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On the Lie groups H3 x R and S3 x R, we construct solutions of Einstein equations by 
introducing left-invariant metrics g ~  and right-invariant metrics g ~  on tlie group manifold, 
and examine their differences and similarities from a local and global point of view. g ~  
and g~ are related isometrically to each other by the Lie group inverse map, which in- 
duces an anti-isomorphism between the Lie algebra. of the left-invariant vector fields and 
that of right-invariant vector fields. We introduce a coordinate system where the inverse 
map group operation is expressed by a coordinate inversion. We denote these universes as 
antipodal. The resulting spacetimes admit by construction a Gs group of motions. In the 
family with topology H" R there occurs the particular case g ~  = g ~ ,  which admits a 
G7 group of motions with the 3-dim sections H' maximally symmetric. The existence of 
acausal curves in these spacetimes is examined. Some of them are avoided by modifying the 
connectivity-in-the-large of the manifold, while others can he avoided by tlie introduction 
of a line of singularities in tlie spacetime manifold. We show that g ~  and g~ correspond to 
rotating universes with matter vorticity of opposite sign. Massless neutrinos (produced via 
weak interaction processes) can be used as a. probe to distingnish physically the antipodal 
universes, because the nctive transformation changing g ~  into g~ also transforms neutrinos 
into antineutrinos (or vice versa). 

I. Introduction and motivation 

In the geometrical study of cosmological models, 

powerful methods were developed and extensively used 

to  construct invariant Lorentzian metrics on space- 

time manifolds which are Lie groups[1-3]. As it is 

well known the action of the Lie group on itself can 

be divided into two independent subgroups, namely 

the left(L) and right (R) action of the group on it- 

self. Two sets of invariant Lorentzian metrics g ~  and 

g n  can be introduced, denoted respectively L-invariant 

and R-invariant geometries, constructecl with vector 

fields/forms which are invariant under the left, or right 

action of the group. The inverse map of the Lie 

group on itself induces an anti-isomorphism between 

the Lie algebra of L-invariant vector fields/forms and 
the Lie algebra of R-invariant vector field/forms. In 

this context we construct two famiIies of models with 

Lorentzian metrics g ~  and g ~ ,  over the Lie groups 

S3 x R and H3 x R. We denote these families an- 

tipodal universes because they are isometrically related 

to each other by the Lie group inverse map. We in- 

troduce a coordinate system globally defined over the 

group manifold (except for one point) where the Lie 

group inverse map is described by a coordinate inver- 

sion. Symmetries of the models are easily character- 

ized. A special ca.se occurs when g~ = g ~ .  Global 

properties of the models a.re also examined. We discuss 

the causality problems arising in these models from a 

global aspect and some possible modifications in the 

topology of the manifolds to  circumvent these pa.tholo- 

gies. For simplicity we use the algebra of quaternions 

to characterize the semi-simple Lie groups S3 and H3, 

and a11 necessary concepts in Lie group theory is given 

in terms of qua t e rn i~nd"~~] .  We also examine the geo- 

metrical and physical relation between the L-invariant 

and R-invariant geometries. They are shown to cor- 

respond to rotating universes with opposite vorticity. 

A possible physical distinction between antipodal uni- 

verses g ~  and g ~  is discussed by introducing neutrinos 

as test particles in these universes. 
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11. T h e  Space t imes  H 3  x R a n d  S3 x R the hypersurface M of E4 as the set of points of E4 
which satisfy 

The methods used in this section are in part bor- 

rowed from Ref. [I], and are presented here concisely (aa l2  + ( ~ l ) ~  - (EU 2 ) 2 - ( ~ a ~ ) ~  = 1 
for completeness. Calculations are not given in detail 

(2.1) 

but they can be checked without difficulty. where E = i, 1 whether M is s3 or H ~ ,  respectively. For 

Let E4 be the four dimensional Euclidean space with every a = ( a o ,  nl, a2,  a3) and b = (bo ,  b', b2, b3) E M we 

Cartesian coordinates a = ( a o ,  a ' ,  a 2,  a3) .  We define define the multiplication law16] 

Under (2 .2)  M becomes a group, acting on itself by left 

multiplication; namely, for a given v E M ,  a left motion 

of M into itself is expressed as 

a' = va  (2.3) 

and we have that a' E M for a11 a E M. M is said 

simply transitivity since for each a E M there exists 

only one left motion v from a to a given a' E M. 
M acting on itself by left multiplication (2.3)  is a Lie 

group with the three independent left-invariant vector 

fields on M 

1 0 3  e )  = ( -a  , a  , a  , - a2)  

e (g) (a)  = ( ( ~ ) ~ a ' ,  ( ~ ) ~ a ~ ,  2, a')  (2.4) 

e(:](a) = ( ( ~ ) ~ a ~ ,  - ( ~ ) ~ a ~ ,  - a1,  ao )  

They are obtained by an arbitrary left motion a of 

the three independent unit vectors ( 0 , 1 , 0 ,  O), ( 0 , 0 , 1 , 0 )  

and ( 0 , 0 , 0 , 1 )  which define the tangent space of M at 

the identity ( 1 , 0 , 0 ,  O). We remark that a left invari- 

ant vector field ~ ( a )  on the Lie group M is definecl by 

v x ( a )  = ~ ( v a ) ,  for a11 v ,  a E M .  
We have an analogous picture for right motions of 

M on itself, namely 

a' = av  (2.5) 

with the corresponding independent right-invariant vec- 

tor fields 

d ( l )  = (- a 1,  a o ,  - a3, a 2)  

In what follows we express the fields (2.4) and (2.6) in 

the coordinate independent form 

The fields { e ( i ) )  and { d ( ; ) )  constitute two distinct rep- 

resentations of the algebra of the Lie group M, which 

are related by an anti-isomorphism induced by the in- 

verse map of M on itself, as we shall show. ~ x ~ l i c i t l y '  

where C$ = =eijnek with nek = d i a g ( - E ~ ,  1 , l ) .  We 

obviously have 

The inverse map group operation is the application 

S, : M -t M such that 

for a11 a E M .  The effect of (2.9)  on the fields (2.4) 

and (2.6) is easy to obtain. The Jacobian matrix of 

the transformation (2.9)  changes the sign of the spa- 

tia1 components of the fields, while the argument of 

'The square brackets denote the commutator of the two fields. 
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The invariant metrics g~ and g~ defined in (2.13) have the expression 

1 B2 
g(e) = ~ ( p ) d x ~  + B(p)dV2 + 2e (a2 - 5) sinh2(~p)dXdrl - -dp2 4 - dz2 

where 

and e = h 1  for g~ and g ~ ,  respectively. We note that 

g~ and g~ differ only by the sigri of thé cross term 

dxdq. They are connected by the coordinate inver- 
sion (X + -x ,  p -+ -P) which is the inverse map in 

the coordinates (3.1). We denote these spacetimes an- 

tipodal. In the realm of pure gravitational interaction 

the two metrics are indistinguishable if the covariance 

group of the theory includes improper transformations. 

The possibility of physical distinction between the two 

spacetimes is discussed in Çection 5, where the nature 

of these transformations is analysed when we include 

neutrinos as test particles. 

From (2.12) and (2.13) it follows that - by construc- 

tion - the left(right)-invariant geometries g ~ ( g ~ )  have 

the four right(1eft)-invariant vector fields d(A)(e(A)) as 

Killing vectors. A direct inspection of (3.4) shows that 

8/87] is an additional independent IGlling vector. Sum- 

ming up, we have in general 

(a) five independent Killing vectors associated to g~ 

(b) five independent Killing vectors associated to g~ 

The spacetimes with metric (3.4) are then endowed 

with a G5 group of isometries acting transitively on 

the spacetime manifolds. 

In the hyperbolic family E = I, an exceptional 

case occurs for a2 = P2: inspection of (3.4) yields 

immediately g~ = g ~ .  It then follows from a triv- 

ial counting in (3.5)-(3.6) that this particular geom- 

etry has seven independent Killing vectors, for in- 

stance ( q q ,  q z ) ,  q 3 ) ,  e(4), d(l), 4 2 ) ,  43)).  The sections 

z = const. are maximally symmetric with a group 

of motim generated by ( e ( ~ ) ,  qq, ep) ,  dp) ,  dp) ,  43)).  
This case corresponds to  the metric of the z = const. 

sections, namely the metric on M, being conforma1 to 

the Cartan-Killing metric on M, yij = C ' k ~ j k  (cf. 

(2.7) and (2.13)). 

The class of L- and R-invariant metrics (3.4) for 

the hyperbolic case has the structure of the reflection 

group of hyperbolae through their asymptotes[". In 

fact the function (cf. (3.4)) y = e(a2 - B2) defined in 

the plane of the metric parameters (a, ,O) describes a 

congruence of hyperbolae which are reflected through 

the asymptotes y = O when we change the sign of e, 

that is, when we go from g~ to  g~ and vice-versa. The 

asymptotes correspond to the exceptional geometry dis- 

cussed above with a C7 isometry group. 

IV. Causal i ty  a n d  Topological Defects  in Sec- 

t ions  

The spacetimes introduced here present some patho- 

logical properties like the existence of time-like or null- 

lilte closed curves. As we shall see, this is connected to 

the fact that the sections z = const. have, by construc- 

tion, the structure of S3 or H3, and the restriction of 

the invariant geometries (3.4) to  S3 or H 3  has signature 

(+ - -). In some cases, by a legitimate alteration of 

the topology we can eliminate the acausal curves, but 

they are in general inevitably present. 

We examine separately the two cases 

(i) H 3  x R 
The sections z = const. with the topology of are 

described, in terms of Cartesian coordinates of the em- 

bedding Euclidean spaces E4, by (2.1) with E = 1. Let 

us consider the 2-dimsections of H3 which we shall de- 

scribe in the coordinate system (p, X ,  v) defined in (3.1), 
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with -co < p < co, O < X ,  77 < 21r. Taking firstly tlie 
sections r] = const. (we choose for convenience q = 0) 
we obtain 

cosh - cosx (1) 

a' = cosh (5) sin x (4.1) 

a2 = sinh (g) 

describing the points of the one-leaf hyperboloid of 

Fig.1. 

Figure 1: The one-leaf hyperboloid embedded in E4 corresponding to the section v, z = const .  of the manifold H3 x R. 

For the sections x = const. (we choose for simplicity 

x = O) we have 
a2 = sinh - cosq (1) 
a3 = sinh - sinhq (2) 

ao = cosh ($) 
- 

(4'2) which describe in E4 the points of the two-leaves hy- 

perboloid of Fig. 2 
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Figure 2: Two-leaves hyperboloid corresponding to the sections X, z = const. of the manifold H" R. 

We are now ready to examine how the topology of 

the sections is related to the causality problem in these 

spacetimes. To this end let us consider the invariant 

Lorentzian geometry (3.4) with E = 1 defined on H 3 x  R. 
We distinguish 

( i .a )  case a2 > P2 : 

In the sections 7, z = const. we have A(p) > O for 

a11 p. Therefore the integral curves of the vector field 

d/dX are time-like closed curves on the hyperboloid of 

Fig. 1. The violation of causality implied by this can 

however be circumvented - in fact the hyperboloid of 
Fig. 1 is homeomorphic to the c~l inder  and can be con- 

tinuously developed into the plane. The curves defined 

by 8 /82  can thus be extended into infinite lines and the 

causality problem avoided. This procedure corresponds 

to modifying the connectivity-in-the-large properties of 

the manifold - namely the manifold x R differs from 

the above extended manifold by the identification of the 

point set (X + 2nn, 7, r, z ) ,  n = integer[g]. However the 

extended manifold still contains closed time-lilte curves, 

as will see. 

In the sections X ,  z = const. the space-like, time-like 

or null-like character of the vector field 8/8q depends 

on the sign of the function B(p) (cf. (3.4) for E = 1). 

The closed curves defined by the field 8/87 on the two- 

leaves hyperboloid of Fig. 2 are time-like or null-like 

for values of p such that tgh2(p/2) 2 ,B2/a2. Contrary 

to the case of the sections q, z = const. however, the 

presence of the closed time-lilie lines cannot be circum- 

vented by modifying the topology without introducing 

singularities in the space-time manifold. This is the 
case since a branch of the two-leaves hyperboloid of 

Fig. 2 is homeomorphic to the cylinder only by the ex- 

traction of one point. In other words, to eliminate tlie 

causality problems in these sections - by developing the 

closed coordinate Iines 77 into open infinite Iines - we 

must introduce a line of singularities in the spacetime 

manifold. A possible way to implement the extraction 

of points is the introduction of a string in the sense of 

Ref. []I], transforming the point r = O into a conical 
singularity, which contributes to the curvature tensor 

of the spacetime with a 6-type term having support on 

the singular line r = O 

( ib )  Case a2 < P2 

In the sections 7 7 , ~  = const. the integral curves of 

8/dx on the hyperboloid of Fig. 1 are time-like or nu11 

whether tgh2(p/2) 2 a2/,B? As in case (a), they can 

be open into infinite lines by an appropriate modifica- 

tion of the topology, and the causality problem avoided 

without the introduction of singularities in the space- 

time. In the sections x , z  = const. we have B(p) < O 
for a11 p, so that no acausal curves occur in these sec- 

tions. By adopting the topology R4 and using Maitra's 

method[12], it is straighforward to show that no closed 

time-like or null-like curves are present in these space- 

times. In this sense the spacetimes of case ( ib )  are said 
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to  be causal. The case a2 = P2 can be considered a 

limiting case of (ib). 

(ii) S3 x R 
The  geometry here is giveii by (3.4) with E = i. 

Tlie closed lines defined by the vector fields d/& or 

8 /87  are time-lilte, depencling on the sign of the func- 

tions A(p) or B(p), respectively. Analogous analysis as 

in case (i) allows us to  conclude that tlie spacetimes 

with topology S3 x R can be made free of the above- 

mentioned acausal curves only by the introcluction of 

a t  least two lines of singularities in tlie manifolcl. 

V. N e u t r i n o s  a n d  the physical  d i s t inc t ion  of an- 

t i p o d a l  un iverses  

As we have discussed, in the coordinate system in- 

troducecl in (3.1) the inverse group map operation con- 

nectiong g~ and g~ is expressed by a coorclinate in- 

version. In the realm of pure gravitational interaction 

the geometries characterizing antipodal spacetiines are 
indistinguishable if the covariance group of the theory 

includes improper transformations. Tlie physical dis- 

tinction between tliese two spacetimes is possible when 

we include neutrinos as test particles, bemuse improper 

transformations are no longer symmetries of tlie system 

universe-plus-neutrinos of a given helicity. An intuitive 

argument can be given in this direction. To the passive 

transformation 77 -+ -7 (or x -+ -x, p -f -p) there 

corresponds the active transformation g(e) -+ g(-e) or 

equivalently, the change of the sign of the vorticity asso- 

ciaked tjo t,lie velocity field of the ma,tter content of the 

universe (cf. Appendix B). On the other hand, neutri- 

nos can be an absolute standarcl for the sign of rotation 

of the universe because, as prescribed by weak inter- 

action processes, a massless neutrinos is an i~bsolute 

left-handed screw and can be used to define a.n abso- 

lute sense of rotation about a given direction. Therefore 

the active transformation g(e) -+ g(-e), or equivalently 

the change of the sign of vorticity, is not a symmetry 

of the system universe-plus-neutrino because - to  pre- 

serve the symmetry - left-lianded neutrinos should then 

he transformed into right-handed neutrinos, which is a 

forbidden configuration. 

To describe neutrinos we use Dirac spinors from tlie 

point of view of the tetrad formali~m['~].  We restrict 

our analysis to  the cases a2 2 ,B2 for the hyperbolic 

family. In other cases the analysis still apllies, with 

a proper reinterpreta.tion of neutrinos global modes in 

regions of the spacetime where the Killing vector fields 

8 / 8 ~  and d/dq have space-like and time-like character, 

respectively. 

We consider neutrinos fields in the invariant modes 

where $(p, L) is a four-spinor, eigenstate of -y5, 

These modes may be interpreted as eigenstates of en- 

ergy E, momenta k and v ,  and helicity L. The  operator 

y5 is proportional to the helicity operator for neutrinos, 

in the local Lorentz frames of the geometries (3.4). 

To proceed let us now define a symmetry transfor- 

mation of a system from the point of view of passive 

and active transformations: we say that a coordinate 

transformation (passive transformation) is a symme- 

try of the system if there exists a corresponding ac- 

tive transformation of the system into another system 

equivalent (physically indistinguishable) to i t .  In the 

present case the passive transformation 7 -+ -7 (or 

x -+ - x ,  p -+ -p) is a symmetry of the gravitational 
field (as far as gravitational interaction is concerned) in 

the sense that it is equivalent to inverting the rotation 

of the universe. On the system universe with geometry 

g~ = g(e = 1) plus neutrinos described in the modes 

(5.1) let us perform the following active transformation 

P : 

(i) inversion of the rotation of the matter content of 

the universe (cf. Appendix B). 

(ii) inversion of the momentum of neutrinos, associ- 

atecl to  the Killing symmetry 8/87.  

We note that (i) has the effect of changing g~ = g(e = 
-1) into g~ = g (e  = 1). A straightforward computa- 

tion shows that  if (6(L) is a neutrino solution of Dirac's 

equation in g ~ ,  then after the operatiori P the resrtlting 

spinor solution qY(L1) is related t o  $ ( L )  by 

The neutrinos (6'(Lr) and d(L)  have obviously opposite 

helicity. Therefore the physical (active) transformation 

P (which takes g~ into g~ and vice-versa) also trans- 

forms neut,rino states in g~ into neutrinos states with 

opposite helicity in g ~ .  This active transformation cor- 

responds to  the passive transformation 7 --+ -7 over the 

system universe with metric g~ or g~ plus neutrinos. 
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Analogous analysis applies to  tlie transformation is expressed by a coordinate inversion. We denote these 

(X -+ -2, p - -p) where the corresponding nctive universes antipodal. Each of tliese spacetirnes admit by 

transformation P' is given by construction a Gs group of motions. In the family with 

(i) above, ancl 

(ii) inversion of the sign of the energy of neutrinos, as- 

sociated to  the Killing symmetry d / d s  

The resulting transformation of 4 ( L )  is analogous to 

(5.3), relating states with opposite sign of energy ancl 

opposite helicity. 

If neutrinos are assumed to have only one type of 

helicity (as prescribed by weak interaction experiments) 

the transformations discussed above are no longer a 

symmetry of the system. Indeed the configuration g~ 

plus left-handed neutrinos is led under the active trans- 

formations P or P' into the configuration g~ plus riglit- 

lia,nded anti-iieutrinos. The system g~ plus left-hancled 

neutrinos and g~ plus left-l-ianded neutrinos are there- 

fore distinguishable. Of course a pure passive coordi- 

nate transformation 7 4 -77 is a mere change of la- 

bels ancl can always be performed (even in the presence 

of weak interaction processes); it corresponds to just 

changing conventions as, for instance, the definition of 

the sign of the neutrino helicity, and cannot produce 

any physically distinct situation. 

Finally we must comment tlie following possibility. 

Suppose that the gravitational field of the interior of 

two rotating dense bodies with opposite rotation in the 

same physical universe, can be approximatecl by g~ and 

g ~ .  If neutrinos are produced in tlieir interior via weak 
interaction processes then (i) the emission of neutrinos 

polarized along a given direction, in one of the bod- 

ies, would imply tlie emission of antineutrinos polarized 

along tlie same direction, in the otlier; (ii) a process 

producing only neutrinos (or only antineutrinos) in one 

the bodies would be forbidden in the otlier. 

topology H3 x R there occurs a particular case g~ = g ~ ,  

which admits a G7 group of motions with the 3-dim sec- 

tions corresponding to H3 rnaximally symmetric. 

The knowledge of the topology allows us to  identify 

immediately the nature of the coordinates used, ancl 

global causality problems associated to  the existence 

of closed time-like lines of coordinates are easily char- 

acterized. The basic result is that in the family witli 

topology W 3  x R some of the acausal curves can be 

avoicled sirnply by the ope~ation of developing one-leaf 

liyperboloids on the plane, while other acausal curves 

can only be avoided by extracting points of the space- 

time. The latter procedure corresponds to introducing 

a line of singularities in the spacetime. In the family 

with topology S3 x R, the procedure involves the intro- 

duction of two lines of singularities to avoid the acausal 

curves. These procedures do not guarantee the com- 

plete elimination of acausal curves in the spacetimes. 

However for tlie cases a2 < P2 of the farnily H3 x R, it 

can be proved that no acausal curves exist. 

In appendix B we discuss the severa1 possible physi- 

cal sources for the universes ancl exhibit coordinate sys- 

tems in which the metrics g~ and g~ assume the forin 

of a Godel-type g e ~ r n e t r ~ [ ~ " I .  The physical sources cor- 

respond to a rotating perfect Auid, except for the case 

a2 = p2. 
A rotating universe and its ant(ipoda1 are relatecl by 

tlie inversion of the sign of matter vorticity. We show 

that massless neutrinos produced via weak interaction 

processes can be used as a probe to distinguish phys- 

ically the antipodal universes. This is so because the 

nc t i ve  transformation g~ -+ g~ also transforms neut,ri- 

nos in antineutrinos (or vice versa). Tliis result leacls 

to the following possiblity. If neutrinos are produced in 

VI. Final conclusions tlie interior of two rotating dense bodies with opposite 

rotation in the same physical universe (the gravitational 
In this paper we liave constructed spacetimes witrh field of the interior of the bodies being appiorimated 

'h' toI'0logY of 'h' Li' grouPs H3'R 'n' S3 "1 by i'- by gL and yR), then a process producing only neutrinos 
troducing left-invariant metrics g~ and right-invariant in one of the bodies would forbidden in the other. 
metrics gR On the group manifold. gL gR are re- The corresponding permitted configuration would be a 
lated isometrically to each other by the Lie group in- process producing only antineLitrinos, 
verse map, which induces an anti-isomorphism between 

the Lie algebra of tlie left-invariant vector fields and 

that of riglit-invariant vector fields. We introduce a co- 

ordinate system where the inverse map group operation 
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Appendix A 

The class of invariant metrics (3.4) introduced 

S3 x R and H 3  x R can be cast in a simpler form 

the use of cylindrical coordinates defined beIow. 

In the coordinate system (t, 4, p, 2) determined 

the transformation equations 

where the new parameters m and R are given by 

g~ can be expressecl 

g~ = (clt + H(P)S$)~ - ~ , ( p ) d $ ~  - dz2 - dp2 (A.3) 

where 

4Q . , mp 1 
H(p)=-s inh  - D(p)=-s inhmp (A.4) 

m2 2 m 

In terms of the new parameters (m,  0) the family of 

geometries g~ over ,S3 x R and H3 x R are obtained by 

taking m2 < O or rn2 > 0, respectively. 

In the coordinate system (A.l) ,  g~ does not as- 

sume a form symmetric to gu, as it does in coordi- 

nates (x, v ,  p, z )  (cf. (3.4)). However an analogous co- 

ordinate system can be introduced where g~ taltes the 

form (A.3) - (A-4). The transformation equations are 

obtained from (A.l) by the substitution 71 -+ -v or 

(X -+ -x, p -+ -p), for instance 

The spacetimes characterized by a line element of 

the form (A.3) are denoted in the literature as Goclel- 

type spacetimes. We have obtained the functions (A.4) 

by construction, starting from the Lie group structure 

of tlie spacetimes, plus the choice (2.13). These func- 

tions could be equivalently derived if spacetime homo- 

geneity is assumed for the geometry (A.3), that is, if 

(A.3) is restricted to admit a simply transitive isometry 

group. This was the point of view of Ref. [14]. The so- 

lution originally proposed by Godel can be recognized in 

the cylindrical coordinate system to correspond to the 

particular case m2 = 2Q2. In the coordinates (x, 7, p, z )  
the spacetime (3.4) with E = 1 cr2 = 2P2 is locally 

isometric t,o the Godel s o l u t i ~ n [ ~ ~ I  but with topology 

H3 x R. As we have mentioned already, Godel adopted 

for his solution the topology R4. 
We finally comment on the possible sources of cur- 

vature compatible with the metrics (3.4) via the field 

equations. We start with the model proposed by 

~ o d e l [ l ~ I  which is locally isometric to  (3.4), with E = 1 

and cr2 = 2P2. The metric is a solution of Einstein 

field equations with the cosmological constant term, 

ancl incoherent matter. For E = 1, a2 2 2P2 (or 

O j m2 j 2R2 in cylindrical coordinates), and for E = i 
and arbitrary a ,  ,/3 (or -m < m2 < O), the correspond- 

ing classes of metrics are solutions of Einstein-Maxwell 

equations with charged d ~ s t [ ~ ~ ~ ' ~ l ,  or neutra1 dust plus 

a free electromagnetic field[16]. The admissible range of 

parameters can be extended by adding to the energy- 

moment tensor of dust and electromagnetic fields the 

energy momentum-tensor of a scalar field. For a2 = ,b2 
(or m2 = 4w4) we have a massless scalar field as the 

source. The spectrum of Godel type homogeneous so- 

lutions was further extended to ,/3 > a2, E = 1 (or 

rn2 > 4Q" in the context of Einstein-Cartan theory. 

The latter have as source a perfect fluid with spin in 

rigid rotation. For a general review, see Refs. [14,17]. 

Except for the case ci2 = P2, a perfect fluid is always 

present as source of curvature. The kinematical pa- 

rameters of the models are then unambigously defined, 

associated to the four-velocity of the fluid. The mod- 

els have zero acceleration, expansion and shear, and a 

non-nu11 vorticity 

relative to the local compass of inertia (cf. Appendix 

B). The infinitesinal elements of the perfect Auid in 

these models are therefore in geodesic motion with con- 

stant rigid rotation. 

Appendix B 

We assume that the metrics g~ and g~ are associ- 

ated to distinct spacetimes, both defined in the same 

manifold. We shall prove that the perfect fluid content 

of these spacetirnes liave opposite rotatiori, relative to 

the local compass of inertial[]]. For our calculations we 

consider tlie vector field basis 
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x0 = : (&-e&) 

a 2~ sin(x - ev) 
2cos(x- e7)- + a~ sinh EP 

8 2 ~ c o s ( ~ - e v )  xi = -L [-2 sin(X - ei))- + 
P d/) sinh EP (-sinh 

X3 = d - 
a2 

which define local Lorentz frames in the spacetimes 

(3.4) (cf. (3.3),(3.3) and (2.13)). 

The four velocity field of matter relative to this basis 

is given is 

v=vAxA=xO1 (B.1) 

and the motion of the matter with respect to the 

frame {XA) is described by the equation 

3 

where p = Cpax, is a vector orthogonal to Xo and 
a=l 

connecting two neighbouring Auid particles, one of them 

located at the origin of the frame. C denotes the Lie 

derivative. Denoting ia = Xopa we obtain from (B.2) 

which corresponds to a rotation of period na/e  with 

respect to the inertial frame X A .  The motion of the 

frame {XA} along a material world-line determined by 

Xo can be calculated as 

and results in 

that is, the plane 1-2 of the frame {XA} rotates with 

respect to  the local compass of inertia with a circular 

frequency e ($$ - &) (the axes of the local compass 

of inertia being determined for instance by gyroscopes). 

Since the shear of the velocity field (A.l) is zero, the ro- 

tation of matter relative to the local compass of inertia 

is given by the angular velocity 

which changes sign as e -+ -e, that is, as we change gr. 

into g~ and vice-versa. 
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