with the Landau - Fokker - Planclt collision inte- 

gral. I t  is shown that the additional increasing of the 

current (synergistic effect) in the plasma appears due to 

the plasma conductivity induced by the R F  field, which 

action is combined with that  of the electrical field. 
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