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We present an extended review on the theory of ferronematics-suspensions of single-domain 
ferromagnetic particles in liquid-crystalline carriers. The classical continuum theory devel- 
oped by F. Brochard and P. de Gennes is considered and modified in order to  take into 
account the finiteness of anchoring of the nematic molecules on the particle surfaces. With 
a number of examples based on the recently published experimental data we show that 
our model is capable to  provide an adequate quantitative description of the equilibrium 
properties of thermotropic ferronematics. 

I. Introduction 

Ferronembtic liquid crystabs o r  Ferronematics which 

hereafter we abbreviate to FN, is the name for suspen- 

sions of monodomain ferro- or ferrimagnetic particles 

in nematic liquid crystals. The most essential feature 

of these systems is a strong orientational coupling be- 

tween the disperse phase (ferroparticles) and the liquid- 

crystalline matrix. The applied magnetic field, chang- 

ing the orientation of the particles, via them affects 

the texture of the nematic matrix. Therefore it en- 

ables to  acquire a full-scale control over the orienta- 

tional state of FN with the aid of rather weak-much 

less than 100 Oe-magnetic fields. In the first part of 

this paper (Sec.11-VII) we highlight the basic concepts 

of physics of FN, and in the second (Sec. VIII-X1)-use 

them to interpret some experimental data reported on 

real thermotropic ferronematic systems. 

The idea of creation of artificial anisotropic fluid 

substances with high sensitivity to  a magnetic field had 

appeared probably in a very short time after thc suc- 

cessful synthesis of colloidal magnetic suspensions in 

ordinary liquids - magnedzc Puids - had been firstly 

performed[l]. The move from isotropic liquid carriers 

to anisotropic ones, apart from discovery of numerous 

new physical effects, looks imensely promising from the 

viewpoint of possible technological applications. 

Indeed, nematic liquid crystals (NLC) had proved to 

be the media with a well-pronounced optical response 

(birefringence, light scattering) to  a variety of externa1 

factors - electric fieIds, flows, stresses, etc. - which pro- 

voke distinctive changes in their interna1 orientational 

structure. Due to that NIJC are now among the most 

widely used materials for making up various sensors as 

well as image processing devices. 

As to the magnetic field, the reaction of a pure ne- 

matic to  its action is relatively weak. The cause is that 

the orientational ordering of diamagnetic molecules of 

NLC cannot produce anything but the anisotropy of the 

diamagnetic susceptibility of the substance. For obvi- 

ous reasons, this anisotropy xa is of the same order of 

magnitude as that of solid diamagnetic crystals, and 

being defined per unit volume, is X, 10-~. The en- 

ergy density associated with the diamagnetic term in a 
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magnetic field H is then X,H2, which amount should 

be compared to the density of the orientation-elastic 

interaction of the liquid crystal K/D2,  where I< is the 

characteristic value of the Frank modulus and D is the 

reference size of a nematic specimen. A simple estimate 

for I< z 5 . 1 0 - ~  dyn and D N 1 0 0 ~ m [ ~ ]  shows that the 

magnetic field amplitudes H Jm capable to 

change the orientational texture of nematic, and thus 

produce a noticeable optical response, range to several 

hundreds of Oersteds and rapidly grow up to several 

kOe with the diminution of the specimen size. 

Doping a liquid crystal with ferromagnetic admix- 

ture (single-domain magnetically hard grains) should 

impart to it the magnetization M z I, f ,  where I,, is 

the spontaneous magnetization of the used ferromag- 

netic material, and f is the volume concentration of 

the grains. The corresponding contribution to the en- 

ergy density is I ,  f H. Once more comparing it to the 

orientational-elastic term, we get the estimate 

which for I, E 5.102 G (ferrite) and the former values of 

I< and L, yields H N 1 0 - ~ /  f . Thus we see that even at 

rather low volume fractions of particles (f - 10-3%) 

the characteristic amplitude oE the field, leading to a 

substantial orientational (and hence optical) response, 

is two-three orders of magnitude less than that for pure 

nematics. Note that the field range H 1 Oe indicated 

by formula (1) is comparable with the natural terres- 

trial field, so that the latter might play an important 

role in FN.  

From our viewpoint, the above-presented short ac- 

count of estimates is already a sufficient justification 

of potential merits of ferronematics. However, the ex- 

perimental way to their creation was not simple. The 

first attempt3] did not give any real proof of success. 

It had taken about ten years more until FN systems 

of lyotropic kind were ~b t a ined [~ ] .  There the liquid- 

crystalline phase was formed by orientationally ordered 

water solution of platelet-like micelles (N 30 nm in ma- 

jor size) while the magnetic component was presented 

by relatively large (- 1-10 pm in length) prolate ag- 

gregates of ultra-fine (- 10 nm) ferroparticles. The 

aggregates were formed ir1 result of a microscopic phase 

separation of an ordinary magnetic fluid dissolved in 

the lyotropic carrier. Those lyotropic FN turned out to  

be rehtively stable and reproducible, and for the first 

time have provided an opportunity to  observe and mea- 

sure the essentially new properties of liquid-crystalline 

ferromagnetic dispersions[5-~. 

As a matter of fact, the most fruitful directions of 

the would-be experimental research were outlined yet in 

1970 by the pioneering theoretical work of F. Brochard 

and P. de ~ e n n e s [ ~ ] .  Still now tliis masterly written pa- 

per may serve as a source of inspiration for a11 newcom- 

ers to the field. There the authors had proposed and 

studied magnetic NLC suspensions, whose solid phase 

consists of needle- or rod-like ferrite particles with the 

length L » a (where a is the NLC molecule size) and 

diameter d = L/10. Such a distinctive anisometricity 

imparts to  the particles a substantial magnetic rigidity 

thus making them to be small permanent magnets. The 

volume fraction f of particles in FN is supposed to be 

sufficiently small to be able to ignore the interparticle 

magnetic dipole-dipole interaction. In Ref. [9] there 

was derived a set of equations of orientational- elastic 

equilibrium in FN capable to describe large-xale struc- 

tures of the director field as well as stationary distribu- 

tions of concentration, magnetization, etc. For a long 

time the Brochard-de Gennes model was the only ex- 

isting one, and it  had been widely used in explanations 

of particular effects encountered in ~ ~ [ ~ > ~ 9 ~ 9 ~ ~ ~ ~ - ~ ~ l .  

A new line of experimental studies has begun in 

1983, when for the first time ferromagnetic dispersions 

on the base of a thermotropic nematic liquid crys- 

tal were prepared[15]. These FN consist of the meso- 

genic compound MBBA into which, with the aid of a 

special surfactant, needle-like particles of y-ferric ox- 

ide are embedded. The linear size of the particles is 

about 500nm with the aspect ratio around 7:l. With 

those thermotropic systems a number of interesting 

observations and measurements of optical effects was 

~ b t a i n e d [ l ~ - ~ ~ ] .  
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I t  occurred, however, that the t h e ~ r y [ ~ ] ,  never be- 

ing in serious contradiction with the experimental evi- 

dente on lyotropic FN, came to a dead-end when having 

been applied to  thermotropic ones. The most clear and 

unambigous qualitative proof of this (though not men- 

tioned by the authors) had been given right in the very 

first paper on thermotropic FN['~]. There is reported an 

observation of t,he Fredericksz transition wit,h a thresh- 

old of severa1 hundreds of Oe in a FN slab where the 

applied magnetic field was perpendicular to the unper- 

turbed director of the nematic matrix. However, as it 

is shown explicitly in Refs. [10, 111, according to the 

Brochard-de Gennes model in such a situation FN must 

display an immediate orientational response to  the field, 

i.e., the transition threshold rnust be exact zero. 

This principal contradiction had tempted us to re- 

consider the basic assumptions of the classical theory[". 

Our ~ o r l d ~ ~ - ~ ~ ]  hacl yielded that a correct description 

of the observed behavior of thermotropic FN may be 

achieved if to  turn down just one of the postulates of 

[9] - the assumption of rigid anchoring of the nematic 

molecules on the particle surfaces. In fact, the detailed 

analysis resulted in a size-dependent criterion of ap- 

plicability of the rigid anchoring approximation, and 

proved that the latter, being valid for large quasi-grains 

of lyotropic FN, fails for much smaller particles of ther- 

motropic dispersions. 

In a composite medium, which FN actually is, each 

component-the ferroparticle assembly and the nematic 

matrix-possesses its own set of the orientational de- 

grees of freedom. So, the form of the equilibrium equa- 

tions essentially depends upon the origin of coupling 

between the order parameters of the subsystems. In a 

magnetized F N ,  where the parallelicity of the particle 

axes means, simultaneously, the alignment of their mag- 

netic moments, i t  is reasonable to characterize tlie state 

of the orientational order by two intrinsic variables- 

director n ( r )  and local magnetization M(r)-bobh aver- 

aged over a spatial scale large in comparison with the 

particle size L. Therefore, the macroscopic theory of 

FN should contain at least one parameter responsible 

for the local correlation between n and M. From this 

point of view, the approach proposed in Ref. [9] looks 

indeed oversimplified, since it takes into account only 

the asymptotic case of infinitely strong orientational 

coupling: demanding, instead of a balanced correlation, 

an invariable parallelicity of n and M. 

In Refs. [21, 221 we have demonstrated that the 

rigid anchoring approximation (n 11 M) may be used in 

FN only if the condition 

holds; here W is the surface density of the anchoring 

energy of the nematic. For the existing MBBA-based 

FN with the homeotropic surface alignment one should 

set W 10-~-  10-' dyn/cm and I< N 5.10-7 dyn (see 

Ref. [24], for example). Substituting this into Eq.(2) 

together with the given in[15-171 vaIue of the trans- 

verse diameter of the particles ci N 70 nm, one gets 

W d / K  = 1 0 - C  10-I that is apparently not greatei 

than unity. In view of Eq. (2): tlie latter estimation 

proves that tlie rigid anchoring approximation is invalid 

for thermotropic FN. In below we shall develop a con- 

tinuum moclel of FN taking into account the finiteness 

of the surface energy, i.e., valid for the case WdlK 5 1. 

11. Orien ta t iona l  d i s tor t ions  c r ea t ed  by a solid 

an isomet r ic  par t ic le  ins ide  a uni form nema t i c  

Although our objective is the development of a 

macroscopic approach, we have to  begin with some 

single-particle, "microscopic" , problems which are of 

fundamental significance for a11 the further consider- 

ations. As the first step, it is necessary to determine 

a character of the orientational distortions induced in 

an anisotropic fluid (NLC) by a suspended object-an 

individual particle of a suspension. In the rigid anchor- 

ing approximation (2) this question had been in detail 

studied in Ref. [9], but now we need the solutions valid 

for finite values of $/V. 

Let us consider a solid acircular particle embed- 

ded in a uniform nematic domain whose director no = 

const(r) is fixed at infinity. We assume that a11 over the 

particle surface some definite boundary condition holds. 
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Since the length L of the magnetic grain is always much 

greater than the size of the nematic molecules, the par- 

ticle behaves like a macroscopic object interacting with 

the director field by the orientational-elastic and surface 

potentials. The total free energy of the system is then 

the sum of the corresponding contributions integrated 

over the sample volume V and the particle surface S, 

respectively: 

Here y is the angular deviation of the director from 

its easy-orientation direction on S. Note that writing 

down Eq. (3) we have made certain conventional sim- 

plifications: chosen the surface potential of NLC in the 

Rapini form (see Refs. [2, 24]), and adopted the single- 

constant (isotropic) approximation for the elastic en- 

ergy, i.e., neglected the differences between the Frank 

moduli Ki setting K1 = K2 = Kg = K .  

According to usual r u l e ~ [ ~ ] ,  variation of the func- 

tional (3) gives the equilibrium equation for the liq- 

uid crystal orientation together with the corresponding 

boundary condition: 

where SFls is the variation of F on the particle sur- 

face. At distances r > L, i.e., far from the particle, 

the latter but weakly disturbs the orientation field. So 

the solution of Eq. (4) may be presented in the form 

n ( r )  = no+Sn(r),  where Sn = ( h , ,  6ny, O) in the coor- 

dinate system with the z-axis along no .  Taking into ac- 

count the transversality of the perturbation (Sn I no),  

one may write it as 

6n  = (O x no) , (5) 

thus introducing an auxiliary pseudo-vector O.  Ac- 

cording to Eqs. (4)-(5), it has to satisfy the conditions 

V252, = V2Cly = O or the vector Laplace equation 

everywhere inside the liquid crystal volume. 

For a non-chiral particle, vector 0 vanishing at in- 

finity, expands into inverse power series in r as 

where a and q do not depend upon r. The scalar pa- 

rameter q is determined by the nature of the boundary 

condition on the particle surface and vector a-by the 

orientation of the particle relative t o  the liquid crys- 

tal. Then for a we may use the proposed in Ref. [9] 

representation 

where 1 is a pa.rameter of the dimension of length, and 

the unit vector u denotes the direction of the main 

symmetry axis of the particle. In general, instead of 

a mere product (nou)l,  in Eq. (8) one has to write 

f(cos 6), where f is some odd function of the argument 

(nau) z cos 8. The purpose of the simplification made, 

which is in fact the replacement of f by just the first 

term of its expansion in the power series in cos 19, is 

that it is sufficient for the model in question. 

In the following it  is convenient to  choose 1 positive, 

and describe the possible change of vector direction 

by the change of sign of q.  To comply with the choice (8) 

of a, the "interfacial" coefficient q should be a dimen- 

sionless function of the only dimensionless combination 

available, namely, the ratio 

(cf. Eq. (2)), of the reference particle size R to the 

so-called extrapolation length b = K / W  [2] of the liq- 

uid crystal. In below we show that for a solid cylinder 

suspended in a nematic, parameter R coincides with its 

radius. As to the magnitude of the functiou q(w), it is 

easy to point out to its limiting values: for rigid an- 

choring (q(co)( = 1 (see Ref. [SI), and for the entirely 

degenerated (isotropic) boundary condition q(0) = 0. 

Therefore, it loolts reasonable to  assume that in the 

intermediate w range lq(w)l < 1. 

Returning to the solution (5) of the equilibrium 

equation and substituting therein Eqs. (7) and (8), we 

may write it in the form of a long-wave distortion 
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To understand the meaning of vector s,  let us consider 

i t  under condition of small rotations of the pazticle 

)6ul = Ju - uoJ  « 1 for two possible types of the parti- 

cle equilibrium orientation. At no 11 u ~ ,  that is the case 

considered in Ref. [9], when Su I no, one gets 

where u l  is the component of u in the direction per- 

pendicular to no  and u ~ .  Since in this situation u~ 

is the wliole perturbation, it means that s = h / .  At 

no I uo which, as it would be shown below, is the case 

for FN with soft anchoring, expansion of s with respect 

to  small rotations gives 

The latter vector has the length ]Sul but is parallel to 

uo which is now the axis along the Sn direction. From 

Eq. (9) it is clear also that at  rigid anchoring (Iq] = 1) 

the role of the distortion amplitude is played solely by 

I while at finite w ,  it is reduced by the factor q. 

To evaluate the torque exerted on the nema.tic by 

the embedded particle wit4h an arbitrary ~rientat~ion u, 

let us surround the particle by a closed surface C suf- 

ficiently remote as to  allow the use of the asymptotic 

formulas (7) and (9) for 0 and Sn. Varying the system 

free energy (3) and taking into account tlie equilibrium 

volume and boundary conditions, we get 

With the aid of Eq. (9) and the condition 6n I no it 

transforms into 

Hence, the torque exerted on the nematic by the 

particle may be written as 

If the particle does not experiente any additional exter- 

na1 force (magnetic, gravitational etc.), then its torque- 

free static orientation uo is determined by condition 

I' = O. Eq. (10) provides two choices, viz., uo ( 1  no and 

uo I no. Of the latter, the stable one is selected by 

the demand that the free energy decrement should be 

positive, or that the perturbation-induced torque of the 

nematic matrix should restore the initial state. From 

Eq. (10) it follows that the actual equilibrium orien- 

tation of the particle is determined by the sign of the 

coefflcient q. For example, at  q > O it is stable at u ) I  no 

and unstable at uo I no.  Note that neither of these two 

orientations induce any long-wave distortion: substitu- 

tion of Eq. (8) into Eq. (10) yields a = O at  I' = 0. 

These distortions arise only when there appears some 

externa1 torque reZt acting on the particle. In equilib- 

rium r,,t is counteracted by the torque - I' exerted by 

the nematic on the particle, and the balance condition 

gives a = reZt /4nqK.  

111. Dis tor t ion  energy  

From now on we shall consider a particle in the 

form of a long cylinder (its length being L and radius 

R - L/10) suspended in NLC and assume that the 

boundary conditions are the same a11 over the cylinder 

surface. Let us evaluate the free energy (3) for an ar- 

b i t r a r ~  orientation of the particle axis relative to  the 

unperturbed director no. Though the exact solution 

of this problem could be found only for certain par- 

ticular it is feasible to  obtain a reasonable 

approximationfor the general one. For this purpose, we 

need to estimate the volume and surface integrals en- 

tering Eq. (3). Doing that,  we shall neglect the effect 

of the end-walls of the cylinder, since their contribu- 

tions are about R/L  times less than that of the lateral 

surface. Taking into account that in the case of finite 

anchoring \ V n (  - l / b  near the particle surface, for the 

orientational-elastic term we have 

and for the surface contribution 





Brazilian Journal of Physics, vol. 25, no. 2, June, 1995 

Figure 1: Cylindrical particle suspended in a nernatic; on 
the choice of the reference angles. Here LI is tlie unit vector 
of the particle major axis, no is the unperturbed director of 
the nematic domain, nos is the easy orientation direction 
on tlie particle surface, a and /? are the angles of nos witli 
the axes of tlie coordinate framework whose polar a.xis lies 
along u. 

IV. Or ien ta t iona l  in te rac t ion  of t h e  par t ic le  as- 

sembly  w i t h  the nema t i c  m a t r i x  

Let us proceed to the problem of the orientational 

coupling between the nematic and the particles sus- 

pended in it. As it had been shown in Ref. [9], in the 

systems alilte FN, the nematic matrix in response to the 

unison rotation of the particles might display two types 

of the orientational behavior. The first one takes place 

when the number concentration c of the solid phase is 

lower than some characteristic value c,. Under these 

circumstances each particle distorts the director field 

independently of the neigbors, and the deviations be- 

tween local u and n are great. Due to that,  the result- 

ing perturbations but weakly influence the macroscopic 

striicture of the nematic. Conversely, if the particle con- 

centration exceeds c,, then the response mode known 

as the collective behavi~&~]  occurs. Upon it, the local 

orientation deviations of the particles and nematic are 

close and change smoothly over the F N  sample. Only in 

this case the rotation of particles induces a substantial 

macroscopic orientational response in the NLC matrix. 

Let us use the method proposed in Ref. [9] to evaluate 

the critica1 value c,for the case of finite surface energies 

W. 

Consider an assembly of cylinder-like particles in a 

nematic with the initially uniform director no. Let vec- 

tor rp denote the position of the center of mass for the 

p-th particle and unit vector up-its symmetry axis di- 

rection. As formerly, we assume that the deviations of 

the particle ~rient~ation from its equilibrium direction 

are small: [Sul « I .  With allowance for Eqs. (9) and 

(17) the volume distortions of the director field may be 

presented in the form 

where the term in square brackets is the sum of par- 

tia1 variations of the vector s from Eq. (9) with regard 

to u and no, respectively, taken at the point r p  The 

meaning of such a form of the right-hand side of Eq. 

(21) becomes clear if to write it explicitly for the cases 

of parallel and perpendicular orientations of the par- 

ticles. As it  has been shown in Sec.111, at q > O the 

equilibrium state is u o  ( 1  no. Taking the corresponding 

variations of s, we get 

both functions are defined at the point r p  Substitution 

to  Eq. (21) yielcls 

and grants that a grain positioned in r, causes no dis- 

tortions if it aligns with the local direction of n = 

no + Sn(r,). 

For the case u I no when the parameter q is nega- 

tive, the pertinent variations give 

With the use of these formulas, Eq. (21) transforms 

into 

Here the right-hand side term, proportional to  Sn, as 

well as that in Eq. (22), eliminates the long-range dis- 

tortions when the director field in the point rp exactly 

fits the particle orientation u. However, due to  a more 

complicated relation between no and uo, the form of 
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expression inside the bracket in Eq. (23) is less obvious 

than that of Eq. (22). 

To pass to the continuum description, let us act 

upon Eq. (21) with the spatial Laplace operator V2.  

With the aid of the relation v(r-rp)- '  = -4nS(r-rp), 

with 6(r - rp)  being the Dirac's delta, this yields the 

equation 

where c is the number concentration of the particles. 

Using the above-obtained expressions for Ss one gets 

from Eq. (24) in the considered particular cases 

v 2 S n  = -J2(u1 - h), for no 1 1  u o  

v2(uo6n) = -c2[(noSu) + (uohn)], for no I uo 

where 

c2 = 4 n c l q l ~  . (25) 

Both equations have the same formal solution 

with @ = 6n and S, = ul  for the parallel case, and 

= (uobn) and = -(noSu) for the perpendicular 

one. The structure of the kernel in Eq. (26) shows that 

a distortion arisen by an individual particle is screened 

out (due to  the presence of the other particles) at dis- 

tances greater than c-'. Setting c - 10'' cm-3 and 

taking q - 0.1 (sof achoring) one finds E-' - 10 pm as 

the reference value. 

Assume that inside some region (its size denoted as 

D)  of the FN sample a unison rotation Su + O of the 

particles imposed, while elsewhere Su = O. In this case 

the estimation of the integral of Eq. (26) for the points 

inside the region of rotation gives 

tlie particle- induced director perturbations are minor 

( ISn 1 < ]sul) and, therefore, macroscopically negligi- 

ble. 

As Eqs. (25)-(27) shows, to  achieve the collective 

response, the particle concentration at given D must 

exceed the critica1 value 

In the rigid anchoring limit (q = 1) this estimate coin- 

cides with that of Ref. [9]: c, - (LD~) - ' .  For the finite 

anchoring c, becomes q-' times larger due to the renor- 

malization of the distortion amplitude: L -t IqlL. The 

measurements of the critica1 concentration of the collec- 

tive behavior c, carried out for lyotropic FN in Refs. [5, 

261, had confirmed the scale dependences c, cc (LD2)-' 

of formula (28). 

The critica1 concentration c, may be obtained as 

well on the basis of very simple estimates. Let us com- 

pare the energies associated with two possible modes 

of response of the NLC matrix to a unison rotation of 

the particles. The first mode is the individual behavior, 

when each particle distorts the matrix independently 

on the others. The energy increment, according to the 

formula (12) is - wKL per particle. For a unit vol- 

ume containing c particles, it is Eind - cwKL. The 

second mode, which is the collective response, takes 

place when the particles are oriented relatively to the 

director at nearly tlie equilibrium angle, and the di- 

rector distortions are smeared over the largest spatial 

scale available, i.e., the specimen size D.  For this case 

the orientational-elastic contribution to the energy den- 

sity is - l<IAnI2 - Ir'/D2. Apparently, the ac- 

tua1 mode of response would be the one with the lower 

energy. Comparison of Eind and shows that the 

collective mode is favored as soon as 

which proves that the degree of orientation imposed by 

the particles on the director field, is determined by the 

ratio of the specimen size to the screening length E - ' .  
For D > J-' the director distortions are substantial 

(ISnl TZ ISuI), i.e., the particles govern the macroscopic 

texture of the nematic. In the opposite case D « E-' 

Recalling that the "interfacial" parameter q by the or- 

der of magnitude equals to  w-see formula (17)-one im- 

mediately recovers the relation (28). 

If to measure the particle concentration in the units 

of the dimensionless volume fraction f = cv, where v 
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is the particle volume, then for the assembly of cylin- 

drical particles one gets with the aid of Eqs. (17) and 

(28) the lower bound of the collective behavior in the 

form f, = c,v - ( ~ b l D ~ ) .  Taking for estimates a ther- 

motropic FN sample (layer) with D - 100 pm, R E 35 

nm and b - 100 nm, we find f, 5 10-6. This ensures 

that the amount of the ferromagnetic admixture suffi- 

cient to acquire control over the NLC texture, is rather 

small. 

V. Magnet iza t ion  s t a t e s  of ferronematics  

Magnetic properties of FN are the "sum" of con- 

tributions from the nematic matrix and ferroparticles. 

The nematic itself is subjected to the well-known dia- 

magnetic interaction['] with the external field. This 

contribution at f < 1 does not depend upon the pres- 

ente of the particles, and further on would be treated as 

usual. To clarify tlie origin of the additional terms, one 

has to  consider the orientation of the particles. Each 

single-domain prolate grain made of a ferromagnetic 

material with the saturation magnetization I, possesses 

the permanent magnetic moment p = I,vu, where u 

denotes the unit vector of the partide major axis. Ac- 

cording to relations (19), in a uniform nematic with the 

director no such particles settle either along (at a < a,) 

or transversely (at a > a,) to the optical axis of Lhe ma- 

trix. Therefore, in the first case the magnetic moments 

with equal probability acquire directions no or -no, in 

the secon:d casc are oriented in an arbitrary way in the 

planes normal to no. In other words, depending upon 

the boundary angle a ,  the nematic environment (the 

NLC matrix) creates for the particles the anisotropy 

either of the "easy-axis" or "easy-plane" type. 

In the absence of the external field or without spe- 

cial preparations these systems are exgected to stay in a 

magnetically compensated state, where their magneti- 

zation M = (l/AV)Cpi i.e., the sum of magnetic mo- 

ments averaged over a macroscopically f infinitesimal 

volume element AV, is zero. However, to be able to 

govern the FN texture, one needs the suspension with 

a. non-zero initial ("spontaneous") magnetization. For 

FN whose particles align with the director there exist 

at  least two ways to achieve such a state-see Ref. [9]. 

Namely, they are: 

- the system is cooled from the isotropic phase down 

to the nematic one in the presence of a uniform 

magnetic field H parallel to tlie would-be opti- 

cal axis of the nematic. (This direction might be 

determined, for example, by the boundary condi- 

tions on the sample walls.) In the isotropic state 

the particles align their magnetic moments with 

H, and the temperature-induced transition in the 

nematic matrix traps this configuration after the 

remova1 of the field; 

- the already prepared compensated FN sample is 

subjected to a single short magnetic field pulse 

with the amplitude H > H,, where H, E 2ã1, 

is the particle coercive force. If the duration of 

the pulse is shorter than the characteristic time of 

the particle mechanical rotation, then, due to the 

intraparticle flip of the magnetic moments over 

the potential barrier of magnetic anisotropy, a11 

the magnetic moments of the particles in a sus- 

pension align along the same direction. After this 

tuning up, the magnetization of FN is fixed by the 

orientational coupling ( r q K L  » k B T ) .  The effec- 

tive interna1 field, stabilizing this "spontaneous" 

magnetization, is H, - ãqKL/I,v = 4Kq/~ ,d2 .  

For q = 0.1, I '  = 5 .  10-7dyn ,I, = 500G and 

R = 35nm the estimate yields H, - 10 Oe. 

Now let us consider a ferronematic with rod-like par- 

ticles lying in the planes perpendicular to  the axis of 

the nematic. In this situation the previous estimate 

for the strength H, of the stabilizing field holds as 

well. But due to  the different kind of its symmetry, 

H, whatever perfectly suppressing the deviations of the 

particles from the singled-out plane, cannot build up a 

magnetized state. To create and maintain a non-zero 

magnetiza- tion, such a system should be subjected to a 

certain uniformfield H I no .  Rotation of ferroparticles 

to the direction of Hb does not distort the equilibrium 

texture of the nematic matrix, and FN magnetizes like 

a two-dimensional isotropic paramagnet: 
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Here f is the local vaIue of the solid phase volume frac- 

tion, I1 and I. are the modified Bessel functions of the 

so-called Langevin parameter p = I,vHb/kBT, which 

is the ratio of the magnetic energy of the particle to 

the energy of its thermal motion. The asymptotics of 

formula (29) are 

whence the saturation behavior M -+ I, f at p » 1 is 

obvious. Using the cited above dimensional data, one 

finds that p > 10 at room temperature for the field 

strength as small as H 5 1 Oe. Hence, even a weak 

field, lying in the "easy plane", makes FN to be mag- 

netized nearly perfectly. 

Since further on we shall deal only with the magne- 

tized F N  it is convenient to describe their macroscopic 

magnetization distribution by a unit vector m(r )  de- 

fined by relation 

where the averaging over the volume element AV » L3 

is implied. Adopting relation (30), we take for granted 

that FN is locally saturated. For rigid anchoring, 

as in Ref. [9], formula (30) immediately reduces to 

M = I, f n .  For the case of soft anchoring, Eq. (30) 

should be taken in its initial form. One has just to 

remember that in this case the basic state of FN is 

not completely field-free, but includes a certain small 

uniform bias field H b  fixing the direction of m inside 

the "easy plane". In any applied field H, the resulting 

distribution m(r )  is determined by the joint action of 

H + Hb. As it has been already shown, the reference 

value of Hb is tiny; in the experiments of Refs. [15, 16, 

17, 18, 191 as such the terrestrial magnetic field (- 0.5 

Oe) had been employed. 

VI. Free energy  of a fe r ronemat ic  

To solve any macroscopic problems concerning fer- 

ronematics, one needs to have the pertinent free en- 

ergy expression. The corresponding formula for the 

soft-anchoring case follows from the above presented 

considerations. First we write it dow 

and then explain its structure. The first bracket repre- 

sents the conventional Frank potential of the nematic 

matrix, I& (i = 1,2,3)  being the orientation-elastic 

moduli. The second term is also standard, and yields 

the density of the magnetic energy of the nematic ma- 

trix. There X ,  stands for the anisotropic part of the 

NIC diamagnetic susceptibility; for a11 usual nematics 

X, is positive. The next two terms of Eq. (31) are the 

magnetic energy of ferroparticles in the externa1 field, 

transformed using Eq. (30), and the contribution of the 

mixing entropy of the their ideal solution, respectively. 

The last term of Eq. (31) is more peculiar and needs 

clarification. Returning to Eq. (20) for the energy of 

the individual particle in the soft-anchoring limit, we 

may rewrite its part depending on the particle orienta- 

tion as 

3 ( B )  = ( A W V / ~ R ) ( U ~ O ) ~  , (32) 

where parameter A = -2Pz(coscr) - see Eqs. (17)- 
(20)-is determined by the boundary conditions. We as- 

sume that for an orientationally-deformed magnetized 

FN this equation holds as well if to replace u --+ m 

and no -, n. . Proceeding to the macroscopic scale 

and multiplying Eq. (32) by the particle concentration 

c, one recovers the particle-matrix interaction term en- 

tering Eq. (31). For homeotropic orientation we have 

cr = n/2 - see Fig.l, and thus A = 1. 
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The proposed continuum expression (31) is specified 

to  describe F N  with weak (w < 1) orientational cou- 

pling. According to it ,  the state of FN is characterized 

by three thermodynamically-independent spatial distri- 

butions: director n ( r ) ,  particle concentration f (r)  and 

unit vector of magnetization m(r) .  It is worth to re- 

mind that the model of Ref. [9], that takes for granted 

the rigid anchoring of NLC on the particles, prescribes 

the unbreakable relation m( r )  = n(r ) ,  thus eliminating 

m( r )  from consideration. Note, however, that the same 

result follows as well from Eq. (31) after the limiting 

transition W -+ oo at A < 0. 

VII. Bond ing  equa t ion  and seggregat ion effect 

i n  a fe r ronemat ic  

Integrating the energy density (31) over the volume 

of the F N  sample, we get the total free energy in the 

form of a functional F = 1 Fdv. Its minirnization with 

respect to m( r )  yields the equation for the equilibrium 

magnetization 

( m  x H,) = O , (33) 

where the effective field governing the orientation of 

magnetic particles in FN is 

H, = - 6 ~ / ~ 6 m  = H + H,(mn)n, H, = -AW/Ia R . 

(34) 
These formulas show that the spatial distribiition of 

the magnetization direction m ( r )  depends upon both 

the external field H and the internal, parallel to the 

director, anisotropy field H,. In the equilibrium state 

the vector triad H , m ,  and n should be coplanar in 

each point of the sample. At given H , Eq. (33) with 

allowance for Eq. (34) couples the orientational distri- 

butions m ( r )  and n( r )  thus modifying the rigid anchor- 

ing model. With regard to this fact, further on we shall 

refer to Eq. (33) as the bonding equation. In scalar 

representation it reads 

H, sin 28 = 2H sin(x - O) , 

where the angles are defined in Fig.2. 

Figure 2: On the definition of the effective rnagnetic field 
acting on the rnagnetization of FN for the cases of positive 
(a) and negative ( b )  anisotropy. Note that the dashed rod 
is drawn only a s  an eye guide, a11 the presented vectors are 
tlie variables of the macroscopic model. 

Note that Eqs. (33)-(34) closely resemble (in fact, 

coincide with) those describing the equilibrium orien- 

tation of the magnetic mornent in a single-domain fer- 

romagnetic crystal with a uniaxial anisotropy (see Ref. 

[27], for example). In the latter case the orientation- 

dependent part of the particle energy is 

where Ka is the magnetic anisotropy constant and v 

is the unit vector of the magnetic anisotropy axis di- 

rection. If to  fix the particle orientation, i.e., vector v,  

then the equilibrium direction of the magnetic moment 

m is determined by minimization of U with respect to 

m .  This yields exactly Eqs. (33) and (34) where now 

H, = 21 ía / I s .  That means that in FN the nematic ma- 

trix is the source of a uniaxial anisotropy field acting on 

the ferroparticles, -AW/2R being the anisotropy con- 

stant. This effective field singles out the preferable di- 

rections ancl stabilizes the remanence magnetization of 

FN. As far as the external field is weak (H < IH,I) fer- 

roparticle orientation is governed by the director. Since 

in real FN the amplitude H, is about 100e, it means 

that the particle coupling with the NLC matrix might 

be considered as "rigid" only if H < 1 Oe. In the op- 

posite limiting case (H > /H,/), i.e., H 2 102 Oe, the 

particle orientation is controlled by the applied field. 
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Now let us evaluate the equilibrium distribution of 

the particle concentration. Minimization of the func- 

tional with respect to  f ( r )  gives the Botzmann-Iike 

formula 

AWV 
f = fo exp [ g ( m ~ )  - - 

~ ~ B T R  

where the constant fo is determined by the usual nor- 

malizing condition 

fixing the total number N of the particles. 

At H = O vector m according to Eqs. (33)-(34)is 

always parallel to the anisotropy field, that means 

(nm)  = const(r). This makes Eq. (35) trivial, so that 

it does not affect any initial distribution of concentra- 

tion. Formula (35) becomes important if i t  is necessary 

to  analyze the field-induced distribution of the particles 

in an orientationally deformed FN. Consider a uniform 

magnetic field H imposed on a non-uniformly oriented 

sample of FN, where the initiaI concentration of the par- 

ticles had been constant. Due to the spatial dependence 

of the orientational texture n(r) ,  the power exponent 

in formula (35) becomes a function of coordinates. It 

increases in those regions of the sample where the par- 

ticles, being in the most favorable orientation relatively 

to the local director n ( r )  are at the same time most 

closely aligned with the applied field. Since the distri- 

bution (35) is the equilibrium one, we conclude that 

upon appIication of the field, the particles move, pop- 

ulating some particular places of the sample, singled 

out by relative orientation of n and H. This equilib- 

rium concentration re-distribution, that, after Ref. [9], 

is called the seggregation eflect, is one of the most re- 

markable features of FN. Note that it is provoked by 

a uniform field and has nothing to do with the plain 

magnetophoresis. 

VIII. Diamagnet ic  Fredericksz t rans i t ion  in a 

s t rong  bias field 

The expression for the free-energy density for FN 

with w < 1 and any type of boundary condition, de- 

rived in Sec. VI, reads 

Here X ,  is the anisotropic part of the diamagnetic sus- 

ceptibility of nematic, H is the externa1 field, Ms, is 

the saturation magnetization of the particle substance, 

R and v are the radius of a rod-like particle and its 

volume, respectively, m is the unit vector of the FN 

magnetization direction defined as M = I ,  f m  and 

f is the volume fraction of the particles. Coefficient 

A = 1 - 3 cos2 a characterizes the type of the bound- 

ary condition, where a is the easy-orientation angle for 

of the nematic director n on the particle surface; for 

homeotropic anchoring A is positive and equals to unity. 

In the following we apply our model to the ori- 

entational behavior of FN with the homeotropic soft 

( A  = 1,w < 1) anchoring and use the results to  inter- 

pret the experimental data on real thermotropic FN re- 

ported in a series of papers[15~17~1". While considering 

the FN layers, we take for granted that in the initial 

unperturbed state the sample (i) consists of a single 

liquid-crystalline domain and (ii) is subjected to a per- 

manent bias field H b  I no due to which is magnetized 

up to saturation with M o  = I, fmo along the direction 

of H b .  The first of these assumptions is a usual idealiza- 

tion to  avoid taking into account the liquid-crystalline 

defects of non-magnetic origin. The second one, as it 

is shown in Sec. V, is necessary both in theory and ex- 

periment to remove the orientational degeneracy of the 

particle magnetic moments which occurs in the "easy- 

plane" structures where Mo is perpendicular to no. In 
the above-used notations, as well as in below, the sub- 

script O refers to  the orientational variables describing 

the initial state of the sample which is supposed to be 

spatially uniform. 

We begin with the re-consideration of the classi- 

cal liquid-crystalline effect-the Fredericksz transition- 
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caused by the diamagnetic anisotropy of the nematic 

mclecules. The initial geometric patterns of the con- 

sidered FN cells are presented in Fig.3. Each cell is 

taken to be an infinite flat layer with the thickness D 

bounded by solid plane walls where either planar or 

homeotropic boundary conditions are imposed on the 

nematic. The diamagnetic susceptibility anisotropy of 

the latter is supposed to be positive: X, > 0. 

and has many modifications in magnetic as well as elec- 

tric fields-see Ref. [2], for example. 

From Eq. (36) it follows that in FN the destabi- 

lizing diamagnetic term X,(~H) '  is counteracted by 

the stabilizing "ferromagnetic" one - I, f (mH)  . We 

remind that in the initial geometry ro I mo. I t  is clear 

that in the long run the diamagnetic contribution, be- 

ing proportional to H 2,  prevails. However, the presence 

of ferroparticles must shift the value of the critica1 field- 

strength of the Fredericksz transition upward. 

For quantitative results, let us focus on the cell 

slretched in Fig.3a. In the initial (non-perturbed) state 

the FN specimen magnetization Mo = ~ ~ f m o ,  where f 
is the average volume fraction of the particles. We set 

the z-axis of the coordinate framework along the Hb 
-00 

I I I I I I  direction and consider the stability of the initial pat- ------- 
fio i i I & I  i -e---- - tern against the perturbations ofn, m and f .  Assuming 

I I  I 11-I I 
00 OFi - - - - - - -  IHI i r n o ,  I that they depend only upon the z-coordinate, with lin- 

Figure 3: Initial textures of the FN cells with planar (a  an3  
b) and homeotropic (c) anchoring, where the diamagnetic 
Fredericksz hansition t,akes place. 

If to look at any pattern in Fig. 3, it is clear that 

the bias field Hb, while increasing, plays an ambiguous 

role: it stabilizes the magnetic particles alignment since 

H b  11 mo, and decreases the stability of the nematic ma- 

trix orientation since H b  I no. For a pure nema.tic (no 

ferroparticle dope) the eventual result of Hb  growth is 

well-known: immediately after overcoming the thresh- 

old H, i ( T / D ) ( K / ~ , ) ~ / ~  the uniformity of the ini- 

tia1 texture breaks down. This phenomenon, called ihe 

Fredericksz transition, is inherent to anisotropic fluids, 

I 

ear accuracy one has 

where ny , n, , m,, my and S f /  f are small comparing to 

unity. For a translationally uniform in the x-direction 

case the integration of the function F, given by Eq. 

(36), across the layer yields the funct ional3 that is the 

free-energy density of the system per unit area of the 

wall. Expanding this functional into a power series in 

perturbations (37), up to  the lowest nonvanishing order, 

one gets the expression for the free energy increment in 

the form [28] 

Here we have temporarily omitted the subscript b at  n y , m y  and S f  do not interact, and thus do not con- 

the bias field Hb. tribute to  the destabilizing effect. Due to that, they 

might by omitted. In the functional space n, (z)@m,(z) 

As it follows from Eq. (38), the pcrturbations 
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the line of the steepest descent to the stability thresh- 

old 6 3  = O is the way along which the functional is 

minimum with respect to either of its variables. Let 

us take m,(z) as the independent one. Then the equa- 

tion for the extremum trajectory is given by condition 

6F/6m, = O. The explicit form of the latter, 

yields the relationship between the most dangerous per- 

turbations. Substitution of Eq. (39) into Eq. (38) 

eliminates m, and gives 

NOW we need to specify the boundary conditions 

on the cell walls. I t  is worth reminding that even for 

the finite boundary energy the anchoring of n might be 

treated as rigid, if to  consider imaginary walls shifted 

beyond the real ones by the extrapolation length b. In 

our case b = K / W  ranges from 0.5 to  5 ,um. Since 

we intend to deal with the FN cells not thinner than 

D - 100 pm, the smallness b < D enables us to neglect 

the non-rigidity on the cell walls and set the director 

perturbations there equal to  zero. Taking advantage of 

this simplification, we expand n, into the Fourier series 

00 

n, = C vi sin(nlz/D) , 
1x1 

n,(O) = n,(D) = O . 

Substituting this into Eq. (40) and performing the in- 

tegration, we get the energy increment in the form 

where the expansion amplitudes (square brackets) are 

diminishing functions of the field strength. Setting the 

smallest of them equal to zero, i.e., focusing on the ut- 

most large-scaled perturbation mode ( I  = I),  we arrive 

at equation 

determining the Fredericksz transition threshold I?, in 

FN; here H, = ( T / D ) ( I ( ~ / ~ , ) ~ / ~  is the critica1 field 

valiie in a pure nematic. 

Solution of Gq. (41) is easy, because at H 10' Oe 

theie exists the small parameter W/Is HR « 1; in the 

first order in i t ,  Eq. (41) transforms into 

thus proving the expected increase of the instability 

threshold. So we see that in the geometries of Figs.3 a-c, 

the applied field stabilizes the particle orientations, and 

thus effectively counteracts the approaching instability. 

Calculations show that formulas (41)- (42) hold for each 

cell in Fig.3, except that for the pattern b the elastic 

modulus ICi in H, must be replaced by K2 (twist) and 

for c - by IC3 (bend). 

Let us estimate the range of the particle-induced 

contributions to I?, in the thermotropic FN. Setting 

xa 10-7 W - 1 0 - ~  dyn/crn and substituting f - 
I O - ~  and R z 35nm, one gets G 150 Oe. This pre- 

diction is in clualitative agreement with the observatioris 

of Ref. [15]-the only one that had dealt with the herein 

considered geometries. Though no regular quantitative 

data are reported, the fact that at  D - 300 pm the 

orientational transition takes place only at H > 200 Oe 

is clearly stated there. 

IX. Magnetic field-induced birefringence 

IX.l Formula for the optical phase lag 

In the preceding Section we have given an exam- 

ple, how the presence of magnetic particles modifies 

the classical liquid-crystalline effect in FN. Hereafter 

we address the phenomena of another type-the field- 

induced effects which are exclusively inherent to fer- 

ronematics and are provoked by magnetic fields whose 

order of magnitude does not exceed 10 Oe. Apparently, 

in these low fields the diamagnetic term in Eq. (36) is 

by a11 ineans insignificant and hence may be omitted. 
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Figure 4: A flat layer of a ferronematic in the external mag- 
netic field H, = H + Hb; in the right-hand part the choice 
of the coordinate axes and reference angles is shown. The 
electric field E is present only for the case considered in 
Sec.X. 

Consider a magneto-optical effect in the orienta- 

tional structure presented in Fig.4. Homeotropic FN 

cell is subjected to a constant external field having 

two components: H and H b ,  respectively, parallel'and 

normal to  the unperturbed director no. According to 

the concept of magnetization of FN with soft anchor- 

ing, proposed in Sec.V, we assume that small bias field 

Hb - 1 Oe is imposed and fixed once and forever, while 

the value of H may change arbitmrily. In the initial 

state, that is H = 0, the ferromagnetic admixture is ho- 

mogeneously distributed over the cell volume and the 

sample is uniformly magnetized up to the saturation 

value Mo = I, f in the direction of H b .  Distortions 

induced by the field H + H b  are characterized by two 

orientational distributions 

the choice of the angles and coordinate axes is shown in 

the right-hand side of Fig.4. This texture is birefringent 

for any light beam propagating along the z-axis. The 

optical phase lag between the extraordinary (refraction 

index n,) and ordinary (no) rays is given by formula 

27r 
6 = -  

Alight LD12(n - no)dz (44) 

where Xlight is the wavelength of the light in the empty 

space, D is the cell thickness and n = n(z) is the effec- 

tive refraction index defined as 

- 2 n (z) = nó2 cos2 4 2 )  + n i 2  sin2 p(z) . 

Let us derive a set of equations describing the equi- 

librium state of FN a t  given H and evaluate the depen- 

dente S(H). The expression for the free-energy func- 

tional F is obtained by integration of Eq. (36) across 

the cell, with Eqs. (43) substituted therein. This gives 

012 

-F = LDj2 d i  [1/21{~0'~(i + psin2 8 )  

- I, f (Hb cos + + H sin $) 

Here we have introduced a dimensionless parameter 

p = (Kl - -K3)/K3, and use the prime to denote dif- 

ferentiation with respect to  z.  As it follows from Eq. 

(45), .F depends upon three functions: angular distribu- 

tions 8(z) and $(i)  and concentration f (z); the sought 

for equilibrium equations are yielded by corresponding 

variations of F .  The first of them (6F/66 = 0) trans- 

forms into 

19" (1 + p sin2 0) + sin d cos 29 

+(fW/2K3R)sin2(1$, - 19) = 0. (45) 

The second (6F/6+ = 0) has the meaning of the bond- 

ing equatioii-see Sec.VI1-and takes the form 

I, (Hb sin $ - H  cos +)+ (W/2E) sin 2($-19) = O . (47) 

The third one (67/6$ = 0) accounts for the seggrega- 

tion effect-see Sec.VI, and reads 

where 

~ ( p s i ,  8) = exp[pb cos+ + psin S, - usin2(+ - 29)J ; 

and the scaled by temperature dimensionless parame- 

ters are 

Pb = IsuNb/kBT i 

P = IsvHb/kBT i 
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a = W v 1 2 k ~ T R  . 

As the first step to  solve the set (46)-(48), we mul- 

tiply Eq. (46) by d / ,  Eq. (47) by f$' and subtract 

the latter from the former simultaneously substituting 

f from Eq. (48). In result we arrive at the integro- 

differential equation 

I(3d1[d" (1 + JI sin2 19) + ~ 1 1 9 ' ~  sin d cos d] + 
+(f& w/~R)E($,  8)(d1 - 4') sin 2($ - 29) + 
+ lS ~ Q $ / E ( $ ,  10) ( H  cos S, - Hb sin $) = O . (49) 

Together with the bonding Eq. (47) it determines, 

though implicitly, the orientational distributions d(z) 

and S,(z). 

As it has been explained in Sec.VII1, for sufficiently 

thick layers the difference between soft and rigid an- 

choring of nematic at the cell wall is irrelevant, and we 

way as well impose rigid boundary conditions on 19. It 

is natural to  anticipate that in the middle plane of the 

layer the angular deviations are maximum. Thus, for 

the orientational profile we set 

d ( f  D/2) = 0 , dl(0) = 0 . (50) 

For Eq. (49) the first integra1 ís available. Wíth 

the aid of the second of the conditions (50) it may be 

written as 

Here the angles d, r d(0) and $, E $(O), connected 

by Eq. (47), describe the angular positions of the direc- 

tor and magnetization vector in the middle plane of the 

cell. The length parameter X = (&v12 f k B ~ ) ' l 2  deter- 

mines the distance by which the orienting influence of 

the wall penetrates into a semi-infinite FN sample in a 

sufficiently strong magnetic field[gllO]. 

Resolving Eq. (51) for dz, one finds 

at z > O with allowance for Eq. (50) yields 

where 

1n the plane z = 3, where 19 = dM, Eq. (53) transforms 

into equality 

that enables to eliminate the coefficient Q and rear- 

range Eq. (53) as 

The last relation and the bonding Eq. (47) that may 

be rewritten in the form 

pb sin - -p cos S, + as in  2(S, - -21) = O , (56) 

niake a closed subset determining the orientational de- 

pendentes d(2) and $@) at given 29,. Using Eq. (52) 

to change the variables in Eq. (48), we find 

where 

Substitution of Eq. (57) into Eq. (54) gives 

that completes the full set of equations comprising now 

Eqs. (55)-(58). 

dz = j ~ ~ - ~ / ~ ( l + ~ s i n ~  d ) 1 / 2 [ ~ ( ~ r n ,  19rn)--~(S,, 19)]-'/~d19 ; TO compare the theoretical expression with the ex- 

(52) perimentally observed function &(H), we transform Eq. 

here the signs refer to the upper and lower half- (44) with the aid of Eqs. (52) and Eq. (55), thus arriv- 

spaces, respectively-see Fig.4. Integration of Eq. (52) ing at the formula 
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describing the phase lag between the ordinary and ex- 

traordinary rays in a deformed by field H texture of 

FN. 

IX.2 Compar i son  witli the exper iment  

The results of numerical evaluation of the theoret- 

ical dependence &'/'(H) given by Eq. (59) for a num- 

ber of cell thicknesses and particle concentrations are 

presented in Figs. 5 and 6. Various dots are the exper- 

imental data reported in Ref. [15] for the birefringence 

of íiat FN cells. The observations were performed at 

room temperature, the initial orientation patterns cor- 

responded to those sltetched in Fig.4. The carrier of F N  

was the well-known liquid crystal MBBA (methoxyben- 

zylidene butylaniline), whose elastic moduli, according 

to Ref. [a], are Ii'i N 5 ,  S O - ~  dyn and K3 N 8 . 1 0 - ~  dyn. 

The wavelength of the laser light was )rlight = 632.8nm; 

for the refraction indices of MBBA, after Ref. [29], we 

set no N 1.5 and n, N 1.7. The role of Hb in Ref. 

[15] was played by the terrestrial magnetic field whose 

strength in our calculations we have set to 0.6 Oe. For 

the given particle size: length L N 500 nm and diam- 

eter 2R N 70nm, this bias field yields pb N 10. For 

the amplitude W of the anisotropic part of the anchor- 

ing energy (the particles were coated with the DMOAP 

surfactant-see Ref. [15]) we took 5 .  dyn/cm. 

The most difficult step in the interpretation is to 

estimate the particle concentration. Indeed, while FN 

preparation there occurs a partia1 coagulatiori of the 

magnetic grains, i.e., formation of large multi-particle 

aggregates. Since such an object has a closed configura- 

tion of constituting magnetic rnoments, its net moment 

is nearly zero. Due to that the aggregates becorne insen- 

sitive to the action of weak externa1 fields thus dropping 

out of the considered birefringence effect. In result, the 

volume fraction of the particles, which really impart 

strong magneto-optical properties to  FN, must reduce 

substantially in comparison with tlie total solid phase 

content of tlie suspension. However, a reasonable esti- 

mate for the true concentration of single-domain parti- 

cles may be found from the experimental data plotted 

in Figs.5,G. 

Consider the response of the liquid-crystalline sus- 

pensior, in an extremely weak magnetic field H < Iib, 

i.e., p < pb < ã. In this case Eq. (56) allows to treat 

the local bonding of the orientational distributions n(z) 

and m(z)  as rigid: 4(z) = d(z) ,  i.e., n I m -see Fig.4. 

Solving the properly simplified Eqs. (55) and (58), one 

finds that at pd, < 1 function d(z) has the parabolic 

profile 

Substituting this into the integral (59), for the phase 

lag in the pd, < 1 range, one gets 

&'/'(H) = [nD5(ne - - ~ ~ ) / B o x ~ ~ ~ ~ ~ ] ~ ' ' ( I ~  f ~ / l i ' s )  . 

(60) 

This expression proves that in weak fields function 

d1/%s linear in the field-strength and its initial slope 

is directly proportional to the sought for magnetic ad- 

mixture concentration f not yet spoiled by the seggre- 

gation effect. In our interpretation we deduce the true 

value f applying formula (60) to  the initial regions of 

the experimental curves. The reference (lowest) con- 

centration f, by which the volume fraction f is scaled 

in Figs. 5 and 6, has been evaluated from the line 2 

in Fig.6; the result is f, = 7 . 10-? Further on, this 

very value, being about 40% of the total solid phase 

amount 1.86 x 10-7 reported in Ref. [15], had been 

used in the fitting procedures for a11 other theoretical 
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curves (solid lines) plotted in Figs. 5, 6. We suppose 

that for two particular experiments, corresponding to 

curve 3 of Fig.5 and curve 1 of Fig.6, the normalizing 

factor f, has somehow deviated considerably from the 

cited value of f,. This assumption is confirrned by the 

results of re-calculation (dashed lines in Figs. 5,6) with 

the changed values of f. 

Figure 5: Field-strength dependences of the optical phase 
lag for different thicknesses D of the FN cell. The as- 
sumed initial concentration of single-domain ferroparticles 
f = 1.12,10-6; the given in Refs. [15,171 total one evaluated 
by weight measurement is f = 2.98 . 1 0 - ~ .  Lines-theory, 
dots-experimental data by Ref. [15]; D = 123 pm (curve 
1 and black circles), 152 pm ( 2  and empty circles), 189 fim 
( 3  and squares), 354 pm (4 and crosses). The dashed line 
(cf. curve 3) is the theoretical curve for D = 189pm at 
f = 2.0. 10-6. 

In their general features, the obtained theoretical 

dependences based on Eq. (59) agree with the experi- 

mental data. In weak fields the dots reasonably comply 

with the linear function (60). Further growth of the 

birefringence s~/ ' (H) is more slow in comparison with 

the linear law, and in the H - 20 - -40 Oe range both 

theoretical and experimental graphs show the optical 

saturation of FN. The observed oscillations of 6 l / ' ( ~ )  

in some curves are most probably, as i t  has already 

been mentioned in Ref. [15], caused by the coagulation 

of ferroparticles. Indeed, in a dilute system coagulation 

of ferroparticles is the direct result of the seggregation 

effect. The latter provokes the re-distribution of the 

particles even in rather weak fields. In particula.r, at  

pd, « 1 from Eqs. (48) and (57) it follows 

Figure 6: Field-strengtb dependence of the optical phase 
lag for &fferent concentrations of single-domain ferropar- 
ticles at D = 354pm (curves I ,  3, 4) and D = 337pm 
(curve 2). Lines-theory, dots experimental data by Ref. 
[17]; f = f, = 7 . 10 -~  ( I  and black circles), 2f, ( 2  an- 
dempty circles), 4f, ( 3  and squares), 16f, (4 and crosses). 
The dashed line (cf. curve 1 )  is the theoretical curve for 
f = 5.10-*. 

that means that the particles, minimizing their orien- 

tational energy, accumulate in the middle of the cell. 
The numerical calculations show that with H growing, 
the stratification of the magnetic admixture intensifies. 

At certain critical concentration the magnetic dipole- 

dipole interaction must lead to the abrupt local coagu- 
lation. Because of that, the fraction of isolated (single) 

particles reduces, and the observed birefringence falls 

down. However, the externa1 field continues to grow, 

increasing the alignment of-the remained grains and, 
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hence, the induced birefringence of the cell. Simultane- 

ously, seggregation pumps up new portions of particles 

into the middle section of the cell. Due to that, in this 

region the concentration grows anew until it once more 

achieves the critica1 value. Assuming such a sequence 

of coagulation cycles one gets a reasonable qualitative 

expla- nation of the observed oscillations of the optical 

response (see squares and crosses in Figs. 5 and 6). 

X. Freclgricksz t rans i t ion  in the electric field 

X.l  Modif icat ion o£ t h e  t rans i t ion  th reshold  

Here we study the effect of the bias magnetic field 

upon the electric Fredericksz transition in a ferrone- 

matic. Note that actually it is just this electric insta- 

bility that is employed in the majority of the liquid- 

crystalline devices destined for the image processing. 

Consider the uniform FN textures presented in 

Fig.7. We assume that inside the cell tliere exists a con- 
stant bias field Hb I no providing saturated uniform 

magnetization in the initial state. To take into account 

the dielectric properties of the liquid-crystalline matrix, 

one should include into the free-energy density expres- 

sion (36) the term 

&a Felectr = - - - ( n ~ ) '  . 
8 x (62) 

Bearing in mind a MBBA-based ferronematic, we as- 

sume that the dielectric permeability anisotropy E, is 

negative. Then it is natural to  expect that the insta- 

bility of the uniform texture would be provoked by an 

electric field E I no. Let us find the Fredericksz tran- 

sition threshold for the cell with the configuration of 

Fig.7a. While performing the calculation, we will re- 

tain in F the diamagnetic contribution caused by the 

bias field. 

Figure 7: Initial textures of the FN cells with planar (a and 
b) and homeotropic (c) anchoring, where the diamagnetic 
Fredericksz transition t,akes place. 

Choosing the orientational perturbations of n and 

m in the form of Eq. (37), with the accuracy up to the 

second power in small quantities one finds for the free 

energy functional 

Here we have omitted the terms connected with my and 

Sf which do not contribute to the instability, and in- 

troduced the notation y, = ~,/47r. Evaluating, as in 

Sec.VII, the line of the steepest descent to the stabil- 

ity threshold by condition (S/6mX)S3 = O ,  we arrive 

at the relation coinciding with Eq. (39) and use it to 

eliminate m, from Eq. (63). With allowance for the 

rigid anchoring conditions n(0) = n ( D )  = no on the 

cell walls, the Fourier transformations 

n, = 2 sin (2) 
k = l  

00 

n. = sin (%) 
k=l 

reduce S F  to t,he diagonal form. Integration across the 
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cell yields: 

where function G(Hb) is defined by formula (41). The 

calculations for the textures in Figs. 7 b,c give the 

same result save that for the pattern b moduli I<i and 

K2 in Eq. (64) should interchange their places, and for 

the pattern c, where the instability is induced by the 

bend mode, only & instead of I<1 and I(2 enters the 

expression for F. 
In the latter case the stability analysis is most sim- 

ple. Indeed, for the critica1 electric field from Eq. (64) 

at Ki = K3 we find the set of equalities 

where 

A = G ~ ( H ~ )  - H? , 
It is apparent, that the observed value Éc of the thresh- 

old corresponds to the smaller right-hand side of Eq. 

(65). That means that we should find out the sign of 

function A(Hb). Using Eq. (42), i t  is easy to show 

that for Hb < G = ( ~ W / ~ , R ) ~ I ~  this quantity is pos- 

itive, i.e., the bias field stabilizes FN against the per- 

turbations of n,. In this case the Fredericksz transition 

threshold remains the same as in a pure nematic['I: 

In the fields G < Hb < H, the diminution of the critica1 

electric field, accounting for the growth of the destabi- 

lizing influence of the magnetic field Hb on the liquid- 

crysta1Iine the lower line of formula (65). 

Now we return to  consideration of the electric Fred- 

ericksz transition in the texture of Fig.7a. In this case 

the expressions for the critica1 field-strength read 

and for a liquid crystal like MBBA or PAA one may set 

N 2K2 [2]. Deducing the condition under which the 

bias field diminishes the threshold of the transition in 

the electric field, we get 

With allowance for Eq. (42) this enables to  rewrite the 

interval of Hb,  within which the magnetic orientation 

reduces the threshold EC in comparison with the clas- 

sical case, as 

For the texture of Fig.7b, where the critica1 field is 

determined similarly to Eq. (66), save the replacement 

1(1 I<,, the calculation shows that inside the whole 

available magnetic field range the Fredericksz transition 

threshold is given by expression 

X.2 Comparison with the experiment 

The results of observaticn of the Fredericksz effect 

in thermotropic FN are reported in Ref. [17]. The 

studied textures corresponded to the one of Fig.7~;  the 

suspension was magnetized by the terrestrial magnetic 

field. The critica1 electric potential difference c, = g c ~  
between the cell walls was determined optically by the 

onset of birefringence for the light beam directed along 

the z-axis. The dependence &('I/) rendering the phase 

lag between the ordinary and extraordinary rays in the 

above-threshold range, i.e., for c = ED > pc, has 
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been measured. Let us evaluate S(v)  on the basis of 

tlie given theory, and compare it with the experimental 

data of Ref. [17]. 

As it follows from the results of Sec.X.1, in the con- 

figuration of F i g . 7 ~  at Hb  1 Oe < G the critica1 field- 

strength E, coincides (see Eqs. (65)) with that of apure 

nematic. Apparently, in the electric field E > E, = E, 

the minimum of the free-energy of the deformed FN 

corresponds to  the state where the local director n lies 

in tlie yOz plane. Under such a distortion the mag- 

netic particles retain the initial orientation along H b  

and remain normal to n a11 over the bulk of the cell. 

Due to that,  the considered deformation of n does not 

cause any changes of the particle orientation energy, the 

equilibrium director distributions above the Fredericksz 

transition are exactly the same in pure nematic and in 

FN. 

In tlie single-constant approximation I<l = I<z = 
= I< the function d(z) rendering the angular devi- 

ations n(z) from the direction of the initial orientation 

no for 0 5 z 5 D/2 is defined (see Ref. [2]) by equation 

Here sin 8 = sin 191 sin 9,, Eelectr = (4.ir1(3~2/l~a1)1/2 is 

the electric coherence length, ~ ( 8 ~ 6 )  is the incomplete 

elliptic integral of the first kind and d, = 19(D/2). 

Using relationship (67) to change the variable in the 

integral (44), we arrive at the formula 

which yields the value of birefringence at given electric 

field-strength E or voltage v .  

In Fig.8 are presented the theoretical and experi- 

mental dependences S(v)  corresponding to two Fred- 

ericltsz transitions-in a pure nematic and in FN. As - 
the experiments show, in thermotropic suspensions E, 

is smaller tlian the corresponding value E, in undoped 

nematics. This effect may be accounted for the exis- 

tente of large aggregates comprising a great number of 

particles. Around such objects the macroscopic director 

distortions must have been formed which serve as the 

pre-existing nuclei of the orientationally-deformed state 

thus favoring the diminution of the transition thresh- 

old. In Ref. [17] on the basis of the obtained criti- 

cal field E, the effective value of 113 has been deduced 

as k3 = DIE,IÉZ/~T~. At E, = -0.5 the foiind value 

had turned out to  be & = 6.37. 1 0 ~ ~  dyn, that is 

approximately 5% lower than the elasticity modulus 

K3 = 6.74. 10-7 dyn for pure MBBA. The carried out 

calculations of & ( V )  curves for the corresponding Frank 

constants are in good agreement with the observed data 

both for undoped MBBA and FN. 

XI. Birefr ingence of a fe r ronemat ic  in t h e  

crossed magne t i c  a n d  electr ic  fields 

XI.l The set of equa t ions  

Finally, let us use the accumulated knowledge, to 

get a theoretica1 description of the experiments of Refs. 

[17, 181 on the birefringence of FN subjected to  a com- 

bination of electric and magnetic fields. The geometry 

of tlie cell resembles that of Fig.4 save for the fact that 

now the electric field is imposed along the z-axis. In the 

initial state FN is a single liquid-crystalline domain (no 

= const) all over which the magnetization Mo = I, f 
is perpendicular to the director. The externa1 mag- 

netic field H ,  inducing the particle rotation and, hence, 

the rearrangement of the orientational texture, creates 

in the sample a certain preliminary distortion-see Sec. 

IX. The electric field E = (0, O,  E) that acts explicitly 

on the liquid-crystalline matrix, enhances this distor- 

tion tending to rotate the director perpendicular to its 

initial alignment. In the papers[1711" a family of the 

experimental dependences &(C) for the magnetic field 

range 1-50e had been measured. 
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Note that in the presence of the magnetic field 

H I Mo the equilibrium state of the deformed tex- 

ture corresponds to the perturbations of n and m lying 

in the plane xOz-see Fig.4. From the bonding condi- 

tions (32) and (33) it  follows that vectors n, m and Hp 

must be coplanar; here H, = H b  + H is the resulting 

magnetic field whose direction is tilted relatively to the 

vertical axis z .  

TVriting down the orientational distributions n(z) 

and m(z)  in the form (43), we substitute them into Eq. 

(45) extended by adding the electrical term Eq. (62). 

The obtained free-energy functional reads: 

Variation o f F  with respect to 6 ,  $ and f yields the set 

of the equilibrium equations to  determine the orienta- 

tional and concentration distributions d(z),  >I(z) and 

f (z) for given values of the electric and magnetic field- 

strengths. After the transformations similar to those 

made for Eqs. (46)-(58), we arrive at the closed set of 

I 

four equations: 

D/2X = Q ~ ~ I ( B ) ,  (70) 

Q = m / J ( m  (71) 

1 - 2z/D = I(z9)/I(Bm), (72) 

pcos$J-pbsin$J = as in2($-6) .  (73) 

Here the integrals I and J are defined as follows: 

- &($(L/), (g)] + [(sin2 drn - sin2 y)})-112dy , 

and the parameter Ç = I E , I E ~ v / ~ ~ ~ ~ ~ T  is introduced to characterize t,he strength of the externa1 electric field; for 

other parameters the notations of Sec. 1X hold. 

The optical response of the system to the applied fields obtained by substitution of Eq. (72) into the integral 

(44) takes the form 
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XI.2 Or ien t a t i on  and concent ra t ion  dis t r ibu-  

t ions  in the fer rone ina t ic  cell 

The initial parts of the theoretical (calculated ac- 

cording to Eq. (74)) and experimental (taken from Ref. 

[18]) curves 6 l I2(p2)  a t  H = 1.5, 4.0 and 5.0 Oe are 

presented in Fig.9; the global view of the dependence 

6(?) for H = 2 Oe is shown in Fig.10. The calculations 

have been carried out by formulas Eq. (70)-(74) in the 

sirigle-constarit approximation with the efTective elasiic- 

ity modulus K = K3 = 6.37. l W 7  dyn, as in Ref. [17]. 

The concentration of single-domain grains f = 2.5.10-~ 

has been determined by comparison of the initial theo- 

retical and experimental values of 6 ( v  = O). Note that 

- the total solid phase content given in Refs. [17, 181 was 

Figure 8: Electric voltage dependence of birefringence above Let us firstly consider the FN behavior in weak elec- 

the threshold of the dielectric Fredericksz transition for tric and magnetic fields. Solving Eqs.(70)-(73) under 
a pure nematic (curve 1, D = 222pm I<3 = 6.74 1 0 - ~  assumptions pd, < 1 and (8;  < 1, one gets the fol- 
dyn) and MBBA-based ferronematic (curve 2, D = 240pm 

- 6.37 . 10-7 dyn). Lines-calculations by Eq. (68), lowingexpressions for the orientation and concentration A- - 

dots-experimental data by Rei. [17]. profiles 

Substitution of 8(z) into the integral (74) gives the optical response in the form 

duly rescaled, it has been used to describe the initial 

slopes of ~ l / ~ ( ? ~ ) .  

As the field-strength grows, the seggregation effect 

begins to  play an important part in formation of the 

equilibrium texture. With the increase of the magnetic 

field, the particles gather in the middle sectiori of the 

cell intensifying the director tilt there. The applied elec- 

tric field enhances this orientational deformation and 

also influence the particle distribution. This effect is 

I 

illustrated by the curves in Fig.11 calculated with the 

aid of Eqs. (70)-(73). One sees that as ? = ED raise, 

the particle concentration in the center of the cell be- 

gins to grow and reaches the maximum at V 4V. 

Further on, when the electric field causes substantial 

deformations of the orientational texture, the opposite 

tendency steps in-ferroparticles leave the central pare 

of the cell and accumulate in those regions, where the 

conditions rn I n and m I Hp of their minimum en- 
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ergy are favored. Due to that the concentration ~rof i le  of the elastic modulus i&, once modified by the pres- 

of FN changes. In the center of the cell the minimum of ence of the solid particle admixture, does not need to 

f(z) occurs and instead of one maximum, two of them be changed in any field, providing the seggregation is 

at  equal distances from the middle turn up-see curves 3, taken into account. 

4 in Fig.ll .  Apparently, the particle re-distribution af- 

fects the orientational profile d(z) and, hence, the bire- 

fringence 5. 

Figure 9: Initial parts of the voltage dependences of the 
electric-induced birefringence for given field-strength H and 
cell thickness D. Lines-calculations by Eqs. (70)- (74), 
dots-experiment,al data by Ref. [17]; H = 1.5 Oe and 
D = 222pm - (curve I and crosses), 4.0 Oe and 249 ym 
- (2 and black circles), 5.0 Oe and 234 pm - (3 and empty 
circles). 

It is important to  emphasize that the correct in- 

terpretation of the experiment is impossible if the seg- 

gregation effect is ignored. Having not taken it into 

account, the authors of Refs. [17, 181 had been com- 

pelled to  introduce (though lacliing physical reasons) 

a strong dependence of the elastic modulus of the 

liquid-crystalline matrix upon the applied magnetic 

field strength. The direct attempt t o  fit the experi- 

mental points in the non-seggregation approximation 

has lead them to the following values (cf. the legend to 

Fig.9) 

In fact, our consideration proves-see Figs.9,10-that 

the assurned function k 3 ( ~ )  is an artifact. The value 

Figure 10: Voltage dependence of the electrically induced 
birefringence for the magnetic field strength H = 2.0 Oe 
and cell thickness D = 230pm. Lhe-calculation by Eqs. 
(70) - (74), dots-experiment by Ref. [18]. 

XII. Conclusions 

We have discussed the principies of the continuum 

theory of ferronematics-the unusual anisotropic fluid 

media. Since FN is a heterogeneous substance consist- 

ing of at least two interacting phases, each of which 

is anisotropic, its correct model could be constructed 

only after thorough studies on the "microscopic", i.e., 

of the order of the particle size, spatial scale. The 

main subject of our interest are F N  with soft anchor- 

ing of the nematic molecules on the particle surfaces. 

By now, this kind of FN is realized in thermotropic 

systems. The theoretical estimates and available ex- 

perimental data shows that at  present the notion of 
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thermotropic FN implies a siispension of prolate (rod- 

like) magnetically hard particles magrietized along their 

long axes. The mean particle dimensions are: length 

L 102 nm and diameter c1 - L/10; their volume 

fraction range f 5 lW4 .  Such systems, once being 

rnagnetized, acquire and retain the spontaneous mag- 

netization M R I ,  f - 10-I G .  

of them are: tlie effective Franli moduli Ki, the anipli- 

tude of the anchoring energy W and the really acliieved 

concentration of single-clomain rnagnetic grains $. 
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tained by rninirnization of F or the functional F based 

on it. Two vector arid one scalar equations follow- 

ing frorn reiations s F / s ~  = 6F/6rn = 6FI6.f = O ,  

together with the corresponding boundary conditions, 

form a closed set determining the equilibrium texture 

of FN, i.e., orientation n(r), magnetization direction 

m( r )  and concentration f (r) distributions for arbitrary 

values of the externa1 magnetic field. 

By considering a number of particular cases en- 

countered in experiinent, we have shown that the 

model developed herein, is capable to  provide the non- 

contradictory interpretation, previously absent, of the 

existing experimental data. As to the latter, however, 

on close inspection one becomes aware that there is a 

great need in the properly defined methods to evaluate 

the material parameters of FN. The most essential ones 

Figure 11: Orientation and concentration distributions in 
FN calculated by Eqs. (70)-(73) for H = 2.0 Oe and 
D = 230prn. The electric voltage V is 3.7V (curves i), 
4.OV (Z), 7.OV (3 ) ,  ll.0V (4). 

The equilibriurn orientational state of FN depends 

upon the type and strength of the NLC moleciiles 

anchoring on the particle surfaces. For plain ne- 

matic carriers, like MBBA, providing the anchoring is 

homeotropic, it is inevitably soft. So, the basic interna1 

structure of such a FN is the one, where director and 

magnetization vectors are perpendicular to each other. 

For the latter case we have developed a continuum de- 

scription, v i ~ . ,  derived the free-energy density function 

F-see Eq. (31). Description of stationary states is ob- 
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