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In this paper a method for the analytical treatment o the dielectric permeability tensor is
developed and analysis of the wave heating and current drive is carred out for magnetized
plasma structures with an equilibrium field aligned current. Electron Landau and transit
time magnetic pumping absorptions of waves is consiclered. Simple expressions for the
current drive hy the Alfvén and fast waves are obtained. This current drive is discussed
in terms of "gradient” effects, including the effect of the resonant and nonresonant current
clrive. The infiuence o al electric fidd on current drive is clemonstrated on the basis of
numerical solutions of the Binetic equation with landau-Folilier-Planck collision operator.

l. Introduction

Nowadays, Alfvén waves (AW) are widely used
for plasma production, resonant heating of mag-
netized plasmas and current clrive in laboratory
experiments =31, In the nearest future, this program
will be under investigation in the TCA/Br - Brazilian
tokamak with Alfvén wave heatingl.

Past years, the theory of the Alfvén waves had
been intensively studied (see the initial paper® and
reviews[2:%7 and references therein) not only in con-
nection with laboratory experiments, but also in space
plasmas applications® ', In space physics, there
are some proposals about particle acceleration ancl
solar chromosplieric and corona heating by Alfvén
Waves[lo‘ls]‘

The classical Alfvén wavesl®]l in homogeneous plas-
mas are degenerated modes. The properties of Alfvén
waves depend strongly on the magnetic field struc-
ture and on the ratio of the Alfvén phase velocity
2,6,7)

to the electron thermal velocity(ca/vre)®%7], where

ca = Bo//ArN;M;, and vpe = +/Te/m.. The
waves in the Alfvén waveband are divided into fast
magneto-sonic waves (FMSW), global Alfvén waves
(GAW), wliich depend on the magnetic fidd struc-

ture, kinetic (KXAW) and quasielectrostatic (QEAW) (or
"cold") Alfvén waves in magnetized plasmas with hot
(ca < vp.) and cold (cq > vr.) electrons, and, finaly,
surface Alfvén modes (SAM), which do not have ara-
dial wave structure. This last mode appears only in
bounded or layered plasmas.

To study different applications of the Alfvén waves
for plasma heating and current drive, several impor-
tant questions arise and their theoretical solution is of
paramount importance to understand the general AW
effects in plasmas:

e What is the structure of Alfvén waves in inho-
mogeneous plasmas?

e How Landau damping, transit time magnetic
pumping (TTMP), and collisional dissipation of
AW vary with the curvature and the gradients of
the ambient magneticfield, and with the changing
of the plasma density and temperature profiles?

e What will be the distribution of absorbed power
and current drive profile in different magnetic
field configurations?
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To solve the problems mentioned above in collisional
plasmas, the magneto-hydrodynamic (MHD) model of
the plasma is used!”®14. In general, laboratory or
space plasmas are weakly collisional. It means that
the electron-ion collision frequency is smaller than the

wave frequency (ve; < w) and the parallel wavelength

0Fa + 1_),8F0, Ca
Ot 87  mg

4r- 10E
curlB_—I]%- ;

Here, F,,es,m,, are the distribution function,
charge and mass of ions or electrons, #, ¥, are the
conﬁguratlon space vector-coordinates; E B= Bo +
B
and the current density, which are divided in quasis-
tationary and oscillating parts; St {F} is the collision
operator in the Landau form!*% 5], Throughout the pa-
per the CGSM system of units is used.

In complicated magnetic field geometries (for in-

] = ]0 + ], are the electric and magnetic fields,

b

stance, in toroidal one) the distribution function F =
F(t, 7, ) depends on seven variables and, moreover, it
is necessary to include the specific effect of ion and elec-
tron periodic motions(*®! along the magnetic field lines.
The solution of this problem is a formidable task in the
frame of Egs. (1,2).

In the simplest approach, which ignores the drift
motion across the magnetic surfaces and assumes that
the toroidicity parameter ¢ = r/R < 1 is very small,
it is possible to use a cylindrical plasma model, which
is also important for space plasma applications. If the
Larmor radii of ions and electrons are small in com-
parison with the scale of the plasma inhomogeneity
(pie = vrie/weie K Iny = NJ/(dN/dr),T/(dT/dr),
where p; . are ion and electron Larmor radii), which
means that the plasma is magnetized, the problems of
Alfvén wave heating and current drive may be solved
in closed form. Some results were discussed earlier in
References [2,6,7,17].

In the second part of this paper, an analytical
method for evaluation of the dielectric permeability
tensor-operator will be presented, taking into account
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along the magnetic. field lines (1/ky) is smaller than
the mean free path of electrons (1/kjj & vre/ve:). For
weakly collisional plasmas most of the wave-particle in-
teraction effects and the wave heating and current drive
problems can be solved in the framework of the Vlasov-

Maxwell’s set of equations (see, for instance,12%7)

L) 0Fy &

[v x B]} o = Si{Fa); (1)
188 ,

e curlE. (2)

drift corrections (related to gradients of equilibrium pa~
rameters) and the equilibrium plasma current. In the
third part, the MHD approach for the dielectric per-
meability tensor in complicated plasma geometries will
be demonstrated. In the fourth part, the Alfvén wave
current drive for magnetized plasmas will be analyzed
using the geometric optics approximation for the radial
coordinate of the wave fields and some results of the
numerical solution of the Fokker-Planck equation for

electrons will be presented.

I1. Dielectric permeability tensor operator of

magnetized plasmas

The procedure to solve the set of the equations
(1-2) can be reduced to Maxwell’s equations only if
we are able to find the relations between the current
density oscillations 7 and the perturbed electric field
E from Vlasov’s equation. Usually, these relations
(Gs = (4m/w)cesp Ey) are defined through the dielec-
tric tensor components, €55, which dependent on the
equilibrium plasma parameters and the magnetic field
configuration.

In this section, we will use the cylindrical model of
the magnetized plasma with one or a few kinds of ions.
The equilibrium plasma current 3"0 is aligned with the
equilibrium magnetic field By . Under the equilibrium
conditions, we can assume that the current is formed
due to the electron motion with the velocity, vg, in a
Therefore, the elec-

trons are the source of the equilibrium current fo in the

background of non-drifting ions.
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plasma. Further, we will assume that vy is smaller or
of the order of the electron thermal velocity vr,. Ac-
cording to the electrodynamical laws, the longitudinal
current produces the poloidal magnetic field By ¢(r) .
In this case, the magnetic surfaces may be considered
as circular and concentric cylinders. For the described
model, it is possible to use a cylindrical coordinate sys-
tem:

X = rcosh, Y = rsind, 7z =z

where » is the radius of a magnetic surface. The sta-
tionary magnetic field configuration By is chosen as in
the Reference [6]:

By,r =0, Bpyg = hg By, By, = h,Byg.

where hg and h, are, respectively, the poloidal and ax-
ial projections of the magnetic field unit vector: k=
By /Bg. The helical magnetic field line is twisted over
such cylindrical magnetic surfaces with radius r. This
model is reasonable for tokamaks and solar loops with
low pressure f < 1 and small toroidicity parameter
¢ =r/R <« 1. A collisionless wave dissipation will be
considered and the ”plateau” conditions for tokamaks
with weak collisions will be assumed

V€/2vre/Rog K Vei K W,

where g is the tokamak safety parameter and Ry is the

qg = ’l‘hz/Rohg

tokamak major radius, which is equal to the length, L,
of the plasma cylinder divided by 2#. Thus, the formal
transformation of the wave frequency w — Q + ivey,
which means to use the Krook’s approximation for the
collision operator St {f}, can be done.

In the discussed plasma model, the radial inhomo-
geneity equilibrium density No(r), temperature T, ;(r)
of the plasma and the poloidal magnetic field By g(r)
are taken into account. On the other hand, it is sup-
posed that these equilibrium parameters do not depend
on time ¢ and are homogeneous in the poloidal angle, 8,
and axial coordinate, z. Consequently, all dependence
on time and poloidal and axial coordinates of the per-
turbed electric and magnetic fields (E and B) in linear
approximation appears through exp(i(mé + kz — Qt)],
due to the plasma homogeneity over these variables.
Because of this homogeneity, we worked in the one-
plane-wave approximation (allowed by the superposi-
tion principle valid for Maxwell equations). Here £ is
the wave frequency, m/r and k are the poloidal and
the longitudinal projections of the wave vector, respec-

tively.

We begin to find the linearized solution of the
Vlasov’s kinetic equation (1) for the distribution func-
tion of the electrons and ions, F' = Fy + f, as a sum of
the equilibrium distribution function and a perturbed
part f, which is proportional to the wave fields as
x Erlglzewp[i(mﬁ + kz — Q)]. The distribution func-
tion depends on the radius and the velocity space vari-
ables. We use a special system of coordinates in velocity
space (vy,0,v)), where v) (perpendicular) and ¢ are
local-polar velocity coordinates, and v (parallel) is the
projection of ¥ on the B lines. Unlike Ross et al.[f],
we take into account, for the equilibrium distribution,
the first order drift corrections to the stationary local
Maxwell distribution of each plasma component o:

Foa = Fryra + Frasing, (3)
where 5 )
[ Noa . + (v — voa) P dFya
Mea = (92 )18 P ’ YT e dr

For the set of the vectors A = {E, B,j, 7}, we use,
conveniently, the normal Ay, binormal As and parallel
Az projections relative to the direction of the magnetic

field, which are transformed to the cylindrical compo-

l

nents A,, Ag, A, through the following formulae:

A= Ar; Ay = Agh, "Azhéy Az = A,h, + Aghg.

In the velocity space the coordinates vy o3 are de-
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fined through the local polar coordinates:

v1 = vy cos0, V2 = v, sino, vy = vl

wliicli are variecl in tlie region:

0< ¢ <2m,

0< vy <o, —OO<1)“<OO.
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Foi. future analysis we expand the perturbed dis-
tribution function in Fourier series over angle a in the

velocity space,

F=fo+ > fricos(io) + fr sin(lo)]} expli(mb + kz — Qt)].

I£0

The first three coefficients fo 5 in the above equation
are most important for the dielectric tensor evaluation.
fo is related to tlie perturbed distribution function av-
eraged over particle gyrations in the magnetic field and
fry fv (where inclex ”1" is omittecl) are corrections of

r
tlie perturbed clistribution function, which are related
Assuming that tlie Larmor
radius is much smaller than the radial wave field inho-

to the particle gyration.

mogeneity, we evaluate the set of the linear equations
for fo.,4 from the Vlasov's equation (1):

]
i(ogky — w) fo + -2 (UH gvf“ v”ug—%) + 5 <Cg + 4 zkbfb>
- [E %FUT + f; (rM+ = %ff) C—”%BlFb] (4)
wefy = —i(w — kyop) fr + v 5 é)fo - heivu (vlg;f—: - vllgg—i’> +
o () -2 >
wefr = i{w —kyvfo — thyvo fo - 75; B2 8@? 8Fj Bcl (Ui}vo FM)] ' ©

Here, k= th, +agm/r and ky = h,m/r — khg are the

parallel and binormal components of the wave vector.
In the next step, combining the Equations (5,6) and

(4) and taking into account only first order drift correc-

|

l

tions o p, /Iy 7, we find expressions for fr, fy and fo.
These functions will be used for the calculations of the
normal (1), binormal (j2) and parallel (j3) components
of the oscillating current density:

27 +oo S N oo oo
J1= Z ea/ do cosa/ dvy / V3 fodvy = WZ ea/ dvy / U?Lfr(a)dU_L; (M)
= 0 —c0 0 o —o0 0
2T +o0 o) N +o0 oo
jo = Z €a / do SiTLO'/ duy / vifadvl = FZ ea/ doy / vifb(o’)dm; (8)
. 0 —00 0 o - 00 0
27 +00 [e'e} 5 +o00 o] ()
ja = Z 6a/ da/ v dyy / v] fadvy = QﬂZea/ v) dy| / vy fo dvy (9)
pe 0 —0o0 0 o — 00 0
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where the summation is carried out for all kinds of the
plasma particles (a=e, 1, ...).

After integration of Egs. (7-9) over the veloc-
ity space we can ohtain the dielectric tensor-operator

&€ using the following relations: j, = i(2/47)(8, —

|

-

ésk ) Ex, where &, is the Kroneker symbol.

Here, we present all nine components of the dielec-
tric permeability tensor. The most of them are differ-
ential operators on r, and they are labeled as ¢,j;:

2 k o ,(72 ,2
2y = 1+Z Po {] + 2 Hvo +2_.b_7”21’g(1\a - 1)] : (10)
CO( CC( w
. 2 o2k ,
> Wpa v 1voa  Cov +xr)kovh, | 2kevd,
ot 1 —_— - e “_ 3 1
o zo;waCY [ * wga w Wiew + TWley (x 1) ( ) ) (1 )
Y wi, ko kvaa
e =i 3022 (= = g ks (14 2227000] | "
k
€y1 = —€1a —12 Woa b”“ { (A — 1) = 2xn Ay = x7[(1 + 22, %) A0 — 1]} ; (13)
. w?, w? X1VpaWea va i) g /1
=D 05 {”wza B Gl ol e
2 2
_ XU, L XV |y oy 2p 2 .
oy [1 + 2(Aq 1)8 (r. )} {1 [T —(1+22, )Aa]ar (7’)]} ; (14)
N ""Pa k”vga 18 YN
= A, —_—— A, 1-(1-2 1
=X 0 {00 - Ay M4 X (11— 22,5)00) (15)
. k wh, kyvoa
€31 == —€13 + Zklbl ; cha [( A ) H Y } . (16)
R -1 w%a kHUOQ kbv% X7 9 o
= — —_ - ——— Ay — —t —_ - —\T... ), 17
= 3 e {1 A - e et 0 O 2Z0AD e 0D
o= wl Fivoe \ Ag — xwksvd, n _ xzkivho [l —(i — QZQZ)AQ]} . (18)
—I Pa (1 4+ w WlWey QCJOJCO( ’
o
where wi, = 47rN0aea/Ma is the plasma frequency,
. w — kjjvon
Ao = 14+ i/TZW(Za),  Fo = ol 19
\/— ( o \/E&‘HUTQ ( )
and

W(Zq) = exp(—Z2) [1 + ——/ exp(t?) dt

is the usual plasma dispersion function, and the radial inhomogeneity parameters X1; XN, X7 are defined as

O [ he
=rh,? =
X =rh Or <rhz>’

XN =

0 0
—I = —InT.
£ niNg, XT arlnT
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They are, respectively, the shear parameter of tlie heli-
cal magnetic field, x;, and the logarithmic derivatives
of tlie equilibrium clensity Ny and temperature T o the
plasma particles. These components are necessary for
the analysis of the plasma eigenmodes, wave heating
and current drive prohlems.

Note that in the expressions of é;; we keep only
the most important terms, which are proportional to
the electron current velocity ( vok; /), tlie squared gy-
rotropy parameter, (2?/w?), and tlieradial graclients of
the density (xnvr/w.) and temperature (vpxr/w.). If
we omit the tensor components €13, €1, €32, €23 and ex-
clude the terms with xn, x7, we obtain the well-known
result of References [6,17,18] for the dielectric perme-
ahility of the cylindrical plasmas in a helical magnetic
field. Moreover, we take into account Doppler shifts,
kjvo, in the plasma dispersion function, which can be
important for the analysis af the resonance zone condi-
tion of the collisionless wave dissipation in the moving
plasma with ”hot” electrons. The components of the

i

AoV
dt

M Ny

Bere, we use the well-known designations: m, is tlie
mass, Ny is the density, \7, is the macroscopic veloc-
ity, po is an isotropic part of the pressure, 72’1:& is the
viscosity tensor of the «-kind particles; R, is the fric-
tion force between the particles of « -kind and other

]

= —6})0( —6 '7:';0( +eaNaE+

229

-

permeability tensor ¢;; can hesimplified taking into ac-
count the wdl known approximations of tlie function,
W(Zy), for Zo € 1and Zs > 1.

III. Magneto-hydrodynamic interpretation of
dielectric permeability tensor

As was shown above, tlie direct method of the eval-
nation of a dielectric permeability tensor was used by
means of the calculation of currents in a plasmaon the
basis of the kinetic equation. However, it is interesting
and sometimesimportant, to demonstrate the magneto-
hydrodynamic (MHD) way of evaluating the dielectric
permeability tensor and its interpretation. Such an ap-
proach helps us to gain physical understanding of the
prohlem and show the macroscopic parameters of the
plasma (pressure, viscosity and so on), from which the
dielectric permeability tensor can be derived. With this
purpose, it isconvenient to proceecl from hydrodynamic
equationsl! 419! for the ions and electrons, which are
valicl for all collisional regimes,

eaNa w0 =

[V, x B] + R, (20)

[

particles.

In a weakly collisional plasma the friction between
particles for the transverse motion is usually negligibly
small and can be omitted. Definitions of p, and 7y«
(see, for example,['4]), are given by expressions:

‘ 1
Po = %ma/w2Fad‘°’v; o = ma/ <w”2 - ng> Fod®. (21)

where F, is the distribution function of ions or elec-
trons, which should be determined from the kinetic
equation, and wy = v — vo.

Below, we will take into account only the longitudi-

[

nal component of the viscosity which is important for a
fully ionized and weakly collisional plasmafor different
problems (the transverse viscosity is proportional to a
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collision frequency and the oblique (magnetic) viscosity
take into account tlie finite Larmor radius effects wliich

J

VA= g{m(e Ry 4 (R SRy + R

where N is tlie unit vector of the magnetic field. To
simplify tlie calculation procedure of tlie dielectric per-
meability tensor, we need to evaluate only the scalar
values p, and 74

Assuming that the electric field and others macro-

- E: Cer
]_L = —_——
My (wQCz - w:xg

~ : <

where
eq Vg

c

Aa = —eaj\fcyjl —

are small in our case). The viscosity equation is used

as inl20;

—

Hym}- %%n (22)

scopic values of the plasma are oscillating with the fre-
quency w and ions and electrons have mean velocities
Vo, tlie oscillating transverse current can be found from
Eq.(20), using Eq.(22):

(wm[iz X A+ iw(’;/ra) , (23)

— o - 1 3 =
[Vou x BJ+ V1 <]7cv - 5W[(a> + aﬂllavlln B,

‘7001 = U(laH + (C/eaNaBO)vrpOcy(;b-

Note that Eq.(23) is valid for an arbitrary magnetic
field configuration. The term p, — 0.5m), isin fact tlie
transverse pressure pj o and p. + || is tlie longitudi-
nal pressure pj, wliich is the reason the longitudinal
Viscosity, Tjja, IS equal t0 2(p|ja — PLa)/3.

For further simplification, we suppose tlie tokamak
to be axially-symmetric with circular magnetic surfaces

|

dvi 9F
dt ovi

(it can be also a solar plasma), and the plasma particle
conclitions to be in tlie ”plateau” regime (there are no
trapped particles in this regime) and toroidal effects are
taken into account only in the 1.5W||Q€L]HBO term. It
is coiivenient to proceed from tlie clrift liinetic equation
(see, for example,2%):

dvy OF _

ooy St{F}; (24)

2
i (G it Vit %va)} ,

U= 'U“}_I:'F VE,

o dr
gt dt

Here
df'_ﬁ+ 1 [=» ot
dt w,
dv?

di

(IU“ _ e

At iy

—J‘—:’Ui [vfiﬁ'ﬁlnB-ﬁVE—VE(ﬁﬁ)E},

2 o
=—FE ~ %h-VInB'}'v“VE . (h'v)hu

where F= Fy + f. T fir, and Fa is the Maxwell distribution function.
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After some simplification, we find the expression for the oscillating part of the distribution function f., in

? cylindrical” approximation and 8 = 87po/BZ < 1:

. Oln Fiyy
(o = kywy) ==+

fca =

1FM oo ikyw?, mavi
E, -
maw (Wi —kjwy) | wea 2Ta 7 wea

2 2
smevt (01 wmow) ks Oln Fare | kjjvoa mavi ) B }
o 2T, <67" * 7')] ot < To Wea or + Wea 2Ty X2 -

where
wy, = w — k)voa, X2 = _Wci'UOe/czA'
The "toroidal" oscillating part fr of the distribution function, which we use in the
15m,V L InBy term, follows from Eq.(24):

’iF]\{ Mo

2
<~ 2 U_L .

= —_— —= | (Vg, £ iVEg),
fT(i) 2R (w-—k”(i)vu) T (v“+ 9 )( E 1 Eo)

where

1 x . )
Eyxy = bRk + ho(m £ 1)/r = 7 (n+(mx1)/9), frxy ~exp [in(+i(m=*1)6],
and ¢ is atoroidal angle.
Using Eq.(22) and neglecting voo in comparison with the thermal velocity vrq, we find:

teoalbe {(_if, + (B x Bl) @ + (i52 +(EL x 1) 00},

3 .
E'/T”aVJ_lHBO = _m

where

Q) = c® [ivaw (¢P®) (1+208) + C+CEY] B = w/lkyea lora

(25)

(26)

(27)

Now, it is possible to calculate the ” cylindrical” parts of p and ), values. Using Eqs.(21) and (25), wefind

teq Nog v s N N
Pla = w (—leaEr + MraEb + M”aE||>
W
Here,

My = 2k (Ag — 1),

N 0 1
Mro =2(As—1) <5?+;-> — XN — XT,

)+

kyxT kjvoa  whg 5 kjvoo
_ PR LW
+ 2k, [1 w* + w* (1+2Z") 2x2 wh ( )

¢4 [¢4

- Weawh kyw kyvo
Mo = - ,:a ) = 2 X*n (Aa B
: YT e “o w

Using Eqs.(23) and (28), wefind as aresult the expression for the transversal current I,

2
> W Wi ko . - (~) * _
JiL= Ari Ea wz(wga _ wzg) {(waer ’LwCO(Eb)[(]. + Da )waET

“_DT"_Q(X_N'_*_‘ X‘T)' <kbEr + i‘;—_—(rr ) + ZXEE”) + <E5(leﬂa + Dgz+)wa) - vOa‘_"]“ >:| +

b} or

Wea

+ (weas +w36) [((14 DS By — iy DS Yol + byvoo By) +

€a Voo

where P
Log = Weag = — wiks.

2
(£) = __Ta ()1 0-) P _wt 2
Da (Qa :}:Qa )) Lla wcakb Wy 87” 87'

2R%w W,

(67 Lo+ ie_éfzzoz> Pial,

(28)

(29)
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Note also that in the case kjj+)vri <w<kj+)vre compared with py, and 7. and are omitted. We can
we have .~ — p., i.e. the longitudinal pressure f see that the Landau damping in the transverse current
is approximately equal to zero if we take into account is derived from the pressure g, and the viscosity ..
only parts of p. and 7., depending on Landau damp- Substitution of Eq.(28) into Eq.(29) results in the

ing. The corresponding parts of p; and 7yj; are small as components of the dielectric permeability tensor:

|

. Wi \ O\ _ ke
€17 = 1+Zm{wa2 (1 + Dg, )> - » v’%’a(XN +XT)+

co

2
R e TG ) (30

Qo ca
2
. _ Wia g w2 ) _ 2 9 1

1 - Noavr‘%a ~ * (+)
‘TV'_—LQa —— M ++wca(X1'UOa+waDa >}; (31)

Wea

2 *
P e [ S (_))_%Q o 1
€12 = Z;wz WL, — w2 {watea (1 + DY o o2, (XN +XT)(__ar + r)+

I Noa’l/%a y * * y(+)
+ ]_V“_Lloz o Mo | + +wa(XIUDa + waDa )}r (32)
Qo co

N . w2a * -
621 = ZZM {"‘wawca (1 + Dgf )> + kbv%a(XN + XT)—_
o co

1 - NooUdg
—wi2DH + o Lea (-‘Lf—MM)}, (33)
2 2
N . wo 2 1 3 NOQUT -
= ’___*_C( ﬁ—g' 4
€].3 i;wz (wga — C.UZZ) {UOaLla + Noa Lla ( wcoz M”a> } ] (3 )
. Wi, i L NoaVt (35)
€23 = —Zm e A A U
o cx

The operators Lia. Lo, Myq, Mya, Myo are applied to all quantities, which are in the right hand side of them,
including the electric field components.

To derive the remaining cornponents of the dielectric permeability tensor, és4, it is necessary to take into account
drift terms in the drift kinetic equation, i.e., F, has to be replaced by Fo— Fo + AF,, where

ickbv?L OF o . (8 1>
= — ik By 4 | =+ =) By} 36
Ao = o (s —kgoy) B {—ikEr + | 5=+~ | Bb} (36)

We proceed from expressions Eqs.(9) and (24 ). As a result, we find

e kg @i {Aa _hivoe  Ewhe @ (Aa _ kll“0a) .

ky —~ WWeq w Weo w¥, w
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Xr | w 2 kjvoa
AT Y (1 4222) 41— )
+5 Lz (1+27,) +1- -5 }]} (37)
2 ki va
€32 = Z e {XNUDa - (Aa — A% > <~8— + l) +
—~ WWeo w k”w’& w or ' r
2 *
vF o kb _ kjvoa XT (Yo — kyvoa s <?_ l
w—*;wcak” Dew (Aa ” ) + 5 [—————-w + Ao (1+222)]] = (38)
w? kyv2 k2v? X
¢33 = 1 00 J Ao+ —Ta 10 p,) = X201
€33 + Ea:kﬁv?pa { at w(’;wca [XN ( w2 o D) { +
Voax2kivd, k
+hq (222 ~1)]) 4+ — LT (Aa - ——”"“)} . (39)
WwhWeq w

In conclusion to this section, we can say that the
MND method of the dielectric permeability tensor eval-
uation may be used as an alternative to the method o
the direct solution of the kinetic equation, which is de-
veloped in Section 2. This method can help usto clarify
the underlying physics in an arbitrary geometry o the
magnetic field. The tensor components, which are ob-
tained by means of both methods, coincides. The MHD
method can simplify the calculations of the dielectric
permeability tensor in complicated magnetic fields be-
cause we need to find only three scalar perturbed val-
ues in MHD equations: p,«,pjj« and jj. The toroidal
terms in Egs. (30) - (35) (connected with the D&
terms) can be used in the investigation of the global
Alfvén wavesin a complicated geometry (for example,
in tokamaks).

IV. Current drive analysis

In this section, using the cylindrical plasma model
(see Section 11), we analyze the current drive produced
by Alfvén waves. Density, temperature, and current
profileare assumed to be diffusive along the radial vari-
able and homogeneous along the magnetic field lines;
and the plasmais magnetized, so that the Larmor radii
of the electrons and ions are smaller than the radial
inhomogeneous plasma parameters (xn ).

The modeling of kinetic effects produced by

[

Coulomb collisions have wide applications in plasma
physics problems connected with the current drive, RF
plasma heating in closed and open magnetic devices.
For the mathematical description of those problems,
nonlinear integro-differential spatially uniform kinetic
equation of Landau-Fokker-Planck (LFP) type is usu-
ally used (see References [14,15]). To take into account
weak collision effects, v.; < R, the Landau form of the
collision operator in the kinetic Eq. (1) is considered
for electrons. We suppose that the collision frequency
issufficient {v; > &y, where @, is the electron bounce
frequency in the wave field) to neglect the nonlinear
effects of electrons captured by the wave field!??.

V.l Analytical treatment

To describe the plasmainteraction of a wave packet
absorbed by electrons due to Landau dumping, we pro-
ceed from Egs.(1,2). We represent the distribution
function as a sum (Fy T f) of the quasistationary and
perturbed parts as discussed in Section 2. The per-
turbed part is proportional to the wave field amplitude.
Averaging Eq. (1)for electrons and ions over time or a
spatial period of Alfvén waves along the magnetic field
lines, multiplying these equations by the momentum
m ;vy, integrating in velocity space, and combining the
equationsfor electrons and ions, we obtain the average
current density equation:
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e?

< jr>=
Melei

> de-
note averaging over a period of the wave oscillations.
Note that above equation was obtained i1 the two fluid
magneto-hydrodynamic model by Klimal?? and that

In the above equation the brackets < ...

equation followsfrom the generalizecl Ohm’s lawl!4] for
weakly collisional plasmas. Further, the corrections as-
sociated with oscillations of the ions in the wave fielcls
will be neglected because of the small electron-ion mass
ratio m./m;. The oscillations of plasma density and
current are proportional to the oscillations of tlie RF
fields, which is chosen in one mode approximation:

Er,ﬁ,z = Er,('),z(r)exp i(m6 + kz — Rt). (41)

where (m, k) are poloidal and axial wave numbers, re-
spectively.

As the next step, we find the relation between the
density and current oscillations from the equation of
continuity, and the magnetic and electric field oscilla-
tions from the induction equation:

N = —6—2—2-(12'1) _7(:3), B= —g—rotﬁ; (42)

where ;¢ = —(iQ/4m)e) E, and ¢4 is the dectrori
part of the dielectric permeability tensor for low fre-
quencies R <« w,; , see Egs. (10-18).
Substituting Egs. (41) and (42) into Eq. (40), we
obtain the value of the parallel current:
. lelk) 1 .
SR eveia {Pe + Wba?- {Im(rjge)ﬁﬂ‘)}(ké)

where P, = Re(j{” Ez)/2 is the density of the dissi-
pated power as defined by analogy to the homogeneous

|

NP & (11 = N )ess/en;

(Bx(Ne ~ Nio2) =

- R < ] ). (40)

plasma case (P,). For homogeneous plasmas, the first
term of Equation (43) is the driven current, calculated
in[24:251 which is proportional to the dissipated power
P, N (Q/87)Im(es3)| Ey|?. The second term is the gra-
dient current(*324 connected to the gradient of the den-
sity over the radius and clecreasing the wave amplitude
due to the wave dissipation. This current contains the

helicity injection current!?4:25,26],

- - . 44
8TV M, r 0 (44)

- ()
. e ieyy O .
Jn = i Im [ 12 r(rEbE”)

Furthermore, we assume the geometric optic ap-
proximation over the radial coordinate to study the
wave polarization:

r
Bray = EQyeonti [ ko) (45)

Substituting Eq.(45) into the Maxwell’s equations
(2), we obtain the ratio of the paralel and binor-
mal electric field components for low frequency waves
(R K wei):

By (a1 = Ni)ean — N? - Ni) = N}(ez2 — Nf)
— P
By NEN Ny T eas(N2T NP = e11) + e1aNe Ny
(46)
where N = I?c/Q is refractive index, which will be used

in the next equation only. This formula will be useful
for current drive analysis.

For kinetic Alfvén wave (KAW) we find the disper-
sion relation (see, for examplel?l):

By = —Eb (€11 — N||2)N2 + Z.Nb2jm(€22)} /NINy Ny (47)
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Using the ahove equatioii we estimate the KAW current
drive (relatecl to the wave dissipation hy electron) as

Qwei Re(kr kv,
QR6(€33)QZ

< Jy > Jea |1+ Im(A.)y, (48)

where simple current drive is presented by the expres-

sion:

_i e | kyP,

Jed = MaVei$)

The first term in the Equation (48) is tlie simple
current drive (j.q) and the second one is the helicity in-
jection current. If the liinetic Alfvén waveis a standing
wave along toroidal and poloidal directions, we should
consider the current drive from waves with ky = %|ky|
and k; = =|k;| and finally we obtain only the helic-
ity injection (or gradient) current. The local driving
efficiency (the ratio of current to dissipated power) of
KAW current drive is higher hy one order of magni-
tude than the simple current drive efficiency of travel-
ling KAW (5, /P, & 10j.a/P.).

For global Alfvén wave (GAW) and fast magneto-
sonic wave (FMSW)(see, for examplel?], the value of the
parallel oscillatory current will be approximately equal
zero, due to a high parallel conductivity. Based on this
condition, we evaluate:

633E“ ~ —€30F (49)

After suhstituting this equation into Eq. (43), we ob-
tain:

Re(1 —A) xn — 2Im{k,)
Im(A,) Re(k,)

< Gy >R Jea (1= (50)
Where x is the radial inhomogeneous density parame-
ter, A, =1—xn. Thefirst termin Eq. (50)is the simple
current drive and the second one is the gradient (and
helicity) current drive. If the GAW are standing waves
(ky = *x[ky| and &, = xl[k,|) the first term of Eq.(50)
will disappear and only tlie gradient current drive will
exist.

The value of the GAW gradient (nonresonant) cur-
rent drive will be
] e ] k”pe (1 — ReAe) XN (51)
Im(Ae) ks

<) = MeVei 2
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So, the local efficiency of Alfvén wave current drive
can be increased by one order of magnitude due to non-
resonant gradient forces when ICAW phase velocity is
small, ¢4 < vr., and GAW phase velocity is large,
ca = vp.. This additional nonresonant current drive
will not depend on trapped particle effects, which is
supposed to reduce strongly the Alfvén current drive in

tokamaks(?.

1V.2 Numerical treatment

In this subsection, for modeling of the current drive
and RF plasma heating in tokamaks and space plasma
configurations, we shall consider the two dimensional
in tlie velocity space and spatially uniform LFP kinetic
operator in tlie approximation of the isotropic Rosen-
blutli potentials (see Ref. [15]). We assume that the
magnetic surfaces in a tokamak are circular and coaxial.
The equation under consideration has been obtained
from the drift Itinetic equation with the collision inte-
gral and under the quasi-linear assumption for narrow
Acyn<Lupn Alfvén wave packet!27=341 where Ac, isthe
width of the packet, ¢, is the phase velocity, and v,
isthe tlieimal electron speed.

It is assumec! that the action of the waves, with the
phase velocity considerably exceeding the thermal ion
speed (¢,5>>vr,), leads to aslight and unimportant dis-
tortion of the ion distribution function. Therefore, the
ion distribution is not changed very much and can be
chosen as Maxwellian with a fixed initial temperature
T =T73(0) = T.(0). The RF field action on the quasis-
tationary distribution function can be described in the
quasilinear approximation. The wave absorption due to
Landau damping (for example, kinetic Alfvén waves) is
talten into account hy tlie quasi-linear operator, D.f,

in tlie form,
ﬁzf = 8/6vz(Doaf/3vz),

Further, thisoperator will be written down in spherical
coordinates. We confine ourselves to tlie approximation
(seel?731]) where the quasi-linear diffusion coefficient is
constant within the phase resonance region and equals
to zero in the other part of the velocity space:
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l

{ const., if |v, —conl < Acyn
Dy = .
0, otherwise.

To present the form of the Irinetic equation we shall malie the usual normalization procedure for the velocity,
the time and distribution function:

. v3, m? 2mva F
23 — _ . t — f t , t — Te & ’ — e
U= 0/Vpe(1=0); [tn N = et N, n(heo) f N,
{
As usual, the notations . ;, e, m, denote electron for the new variables is
and ion densities, charge and mass of electrons, respec- af . A .
tively; InAcou IS the Coulomb logarithm. B = St{fytDf-Ef; t>0 (52)

where f(v,u,t) is the electron distribution function,
and the specific type of the collision operator in the

Now, omitting the sign 'tilde', tlie kinetic equation right part is presented in the form{®2:
|
5 1 8 [10W(f;v) 1 d 2, 0f
= — | -— ry 3 - - = |- 3
sun = 2] 4 Lot ja- 3 (5)
Here,

Wit = T { [ o) Bate, 8 ptes ) - o, e

—~ /U Po(z)[f(z, 1) ~ flv, )] 232(119} ;
0
Cv) = ;21; 3 <Na(v) _ &;_EEQMP&);

O(:(i,i
1

pa(v,u):/voo Fo(e, peds, Fa(v):/ Fo(v, 1), Na(v):/ovpa(m)xgdm,

-1
1 v
Pa(v) = / palv, W)dp,  Ral(v) = / Po(2)2’da
-1 0
where v = |5] - modulus of the velocity; p1 = o - 5/117]]5] and -1 < p=vy)/v <1.
The initial electron distribution has the Maxwellian form. The distribution function moment Ny (v = o)
corresponds to tlie density of particles, the energy of particles and the parallel current of tlie system are defined in

spherical coordinates as follows:
0 1 o) 1
b= [ awt [ dpPatont), = [ [ duso),
0 -1 0 -1

Toinvestigate the influence of an external electrical field we include in Equation (52) the operator £ £ which

has the following form:
2 _ of  _ 1 9 2 9 2
Ef - 78'02 = 7 22 {av [f?} ﬂ] + 8,& [(1 # )va )

where v is the ratio between the electrical field E and the so called Dreicer field, £p, = 4me3nin(Acour)/Te; for
tokamak plasmasy < 0.01 as a rule.
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Figure 1. Plot o the deviation d the distribution func-
tion from Maxwell distribution §f over module o the nor-
malized velocity v, for the parallel p = 1(1), antiparallel
p = —1(3) and perpendicular i = 0(2) directions, rela-
tively to the magnetic field in the velocity space, wlien tlie
normalized quasi-linear coefficient D, is equal to 1.8 (solid
line) and 0.1 (dashed line) when the normalized phase ve-
|OC|ty is CA/'UTe = 0.6.

In the computer solution of the problem, the numer-
ical algorithms, which are based upon the completely
conservative finite difference scheme 32331 are used.
If the discrete model (difference scheme) possesses only
approximate analogs of the conservation laws, then this
can lead to the accumulation of errors in the anal-
ysis of non-stationary and nonlinear problems. The
completely conservative difference scheme reflects some
symmetry properties of the nonlinear kinetic equation
in a discrete case. This scheme maintains two distri-
bution function moments (integrals), which are corre-
spond to the density (N.) and energy (1)n the plasma
system.

Under the influence of the RF diffusion operator,
the initial distribution changes its form. The distribu-
tion function takes an anisotropic shape and the current
hegins to he driven. Theincreasing current saturatesin
time. Up to this moment of time, N 10¢,, the current
reaches the most high value jp while the quasilinear
operator forms "plateau” in the distribution function
in the velocity region v, ~ ¢,5,. The most intensively
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Coulomb diffusion affects in the thermal velocity re-
gion, ¢, & vre, Se€ Fig.1, that has result in increasing
of the maximum of the dissipated power and the possi-
bly achievable current.

Certainly, the value of the current depends on the
phase velocity, c,x, the magnitudeof the diffusion coef-
ficient Dy and the width of wave packet Ac,y, and rises
with their increasing. The current dependence on the
coefficient Dy and width Ac,, is essentially nonlinear
as shown in Fig.2.

Figure 2. The evolution d the normalized current density
in normalized time for the following parameters: phase ve-
locity cpn = 0.6, electrical fiedd ¥ = E/Ep, = .01 (dotted
lines) and 0.0 (solid lin€), quasilinear diffusion coefficient
Do =1.8 (solid circle) and 0.0 (empty circle).

In the super thermal velocity region v > w, the
electrical field influence on the electron distribution
function, leads to the creation of distribution tails,
which have substantial nhonmaxwellian character. The
value of the Ohmic current is jy = con By, where oo
and E are the plasma conductivity and electrical field,
respectively.

Note that the total current density in plasma sys-
tem, presented in Fig.2, does not equal the sum of cur-
rents, which are induced separately by different mech-
anisms. The additional significant current appeared in
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plasma due to plasma conductivity stimulation by RF
field under its combined action with the stationary elec-
tric field. That result is not evident for Alfvén waves
heating (in comparison with the lower hybrid current
drive, seel??) because of large distance between the ac-
tive regions of influence of the electric field operator
and the quasilinear operator. The total current can be
represented as a sum of different currents:

Ji = Jjp +(com +ooL)E + jn,

Here, jp is the driven current, which is equal to nP,
where 7 is current drive efficiency, that is defined as
ratio of the current drive to the dissipated power, P;
oorF is the current stimulated by Alfvén waves in
the quasi-linear approximation and jy isthe nonlinear
current34,

To take into account tlie influence of trapped par-
ticles on the Alfvén current drive, we acld to the
right hand part of Eq.(53) the angle diffusion opera-
tor as inl**34 which represents a simplified form of
the trapped particle collision opcrator, see Ref.[35]:

Linf ~ Vbai,u [(1 - ;z.z)ﬁJ

5 (54)

This operator acts within the region v; = vcosp =
vm occupied by the trapped particles, where tlie
bounce frequency v; > v,,.
E = «/7/R corresponds to the trapped angle of elec-

The toroidicity parameter

trons; for example, if ¢ = 0.04 then Ap N 0.2.

Figure 3. Plot d the deviation o the distribiition function
from Maxwell distribution &f over module of the normalized
velocitg v, for tlie parallel (; = 1) and antiparallel (p = -1)
directions, relatively to magnetic field in tlie velocity space,
when tlie normalized quasilinear coefficient Do is equal 1.8
(dashed line is for the trapped electron case) and tlie phase
velocity ¢, = 0.6.

The current is basically carried by superthermal
electrons in the absence of trappecl particles. The result
of the action of trappecl particles is the isotropization
of the distribution function for velocitiesv > ¢,5+/7/R.

Thanlis to that fact, thc value of the current de-
creases, which is directly related to tlie anisotropy of
tlie distribution function. In Fig.3, tlie electron distri-
bution splittirig over "directions” p isshown in the case
of the trapped particle to be ahsent and present.

Note that in Fig.2 and Fig.3 the deviations, §f =
(f = fm)/fm, of the electron clistrihution, f(v,x,1),
from Maxwellian form are shown. In spite of the strong
decreasing of the current magnitude in the case of
trapped particles, the stimulated plasma conductivity
effect under combined action of electrical and RF fields
is kept in this case tool®*]. The presence of the trapped
particles and the electric field modify tlie scaling of tlie
current drive efficiency.

5. Conclusions

In this paper a method of the evaluation of the di-
electric perineability tensor in a magnetized plasmais
demonstrated in the cases of the large aspect ratio toka-
mak (the "plateau” regime) and cylindrical magnetic
field configurations with inhomogeneous plasmas. The
magneto-hydrodynamic and direct kinetic approaches
are used, and their equivalence are shown. The toroidal
corrections of tlie permeability tensor are fonnd using
tlie MHD approach.

A general proceclure of thc current clrive calculation
is developed for the cylindrical plasma moclel. The an-
alytical expression for the longitudinal current drive by
time - averaged electromagnetic forces is obtainecl and
the influence of the plasmainhomogeneity (the ” gradi-
ent" effect) on the current driveisdiscussed. It isshown
that the efficiency of KAW and GAW current drive due
to helicity injection and ”gradient” eff'ects are higher
by one order of the magnitude in comparison with the
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current driven by travelling KAW and GAW.

The numerical investigation of the Alfvén current
driveis carried out on the base of the drift Itinetic equa-
tion with the Landau - Fokker - Planck collision inte-
gral. It is shown that the additional increasing of the
current (synergistic effect) in the plasmaappears dueto
the plasmaconductivity induced by the RF field, which
action is combined with that of the electrical field.
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