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A statistical mechanical formalism, namely the nonequilibrium statistical operator method,
admitsa construction based on a variational principle associated to an informational theory
approach within the context of what is referred to as Jaynes’ Predictive Statistical Mechan-
ics. We briefly describe this formalism at tlie classical level of mechanics. On the basis of
the formalism it is possible to obtain a nonlinear generalizecl theory of large scope. Shis
theory is applied to derive the equations of evolution for the single and two-particle distri-
bution functions, and from them tliere follows a transport equation of the Boltzmann type
introducing collisional processes to all order. We discuss the connection with phenomenolog-
ical irreversible thermodynamics and the question of entropy production and an associated

H-theorem

1. Introduction

The purpose of Statistical Mechanics of systems
away from equilibrium is to determine their thermo-
dynamic properties and the evolution in time of macro-
scopic observables of such systemsin terms of tlie dy-
namical laws which govern tlie motioii of tlieir consti-
tutive elements. The analysis of nonequilibrium gys-
tems presents far greater difficulties than those faced
in the theory of equilibrium systems. This is mainly
due to the fact that it is necessary a more detailed dis-
cussion to determine the temporal dependence of mea-
surable properties, and to calculate the time-dependent
(i.e. depending on the evolving macrostate of the sys-
tem) and space-dependent transport coefficients asso-
ciated with the irreversible processes that take place
in these systems. It has been stated™! that the basic
goals of nonequilibrium statistical mechanics are: (i)
to derive transport equations and to unclerstand tlieir
structure; (ii) to understand how the approacli to equi-
librium occurs in isolated natural systems; (iii) to study
the properties of steady states; and (iv) to calculate the
instantaneous values and tlie temporal evolution of tlie
physical quantities which specify the macroscopic state
of the system.

Nonequilibrium statistical mechanics has typically

followed two directions: (1) The kinetic theory o dilute
gases, where starting with a few, albeit controversial,
liypotheses, one obtains a clescription of how simplesys-
tems evolve and approach equilibrium (the celebrated
Boltzmann'¢ transport theory and H-theorem). An ex-
tension of these ideas to dense systems follows several
paths like, for example, the construction of a gener-
dized theory of kinetic equationsi?) and the equations
of the BBGKY hierarchy!®. (2) A generalization of
tlie Brownian inotion, where the complicated dynamic
equations - the generalized Newton-Langevin equations
- that follows from tlie laws of Mechanics are accom-
panied by statistical assumptions. Belonging to this
approacli are, for example tlie formalism of the correla-
tion functions due to Moril¥), and the master equation
method[®).

The approaches used to develop a theory encom-
passing tlie program described by items (i) to (iv)
stated above, have been classified by Zwanzigl!! as: (a)
intuitive techniques; (b) techniques based on the gen-
eralization of the kinetic theory of gases; (c) techniques
based on tlie theory of stochastic processes; (d) expan-
sions from an initial equilibrium ensemble; (€) general-
izations of Gibbs' ensemble algorithm.

The last of them, viz. item (e), the so caled
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Nonequilibrium Statistical Operator Method (NSOM)
is considered!] to have an appealing structiire and
seems t0o be a very effective technique to deal with
a large class of experimental situations. This formal-
ism lias been formulated by several autliors, either
using lieuristic argumentst®=®) or projection operator
techniques('9=12], These approaches can be brought
togetlier under a unifying variational method3!. Tlie
present paper is clevoted to a description of tlie NSOM
at the classical mechanical level, in order to try clar-
ify its tenets and to provide within its coiitext a gen-
eralization of Boltzmann transport approacli. I-lence,
tlie NSOM can be considered as a far-reaching general-
ization of statistical methods based on Boltzmann and
Gibbs ideas.

Tlie organization of the paper is as follows: in
tlie next sectioii we describe the construction of tlie
classical nonequilibrium statistical operator, hence to
be called tlie nonequilibrivi statistical distribution
(NSD), within tlie context of Jaynes’ Predictive Sta-
tistical Mechanicst™!, through tlie use of tlie formalism
of tlie maximization of tlie statistical /informational en-
tropy. Section III is clevoted to a brief description of tlie
construction of a generalized transport tlieory based on
tlie NSD built in section I1. In section TV tlie transport
theory of section III is used to derive tlie equation of
evolution for tlie single-particle distribution, i.e. a gen-
eralized Boltzmann-like equation. In section V we con-
sider thermodynamical aspects of the interacting gas of
particles as clescribed by tlie NSOM. In last section we
summarize tlie content of tlie paper.

II. Tlie nonequilibrium statistical distribution

When one resorts to a statistical mechanical ap-
proach like tlie NSOM, here in aclassical description, as
it is well known tlie macroscopic state of the system is
described by a contracted descriptioii in terms of some
set of dynamical variables, say P1(T"), Py(T),...P,(T),
with tlie statistical distribution being a functional of
tliese and only tliese variables, where T' is a poimnt in
phase space characteriziiig tlie state of the system at
tlie microscopic mechanical level. On the other hand,
the state of the system at the macroscopic level is char-
acterized by a poiiit in tlie thermodynamic phase space
(soinetimes called Gibhs space or state space) composed
by tlie values at time t of tlie macroscopic variables

@1(t), ..., Qa(t), that are tlie average values of the F;
in the macrostate defined by the NSD. It should be
noted that quantities P; and @; can depend on aspace
variable, namely in the case when they are densities,
and also on a momentum variable as in tlie case to be
considered in section IV. Tlie quantities £; change in
time with the inicroscopic evolution of the mechanical
state of tlie system, but an experiment does not fol-
low tliis rnicroscopic evolution; it follows the numerical
values of tlie ¢};. The result of such experiment are

described by transport equations of the forml!

SO0 = 3@, QT ()

where we have explicitly introduced tlie possible space
dependence of tlie basic variables, witli tlie ®; being
functionals of the macrovariables (J;, which, in general,
are expected to be nonlinear, nonlocal, and with mem-
ory effects, i.e. depending on tlie past history of tlie
macroscopic state of the systein from time ¢, of initia-
tion of tlic experiment up to time¢ when ameasurement
is performed.

These coiisiclerations rise immediately several ques-
tions tliat need be addressed!*!: (1) How to choose tlie
basic variables? At present there seemsto be no wholly
satisfactory theory to generate this information allow-
ing to make a unique decision. It lias been snggested
tliat this basic set of variables must include all approx-
Imate integrals of motion or quasi-invariant variables
tliat change very slowly on a molecular time scale, as
it is the case in NSOM as we dliall see. (2) How are
tlie functionals in Eq. (1) obtained? or, in other words,
wliat is the form of tlie nonlinear transport equations
for macrovariables (J;7 Sliere are several approaches
available associated to the different tecliniques corre-
sponding, following Zwanzigl!!, to the items (a) to (e)
listed in tlie Introduction. In tlie NSOM tlie answer
is straightforward: oiice tlie NSD is given the equation
of evolution is tlie statistical average of the mechanical
equation of motion, as sliall be described in next sec-
tion. (3) The question of initial conclitions. The equa-
tions of evolution, Egs. (1), are of first order in tlie
time derivative and tlierefore require an initial condi-
tion for a unique solution to be obtained. Many times
this is clone using initial conditions that appear rea-
sonable and well suited to theoretical analysis. Tlie
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ideal should be to have experimental access to these
values, but this is selclom feasible. Thus, in any partic-
ular problem the sensitivity of the results to the details
of tlie chosen initial state needs be carefully consid-
ered. Finally, it should be noticed that for isolated
systems the NSD satisfies Liouville equation, which is
reversible. This poses another fundamental question:
(4) How to obtain irreversible behavior in the evolution
of the macroscopic state of the system (sometiines re-
ferred to as the time-arrow problem!%)?. In NSOM,
as shown later on, irreversibility is incorporated from
the outset using an ad hoc non-mechanical hypothesis
much in the way of asimulation of Prigogine's principle
of dynamic condition for dissipativity[*6l.

Insofar we have stated the four main clifficulties as-
sociated to the construction of a statistical mechani-
cal formulation for nonequilibrium processes, but we
have not discussed the fundamental question of how to
build the NSD, i.e. the classical level of tlie NSOM.
As noted in the Introduction, several approaches have
been developed, which can be encompassed in a unique
variational approach, which we proceed to describe and
discuss. As previously stated it can be related to tlie
method of reasoning put forward in Jaynes' Predic-
tive Statistical Physics!!¥). Also according to Jaynes,
the difficulty of prediction from microstates lies in our
lack of the inforination needed to apply them, since
we never know the microstate but a few aspects of tlie
macrostate. However, tlie aforementioned principle of
reproducibility implies that this shoulcl be enougli: tlie
relevant information is there, if only we can see how to
recognize it and use it.

This makes tlie connection witli questions (1) to
(3) stated previously concerning the query related of
the contraction of information and the choice of the
macrovariables @;. At this point we can make contact
with tlie relevant Bogoliubov’s principle of correlation
weakening(!”! implying tliat there exists a hierarchy of
relaxation timestliat leads to successive contractions in
the macroscopic description of tlie system asit evolves
in time. This principle is at the core of tlie NSOM.

The technical problem of construction of the NSD
was enunciated by Jaynes as how shall we use proba-
hility theory to help us do plausible reasoning in sit-
uations where, because of incomplete information, we
cannot use deductive reasoning. This implies in how

to obtain tlie probability assignment compatihle with
the available information and avoiding unwarrantecl as-
sumptions. As repeatedly emphasized by Jaynes this

(18] The ques-

amounts to perform Bayesian inference
tion is answered by tlie criterion that: the least biased
probability assignnient {||;} for a set of mutually exclu-
siveevents {z; } isthe one that maximizes the statistical

"entropy"

S= ‘_Z“ilnHi , (2)

subjected to the constraints imposed by available in-
This is the result of assuming that tlie
expression Of EQ. (2) - which lias a similar form in
Shannon’s(') so-called information entropy - is aunique
function measuring tlie uncertainty of the probahility
assignment. The criterion stated above is the principle
of mazimization of statistical entropy, or MazEnt for

formation.

short.

Thisis the variational principle that provides a uni-
fying theoretical framework to tlie NSOM. Let us con-
sider anonequilibrium many-body system which is tlie
object of a given experiment, whose contracted descrip-
tion is made iii terms of a basic set of classical dynam-
ical quantities {P;(I')}, 7 = 1,2,...,n, where, for the
sake of simplicity, we omit to write down explicitly the
eventual dependence on the space coorclinate 7 when
tliese quantities are local densities. In this case, if we
write p(T'{t) for tlie NSD, tlie equivalent of Eq. (2)is
Gibbs’ statistical entropy, namely

Selt)= - / AT p(T}t) n p(Te) | (3)

witli p defined in tlie interval (¢y,t) and normalized at
all times, i.e

/ Ap(TI) = 1, forto <t' <1 . (@)

Here I' = {q1,...,9un,P1, ..., P»N} 1$ @ point in phase
space, ¢ and p are the generalizecl coorclinate and con-
jugated momentum, N the number of particles and v
the number of internal degrees of freedom of each par-
ticle. Further we write dI' = Idg; Ildp; /NN for
indistinguishable particles and h is the usual scaling
factor with dimension of sction.

Following MaxEnt we obtain the best choice for
tlie NSD p(T)¢) looking for an extreme (maximum) of
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Gibbs' entropy under the constraints of Eq. (4) and the
conditions

Q)= [arsrityp(m), (5)

fort <t <t.

Clearly, as stated, tliis implies that a choice of tlie
basic variables lias been performed; we will return to
this question later on. Egs. (5) introduce a dynami-
cal character in the imposed information, but it cught

to be remarlzed that the information-gatliering inter-
val ({o,t) can {and should) be reduced to information
recorded at a unique time, namely ¢q, when are given
the initial values @;{t,), to be used in the solution of
the equations of evolution for variables @;(t) that the
method provicles, as shown in next section.

Following well known procedures, namely tlie
method of Lagrangeinultipliers,tosolve the variational

problem with constraints, we fiiid that

p(T[t) = exp {—Mt) -y / dt'ip; (t,') P (T[t' -—i)} : (6)

j=1

where ¢ is the Lagrange multiplier that ensures the normalization of p, tliat is

Y(t) =In / dT exp {— Z/t dt'o; (1, 1Y P(TH —t) 5, (7

and the ¢; are Lagrange multipliers associated to the
conditions imposed by Egs. (5). In Eq. (6) we have
written

BT — 1) = =0 Py ()

where C is the Liouville operator o tlie system, mean-
ingin this classical limit tliat LA = {A, H), where tlie
last term is Poisson's bracket of quantity A witli tlie
system Hainiltonian H.

Next, we malte an extra assumption, nainely tliat
tlie Lagrange multipliers ¢; are of tlie forin

i (1,1) = w(t, ) F(t) 9)

where wis an auxiliary weight function witli tlie follow-
ing properties: given w(t,t') = dW(¢,t")/dt" it must be
verified that

hl’l’lz_,zIVV(t, tl) = 1, (10(1,)
lim, . W(t,¢) =0, (100)
umwro\] dTpu (TIAD) =< Alt >, (10¢)

where in Eq. (10c) < AJt > stands for the average
value of quantity A and it needs be kept in mind tliat
the limit is taken after tlie calculation of tlie integral,

l

i.e., the regular average is followed by the limit, what
introduces Bogoliubov's method of quasi-averages!>®],
and tlie thermoclynamic limit is implicit. Bogoliubov's
guasi-averages method involves a symmetry-breaking
procediire in case of degeneracies connected witli one
or several transformation groups. In the present case
the syminetry breaking istliat of time-reversal symme-
try, where tlie presence of w selects the sub-group of
retarded solutions from the total group of solutions of
Liouville equation establishing from the outset evolu-
tion for increasing times from an initial value condi-
tion, as shall be better clarify later on in this section.
Finally, we have used the notation p,, for tlie NSD for
a given choice of w, the latter satisfying the conditions

imposed by Eqgs. (10).

The particular form of tlie Lagrange multipliers as
given by Egs. (9) lias been made, on tlie one hand
to force irreversible behavior in the evolution of the
macroscopic state of the system (as previously noticed
it is one tliat mimics Prigogine’s principle of dynamic
condition for dissipativity). Furtlier, such choice allows
(D) to introduce tlie set of variahles Fj;(t) that have
the role of intensive variables tliermodynarnically con-
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jugated to the extensive macrévariables Q;(t) in order
to generate a complete connection with phenomenologi-
cal irreversible thermodynamics!!®24; and (2) to fix an
initial condition from which proceeds the irreversible
evolution of the macrostate of the system. To specify
such condition it may be noticed that using Eq. (9) in
the expression (6), we find that

pw(T]t) = enp {/tt dt'w(t,t) Inp(T)', ¢ = 1)} , (11)

where it has been introduced an auxiliary NSD ¢ given
by

p(T'[t1,t2) = exp {~¢(t1) - Z Fj(h)Pj(TltZ)} )

(12)
where t; refers to the time dependence of variables ¢
and 73, and t, to the time dependence of quantities
P; asgiven by Eq. (8). Moreover, ¢ is defined by the
relation

w0 = [ dru ) (13)

Integration by partsin Eq. (11) and using the prop-
erties (10) allow us to alternatively write

In py (Tft) = In p(T|t,0) — / dt'w(t,t" % Inpg(Tt' — ¢ — 1), (14)

Hence the initial condition is

pu(Tlte) = p(Tto, 0) (15)

Furthermore, Eq. (14) leads to the fact that the NDS can be separated into two parts, namely

pu(T1t) = A(Tlto, 0) + i, (TI2) (16)

where 5 is the auxiliary distribution of Eq. (12), and

[ t k
o4 (TIt) = Z% [—/ dt’W(t,t')%lnﬁ(I‘]t’ -t —t)] p(t,0) . (17)
k=1 to

Eq. (16) indicates that the NSD is composed o
an instantaneous ( “frozen”) generalized Gibbsian dis-
tribution, plus adeviation that accounts for the micro-
scopic processes that produce the dissipative effects in
the system!®—1%1 to be evidenced in next sections.

Theinitial condition of Eq. (15) amountsthen to an
initial description (preparation) of the system neglect-
ing all previous (to timetp) correlations among the ba-
sic variables. The connection with the approaches that
resort to projection operator techniques follows from
the identification of a time-dependent projection oper-
ator P(t) such that{10-12]

p(Tt,0) = P(t)pu (Tlt) ;

P (Tlt) = [1 = P()]pu(T]t) -

Finally, to complete the method it isintroduced the
coarse-graining condition defined by

i

Q;(t) / dTpy, (T[t) By () =

/ drA(Tlt, 0)P;(T) (18)

il

which, on the one hand, defines the thermodynamic
functions Fj(t) in complete accord with nonequilibrium
phenomenological thermodynamics!32 and also en-
sures, together with the conditions (10), the simulta-
neous normalization of p,, and p, i. e. it is verified
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that

é(t) = In / dT exp [—iFj(t)Pj(r)} . (19)

j=1

The MaxEnt-NSD thus obtained can be shown to
satisfy a Liouville equation with a so-called Boltzmann-
Prigogine symmetry, namely a Liouville equation with
infinitesimal sources that bieaks its otherwise time-
reversal symmetry. Using Egs. (10) and definition (13)
we obtain that

[56? + iﬁ] N puw(Tl) = Ru(®) Inpu (Tt . (20)

where we have defined

Ry(t)In pu(T}t) = w(t,t") In 5(T}t, 0) +

t
v [
tn {

Eq. (20) can also be written in the form proposed
by Prigogine!2?!, namely

[% + zA] In po(Ct) =0 , (22)

where A is a modified Liouville operafor composed of
even and odd parts under time-reversal, i.e. A =
iL - R

Consider a dynamical quantity A(T); in the NSOM
its average vaue is given by the expression [Cf. EQq.

(10¢)]

< Aft >= /drA(P) exp {/t dt'w(t,t')In p(T|t' — ' — t)} , (23)

being implied the limit of w going to zero. Thisis akin
to a generalization of Kirkwood's time-smoothing the-
ory of measurement!?*! that requires the identification
of a macroscopic quantity through a time-smoothing-
like procedure as in Eq. (23), when the macroscopic
state is changing with time. It implies a two step oper-
ation: thestatistical average from aninitial distribution
followed by the weighted time average up to the timea
measurement is performed. It ought to be noticed that
in the NSOM the time-smoothing procedure involves a
kind of convolution in time - present in 7 in Eq. (23)
- connecting the values of the thermodynamic param-
eters (Lagrange multipliers) #;(¢') at time ¢’ with the
values of the dynamical basic variables P; (t' —t) at the
shifted timet —¢. Further, using Eq. (16) we can
alternatively write

< Alt >=< Alt >0 + < Alt >, (24)

where

< At >p= / dT(T)t, 0)A(T) (25a)

< Alt>'= / drp!, (TI)A(T) (25b)

(

implying that the average value of quantity A is com-
posed of two terms, one is the average value with the
auxiliary (coarse- grained non-dissipative) distribution
g and the other associated to the dissipative effects
through p!,. (Werecdl that for the basic variables P;
the contribution given by Eq. (25b) is null: (Cf. Egs.
(18) and the arguments thereafter)

Already proposed NSD’s are recovered with partic-
ular choicesof the weight function w(t,?’). Green-Mori
NSD{%:23] follows from the choice

t—t

Wt i) =1-—, (26)

which satisfies Eq. (10a); Eq. (10b) fixes the initial
time at the delay-time ¢, =t — r; and to comply with
condition (10¢) r goes to infinity after the calculations
of averages have been performed. Function w(t,t) is
1/7. Zubarev NSD! followsfrom the choice

W(t,t) =exp{e(t’ —1)) (27)

which satisfies Eq. (10a); Eqg. (10b) requires that
tg — —o0; €(> QO is an infinitesimal parameter that
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goes to zero after the calculation of averages have been
performed, thus satisfying condition (10c), where now
w(t,t) = eexp{e(t'—1)}. Other (very many) choicesof
the weight function w are possible; it should be noticed
that these types of w in the time-smoothing procedure
of Eq. (11) resemble particular summation procedures
in the theory of integral transforms, for example the

Green-Mori approach implies a time average over
interval r, and it is based on the assuinption that corre-
lations damp out in times much smaller than r["]. After
the calculation of averages the limit r — oo is taken;
it lias been argued that this time smoothing procedure
leacls to difficulties in the definition of integrals associ-
atecl with transport coefficients?6]. In Zubarev's case

summation procedures of Fejér (or Cesaro-1) and Abel we have
in the cases above [Egs. (26) and (27)][2%].
)
O i
In pe(T[t) = e/ dt'e’ In (Tt ¢ ¢y, (28)

where we have introduced the change of variable t’ — ¢/ +t, and

[% + i[,J In po(Tft) =

In this case Inp, is interpreted as the logarithm of p
evolving freely under Liouville operator C, from time ¢’
up to timet, and then the system undergoes a random
transition under the influence of the interaction with
the surroundings described by a Poisson clistribution,
w, and the NSD is obtained averaging over ali ¢’ [27].
It i1s worth noticing that Eq. (29) can be rewritten in
the form proposed by Prigogine, Eq. (22), namely

—c[ln p(T[t) ~ I A(TI, O . (29)
]
9 t+ia ()] Inpe(t) =0 (30a)
ot ) ‘ :
with
iNe(t) =L+ €[l = P.(1)], (300)

wliere P.(¢) is a time-dependent projection operator for
the case of Zubarev's approach to the NSOM, which for
a general weight function w is

w(DA(T) = Z PD)C;; (P (T); A (31)
7,j=0
including P, as the unit operator and Fy = ¢, and where
Ci(O{P;(T); P}, (32q)

introducing the super-correlation function for any pair of dynamical quantities A and P given by

(A B = [ ara)

witli

Y, (DBD)A(TI0) | (328)

k
Yo F)“”Zu{ /dtht)——lnp(I‘]t’,t’—t)] . (32¢)

This time-clependent projection operator has the property that, used in conjunction with Eq. (18), projects the
logarithm of the NSD over the logarithm of the auxiliary distribution, namely

P (t) In po (T)t) = In 5(T]t, 0) (33a)
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since, because of Eqs. (18) and definition (32b), one has that

Pu(t)Inp(T)t,0) =

Z Py(T) J(t)ZFk@ {F;(); Pe(D)[t} =

i,j=0
= Y ROPOC;)C) = ZFk(t)Pk(I‘) In 5(T[t,0) . (33b)
1,5,k=0 k=0
{Pk(I‘);—-/ dt'W(t,t’)E% Inp(T' ¢ — )|t} = /dI‘Pk(I‘)p:U(F{t) =0. (33¢)

Concerning the question of the basicset of variables,
in the NSOM, following the path set forward among
others by Moril¥, Zubarev!®), and Peletminskiil®, the
choice of the basic set of dynamical quantities {P;} is
connected with the separation of the total Hamiltonian
of the system into two parts, say

H=Ho+H', (34)

where Hy is a “relevant” part composed of tlie Hamil-
tonians of the free subsystems and some of tlie interac-
tions, namely those interactions strong enough to have
associated very short relazation times and possessing
certain Symmetry properties. By very short relaxation
times is meant those much smaller than the character-
istic time scale of the experiment, typically, the instru-
mental resolution time. The other term, H', contains
the interactions related to long-time relaxation mech-
anisms. The symmetry characteristics of the strong
interactions depend on tlie problem under considera-
tion: The required symmetry, to be called Zubarev-
Peletminskii symmetry condition, is that

(P, Ho} =Y ajrPy (35)
k

where «;; are c-numbers determined by Hg. It can be
generalized to the case of locally dependent quantities,
say P;(7), when coefficients « are allowed to be differ-
ential operators.

The Peletminskii-Zubarev relation provides a clo-
sure condition for the choice of the basic set of vari-
ables: First, thesecular part A, of the Hamiltonian has
to be chosen in each particular problem under consid-
eration (as noted, it contains the kinetic energies plus
the interactions strong enough to produce damping of

correlations in times smaller than that of the experi-
mental resolution time). Second, one introduces a few
dynamical variables P deemed relevant for the descrip-
tion of the physical problem in hands, and next the
Poisson bracket with H, is calculated. The dynami-
ca variables - different from those already introduced
- that appear in the linear combination indicated by
the right-hand-side of Eq. (35) are incorporated to tlie
basic set. This procedure is then repeated until a clo-
sure js attained. In Eq. (35) the particular case of
coefficients & being zero is admisible, that is, dynami-
cal quantities conserved under the dynamics generated
by Hy are to be included, and that implies the pres-
ente of Hy itself. Recently L.S. Garcia-Colin and two
of the present authors?!! have discussed how this pro-
cedure provides statistical mechanical foundations to
the questiou of the choice of basic variables in phe-
nomenological irreversible thermodynamics, arid itsrole
as ageneralization of Grad’s®8] moments approach. As
shown in the second of references 21, in certain cir-
cumstances the closure procedure does not follow in a
finite number of steps and then an appropriate trun-
cation procedure needs be introduced. In summary,
Peletminskii-Zubarev closure condition impliesin tak-
ing into account all dynamical quantities that, under
the dynamics generated by Hy, are kept in the sub-
space of Hilbert space spanned by tliem. Their equa-
tions of motion contain collision operators (see next sec-
tion) generated by H' that are the manifestation of tlie
microscopic degrees of freedom that are suppressed in
the coarse-graining procedure that tlie method involves.
As afinal word we recall that the process of separation
is based upon the existence of a distinct hierarchy of
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time scales in Bogoliubov’s sensel'?].

We proceed next to describe the nonlinear gener-
alized transport theory that can be derived from the
MaxEnt-NSOM that was outlined in this section.

III. NSOM-nonlinear generalized transport the-

ory

Transport phenomena in matter have been treated
for a long time within the framework of Boltzmann
transport theory, which constitutes a landmark in the
field of statistical mechanics, providing deep conceptual
ideas and a method for the mathematical handling of
the problem[®®). In the area of solid-state physics it
yielded a vast number of results, however requiring to
be used in conjunction with a quasi-particle picture!3%.
The original Boltzmann transport equation is derived

0
tors

using several restrictions on the characteristics of the
scattering processes, driving forces, and relaxation ef-
fects. Extension of the method requires to incorporate
the possibility to deal with dense systems, strong scat-
tering, high intensity external fields, non-local scatter-
ing processes, strong relaxation effects, quantal effects
o driving fields, etc. These questions have been ad-
dressed by many authors, and a concentration of efforts
have been directed towards the aim of deriving elabo-
rate transport theories®). We proceed here to show
that the MaxEnt-NSOM allowsfor the construction of
anonlinear transport theory of large scope.

In NSOM the equations of evolution for the vari-
ables follow immediatly from time differentiation of
Egs. (18) to obtain

20370 = Jarou vt sm, 11y =< (2i(rsm, BOYe > -

Using Eqg. (34) and the closure condition of Eqg. (35), the contribution to the last term in Eq. (36) from the

“relevant” part of the Hamiltonian, viz. Hgy, becomes

<ABT ), Ho(D)} e >= [ dTp(Tlt, 0BT ), Ho(D)) = SO (37)

once it is taken into account the coarse-graining condition of Eq. (18). Further, using the separation of p given by

Eq. (16), we obtain that

)
Qi (=70 IEY + LEY, (@9)

where J{”) is defined by Eq. (37), and

IO = [ drale, (PP, B (390)

T 1) = / 4T (D) (P (T; 7), (D)} . (390)

Clearly, Jfo) 1s a precession-like term (evolution of
P; under H,) while the others are related to tlie sow
dynamical effects produced by the interactions con-
tained in H'. As we shall see in section V, 7 is a
collision integral associated to dissipative processes, on
the other hand .7(®) as .7(1) - which are averages with
the auxiliary distribution g - are dissipationless terms.

Use of Eq. (17) in Eq. (39b) leads us to rewrite the
collision integral in a series of contributions of partial
collision integrals, namely

Jj (7 1) = i/t di'W(t,1")({P;(T; M), H'(D)}; 6(t', 1" —1)[t)*) (40)
E=1"%o
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where we have defined

{P(T5 ), H'(T)}; (¢, ¢ = )[1)*) = T /dF{P (I;7), ' (IN(T ¢ —t)

t 1
X/ dt1W(t,t1)[f(1“]t1,t1 —i)..‘/ dtk__lI/V(t,'tk_l)&(I‘]tk_l,tk_l — t)p—(rlt, O) , (41(1)
to to

with

gL't ~t) = —E[El{/-lnﬁ(l“]t’,t’ —1). (410)

Since the average value of &(I') is the NSOM-
entropy-production function (see section V), the colli-
sion integral hecomes a series of contributions of liiglier
and higher order in the dissipation processes that de-
velop in the system while in nonequilibrium conditions.
This collision integral is extremely clifficult to handle;
we anticipate (to he shown in a forthcoming article
specified for tlie case of a classica system[®d, that 7
can he rewritten in a practical and relatively manage-
ahle way through tlie use of the symmetry condition of
Eq. (35) in the form

G =Y 106 (12)

n=2

Here, Jj(") are partial contributions tliat are of the
form of correlations over the auxiliary distribution p,

|

2
/dgrdBp {ﬁ_ +
2m

H =

which are instantaneous in time and organized in in-
creasing order n in the interaction strengths included
in H’. It is worth noticing that these contributions are
composed of several terms, consisting of (1) the me-
chanical effects of collisions (in order n) averaged over
tlie auxiliary ensemble. (2) terms that account for the
evolution of the thermodynamic state of the system,
and (3) terms arising from inemory effects.

We proceed next to apply this NSOM-generalized
transport theory for classical systems to obtain the
equation for tlie single-particle distribution function, in
order to arrive at a generalized Boltzmann equation.

I'V. Generalized Boltzmann-type formalism

Let us consider a system of A interacting particles
whose Hamiltonian is

v(m)} ny (U7 17) +

/ Prd®pd®y dp, V(|7 = 7 Nna(TIFF 7 7Y | (43)

where we call Hy the part containing the Itinetic energy and A’ includes the interactions hetween particles through
the central force two particle potential V, and v is the interaction with external sources, to have the separation of
H into two parts as required hy Eq. (34). Here »; and n, are the one-particle and two-particle density matrices,

namely
N
Z (7= 7)6(F — ) (44a)
N
na(DIF 5,7 8 )= S 6(F— 76— )s(F =7 )85 7)) - (44D)
J#k=1

For the statistical description of this system in NSOM we choose as basic dynamical variahles Hg, n1, and ns.
They satisfy the closure condition of Eq. (34) since the Poisson bracket of Hy with itself is null, and
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Lo 1 . .
{nl(rlryp» HO) = ";;L'(p ' v)nl(rlr1ﬁ) 3 (45(1)
Y R 1 . Lt ot o
{no(T\7, 5,7 P )Ho}:-——n;(p-v-{-p V(Y7 5,7 8 ), (45b)

As it was remarked in section II there is no wholly
satisfactory way to make a unique choice of the basic
variables. The choice we have made here is o course a
truncated one involving on the one hand Hy, as a con-
sequence of taking into account the closure condition
of Eg. (34), implying to consider quantities that are
guasi-conserved under the dynamics generated by Hy

{

(we recall that relaxation processes are related to H'),
and besides it the one-particle and two-particle density
matrices since they are the two that take part in the
calculation of any property of the system involving in-
dividual particles or two-particle correlations.

The auxillary probability distribution is then

A(T1t,0) = exp {~¢(t> ~ BHo + [ i (7 m (017, P+

/ Prdpd® i py(7 5,7 B s ma(DIF, 575 ')} (46)

where, we recall, ¢ ensures the normalization of s, and
B,¢1 and @y are the Lagrange multipliers (intensive
nonequilibrium thermodynamic variables) conjugated
to the basic macrovariables, which we call

LR B8 t) =< w757 7 )IE>, (47

where < ...|t > stands for statistical average calculated
with the NSD given by Eq. {(46), and we recal that
the basic variables satisfy the condition required by Eq.

Uo(t) =< HD(I‘)It >, (47(1) (18)
We proceed next to derive their equations of evolu-
f(7 pt) =< nq (TI7, D)t > | (470) tion; they are [Cf. Egs. (38)]
|
d
ZUo(t) = I + I W) + 7o (48a)
0, .. L - -
a1 F5) = R + IDE RO + AR (480)
0 ¢zt o O (7 = (D = o Y
af?(r?p:r P Ht) = JZ (T,p,?" D 1t)+‘]2 (r,p,r y D ,t)—!—JQ(T',p,T' P :t) , (486)

where J are the collision integrals of Eq. (39b), JrEO) =0, and

1 ' -
IO = _J Erdpd® Py —f- WV (|7 =7 (7 5

7 5t) (49a)

o 1. -
T pit) = ——F- VAT, B, (49b)
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T i) = / &' Pp'Vu(F ) + V(F =7 D) VafalF, 5,7 ,F 5t), (49¢)
O 1_. 7 O
Jgo)(r, SN ;t)=—-n;{p'\7+p VN fa(7 8,7 P 1), (49d)
IO F ) = =V )+ V7 =7 D] - (Ve + Vs V(75,7 5 51)
* / Erid®p {V[o(F 1) + V(P = 7)) Vi + V(@ 1) + V(7 -7 ) Vit (75,7 8, 7,501, (49%)

where fs is the average value of the three-particle distribution function, i.e. the average value of the three-particle

density rnatrix ns(7, 7,7 |5 ', 71,51).

We concentrate next our attention on the equation of evolution for the variable f; (7, §;t), which in explicit form

can written as

ot

d 1. S o
[- + EP‘V*-F(T‘,?") -V,s] I DE

[ @@y ) Va5 5 )+ R (50)

where F = —Vu(7,1) is the external force imposed on the system. It is coupled to the equation for f, which is

explicitly given by

ot

1 : = P
{_8.+;1_[p*.v+13’ V= F(7t)- V= F(F 1)V

1

V(T =7 ) Vi VIV ) Vg Fa7 55 )

= [ Endp 0 + V(7= A Vg

V() + V(T =D Vs MR AT B LBy

+c72(7?;ﬁ)7:‘ lyﬁ l)t) .

where f3 is the three-particle distribution function.

Egs. (50) and (51), together with the equation
of evolution for the kinetic energy Us(t) comprise the
complete set of equations of motion for the chosen ba-
sic variables in NSOM. We mention that if the ba
sic chosen set of variables is truncated by neglect-
ing no, Eq. (50), once the collision integral is ne-
glected, becomes an equation of the form of Vlasov-
Landau implying a mean field approximation, since
then fo(7, 5,7 .5 3t) = AFBOAF 7 51) [32].

We proceed with the analysis of Eq. (50) introduc-
ing several approximations:

(51)

1. In Eqg. (5]1) it is neglected the second member,
i.e. the collision integral and the term involving ternary
interactions;

2. Itistaken aweak explicit time dependence of fa,
i.e. 9fy/0t ~ 0, on account of the fact that neglecting
ternary interactions during the binary encounter, two
molecules moved unaffected by the rest of the gas, and
the relevant time variation should then extend over the
duration of a two-body collision.

Hence, after using these approximations Eq. (51)
becomes
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1 - ! I B - -
7—n-(p-V+p NR(F BT P 5t) = {V(F-t)+V(F-7]]- Vi+
V' (F= 1)+ V(F=7 D] Vs Y7575 50, (52)

and then, replacing this result in Eq. (50) we obtain that

a 1 - = o - . 1 - o - ! Lt
{5{+EPV+F(r,t)vﬁ} fl(r)p;t):/d3r’d3pla[p'v+p 'V,]f2(T';P»7’ P ;t)a (53)

which isstill coupled to f. This latter quantity is the average value of ny with g of Eq. (46), where the auxiliary
NSOM 5 is composed of terms involving single particles and terms involving two correlated particles. Next we
calculate f» as composed of a part without correlations plus a part involving them, resorting to the use of Heims-
Jaynes perturbation expansion for averages!®>¥ to obtain

RFEEF P )= 2F 750+ MF T L F ) (54)
where
, o0
M7 5,7 55 = D < QulAnalt >0 (55a)
n=1
n—-1
Qn =5 =) <Qult > S, (55b)
k=1
1 7 I i 7 n
Sn= [ [ e B st T )] (55¢)
Ang = ng— < nzlt >(O) . (55d)

Same procedure is used to express fi as

AF B = FF Fit) + M(F51) (56)
where -
MFEFL) =Y < Qulm|t >0, (57)
n=1
with An; = n;— <nyt >° and
<.t >O= /dr...po(mt,O) (58)
with
pofT,0) = {exp ~go(t) - B()Ho / Erdppa (7, ity (TIF, )} - (59)

with éo ensuring its normalization of j5,. Moreover

O, 7t 1) = / dT7o(T}t, 0)ns (T, 7) , (60)



194 J. Galvao Ramos, Aurea R. Vasconcellos and Roberto Luzzi

is the one-particle density function in the uncorrelated state described by ;.

Neglecting the correlations A in Egs. (54) and (56) impliesto express f, asfactorized in termsof a product of two
/7 corresponding to different positions and momenta; such approximation can be considered as the introduction of
Boltzmann's Stosszahlansatz, or assumption of molecular chaos. In fact, after these approximations are introduced.

Eg. (53) becomes

0 1.,

[_524_ EP.V-{—}':"(FJ)'V:@’] ff(ﬁﬁ;t):

It ought to be mentioned that Eq. (61) aso follows
from the BBGKY hierarchy in the uncorrelated par-
ticle limit®34 and from Kirkwood’s time-smoothing
approach®4 in the same lirnit.

Next, following the procedures described in the ex-
tensive literature on the subject (E.g. [5,34]), Eq. (61)
can be brought under the usua form of Boltzmann
equation. We recal that the upper naught iridex in
/P indicates the fact that it corresponds to the one-
particle distribution function in the uncorrelated limit
with assumption of molecular chaos.

Thus, we have shown that the celebrated Boltz-
mann transport equation is contained as a particular
case of the generalized transport theory derived from
the MaxEnt-NSOM. In continuation we proceed in fol-
lowing section to discuss the effect of the approxima-
tions that were introduced, through the analysis of the
resulting nonequilibrium thermodynamic properties of
the system, in particular the entropy production that
can be defined in MaxEnt-NSOM and Boltzmann ap-
proaches, a function of relevance to characterize the
irreversible evolution o the system.

As afinal word we stress that Boltzmann equation
(61) had its origin in Eq. (48b); the latter may then
be considered a large generalization of Boltzmann ap-
proach, containing in the collision integral 7 the ef-
fects of the interaction potentials in all powersin their
strengths. The practical handling of these collisioninte-
gral~,e. itsform asgiven by Eq. {42}, will be reported
in a forthcoming article(®2l.

1 - ! U
dPr'd®p' — [p~V+p ~V’} NG ) (61)

m

l

V. Entropy production and a generalized H-
theorem

The MaxEnt-NSOM provides mechano-statistical
foundations to  phenomenological irreversible
thermodynamics*®24. This is done through the defi-
nition of a MazEnt-entropy function

3() = — ] dTpu (Tl In 5(2,0) , (62)
in units of Boltzmann constant &, and to be put in
correspondence with those defined in phenomenologi-
ca thermodynamic theories. This definition and the
use of the coarse-graining condition of Eq. (18) leads
to the relations

Fi(7,1) = 65(t)/6Q;(7,1) , (63a)

Qj(7,t) = 6¢(1) /6 Fy(7,1) . (63b)

formally similar to that obtained in equilibrium. These
are nonequilibrium equations of state in the sense
that they relate extensive and intensive therrnodynamic
variables. We have used the nomenclature of section 11
and § stands for functional derivative. Further, using
the expression for 5 and the coarse-graining condition
of Egs. (18) the MaxEnt-entropy function acquires the
form

Sw=e)+ Y [ErBEDGED, (69
ji=1

what defines ¢ as a Massieu-Planck-like functional in
nonequilibrium conditions.

Taking into account Egs.(64) and (63), the MazEnt-
entropy production is given by
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O %S(t) =3 / &rFy (7, t)%Qj(F, t). (65)

In Eq. (65) the time evolution of the basic macrovari-

ables is obtained through the use of the generalized

transport equations (38). However it should be noticed
that

g—:/.d37>Fj(f’,t)Jj(o)(F,t) = Z/d%}«}(ﬁ’,t)/dI‘{PJ-(l“[F),Ho(r)}ﬁ(r[tlo):

/dl‘{lnp(l‘!t,(]) = /dr{,a(r(t,0),1np-(r(t,0)}H0(r) =0, (66)

and similarly for the term involving Jj(l). Hence,
a(t) = i/d?’er(F,t)@(F,t) , (67)

=1

N j

5(t) = i/j dt'W(t, ) (5(T|t, 0); 6(T|t' 1 —¢[t)*) (68)
ko1 dto
[

after using Eg. (40) and introducing the super-
correlation functions defined in Eq. (41).

It should be noticed that & is the average o tlie
NSOM quantity in phase space 5(T'|t,Q of Eq. (41b),
namely

5(1)

/ dU&(TJt, 0)[p(t, 0) + o, (1)] =

= / dra(Tit, 0)p., (Tf) | (69)

i.e., asalready stated in section II there isno dissipation
associated to tlie auxiliary (coarse-grained) distribution
7. Eg. (69) in conjunction with Eq. (17) alowed us
to write Eq. (68). The latter tells us that tlie MaxEnt
entropy production function is composed of an infinite
series of ever increasing correlations of the MaxEnt-
entropy production quantity in phase space, 5(T|¢,0),
allowing for a classification of the dissipative processes
in the different orders of correlations of the entropy pro-
duction quantity.

Looking at the form of tlie scattering integral J
given by Eq. (39b), it is clear that dissipative-entropy-

producing effects are described by the contribution pi,
to the total statistical distributionin Eq. {16), namely
those dissipative effects governed by theinteractionsin
H'.

In phenomenological nonequilibrium thermody-
namic theoriest®! it is assumed that (for the isolated
system or for theinternal production of entropy) o(t) >
0, and also for itslocal expression

F(F 1) = Z F(7, t)%Qj(F, 1) (70)

At present we are not able to verify this property for
the MaxEnt-entropy production (global or local). We
can see that it has an extremely complicated expres-
sion [Cf. Eq. (68)], but we can prove a weak principle
of non-negative local informational entropy production,
namely that

1 t
/dsr/ dt’'(7,t') > 0 (71)
to to

as demonstrated in the Appendix A.
Let us now look for the case of section IV, when
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50 = 40+ ~ [ 50D -
——/dsrdspdsr’dBp’(pg(F,13',7"’ /,15' ’;t)fg(f',ﬁ,ﬁ’ ',]3' I;t) (72)
and
o) = B0+ 000~ [ PrdpeFROAG D -
- / Erdpd® &7 5,75 1) (5T P50 (73)
where the upper dots stand for time derivative. Furthermore
o(0) = BOT0) ~ [ Erdror(F 0750

- / Brdpd P o757 5 DG F ) (74)

since, as shown, the terms .7(®) and J(!) do not contribute to entropy production.

Now, resorting to the use of Heims-Jaynes perturbation expansion for averages33!, we can calculate Up(t), and
fi(7,p,t) as composed of a part without correlations plus a part involving them. Consequently Eq. (72) can be
written as

S(t) = 5°(t) + AS(t) (75a)

where

NOE </>°(t)+ﬂ°(t)U§(t)—/dsrdSpso(f(F,ﬁ;t)ff(ﬁﬁ;t), : (75b)

and AS(t) contains the contributions due to two, three, etc., particle correlations. In last equation upper naught
indexes stand for the correlationless values. In these conditions the correlationless part of the auxiliary distribution
1s factorizable, i.e.

N 2
} v i .
7°(t,0)= J[ exp {—«ﬁ?j) = B(t)5 +/d3rd3pso?(w;t)n’1(nﬁ)} ; (76)
Jj=1

where qSE’j) normalizes each factor and
ni (7, 9) = (7 — 73)6(¢' - pj) (77)

Also, we find for the uncorrelated one-particle distribution function the simple expression
AERD = {80 - PO+ AR | (78)
and then the entropy of Eq. (75b) can be written, in this and only approximation, as
5) = =& ] rdp i pit) m L7 i) (79)
where we wrote f0 = f2 /A, and then

)= —SH) = [ Erdplttin i 5 0] 2 7 Git) (80)
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Here 31 is Boltzmann's 'H-function and, as well known
~dH/dt[c° of Eq. (80)] is definite positive if for the
time evolution of f? Boltzmann equation is used (viz.
Eq. (53) accompanied of Eq. (54) followed by the
Stosszahlanzatz of putting A; = A; = O). This isthe
celebrated H theorem. The equality holds in the case
when detailed balance is satisfied, that is, when the
rates of direct and inverse collisions are equal.

'H is minus the expression of Eq. (79) and it is a
decreasing function of time, but —kH(t) = £S°(¢) can-
not be identified with the entropy of the macroscopic
state of an arbitrarily nonequilibrated thermodynamic
system, and Eq. (79) is not related to the positive pro-
duction of thermodynamic entropy. It must also be
kept in mind that in ordinary thermodynamic theory
the second law refers only to the difference of the val-

ues of theentropy between two equilibrium states of any
arbitrary isolated system when goes through a transi-
tion between two such states, but says nothing on how
the entropy production evolvesin between: thisis what
implies Eq. (71) for the MaxEnt-entropy production.

Boltzmann equation was derived within the frame
of MaxEnt-NSOM from the terms J(® and 7™ (ne-
glecting the collision integrals ) but involving several
approximations. But in NSOM, neglecting 7 leads to a
nondissipativeevolution of the system: implies neglect-
ing p;, which, as shown, is responsible for dissipation.
Evidently the apparent contradiction is explained by
the forced introduction of the Stosszahlanzatz. In fact,
we have that # of Eq. (74) is null if we neglect the
collision integrals; call this oy and then

o) = AOULD@) - / Prdpes (7, 7,0) FOO(F, )

8 / Erdpd® Py oy (75,7 7O FVFFF L F ) =0, (81)

where upper index (01) stands for the contributions to
the time derivative from the terms .7(® + 7(1) of Egs.
(49) in each case.

But, if we once again separate the auxiliary distribu-
tion in onefor the individual single particlesand a part
containing the correlations, after using Heims-Jaynys
scheme we obtain for S the Boltzmann expression of
Eq. (75) - as aready done - and

ao(t) = o%(t) T Aco(t) =0 (82)
where &0 is that of Eq. (80) and A, contains the
contributions due to two, three, etc., particle correla-
tions. Because of the H-theorem a° > 0 and then Ay
is negatlve (or null in equilibrium), compensating o°.

To compare Boltzmann approach and the complete
one in MaxEnt- NSOM we can analize the production
of entropy in both cases, that is to say, to compare ¢
with a of Eq . (74), with the collision integrals in the
latter in an approximation that neglects correlations.

These results call the attention to the question o
irreversibility and its characterization: as noted by
Jaynes, to obtain an expression that increases with the
nonequilibrium evolution of the system does not neces-
sarily implies positive entropy production in a proper
thormodynamic sense. In fact the notion of entropy
and entropy production in nonequilibrium states of ar-
bitrar-systems is not wel established. In phenomeno-
logical irreversible thermodynamicsit is constructed on
intuitive basis, and local in space and instantaneous
in time non-negative entropy production isimposed23},
In statistical mechanics both functions need be defined
and justified that they are proper definitions for arbi-
trarily away-from-equilibrium thermodynamic states.

Here we have introduced the MaxEnt-entropy, i.e.
an expression depending on the basic macrovariables
that in MaxEnt-NSOM describes the nonequilibrium
state of the system: it isgiven by Eq. (62), what implies
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the statistical average over the nonequilibrium state of
the system of the logarithm of the coarse-grained aux-
iliary distribution g, the one that provides the instan-
taneous values of tlie basic macrovariahles but is re-
laxation free. This coarse-graining is introduced by tlie
conditionsof Egs. (18) and performed through the pro-

l

jection operation defined by Eq. (33a). We also stres
that, as shown in the Appendix A, the condition of
Egs. {18) isused to demonstratc the wealt principle of
MaxEnt-entropy production of Eq. (71).

This result is an alternative expression of the one
derived by del Rio and Garcia-Colinl®®! for tlie time
behavior of, what they call, Shannon-Jaynes entropy
where the inequality AS > 0 (AS in Eq. (A3) in tlie
Appendix A) is interpreted as characterizing tlie fact
tliat every time that tlie system is observed, informa-
tion islost. Again we stress that this is not a definite
proof of the second law as instantaneously valid, since
it isnot clear the connection of tlie MaxEnt-entropy (in
other nomenclature tlie informational Shannon-Jaynes
entropy) and thermodynamicentropy in Clausius Sense.
As mentioned before, the MaxEnt-NSOM provides
mechano-statistical forrnclations to phenornenological
irreversible thermodynamicsl?!) except for this point.

V1. Concluding remarks

Witliin tlie context of classical mechanics we have
shown that a mechano-statistical formulation tliat is a
generalization of Gibbs and Boltzrnann ideas, narnely
the Nonequilibrium Statistical Operator Method, is de-
rived (and tliedifferent approaches unified) using a vari-
ational principle. The formalism is based on Jaynes'
Predictive Statistical Mechanics and tlie variational
procedure MaxEnt (Principle of maximization of the
informational-statistical entropy, including memory ef-
fects and ad lioc hypotheses to ensure irreversible be-
liavior in the evolution of the macroscopic state of tlie
system from an initial condition).

The MaxEnt-NSOM provides tlie basis for tlie con-
struction of a nonequilibrium nonlinear transport the-
ory of large scope, as described in Section III. As al-
ready remarlted, the collision operators involved are of
unmanageable proportions, but a practical metliod can
be devised that allows for an expression for the colli-

sion operators in the form of a series of simpler ones
organized in ever increasing powers in the strength of
theinteractionsresponsiblefor the dissipative processes
that develop in the medial®?. Such MaxEnt-NSOM
transport eyuations can be considered far reaching gen-
eralizations of Hilbert-Chapman-Enskog’s and Mori’s
methods. In Appendix B we show how Mori’s equa-

tions can be retrievecl from the method.

Thisgeneralized MaxEnt-NSOM transport theory is
applied, as described in section 1V, to the study of tlie
evolution of a system of particles interacting through
central forces and in nonequilibriiim conditions. For
its macroscopic description we introduce as basic vari-
ables the one-particle and two-particle dynamical dis-
tribution functions. The equations of evolution for their
statistical average values, i.e. the one-particle and two-
particle distribution functions, are derived. They are a
set of coupled equations that also depend on the three-
particle distribution function. Neglecting tliree-particle
collisions, talting into account that - under this circum-
stance - the two-particle distribution varies slowly in
time (foi times larger than tlie time of a binary col-
lision), and finally neglecting two-particle correlations
we recover the well known Boltzmann equation. Hence,
we prove that Boltzmann equation is contained In the
MaxEnt-NSOM in the lowest approximation in tlie in-
teractions (very dilute fluicl) and under the approxi-
mationsjust stated, which involve tlie Stosszahlansatz
condition.

The generalized transport theory, that followsfrom
the MaxEnt-NSOM in the context of Jaynes' Predic-
tive Statistical Mechanics, can then be considerecl -
for classical systems - a far-reaching generalization of
Boltzmann transport theory. In principle, it allows to
go over the study of transport phenomena in systems
arbitrarily away from equilibrium and even dense fluids
with highly correlated component particles.

In section V we dealt with the thermodynamic im-
plications of the results of section IV, mainly tlie dis-
cussion of H-theorems. This of course involves the
old question of how to define entropy in nonequilib-
rium conditions ancl the meaning of a local in space
In MaxEnt-

NSOM an entropy and cntropy production can be de-

and instantaneous in time second law.
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fined in terms of the chosen set (in general truncated)
of basic variables, and a very close identification with
those of existing phenomenological irreversible ther-
modynamics can be obtained, what provides statisti-
cal mechanical foundations for the latter. We showec|
that Boltzmann's ‘H-theorem is contained in MaxEnt-
NSOM only as a result of the approximations intro-
duced and, clearly, is not a manifestation of the sec-
ond law. Also, in MaxEnt-NSOM it is not possible,
on the one hand, to make any acceptable correlation
of the MaxEnt-entropy and MaxEnt-entropy produc-
tion with identifiable truly thermodynamic correspond-
ing state functions. At most, as already noticed, this
can be done with those of existing phenomenological
irreversible thermodynamic theories, being also possi-
ble to prove - at the statistical-mechanical level- Pri-
gogine’s principle of minimum entropy production in
the linear regime, Glansdorff-Prigogineuniversal crite-
rion of evolution, and Glansdorff-Prigogine(in)stability
conditions in the steady state of far-from-equilibrium
systems. In section V (see aso Appendix A) we have
demonstrated what we called a weak piinciple of non-
negative entropy production, which can aso be inter-
preted asa generalized H-theorem (in Jancel’s sensel®7)
and as an expression that the MaxEnt-NSOM entropy
cannot decrease in time. This result is equivaent to
that of reference 36, whose authors interpret the result-
ing inequality as thefact that, in MaxEnt, sequence of
observations performed on a macroscopic system un-

S(t) = S(to) = / dl'[pw (T]t) In p(T'[2, 0) = pu (Tt0) In p(T'[£o, 0)]

dergoing irreversible processes always results in a loss
of information in Jaynes-Shannon's sense.

As a final word, following Zwanzigm we remark
that, seemingly, the MaxEnt-NSOM - a formalism
based on Jaynes' Predictive Statistical Mechanics -
possesses a remarkable compactness and has by far a
most appealing structure, being aveiy effective method
for dealing with nonlinear and nonlocal in space and
time (namely, including spacial correlations and mem-
ory effects) transport processes in far-from-equilibrium
many-body systems. In this paper we showed, in partic-
ular, how Boltzmann's transport theory is contained in
it asan asymptotic result under very restrictive approx-
imations imposed upon the MaxEnt-NSOM transport
equations.
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Appendix A: A generalized H-theorem in
MaxEnt-NSDM

Taking into account the definition of the MaxEnt-
entropy of Eq. (62) it follows that

(A4.1)

But, because of theinitial condition of Eq. (15) we have that In 5(T[to, Q = In p, (T'|to), and, further, since the
quantity py, (T[t) In p, (I'|t) is conserved (constant in time), we can write

50~ 8t0) = = [ dTpu(TIOIn A(T1E,0) = [ p(T0)] = = [ dTpu(TIPu() = Wla pu(T1),

where P, is the time-dependent projection operator of
Eqg. (31). Hence,

S(t) - S(to) = 5(t) - Sa (1) (A.3)

(A.2)

[
where Sg; (¢) is the Gibbs'statistical entropy of Eq. (3).

Recalling that the coarse-graining condition of Eq.
(18) ensures (besides the definition of the Lagrange
multipliers F; in accord with phenomenological irre-
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versible thermodynamics) the normalization of both p,,

and j, we can express EQ. (A.2) as

A3(1) = 5(t) - Stto) = ~ [ dlpu (Tl mp(T1E,0) = pu( D0 pu (T pu(Tl0) = AT 0] (A4

Next we note that AS cancels for p,, = j, and that its variation is given by

6AS(t) = / dT6po (TJt) In pﬁ(y% _

where we used the separation of the total distribution
as py = j+ pl, asgiven by Eq. (16).

The variation in Eq. (A.5) is null for p, = p, or
in other words, for p;, = 0. Hence, A Sis a minimum
for pw = p, when it is zero, and positive otherwise,
ie. AS(t) > O. Thisis for the MaxEnt-NSOM the
equivalent of Jancel's generalized H-theorem!37],

Taking into account that & is the MaxEnt-entropy
production [Cf. Egs. (65) and (70)] we can write the
inequality AS(t) > 0 as

¢ t
dt’&(t’):/ dt’/dar&(F,t') >0. (A.6)
to to

/ dT6py (T[t) In [1 + gé“F(‘f,I?)} , (A.5)

l

which is a weak principle of non-negative entropy pro-
duction. As afinal word we stres-that the inequality
in Eq. (A.6) is, asshown by Eq. (A.5), a consequence
of the presence of the term p;,, then accounts for the
irreversible behavior of the system. [Also Cf. Eq. (69)].

Appendix B: Mori’s equations in NSOM

Let us consider Eq. (38) for the case of a system
dlightly deviated from equilibrium. Given the variables
{P;}, {Q;(1)}, and {F;(¢)}, and the auxiliary NSD

i=1

p(L}¢,0) = exp {—¢o — BH(T) - &¢ — ZAF}(t)Pj(F)} , (B.1)

where the exponent is composed of the contribution
corresponding to the equilibrium canonical distribution
plus a deviation from equilibrium; ¢ + 8¢ ensures the
normalization with ¢o = B8F, F being the free energy,

B = 1/kT, and H is the total Hamiltonian of the sys-
tem. Further we introduce

AQ; (1) = ‘:: 5_13_;%_“5 / dT Py (T)A(T|t, 0) A Fiy(t) =~ — Xk: Cix oATi(t) |

AF;j(t) = F(t) — F} (B.20)

AQ;(t)=Q;(t) - Q7 ,

where index naught indicates equilibrium values.
Both deviations from equilibrium in Egs.(B.2) are
connected by the relation

(B.2b)

(B.3)
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where

Cjk‘Q = SdFPj (F)APk(F)pO(F) ) (B.4a)

po(T) = exp{—¢o — BH} |
and the approximate sign in Eq. (B.3) means that it

(B.4b)

has been taken a linear approximationin AF, and we
have defined AP = P—- < P >, where < ... > is
the statistical average over the canonical equilibrium
ensemble.

Hence, using Eq. (38) but taking only contribution
to the collision operator in Eq. (40), we find that

HAQGM =-3 / ar B (D) AP0 (D)CE sAGm(D) + 3 [ L) JdI‘Pj(F)
k,m km

o]

% AP — )0 (T)CEL (AQm(t) = 3 / W) / 4T By (1)
km V%0

AP(T|t - t)c’“—”l‘»oleAQ"‘(t') .

i (B.5)

In the linear regime around equilibrium, Eq. (B.5) can be rearranged in first order in AQ introducing in the
last time derivative the first two terms, in an iterative process of solution, to obtain

d t
EAQj(t) = i;ﬂjkAQk(t) - zk:/to dt'W(t, ¢ )ye(t — )AQk(t') ,

where

R =~y [ APE(T)APATI0(TICHL
m

is, in Mori’s terminology, the precession matrix, and

(B.6)

(B.7a)

ikt —1) :Z/dr[pj(F)APm(r§tl—t)PO(F)C;zllc,o'*'

+> / dTP;(T) AP (T35t — )po(T)Crrt / dT P AP(T;5t' — 1)po(T)C o)

mrs

(B.Tb)

is the memory matrix. Except for the weight function W, Egs. (B.6) are Mori equations which are average values
over the canonical equilibriurn distribution of generalieed Langevin equation!®l.
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