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A statistical mechanical formalism, namely the nonequilibrium statistical operator method, 
admits a construction based on a variational principle associated to an informational theory 
approach within the context of what is referred to a.s Ja.ynes' Predictive Statistical Mechan- 
ics. We briefly describe this formalism at tlie classical leve1 of mechanics. On the basis of 
the formalism it is possible to obtain a nonlinear generalizecl theory of large scope. Shis 
theory is applied to derive the equations of evolution for the single and two-particle distri- 
bution functions, and from them tliere follows a transport equation of the Boltzmann type 
introducing collisional processes to a11 order. We cliscuss the connection with phenomenolog- 
ical irreversible thermodynamics and the question of entropy production and an associated 

1. Introduction 

The purpose of Statistical Mechanics of systems 

away from equilibrium is to determine their therino- 

dyna.mic properties and the evolution in time of macro- 

scopic observables of such systems in terms of tlie dy- 

namical laws which govern tlie motioii of tlieir consti- 

tutive elements. The analysis of nonequilibrium sys- 

tems presents far greater difficulties than those faced 

in the theory of equilibrium systems. This is mainly 

due to  the fact that it is necessary a more detailed dis- 

cussion to determine the temporal dependence of mea- 

surable properties, and to calculate the time-dependent 

(i.e. depending on the evolving macrostate of the sys- 

tem) and space-dependent transport coefficients asso- 

ciated with the irreversible processes that talre place 

in these systems. It has been stated['] that the ba.sic 

goals of nonequilibrium statistical mechanics are: (i) 
to  derive transport equations and to unclerstand tlieir 

structure; (ii) to understand liow the approacli to eqiii- 

librium occurs in isolated natural systems; (iii) to study 

the properties of steady sta.tes; and (iv) to calcuIate the 

instantaneous values and tlie temporal evolution of tlie 

physical quantities which specify the macroscopic state 

of the system. 

Nonequilibrium statistical mechanics has typically 

followed two directions: (1) The kinetic theory of dilute 

gases, where starting with a few, albeit controversial, 

liypotheses, one obtains a clescription of how simple sys- 

tems evolve and approach equilibrium (the celebratecl 

Boltzmann'ç transport theory ancl H-theorem). An ex- 

tension of these ideas to dense systems follows severa1 

paths lilte, for example, the construction of a gener- 

alized theory of kinetic equations['] and the equations 

of tlile BBGKY l~ierarcliy[~]. (2) A generalization of 

tlie Brownian inotion, where the complicated dynamic 

equations - the generalized Newton-Langevin equations 

- that follows from tlie laws of Mechanics are accom- 

panied by statistical assumptions. Belonging to this 

approacli are, for example tlie formalism of the correla- 

tion functions due to ~o r i [ " ] ,  and the rnaster equation 

m e t h ~ d [ ~ ] .  

The approaches used to develop a theory encom- 

passing tlie program described by items (i) to (iv) 

stated above, liave been classified by ~wanzig['] as: (a) 

intuitive techniques; (h) techniques based on the gen- 

eralization of the kinetic theory of gases; (c) techniques 

based on tlie theory of stochastic processes; (d) expan- 

sions from an initial equilibrium ensemble; (e) general- 

izations of Gibbs' ensemble algorithm. 

The last of them, viz. item (e), the so called 
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Noneqiiilihriuin Statistica,l Operator Method (NSOM) 

is con~idered[~I  to  liave ai, appealiiig structiire aiid 

secnis t o  be a. very effective techiiiquc to  cleal witli 

a large class of experimental situatioiis. Tliis forinal- 

ism lias been foriniila,ted by severa,l autliors, either 

irsing lieuristic a r g ~ m e n t s [ ~ - ~ J  i r  projection operator 

t e ~ h n i q u e s [ ~ ~ - ~ ~ I .  TIiese approaclies can be brouglit 

togetlier under a unifying varia.tioiia1 ii-~etliocl[~"]. Tlie 

preseiit paper is clevoted to  a description of tlie NSOM 

a t  the  classical meclianical Ievel, i11 order to try c1a.r- 

ify i ts  tenets aiicl t o  provicle xvithiii its coiitext a. geii- 

eralization of Boltzmann tra.nsport approacli. I-Ience, 

tlie NSOAI ca.n be coiisiclcred as a far-rea.cliing gtxiera.1- 

ization of statistical inetliods based on l3oltzinaiin aiid 

Gibbs ideas. 

Tlie organizatioii of the papei. is as follolvs: iil 

tlie nes t  sectioii we descrilx the coiistiiictioil of tlie 

classical iioilequilibri~iin sta.tistica1 opeintoi, lieiice to  

be callecl tlie noileqiiilibriiiiu st~at,ist,ic.a.l distiibiition 

(NSD), withiii tlie context of Jayncs' Prcclictive Sta- 

tistical ~eclianics['"], througli tlie use of tlie forinalisin 

of tlie inasimization of tlie statistical/iiiforinatioi~al en- 

tropy. Sectioii 111 js clevoted to a biief description of tlie 

construction of a geneializecl traiisport tlieory based o11 

tlie NSD built in section 11. In section TV tlie trailspoit 

theory of section I11 is used to  derive tlie equation of 

evolution for tlie siiigle-particle clistributioii, i.e. a gen- 

eialized Bolt~zmanii-Iikc eqiia.tioii. Iii section V TiTe con- 

sider tliern-iodyiian-iical aspects of the iiitemcting gas of 

particles as clescribed by tlie NSOM. In last sectioil we 

summarize tlie conteiit of tlie paper. 

11. Tlie nonecpilibrium statistical distribution 

Wheii one resorts to  a sta,tistical ii-iechaiiical ap- 

proach like tlie NSORII, Iieie in a classical clescription, as 

i t  is xvell l aown  tlie n-iacroscopic state of Lhe systein js 

described 13y a coiitracted descriptioii iii terins of some 

set of dyilamical variables, sa.y Pl(I'), P2(I'), . ..P,(r), 
with tlie statistical distri1)ution heiiig a. functional of 

tliese anel only tliese variables, wlierc f is a point iii 

pha.se spa.ce characteriziiig tlie sta.t,e of tlie sgstein a t  

tlie microscopic mecha.iiica1 level. On t.lie otlier liaiid, 

tbe s ta te  of the system a t  the iuacroscopic level is char- 

acterized by a poiiit iii tlie theriiiodyiiamic phase space 

(soinetimes called Gibhs space or state space) composed 

by tlie va.lues a t  t ime t of tlie macroscopic varial~les 

Ql ( t ) ,  ..., QTi.(t), t ha t  a.re tlie average values of the Pj 
i11 the macrostate definecl by the NSD. It  sliould be 

notecl tliat qiiantitics Pj aiicl Q j  can clepend on a space 

variable, iiamely in the case when they are delisities, 

a.nd also oii a. moiiient,um va.ria.ble as i11 tlie case to be 

consiclered ir1 section IV. Tlie qiiantities Pj change in 

time with the inicroscopic evolution of the  mechanical 

state of tlie system, but  ai1 experiinent does iiot fol- 

lorv tliis rnicroscopic evolrition; i t  follows the numerical 

values of tlie Q j .  Tlie result of sucli esperimeiit are 

described by trai-ispoi:t equations of the  forin['] 

wliere \ire liave explicitly iiitroduced tlie possible space 

dependence of tlie 11asic variables, witli tlie being 

fiinctioiials of the  inacrovariables Q J ,  wliicli, in general, 

are expected to  be noiiliiiear, iioillocal, aiid witli ineiii- 

ory effects, i.e. depencling on tlie past history of tlie 

rnacroscopic state of the systein from time to  of initia- 

tion of tlic esperinient up to  t ime t wlien a measurernent 

is perforn-ied. 

These coiisiclerations rise imriiecliately several ques- 

tioiis tliat iieed be adclressed[l]: (1) How to  choose tlie 

basic variables? At present tl-iere seems t o  be no wliolly 

satisfactoiy tlieory to  generate this information allow- 

iiig to make a. uniqiie clecisioii. I t  lias been snggested 

tliat this ba,sic set of va.riables niust iriclude a11 appros- 

imat,e int,egi.als of inot,ion or quasi-inva.ria.nt variables 

tliat change very slowly on a iiiolecular time scale, as 

i t  is lhe  case iii NSOM as we sliall see. (2) How are 

tlie f~mctioiials in Eq. (1) obta.ined? or, in other xi~orcls, 

wliat is the forrn of tlie noiiliiiear transport ecluations 

for macrovariables Qj? Sliere are several approaches 

availa.ble associated to  the  differeiit tecliniques corre- 

sponding, following ~ w a i i z i g [ ~ I ,  t>o the items (a,) t,o (e) 

listed in tlie Introclnction. Iri tlie NSOM tlie a.nsri7er 

is straiglitformard: oiice tlie NSD is given the equation 

of evolutioii is tlie statistical a.verage of the  ineclianical 

equation of motioli, as sliall be describecl in next sec- 

tioii. (3) The  questioii of iiiitial conclitions. T h e  equa- 

tions of evolution, Eqs. (l), are of first order in tlie 

time derivative and tlierefore require an initial concli- 

tion for a unique solution to  be obtained. Many times 

this is clone using initial conclitions tha t  appear rea- 

sonable anel well siiited to  theoretical aiialysis. Tlie 
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ideal should be to  have experimental access to tliese 

values, but  tliis is selclom feasible. Thus,  in aiiy partic- 

ular problem tlie sensitivity of the  results to  the  cletails 

of tlie cliosen initial s ta te  needs be carefully consid- 

ered. Finally, i t  slioultl be noticed that  for isolated 

systems the NSD satisfies Liouville equation, which is 

reversible. This  poses another fundamental question: 

(4) How t o  obtain irreversible behavior in the  evolution 

of the macroscopic state of tlie system (sometiines re- 

ferred to  as the time-arrow p r ~ h l e m [ ' ~ ] ) ? .  In NSOA4, 

as shown later on, irreversibility is incorporated from 

the  outset using an  ad hoc non-meclianical hypotliesis 

mucli in the way of a simulation of Prigogine's principle 

of dynamic condition for d i s ~ i p a t i v i t ~ [ ~ ~ ] .  

Insofar we have stated the four main clifficulties as- 

sociated to the  construction of a statistical inecliani- 

cal formulation for nonequilibrium processes, hiit we 

llave not discussed the fundamental question of liow to  

build the  NSD, i.e. the classical leve1 of tlie NSOR'I. 

As noted in the Introduction, severa1 approaclies have 

been developed, wliich can be eiicompassed in a uiiique 

variational approach, ~vhicli we proceed to  describe ancl 

discuss. As previously stated it can be related to  tlie 

method of reasoning put  forward iii Jaynes' Predic- 

tive Statistical ~ l i y s i c s [ ~ ~ ] .  AISO according to  Jaynes, 

the  difficulty of prediction from microstates lies iii our 

lack of the  inforination needed to  apply them, since 

we never know the microstate but a few aspects of tlie 

macrostate. However, tlie aforementioned principle of 

reproducibility implies tliat this shoulcl be enougli: tlie 

relevant information is there, if only we can see how t o  

recognize i t  and use i t .  

This makes tlie connection witli questioils (1) to 

(3) stated previously concerning the query related of 

tlie contraction of information and the choice of tlie 

macrovariables Q3. At this point we can make contact 

with tlie relevant Bogoliul~ov's principle of correlation 

~ e a l í e n i n g [ ~ ~ ] ,  implying tliat there exists a liierarcliy of 

relaxatioli times tliat leads to  successive contractioils iii 

the  macroscopic description of tlie system as i t  evolves 

in time. This  principle is a t  the  core of tlie NSOM. 

T h e  technical problem of construction of the NSD 

was enunciated by Jaynes as how sliall we use proba- 

hility theory to help us do plausible reasoning i11 sit- 

uations where, because of incomplete information, we 

cannot use deductive reasoning. This implies in Iiow 

to obtain tlie probability assignment compatihle with 

tlie ava,ilable information and avoiding unwarrantecl as- 

sumptions. As repeatedly empliasized by Jayrics this 

amounts to perforrn Bayesia,n inferen~e[~"]. Tlie ques- 

tion is answered hy tlie criterion that:  the least biasecl 

probability assignnient { [ l i }  for a set of mutually exclu- 

sive events {zj} is the one that  maximizes the statistical 

"entropy" 

subjected to the  constra,ints imposed by availahle iii- 

forrnation. This is the  result of assuming tha t  tlie 

expressioii of Eq. ( 2 )  - which lias a similar form in 

~ l i a n n o n ' s [ ~ ~ ]  sso-called information entropy - is a unique 

function rneasuring tlie uncertainty of the probahility 

assignment. The  criterion stated above is tlie principle 

of mnzinzizntion of statistical entropy, or MazEnt for 

short. 

This is the variational principle tha t  provides a uni- 

fying tlieoretica,l frainewoik to  tlie NSOM. Let us con- 

sider a iionequilibriurn many-bocly system which is tlie 

object of a given experiment, whose contract,ed descrip- 

tion is made iii terins of a basic set of classical dynain- 

ical quantities { P j ( r ) } ,  j = 1 , 2 ,  ..., n, where, for the 

s a l e  of simplicity, we omit to  write down explicitly the  

eventual clepencleiice on the spa.ce coorclinate when 

tliese quantities are local densities. In this case, if we 

write p(I'1t) for tlie NSD, tlie equivalent of Eq. ( 2 )  is 
Gibbs' statistical entropy, namely 

witli p defined in tlie interval ( to ,  t )  and normalized a t  

a11 times, i.e 

Ilere I' = { q i ,  ..., q1,~,3-) l ,  ..., pl,N) is a point in pliase 

space, q a.nc1 p a.re tlie generalizecl coorclinate and con- 

jugated momentum, N t he  ilumber of pwticles ancl v 

the number of interna1 clegrees of freedom of eacli par- 

ticle. Further we write clI' = Ddqj IIclPj/N!hUN for 

inclistinguishable particles and h is the usual scaling 

factor witli dimension of sction. 

Following MaxEnt we obtain the  best choice for 

tlie NSD P ( r l t )  looking for an  extreme (masimum) of 
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Gibbs' entropy under the constraints of Eq. (4) and the 

conditions 

Qj(tl)  = d M w l ) p j ( r )  , .I (5) 

for t 5 t l <  t .  

Clearly, as stated, tliis implies that a choice of tlie 

basic variables lias been performed; we will return to 

this question later on. Eqs. (5) introcluce a. clynam- 

cal character in the imposed information, but it ouglit 

to be remarlzed that the information-gatliering inter- 

val (to,  t) ca,n (ancl sliould) be reduced to information 

recorded at a unique time, namely t o ,  when are given 

the initial values Qj(to),  to be used in the solution of 

tlie equations of evolution for variables Qj(t) that the 

method provicles, as shown in next section. 

Following well ltnown procedures, namely tlie 

method of Lagrange inultipliers, to  solve the variational 

problem witli constraints, we fiiid that 

where y5 is the Lagrange rnriltiplier that ensures Lhe normalization of p, tliat is 

and the cpj are Lagrange multipliers associated to the 

conditions imposed by Eqs. (5). In Eq. (6) we liave 

written 
pj (rlt '  - t)  = e i ( t / - t ) L ~ .  

3 (r) i (8) 

where C is tlie Liouville operator of tlie system, mean- 

ing in this classical limit tliat iLA = { A ,  H), where tlie 

last term is Poisson's bracket of cluailtity A witli tlie 

system Hainiltonian H. 

Next, we malte ai1 extra assumptioil, nainely tliat 

tlie Lagrange multipliers cp, are of tlie forin 

where w is an auxiliary weiglit function witli tlie follow- 

ing properties: given w(t, tr)  = dW(t, tl)/rltl it rnust be 

verified that 

limt,pW(t, tl) = 1 , ( 1 0 ~ )  

limt,+o clrp,(rlt)A(r) =< Ajt > , ( 1 0 ~ )  J 
where in Eq. (10c) < Ajt > stands for the average 

value of quantity A ancl it needs be Itept in miiid tliat 

the limit is taken after tlie calciila.tion of tlie integral, 

i.e., the regular average is followed by the limit, what 

introduces Bogoliubov's method of qua~i-averages[~~], 

and tlie thermoclynamic limit is implicit. Bogoliubov's 

quasi-averages metliod involves a symmetry-breaking 

procediire in case of degeneracies connected witli one 

or severa1 transformation groups. In the present case 

the syminetry breaking is tliat of time-reversal symme- 

try, where tlie presence of w selects the sub-group of 

retarded solutions from the total group of solutions of 

Liouville equation establishing from the outset evolu- 

tion for increasing times from an initial value condi- 

tion, as shall be better clarify later on in this section. 

Fiiially, we have used the notation p,, for tlie NSD for 

a given choice of w, the latter satisfying the conditions 

imposed by Eqs. (10). 

The particular form of tlie Lagrange multipliers as 

given by Eqs. (9) lias been made, on tlie one hand 

to force irreversible behavior in the evolution of the 

macroscopic state of the system (as previously noticed 

it is one tliat mimics Prigogine's principie of dynamic 

condition for dissipativity). Furtlier, such choice aIIows 

(1) to introduce tlie set of variahles Fj(t) that have 

the role of intensive variables tliermodynarnically con- 
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jugated to  the extensive macróvariables Q j  (t) in order 

to generate a complete connection with phenomenologi- 

cal irreversible t h e r m ~ d ~ n a m i c s [ ~ ~ ~ ~ ~ I ,  and (2) to fix an 

initial condition from which proceeds the irreversible 

evolution of the macrostate of the system. To specify 

such condition it may be noticed that using Eq. (9) in 

the expression (6), we find that 

pw (I'lt) = enp {L: dllw(t, t') ln p(I'ltl, t' - t)} , (11) 

where it has been introduced an auxiliary NSD P given 

by 

where t i  refers to the time dependence of variables 4 
and Fj, and t2 to the time dependence of quantities 

Pj as given by Eq. (8). Moreover, 4 is defined by the 

relation 

,$(t) = S ( d t l ~ ( t ,  t')q6(t1) 
t o  

(13) 

Integration by parts in Eq. (11) and using the prop- 

erties (10) allow us to alternatively write 

d 
lnp,(r(t) = Inp(rlt ,  O)  - dtlW(t, tl)- lnp(I'ltl - t1 - L )  , 

dt' 

Hence the initial condition is 

pw(rlt0) = p(I'lt0, 0) (15) 

Furthermore, Eq. (14) leads to the fact that the NDS can be separated into two parts, namely 

PW W )  = P(rlt0,o) + PW (I'lt) , 

where p is the auxiliary distribution of Eq. (12), and 

Eq. (16) indicates that the NSD is composed of 

an instantaneous ( 'yrozen") generalized Gibbsian dis- 

tribution, plus a deviation that accounts for the micro- 

scopic processes that produce the dissipative effects in 

the ~ ~ s t e r n [ ~ - ~ ~ I ,  to be evidenced in next sections. 

The initial condition of Eq. (15) amounts then to an 

initial description (preparation) of the system neglect- 

ing a11 previous (to time to) correlations among the ba- 

sic variables. The connection with the approaches that 

resort to projection operator techniques follows from 

the identification of a time-dependent projection oper- 

ator P( t )  such that[lO-12] 

I 

Finally, to complete the method it is introduced the 

coarse-graining condition defined by 

which, on the one hand, defines the thermodyna,mic 

functions Fj (t) in complete accord with nonequilibrium 

phenomenological t h e r m ~ d ~ n a r n i c s [ ~ ~ ~ ~ ~ ]  and also en- 

sures, together with the conditions (10), the simulta- 

neous normalization of pw and p, i. e. it is verified 
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that 

The MaxEnt-NSD thus obtained can be shown to 

satisfy a Liouville equation with a so-called Boltzmmn- 

Prigogine symmetry, namely a Liouville equation with 

infinitesimal sources that brealts its otherwise time- 

reversal symmetry. Using Eqs. (10) and definition (13) 

we obtain that 

[g + i ~ ]  ln p, (I'lt) = Rw (t) ln pw (I'lt) . (20) 

where we have defined 

Eq. (20) can also be written in the form proposed 

by ~ r i ~ o ~ i n e [ ~ ~ I ,  namely 

where A is a modified Liouville operator composed of 

even and odd parts under time-reversal, i.e. iA = 
iC - R. 

Consider a dynamical quantity A(r) ;  in the NSOM 

its average value is given by the expression [Cf. Eq. 

( 10c)l 

< Ajt >= 1 d I ' ~ ( r )  exp (1; dPW(t, t') h ~T(I'/~' - t' - t) , 1 
being implied the limit of w going to zero. This is akin 

to a generalization of Kirkwood's time-smoothing the- 

ory of rneas~rement [~~]  that requires the identification 

of a macroscopic quantity through a time-smoothing- 

like procedure as in Eq. (23), when the macroscopic 

state is changing with time. It implies a two step oper- 

ation: the statistical average from an initial distribution 

followed by the weighted time average up to the time a 

measurement is performed. It  ought to be noticed that 

in the NSOM the time-smoothing procedure invoIves a 

kind of convolution in time - present in P in Eq. (23) 

- connecting the values of the thermodynamic param- 

eters (Lagrange multipliers) Fj(tl) at time t' with the 

values of the dynamical basic variables Pj (t' - t)  at the 

shifted time t' - t .  Further, using Eq. (16) we can 

alternatively write 

implying that the average value of quantity A is com- 

posed of two terms, one is the average value with the 

auxiliary (coarse- grained non-dissipative) distribution 

/7 and the other associated to the dissipative effects 

through ph. (We recall that for the basic variables Pj 

the contribution given by Eq. (25b) is null: (Cf. Eqs. 

(18) and the arguments thereafter) 

Already proposed NSD's are recovered with partic- 

ular choices of the weight function w( t ,  ti). Green-Mori 

N S D [ ~ J ~ ~ ~  foiiows from the choice 

which satisfies Eq. (10a); Eq. (10b) fixes the initial 

time at the delay-time to = t - r; and to comply with 

condition (10c) r goes to infinity after the calculations 

of averages have been performed. Function w(t, 

1 / r .  Zubarev NSD['] follows from the choice 

W(t,  t') = exp{t(tl - t)) 

which satisfies Eq. (10a); Eq. (10b) requires 

to -f -00. , E ( >  O) is an infinitesimal parameter 

t') is 

(27) 

that 

that 
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goes t o  zero after the calculation of averages liave been 

performed, thus satisfying condition (10c), where now 

w(t, t') = E exp{E(tl -t)}. Other (very many) choices of 

the weight function w are possible; it should be noticed 

that these types of zu in the time-srnoothing procedure 

of Eq. (11) resemble particular summation procedures 

in the theory of integral transforms, for example the 

summation procedures of Fejèr (or Cesaro-1) and Abel 

in the cases above [Eqs. (26) and (27)][25]. 

Green-Mori approach implies a time average over 

interval r, and it is based on the assuinption that corre- 

lations damp out in times much smaller than r[']. After 

the calculation of averages the limit r -+ ca is taken; 

it lias been argued that this time smoothing procedure 

leacls to clifficulties in the definition of integrals associ- 

atecl with transport c~eff icients[~~].  In Zubarev's case 

we have 

o 
~n pE(rlt)  = e lm ~ W P /  ln jqrlt + t l ,  tl) , 

where we have introduced the change of variable t' 4 t' + t ,  and 

[k + i ~ ]  lnp,(rlt)  = -i[Inp,(rlt) - lnp(I'lt, O)] . 

In this case lnp, is interpreted as the logarithm of p 
evolving freely under Liouville operator C, from time t' [$ + i& (t )] h p, (I) = 0 , (304  
up to time t ,  and then the system undergoes a random 

with 
transition uncler the influence of the iiiteraction with 

the surroundings described by a Poisson clistribution, ih,(t)  = iL + ~ [ l  - iP,(t)] , (30b) 

w, and the NSD is obtained averaging over a11 t' [27]. wliere P,(t) is a time-dependent projection operator for 

It is worth noticing that Eq. (29) cai1 be rewritten in the case of Zubarev's approach to the NSOM, which for 

the form proposed by Prigogine, Eq. (22)) namely a general weight function w is 

including Po as the unit operator and Fo = 4, and where 

introducing the super-correlation function for any pair of dynamical quantities A and P given by 

witli 

This time-clependent projection operator has the property that, used in conjunction with Eq. (18), projects tbe 

logarithm of the NSD over the logarithm of the auxi1ia.r~ distribution, namely 
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since, because of Eqs. (18) and definition (32b), one has that 

Concerning the question of the basic set of variables, 

in the NSOM, following the path set forward among 

others by hi~ori[~],  ~ u b a r e v [ ~ ] ,  and ~eletminski i [~] ,  the 

choice of the basic set of dynamical quantities { P j }  is 

connected with the separation of the total I-Iamiltonian 

of the system into two parts, say 

where H0 is a ('relevaiit" part composed of tlie Hamil- 

tonians of the free subsystems and some of tlie interac- 

tions, namely those interactions strong enough to have 

associated very short relazation times and possessing 

certa.in symmetry properties. By very short rela.xa.tion 

times is meant those much smaller than the character- 

istic time scale of the experiment, typically, the instru- 

mental resolution time. The other term, H', contains 

the interactions related to long-time relaxation mech- 

anisms. The symmetry characteristics of the strong 

interactions depend on tlie problem under considerac 

tion: The required symmetry, to be called Zubarev- 

Peletminskii symmetry condition, is that 

{pi,HO} = c a j k p k  
k 

(35) 

where a j k  are c-numbers determined by Ho.  It can be 

generalized to the case of locally dependent quantities, 

say Pj(17, when coefficients a are allowed to be differ- 

ential operators. 

The Peletminskii-Zubarev relation provides a clo- 

sure condition for the choice of the basic set of vaii- 

abIes: First, the secular part H0 of the Hamiltonian has 

to  be chosen in each particular problem under consid- 

eration (as noted, it contains the kinetic energies plus 

the interactions strong enough to produce damping of 

correlations in times smaller than that of the experi- 

mental resolution time). Second, one introduces a few 

dynamical variables P deemed relevant for the descrip- 

tion of the physical problem in hands, and next the 

Poisson bracket with H. is calculated. The dynami- 

cal variables - different from those already introduced 

- that appear i11 the linear combination indicated by 

the right-hand-side of Eq. (35) are incorporated to tlie 

basic set. This procedure is then repeated until a clo- 

sure is attained. In Eq. (35) t,he particular case of 

coefficients a being zero is admisible, that is, dynami- 

cal quantities conserved under the dynamics generated 

by H. are to  be included, and that implies the pres- 

ente of H. itself. Recently L.S. Garcia-Colin and two 

of the present author~[ '~]  have discussed how this pro- 

cedure provides statistical mechanical foundations to 

the questiou of the choice o€ basic variables in phe- 

nomenological irreversible thermodynamics, arid its role 

as a generalization of ~rad's['" moments approach. As 

shown in the second of references 21, in certain cir- 

cumstances the closure procedure does not follow in a 

finite number of steps and then an appropriate trun- 

cation procedure needs be introduced. In summary, 

Peletminskii-Zubarev closure condition implies in tak- 

ing into account a11 dynamical quantities that,  under 

the dynamics generated by Ho,  are kept in the sub- 

space of Hilbert space spanned by tliem. Their equa- 

tions of motion contain collision operators (see next sec- 

tion) generated by H' that are the manifestation of tlie 

microscopic degrees of freedom that are suppressed in 

the coarse-graining procedure that tlie method involves. 

As a final word we recall that the process of separation 

is based upon the existence of a distinct hierarchy of 
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time scales in Bogoliubov's sense[17]. 

We proceed next to describe the nonlinear gener- 

alized transport theory that can be derived froin the 

MaxEnt-NSOM that was outlined in this section. 

111. NSOM-nonlinear generalized transport the- 

ory 

Transport phenomena in matter have been treated 

for a long time within the framework of Boltzmann 

transport theory, which constitutes a landmark in the 

field of statistical mechanics, providing deep conceptual 

idem and a method for the mathematical handling of 

the problem[29]. In the area of solid-state physics it 

yielded a vast number of results, however requiring to 

be used in conjunction with a quasi-particle picture[30]. 

The original Boltzmann transport equation is derived 

using severa1 restrictions on the characteristics of the 

scattering processes, driving forces, and relaxation ef- 

fects. Extension of the method requires to incorporate 

the possibility to deal with dense systems, strong scat- 

tering, high intensity externa1 fields, non-local scatter- 

ing processes, strong relaxation effects, quanta1 effects 

of driving fields, etc. These questions have been ad- 

dressed by many authors, and a concentration of efforts 

have been directed towards the aim of deriving elabo- 

rate transport the~ries[~'] .  We proceed here to show 

that the MaxEnt-NSOM allows for the construction of 

a nonlinear transport theory of large scope. 

In NSOM the equations of evolution for the vari- 

ables follow immediatly from time differentiation of 

Eqs. (18) to obtain 

d 
áiQj(<t) = drrp , ( r~ t ){~; ( r ;  3, ~ ( r ) }  %< { q ( r ;  n, H ( ~ ) I I ~  > J (36) 

Using Eq. (34) and the closure condition of Eq. (35), the contribution to the last term in Eq. (36) from the 

"relevant" part of tlie Hamiltonian, viz. Ho, becomes 

< {Pj(r ;  3, s ( r ) } l t  >= / drp( r l t ,  o ) { P ~ ( ~ ;  i ) ,  ~ ~ ( r ) )  JJO)(~, t)  , (37) 

once it is taken into account the coarse-graining condition of Eq. (18). Further, using the separation of p given by 

Eq. (16)) we obtain that 

8 
-Qj (i, t )  = J~~) (F ' ,  t )  + J;')(< t )  -i &(i, t )  , (38) at 

where J;') is defined by E q  (37), and 

J;')(F'. t )  = 1 drp( r l t ,  O){P,(T; 3, ~ ' ( r ) }  (39a) 

Clearlg, J!') is a precession-like term (evolution of 

Pj under Ho) while the others are related to tlie slow 

dynamical effects produced by the interactions con- 

tained in H'. As we shall see in section V, J is a 

collision integral associated to dissipative processes, on 

the other hand J ( O )  as J(') - which are averages with 

the auxiliary distribution i j  - are dissipationless terms. 

Use of Eq. (17) in Eq. (39b) leads us to  rewrite the 

collision integral in a series of contributions of partia1 

collision integrals, namely 
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where we have defined 

with 

Since the average value of &(I') is the NSOM- 

entropy-procliict,ion function (see sect,ion V),  the colli- 

sion integral hecomes a series of contributions of liiglier 

and higher order iii the dissipation processes that de- 

velop in the system while in nonequilibrium conditions. 

This collision integral is extremely clifficult to handle; 

we anticipate (to he shown in a forthcoming article 

specified for tlie case of a classical ~ y s t e r n [ ~ ~ ] ,  that ,7 

can he rewritten in a practical and relatively manage- 

ahle way througli tlie use of the symmetry condition of 

Eq. (35) in the form 

Here, J/") are partia1 contributions tliat are of the 

form of correlations over the auxiliary distribution P ,  

whicli are instantaneous in time and organized in in- 

creasing ordei n in t,he interaction strengths included 

in H'. Jt is worth noticing that these contributions are 

composed of severa1 terms, consisting of (1) the me- 

chanical effects of collisions (in order n) averaged over 

tlie auxiliary ensemble. (2) terms that account for the 

evolution of the thermodynamic state of the system, 

and (3) terms arising from inemory effects. 

We proceed next to apply this NSOM-generalized 

transport theory for classical systems to obtain the 

equation for tlie single-particle distribution function, in 

order to arrive at a generalized Boltzmann equatioil. 

IV. Generalized Boltzmann-type formaIism 

Let us consider a system of N interacting particles 

whose Hamiltonian is 

where we cal1 H. the part containing the ltinetic energy and H' includes the interactions hetween particles tl-trough 

the central force two particle potential V, and v is the interaction with externa1 sources, to have the separation of 

H into two parts as required hy Eq. (34). Here nl and nz are the one-particle and two-particle density matrices, 

nainely 

N 

n2(I'/F,5 ?' I , $  I) = 6(?- $)6(? - ~ ~ ' ) 6 ( $  ' - gkl) . (44')) 
j#lc=l 

For the statistical description of this system in NSOM we choose as basic dynamical variahles Ho,  n l ,  and n2. 

They satisfy the closure condition of Eq. (34) since the Poisson bracltet of H. with itself is null, and 
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I 

As it was remarked in section I1 there is no wholly (we recall that relaxation processes are related to H'), 

satisfactory way to make a unique choice of the basic and besides it the one-particle and two-particle density 

variables. The choice we have made here is of course a matrices since they are the two that take part in the 

truncated one involving on the one hand Ho,  as a con- calculation of any property of the system involving in- 

sequence of taking into account the closure condition dividual particles or two-particle correlations. 

of Eq. (34), implying to consider quantities that are 

quasi-conserved under the dynamics generated by H. The auxillary probability distribution is then 

I I 

where, we recall, 4 ensures the normalization of p, and f2(F',P,P , p  ; t)=<n2(rl<?i ' ;F"p') l t>,  ( 4 7 ~ )  

,ü,cpl and 93% are the Lagrange multipliers (intensive where < ...I t > stands for statistical average calculated 
nonequilibrium thermodynamic variables) conjugated 

with the NSD given by Eq. (46), and we recall that 
to the basic macrovariables, which we cal1 

the basic variables satisfy the condition required by Eq. 

Uo(t) =< Ho(r)lt > , (474  (18). 
We proceed next to derive their equations of evolu- 

fi(T,F$) =< n~(r(F,,p')(t > , (47b) tion; they are [Cf. Eqs. (38)l 

8 4 4 , I  4 '  ( O )  4 4 ... ' 4 ' 
-f2(r,p,r , p  , ; i )  = J2 ( r , p , r  , @  ' ; t ) +  ~ ~ ~ ) ( ~ , P , P ' , 5 ' ; t ) + J 2 ( r , ~ , r  ,$ ; t )  , 
dt 

where J' are the collision integrals of Eq. (39b), J ~ ( O )  = 0, and 

J 1 I I 

Ji l ) ( t )  = - d3rd3pd3r'd3p'mp. VV(lP- F' 'I) fi(P, P, P ,$ ; t) 
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where f3 is the average value of the three-particle distribution function, i.e. the average value of the three-particle 

density rnatrix n3(P, ji, T I, 6 ', 6, pl). 

M'e concentrate next our attention on the equation of evolution for the variable fi (?, f i  t) ,  which in explicit form 

can written as 

where I"i = -Vv(r',t) is the externa1 force imposed on the system. It is coupled to  the equation for f2  which is 

explicitly given by 

where f3 is the three-particle distribution function. 

Eqs. (50) and (51), together with the equation 

of evolution for the kinetic energy Uo(t) comprise the 

complete set of equations of motion for the chosen ba- 

sic variables in NSOM. We mention that if the ba- 

sic chosen set of variables is truncated by neglect- 

ing n2, Eq. (50), once the collision integral is ne- 
glected, becomes an equation of the form of Vlasov- 

Landau implying a mean field approximation, since 

then f2(?,6,F ' ,e ' ; t )  = fl(F,@,t)fl(T I,? ' ; t )  [32]. 
We proceed with the analysis of Eq. (50) introduc- 

ing severa1 approximations: 

I 

1. In Eq. (51) it is neglected the second member, 

i.e. the collision integral and the term involving ternary 

interactions; 

2. It is taken a weak explicit time dependence of f 2 ,  

i.e. dfi/dt E O ,  on account of the fact tliat neglecting 

ternary interactions during the binary encounter, two 

molecules moved unaffected by the rest of the gas, and 

the relevant time variation should then extend over the 

duration of a two-body collision. 

Hence, after using these approximations Eq. (51) 
becomes 
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and then, replacing this result in Eq. (50) we obtain that 

which is still coupled to f2. This latter quantity is the average value of n2 with p of Eq. (46), where the auxiliary 

NSOM p is composed of terms involving single particles and terms involving two correlated particles. Next we 

calculate f2 as composed of a part without correlations plus a part involving them, resorting to the use of Heims- 

Jaynes perturbation expansion for a ~ e r a ~ e s [ ~ ~ ]  to obtain 

where 

Same procedure is used to express fi as 

where 

with Anl = nl- < nl It > O ,  and 

< ...I t >(O)= dI'...po(I'lt, 0) 

with 
J 

po(r\t ,  0) = {exp -mo(t) - @)HO + 1 d3rd3ppl(f',z t )ni(I ' l~,p3} . 

with 40 ensuring its normalization of DO.  Moreover 
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is the one-particle density function in the uncorrelated state described by /io. 

Neglecting the correlations A in Eqs. (54) and (56) implies to express f 2  as factorized in terms of a product of two 

f: corresponding to different positions and momenta; such approximation can be considered as the introduction of 

Boltzmann's Stosszahlansatz, or assumption of molecular chaos. In fact, after these approximations are introduced. 

Eq. (53) becomes 

I t  ought to be mentioned that Eq. (61) also follows 

from the BBGKY hierarchy in the uncorrelated par- 

ticle lirnit[51341, and from Kirkwood's time-smoothing 

approach[24] in the same lirnit. 

Next, following the procedures described in the ex- 

tensive literature on the subject (E.g. [5,34]), Eq. (61) 

can be brought under the usual form of Boltzmann 

equation. We recall that the upper naught iridex in 

f: indicates the fact that it corresponds to the one- 

particle distribution function in the uncorrelated limit 

with assumption of molecular chaos. 

Thus, we have shown that the celebrated Boltz- 

mann transport equation is containecl as a particular 

case of the generalized transport theory derived from 

the MaxEnt-NSOM. In continuation we proceed in fol- 

lowing section to  discuss the effect of the approxima- 

tions that were introduced, through the analysis of the 

resulting nonequilibrium thermodynamic properties of 

the system, in particular the entropy production tliat 

can be defined in MaxEnt-NSOM and Boltzmann ap- 

proaches, a function of relevance to characterize the 

irreversible evolution of the system. 

As a final word we stress that Boltzmann equation 

(61) had its origin in Eq. (48b); the latter may then 

be considered a large generalization of Boltzmann a.p- 

proach, containing in the collision integral J1 the ef- 

fects of the interaction potentials in a11 powers in their 

strengths. The practical handling of these collision inte- 

g r a l ~ ,  i.e. its form as given by Eq. (42), will be reported 

in a forthcoming a r t i ~ l e [ ~ ~ ] .  

V. Entropy production and a generalized 'H- 
theorem 

The MaxEnt-NSOM provides mechano-statistical 

foundations to phenomenological irreversible 

t h e r m o d y n a n ~ i c s [ ~ ~ ~ ~ ~ ] .  This is done through the defi- 

nition of a MazEnt-entropy function 

in units of Boltzmann constant L, and to be put in 

correspondence with those defined in phenornenologi- 

cal thermodynamic theories. This definition and the 

use of the coarse-graining condition of Eq. (18) leads 

to the relations 

Qj(F,t) = 64(t)lSFj(r'jt) 1 (63')) 

formally similar to  that obtained in equilibrium. These 

are nonequilibrium equations of state in the sense 

that they relate extensive and intensive therrnodynamic 

variables. We have used the nomenclature of section I1 
and S stands for functional derivative. Further, using 

the expression for /5 and the coarse-graining condition 

of Eqs. (18) the MaxEnt-entropy function acquires the 

form 

what defines 4 as a Massieu-Planck-like functional in 

nonequilibrium conditions. 

Taking into account Eqs.(64) and (63), the MaxEnt- 

entropy production is given by 
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ables is obtained through the use of the generalized 

d - d 
~ ( t )  = d i ~ ( t )  = 2 / d 3 ~ ~ j  ('2, t)  -Q' (í, t)  . (65) 

transport equations (38). However it should be noticed 

j=l 
dt that 

In Eq. (65) the time evolution of the basic macrovari- 

and similarly for the term involving J: ' )  Hence, 

after using Eq. (40) and introducing the super- 

correlation functions defined in Eq. (41). 

I t  should be noticed that ü is the average of tlie 

NSOM quantity in phase space 6(I'lt, O) of Eq. (41b), 

namely 

i.e., as already stated in section SI there is no dissipation 

associated to tlie auxiliary (coarse-grained) distribution 

p. Eq. (69) in conjunction with Eq. (17) allowed us 

to write Eq. (68). The latter tells us that tlie MaxEnt 

entropy production function is composed of an infinite 

series of ever increasing correlations of the MaxEnt- 

entropy production quantity in phase space, c?(rJt,O), 

allowing for a classification of the dissipative processes 

in the different orders of correlations of the entropy pro- 

duction quantity. 

Looking a t  the form of tlie scattering integral J' 

given by Eq. (39b), it is clear that dissipative-entropy- 

producing effects are described by the contribution p', 

to the total statistical distribution in Eq. (16), namely 

those dissipative effects governed by the interactions in 

H'. 
In phenomenological nonequilibrium thermody- 

namic t l ~ e o r i e s [ ~ ~ ]  it is assumed that (for the isolated 

system or for the interna1 production of entropy) a(t) 2 
0, and also for its local expression 

At present we are not able to verify this property for 

the MaxEnt-entropy production (global or local). We 

can see that it has an extremely complicated expres- 

sion [Cf. Eq. (68)], but we can prove a weak principie 

of non-negative local informational entropy production, 

namely that 

as demonstrated in the Appendix A. 
Let us now look for the case of section IV, when 
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and 

where the upper dots stand for time derivative. Furtliermore 

since, as shown, the terms J ( O )  and J ( ~ )  do not contribute to entropy production. 
Now, resorting to the use of Heirns-Jaynes perturbation expansion for a ~ e r a ~ e s [ ~ ~ ] ,  we can calculate Uo(t ) ,  and 

fi(r',F,t) as composed of a part without correlations plus a part involving them. Consequently Eq. (72) can be 

written as 

and  AS(^) contains the contributions due to two, three, etc., particle correlations. In last equation upper nauglit 

indexes stand for the correlationless values. In these conditions the correlationless part of the auxiliary distribution 
is factorizable, i.e. 

where 41j, normalizes each factor and 

.{(i,$ = 6(T- Tj)6(j'- 6) 
Also, we find for the uncorrelated one-particle distribution function the simple expression 

and then the entropy of Eq. (75b) can be written, in this and only approximation, as 

,so(t) = -JV' d3rd3pf~(r,p;t)1nfl(~,p',t) 

where we mo te  fl = ff/N, and then 

J 
d d - 

o0 (t) = - %H(t) = / d 3 r d 3 ~ [ l  + ln f: (c P; i)] - f: (i, P, t )  
at 
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Here 3-1 is Boltzmann's 'H-function and, as well known 

-d3-1/dt[a0 of Eq. (80)] is definite positive if for the 

time evolution of fl Boltzmann equation is used (viz. 

Eq. (53) accompanied of Eq. (54) followed by the 

Stosszahlanzatz of putting Ai = A2 = O). This is the 

celebrated 31 theorem. The equality holds in the case 

when detailed balance is satisfied, that is, when the 

rates of direct and inverse collisions are equal. 

'H is minus the expression of Eq. (79) and it is a 

decreasing function of time, but -k'H(t) = kSo(t) can- 

not be identified with the entropy of the macroscopic 

state of an arbitrarily nonequilibrated thermodynamic 

system, and Eq. (79) is not related to the positive pro- 

duction of thermodynamic entropy. It must also be 

kept in mind that in ordinary thermodynamic theory 

the second law refers only to  the difference of the val- 

ues of the entropy between two equilibrium states of any 

arbitrary isolated system when goes through a transi- 

tion between two such states, but says nothing on how 

the entropy production evolves in between: this is what 

implies Eq. (71) for the MaxEnt-entropy production. 

Boltzmann equation was derived within the frame 

of MaxEnt-NSOM from the terms J ( O )  and J(') (ne- 

glecting the collision integrals 3) but involving severa1 

approximations. But in NSOM, neglecting J' leads to a 

nondissipative evolution of the system: implies neglect- 

ing pW which, as shown, is responsible for dissipation. 

Evidently the apparent contradiction is explained by 

the forced introduction of the Stosszahlanzatz. In fact, 

we have that ü of Eq. (74) is nu11 if we neglect the 

collision integra.1~; call this ao and then 

where upper index (01) stands for the contributions to 

the time derivative from the terms + ~ ( l )  of Eqs. 

(49) in each case. 

But, if we once again separate the auxiliary distribu- 

tion in one for the individual single particles and a part 

containing the correlations, after using Heims-Jaynys 

scheme we obtain for the Boltzmann expression of 

Eq. (75) - as already done - and 

ao(t)  = aO( t )  + Aao(t) = O ($2) 

where ao is that of Eq. (80) and Auo contains the 

contributions due to  two, three, etc., particle correla- 

tions. Because of the 7í-theorem ao 2 O and then Ano 

is negatlve (or nu11 in equilibrium), compensating uO. 

To compare Boltzmann approach and the complete 

one in MaxEnt- NSOM we can analize the production 

of entropy in both cases, that is to say, to compare ao 

with a of Eq . (741, with the collision integrals in the 

latter in an approximation that neglects correlations. 

These results call the attention to  the question of 

irreversibility and its characterization: as noted by 

Jaynes, to  obtain an expression that increases with the 

nonequilibrium evolution of the system does not neces- 

sarily implies positive entropy production in a proper 

thormodynamic sense. In fact the notion of entropy 

and entropy production in nonequilibrium states of ar- 

b i t r a r ~  systems is not well established. In phenomeno- 

logical irreversible thermodynamics it is constructed on 

intuitive basis, and local in space and instantaneous 

in time non-negative entropy production is imposed[35]. 

In statistical mechanics both functions need be defined 

and justified that they are proper definitions for arbi- 

trarily away-from-equilibrium thermodynamic states. 

Here we have introduced the MaxEnt-entropy, i.e. 

an expression depending on the basic macrovariables 

that in MaxEnt-NSOM describes the nonequilibrium 

state of the system: it is given by Eq. (62 ) ,  what implies 
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the statistical average over the nonequilibrium state of 

the system of the logarithm of the coarse-grained aux- 

iliary distribution P ,  the oiie that provides tlie instail- 

taneous values of tlie basic macrovariahles but is re- 

laxation free. This coarse-graining is introduced hy tlie 

conditions of Eqs. (18) and performed through the pro- 

jection operation defined by Eq. (33a). We also s t r e s ~  

that ,  as shown in the Appendix A, the condition of 

Eqs. (18) is used t o  demonstratc the wealt principle of 

MaxEnt-entropy production of Eq. (71). 

This result is an alternative expression of Ilie one 

derived by de1 Rio and ~ a r c i a - ~ o l i n [ ~ ~ ]  for tlie time 

beliavior of, what they call, Shannon-Jaynes entropy 

where the inequality AS 2 O (AS in Eq. (A3) in tlie 

Appendix A) is interpreted as characterizing tlie fact 

tliat every time that tlie system is observed, iiiforma- 

tion is lost. Again we stress that this is not a definite 

proof of the second law as instantaneously valid, since 

it is not clear the connection of tlie MaxEnt-entropy (in 

other nomenclature tlie informational Shannon-Jaynes 

entropy) and thermodynamic entropy in Claiisius sense. 

As rnentioned before, the MaxEnt-NSOM provides 

mechano-statistical forrnclations to phenornenological 

irreversible t h e r m ~ d ~ n a m i c s [ ~ ~ ]  except for this point. 

VI. Concluding remarks 

Witliin tlie context of classical mechaiiics we have 

shown that  a mechano-statistical formulation t liat is a 

generalization of Gibbs and Boltzrnann ideas, narnely 

the Nonequilibrium Statistical Operator Method, is de- 

rived (and tlie different approaclies unified) using a vari- 

ational principle. The formalism is based on Jaynes' 

Predictive Statistical Mechanics ancl tlie variational 

procedure MaxEnt (Principie of rnaximization of the 

informational-statistical entropy, inclucling memory ef- 

fects and ad lioc hypotheses to  ensure irreversible be- 

liavior in the evolution of the macroscopic state of tlie 

system from an initial condition). 

The  MaxEnt-NSOM provides tlie basis for tlie con- 

struction of a nonequilibrium nonlinear transport the- 

ory of large scope, as described in Section 111. As al- 

ready remarlted, the collision operators involved are of 

unmanageable proportions, but a practical metliod can 

be devised that  allows for an expression for the colli- 

sion operators in the form of a series of simpler ones 

organized in ever increasing powers in the strength of 

the interactions responsible for the dissipative processes 

that develop in the Such MaxEnt-NSOM 

transport eyuations can be considered far reaching gen- 

eralizations of I-Iilbert-Chapman-EnsIiog's and Mori's 

methods. In Appendix B we show how Mori's eqiia- 

tions can be retrievecl from the method. 

This generalized MaxEnt-NSOM transport theory is 

applied, as described in section IV, to  the study of tlie 

evolution of a system of particles interaxting through 

central forces and in nonequilibriiim conditions. For 

its macroscopic description we introduce as basic vari- 

ables the one-particle and two-particle dynamical dis- 

tribution functions. Tlie equations o€ evolution for their 

statistical average values, i.e. the one-particle and two- 

particle distribution functions, are derived. They are a 

set of coupled equations that  also depend on the three- 

particle distribution function. Neglecting tliree-particle 

collisions, talting into account that  - under this circum- 

stance - the two-particle di~t~r ibut ion varies slowly in 

time (foi times larger than tlie time of a binary col- 

lision), and finally neglecting two-particle correlations 

we recover the well known Boltzmann equa.tion. Hence, 

we prove that Boltzmann equation is contained In the 

MaxEnt-NSOM in the lowest approximation in tlie in- 

teractions (very dilute fluicl) and under the approxi- 

mations just stated, which involve tlie Stosszahlansatz 

condition. 

The generalized transport theory, that follows from 

the MaxEnt-NSOM in the contest of Jaynes' Preclic- 

tive St,a.tist>ical Mecha.nics, ca.n t,hen be considerecl - 

for classical systems - a far-reaching generalization of 

Boltzmann transport theory. In principle, i t  allo~vs to  

go over tl-ie study of transport phenomena in systems 

arbitrarily away from equilibrium and even dense Auicls 

with highly correlated component particles. 

In section V we dealt with the thermodynamic im- 

plications of the results of section IV, mainly tlie dis- 

cussion of 'H-theorems. This of course involves the 

old question of how to  define entropy in nonequilib- 

rium conditions ancl the meaning of a local in space 

and instantaneous in time second law. In MaxEnt- 

NSOM an entropy and cntropy production can be cle- 
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fined in terms of the chosen set (in general truncated) 

of basic variables, and a very close identification with 

those of existing phenomenological irreversible ther- 

modynamics can be obtained, what provides statisti- 

cal mechanical foundations for the latter. We showecl 

that  Boltzmann's 'H-theorem is contained in MaxEnt- 

NSOM only as a result of the approximations intro- 

duced and, clearly, is not a manifestation of the sec- 

ond law. Also, in MaxEnt-NSOM it is not possible, 

on the one hand, to make any acceptable correlation 

of the MaxEnt-entropy and MaxEnt-entropy produc- 

tion with identifiable truly thermodynamic correspond- 

ing state functions. At most, as already noticed, this 

can be done with those of existing phenomenological 

irreversible thermodynamic theories, being also possi- 

ble to  prove - at the statistical-mechanical level- Pri- 

gogine's principle of minimum entropy production in 

the linear regime, Glansdorff-Prigogine universal crite- 

rion of evolution, and Glansdorff-Prigogine (in)stability 

conditions in tl-ie steady state of far-from-equilibrium 

systems. In section V (see also Appendix A) we have 

demonstrated what we called a weak piinciple of non- 

negative entropy production, which can also be inter- 

preted as a generalized 'H-theorem (in Jancel's ~ e n s e [ ~ ~ ] )  

and as an expression that the MaxEnt-NSOM entropy 

cannot decrease in time. This result is equivalent to 

that of reference 36, whose authors interpret the result- 

ing inequality as the fact that,  in MaxEnt, sequence of 

observations performed on a macroscopic system un- 

dergoing irreversible processes always results in a loss 

of information in Jaynes-Shannon's sense. 

As a final word, following zwanzig['] we remark 

that, seemingly, the MaxEnt-NSOM - a formalism 

based on Jaynes' Predictive Statistical Mechanics - 

possesses a remarkable compactness and has by far a 

most appealing structure, being a veiy effective method 

for dealing with nonlinear and nonlocal in space and 

time (namely, including spacial correlations and mem- 

ory effects) transport processes in far-from-equilibrium 

many-body systems. In this paper we showed, in partic- 

ular, how Boltzmann's transport theory is contained in 

it as ai1 asymptotic result under very restrictive approx- 

imations imposed upon the MaxEnt-NSOM transport 

equations. 

Acknowledgements  

We thank Prof. L.S. Garcia-Colin (UAM-Mexico) 

for many valuable discussions and suggestions. Two of 

the authors (ARV,RL) are Brazilian National Research 

Council (CNPq) research fellows. We acknowlodge fi- 

nancial support to our Group through the years by the 

São Paulo State Research Agency (FAPESP). 

Append ix  A: A general ized 'H-theorem i n  

M a x E n t - N S D M  

Taking into account the definition of the MaxEnt- 

entropy of Eq. (62) it follows that 

But, because of the initial condition of Eq. (15) we have tha.t lnP(rlto,  O) = lnpw(I'(to), and, further, since the 

quantity p, (r l t )  1n p, (r l t )  is conserved (constant in time), we can write 

I 
where P, is the time-dependent projection operator of where SG(t) is the Gibbs'statistical entropy of Eq. (3). 
Eq. (31). Hence, 

Recalling that the coarse-graining condition of Eq. 

(18) ensures (besides the definition of the Lagrange 

s ( t )  - s(t0) = s ( t )  - SG (2) , (A.3) multipliers Fj in accord with phenomenological irre- 
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versible thermodynamics) the normalization of both p, and p, we can express Eq. (A.2) as 

 AS(^) z S(t) - S(t0) = - dr[pw(rlt) inp(rlt ,  o) - ,O, ( r  jt) In p, (r l t )  + p, (r l t )  - ,qrlt, o)] (A.4) J 
Next we note that AS cancels for p, = p, a.nd that its variation is given by 

where we used the separation of the total distribution 

as h = p+ p& as given by Eq. (16). 
The variation in Eq. (A.5) is null for pw = P ,  or 

in other words, for p', = O. Hence, A S  is a minimum 

for p, = p, when it is zero, and positive otherwise, 

i.e. AS(t) 2 O.. This is for the MaxEnt-NSOM the 

equivalent of Jancel's generalized '?f- the~rern[~~].  

Taking into account that õ is the MaxEnt-entropy 

production [Cf. Eqs. (65) and (70)] we ca.n write the 

inequality AS(t) > O as 

which is a weak principie of non-negative entropy pro- 

duction. As a final word we s t r e s ~  that the inequality 

in Eq. (A.6) is, as shown by Eq. (A.5), a consequence 

of the presence of the term pl,, then accounts for the 

irreversible behavior of the system. [Also Cf. Eq. (69)]. 

Appendix B: Mori's equations in NSOM 

Let us consider Eq. (38) for the case of a system 

slightly deviated from equilibrium. Given the variables 

{Pj), {Qj(t)), and {Fj(t)), and the auxiliary NSD 

where the exponent is composed of the contribution 

corresponding to the equilibrium canonical distribution 

plus a deviation from equilibrium; do + 64 ensures the 
AQj(t) Qj(t) - Q! (B.2b) 

normalization with $o = DF, F being the free energy, 

B = l / k ~ ,  and H is the total ~ ~ ~ i l t ~ ~ i ~ ~  of the sys- where index naught indicates equilibrium values. 

tem. Furtlier we introduce Both deviations from equilibrium in Eqs.(B.2) are 

connected by the relation 
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where has been taken a linear approximation in A F ,  and we 

have defined A P  = P- < P > O ,  where < ... >o is 

S (B.4a) 
the statistical average over the canonical equilibrium 

C j k , 0 =  drPj(r)A%(r)pO(r) I 

ensemble. 

P O ( ~ )  = ~XP{-$O - PH) , (B.4b) Hence, using Eq. (38) but taking only contribution 

and the approximate sign in Eq. (B.3) means that it to the collision operator in Eq. (40), we find that 

d 
-aQj( t )  dt = - C / d r ~ j ( r ) a ~ k ( r ) p o ( r ) ~ I , ~ , ~ ~ ~ ~ ( t )  + f dtlW(t, t') d r h ( T )  

k , m  km t o  J 

In the linear regime around equilibrium, Eq. (B.5) can be rearranged in first order in AQ introducing in the 

last time derivative the first two terms, in an iterative process of solution, to  obtain 

where 

= -ic S d r i ; ( r ) ~ ~ , , ( r ) p ~  (r>c;:,, 
m 

is, in Mori's terminology, the precession matrix, and 

is the memory matrix. Except for the weight function W, Eqs. (B.6) are Mori equations which are average values 

over the canonical equilibriurn distribution of generalieed Langevin equation[4]. 
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