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Various complex phenomena connected with magnetic droplet behaviour under the action 
of the high-frequency rotating magnetic fields are considered. By virial method the stability 
of the oblate ellipsoid shape in high-frequency rotating field is analyzed and the possibility 
of the transitions "oblate - prolate - oblate" as the rotating field strength increases is shown. 
It is obtained that instability of the oblate shape exists at magnetic permeability of the 
droplet higher than a critica1 value and that it disappears at large frequency of the rotating 
magnetic field. On the basis of the virial method the angular velocity of the droplet rotation 
is calculated and it  was found that to  describe its power-law dependence on field frequency 
it is necessary to account for the distribution of the magnetization relaxation times of the 
concentrated phase of magnetic colloid. On the basis of a simple model - magnetic fluid 
cylinder in high-frequency rotating field - the instability with respect to the circunferential 
mode of the cylinder (leading to the "star-fish" configurations) is found and a proportion- 
ality of the number of arms to field square is shown. Peculiarities of the magnetic fluid 
layer undulation instability in high-frequency rotating and constant normal magnetic fields 
are analyzed and it is concluded that observation in experiment of the undulations of the 
extended prolate droplet is connected with comparable values of the rotating field period 
and the characteristic time of the droplet shape relaxation. Comparison with the normal 
field instability of the ferrosmectics is also given. 

I. Introduction 

Pattern formation due to the magnetic fluid free 

surface instabilities causes a lot of interest. Here we 
can point out spike instability under the action of nor- 

mal field[l], labyrinthine pattern formation in the plane 
slots of magnetic f l ~ i d [ ' ~ ~ ] ,  parametric oscillations under 
the action of a.C. tangential magnetic fieldr4] and 0th- 
ers. Behaviour of magnetic fluid drops, especially those 
of concentrated phase of the magnetic col1oid[~1, is of 

special interest. By studying the statics and dynam- 
ics of the elongational instability of the magnetic fluid 
drops under the action of the homogeneous magnetic 

field it is possible to determine the low values of the 
surface tension of concentrated phase[617], high values 

of its magnetic permeability[6~7], and also viscosity of 
the concentrated phase["l, which turns out to be rather 
high. 

As it was found in Ref. [9], and will be shown also 
here on the basis of the detailed theoretical calcula- 

tions, specific properties of the concentrated phase of 

the magnetic colloids allow to observe rather intricate 
free surface instabilities of the magnetic drops under 

the action of the high-frequency rotating field. Since in 
Ref. [9] only some remarks about the theoretical ap- 

proach to the problem of the magnetic drop behavioui 

under the action of high-frequency rotating magnetic 
field were given, here we proceed with detailed calcula- 
tions which confirm the possibility of "oblate - prolate - 
oblate" shape transitions observed in the e ~ ~ e r i m e n t [ ~ I  
and also on the basis of simple model illustrate the 

physical mechanisms responsible for the formation of 
"star-fish" ~onf i~ura t ious[~] .  

11. "Oblate - prolate - oblate" shape transitions 

~ x ~ e r i m e n t a l l ~ [ ~ I  it was found that the microdrops 
of the concentrated phase have oblate shape at small 

and high rotating magnetic field strengths. At inter- 

mediate values of the field strength the microdrops 
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have prolate wormlike configuration with rather com- 
plex dynamics. It is possible to show the existence of 

such sequence of shape transformation on the basis of 
the virial method[lO]. Virial method has heen applied 

before for the study of the elongational instability of 
the microdrop in the static field[ll] and its equivalence 
to  the energetical approach[6] for static case has been 

i l l ~ s t r a t e d [ ~ ~ ] .  
Nevertheless the virial method is more general as 

an energetical one since besides the statics also allows 

to consider the dynamical phenomena. That is tlie 
point why viria1 method is applied for the study of drop 

behaviour under the action of high-frequency rotating 

field since due to the arising antisymmetrical tangential 

stresses the phenomena under consideration are con- 
nected with dissipation. 

Virial relations are obtained on the basis of the 

equation of the motion for magnetic fluid, which in 
Stoltes approximation looks like 

where the stress tensor accounting for the antisymmet- 

ric tangential stresses in the droplets (vm - viscosity of 

the concentrated phase) is 

and T ~ L  - magnetic stress tensor and equation of the 
motion of the surrounding nonmagnetic viscous fluid 

To obtain antisymmetric tangential stresses mag- 

netization relaxation equation must be added[l"], the 
which in the case of the weak fields when linear mag- 

netization law in static case is valid, accounting for de- 

magnetizing field effects) can be written as 

+ 
Here Qo = 1/2roti7 is the vorticity, TB is the Brownian 
relaxation time, and N is the tensor of the demagnetiz- 
ing field coefficients. 

It is important to point out some general conse- 

quences of the relaxation equation (4): well the known 

dependence of the magnetic susceptibility of the droplet 

on its shape according to the relation xe  = x/(1 + x N )  
and the dependence of magnetic relaxation time on the 

droplet shape according to the relation r, = r ~ / ( l  + 
x N )  Both magnetic susceptibility and relaxation time 

are diminshing with the increase of the demagnetizing 
field coefficient . 

Boundary conditions describing the force balance on 
the surface of droplet are following: 

where 1/R, is the mean curvature of the surface. 

Considerable simplification of the problem occurs if 

one assume that the droplet shape belongs to  the class 
of the ellipsoidal configurations which is not changing 
at a fh i t y  deformations. In that case the solution of 
the magnetostatic field problem is reduced to tlie ac- 

counting for shape depending demagnetizing field coef- 
ficients. 

Another approximation involved in the considera- 

tion is connected with the calculation of viscous stresses 

of the surrounding nonmagnetic fluid. Since the vis- 

cosity of the concentrated phase of magnetic colloid 

vrn is much higher than the viscosity of surrounding 
fluid viscous stresses arising a t  the droplet, rotation 
with respect to it are calculated as for solid ellipsoid. 

When considering the affinity deformations leading to 

the configuration change due to  the same reason, vis- 
cous stresses are accounted for only inside the droplet. 

At last, since the period of rotating field T in the 

case of our interestIg] is rnuch less than the character- 
istic time of the droplet shape relaxation 7, R/u,  the 

virial relation ohtained is averaged with respect to the 

field period. To consider more general case numerical 
rnethods[14] rnust be applied. Corresponding work is 
under progress. 

Under the assumption of the ellipsoidal shape of the 

droplet the magnetic field inside the droplet is homoge- 

neous and the volume ponderomotive force in the equa- 

tion (1) vanishes by multiplying the equation (1) with 
cartesian coordinate x k  after the integration through- 

out the volume of the droplet. Hence, one obtains the 
following virial relation 



Brazilian Journal of Physics, vol. 25, no. 2, June, 1995 

Here Z is the normal to the interface, r i k  is the vis- 
cous stresses inside the droplet, and u is the surface 

tension. 
Due to the approximations involved, viscous stresses 

from the surrounding fluid are calculated according to 
the following relations[15] (a1 = a ;  a2 = b;  a3 = c are 

the semiaxes of the general ellipsoid) 

wi i  = eirkRk, and 6 is the angular velocity of the droplet 
rotation. 

Due to the relations 

and 

virial relation (6) can be t,ransformed to the following 

expression 

- -  2 + 2~ L, xkni (Mn) dS = O . (7) 

The magnetization is calculated from the relaxation 
equations (4). After averaging with the respect to the 

field period, in the general case we have 

where Nl and Nz are demagnetizing field coefficients rotating field): 

along the main axes of the ellipsoid in the plane of ro- 

tating field, and w' = w - R is the angular velocity of V33 - ~ / ~ ( V I I  + V22) = O (9) 

the field rotation with respect to the droplet. 
an d 

Excluding the pressure, the virial relations (7) allow 

to obtain the following relations for the steady state of 

the axisymmetric droplet (xl,  x2 are the main axes of Eq. (9) gives the ecceiitricity of the droplet, while Eq. 

the ellipsoid in the plane of the rotating field, and x3 (10) gives the angular velocity of its rotation. 

is the main axis along the normal to the plane of the Applying the relations 
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and expressing tlie value of the magnetization averaged per period according to tlie relations (81, the following 

relation for the axisymmetric steady shape of the droplet is obtained 

where e = (a2/c2 - ] ) ' I 2  is the eccentricity of the oblate ellipsoid, and 

N1 = 4a ( ( 1  + e2)- - &) is the demagnetization 

coefficient of oblate shape in the plane of the rotating 

field. 

Relation (11 )  allows the calculation of the axes ra- 

tio of the oblate shape in dependence on the rotating 

magnetic field strength. In the limit w'rg i 0, rela- 

tion (11 )  coincides with the relation following from tlie 

consideration of the energy minima of the droplet in 

high-frequency rotating field including free surface en- 

ergy and demagnetization energy, just lilte what hap- 

pens when considering tlie elongational instability of 

the droplet in constant field. 

After after taking average of tangential antisymmet- 

ric stresses with respect to the rotating field period in 

steady state, the viria1 relation (10 )  gives the following 

relation for the angular velocity of the drop rotation 

(torque balance equation): 

The relations (11 )  and (12 )  allow the determination 

of the axes ratio of the steady oblate shape and angu- 

lar velocity of the droplet rotation. As it follows from 

relation ( 1 2 ) ,  at small WTB the angular velocity of the 
I 

droplet rotation is proportional to  the angular velocity 

of tlie rotating field. In experiment[g], a power law for 

the dependence of the angular velocity of the droplet 

rotation on field frequency is observed. As it was al- 

ready remarked Ref. [9] to  describe such dependence in 

the framework of the model proposed it is necessary to 

account for the distribution of the magnetic relaxation 

times of the real magnetic colloid, since the relaxation 

Eq. (4) can give quantitative results only for monodis- 

perse colloid. To describe experimental data quanti- 

tavely it is possible to apply the following relation for 

the complex magnetic susceptibility of the colloid in a.C. 

field[lGI: 

X(w)  = x l ( 1 - k  ( i w ~ o ) l - " )  1 (13)  

where a accounts for the distribution of the magnetic 

relaxation times, and 7-0 is the mean magnetic relax- 

ation time. Cole - Cole plots for complex magnetic sus- 

ceptibility (13 )  correspond to the arcs of circle instead 

of the semicircles for the monodisperse colloid and allow 

to determine the value of cr from experimental data. 

Calculation according to the relation (13 )  of the 

mean magnetic torque acting on the droplet in rotat- 

ing field allows to obtain the torque balance condition 

for small angular velocities of the droplet rotation in 

following form 
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which generalizes in that limit the torque balance equa- 

tion (12). One can see that in limit wro --+ O (which 

corresponds well to  the conditions of the e~periment[~I)  

0 N W I - ~ .  Thus it is possible to  describe the depen- 

dente of the angular velocity of the droplet rotation on 

rotating field frequency observed in e ~ ~ e r i m e n t [ ~ ]  when 

the distribution of the magnetic relaxation times is ac- 

counted for. The consideration which follows is based 

on the simple magnetic relaxation given by Eq. (4). 

Experimental results on the oblate shape axis ra- 

tio correspond well to relation (11) in the limiting case 

wlrB -+ 0, which corresponds to the quasistatic condi- 

tions. 

The next problem which should be adressed in the 

framework of the model considered concerns the sta- 

bility of the oblate shape since the experiment shows 

that axisymmetric oblate shape is unstable at interme- 

diate values of field strength. For that we will consider 

the stability of the oblate shape with the respect to 

the deformation to genera.1 ellipsoid. Our approach will 

be based on the consideration of affinity deformations 

when Lagrange displacements of the material points are 

linear functions of the cartesian coordinates. In partic- 

ular case the Lagrange displacements can be chosen in 

following way: 

leading to a spontaneous symmetry breaking in the 

plane of the rotating field. An equation for the Li(t) 

can be obtained looking for the variation of virial rela- 

tion (7). For that, the following relations for Lagrange 

varia.tion of the surface elements are applied[li]: 

Excluding pressure for the variation of the virial rela- 

tions, 

SL(V11 - 1/2(V22 -I- V33)) = O 

and 

where A,&? is the magnetization variation at affinity deforrnations calculated according to the relations (8). 

The variation of the angular velocity of the droplet rotation is calculated according to the relation (10). As a 

result, one obtains 

S(W'T~)  = - x H ~ ~ B w ' T B ( ~ N ~  + SN2)(1 - x2N: + ( U ' T ~ ) ~ )  
4vNlF((1+ X N I ) ~  + ( W ' T ~ ) ~ ) )  

7 

Variations of the demagnetization field coefficients are expressed in the following way: 
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Accounting for the following expressions of the moments 

3V (1 + e2) (5e4 + 42e2 + 45) - arctge - (27e2 + 45)) = 343 
s-( e3 4i7 4e4 e2 - v 2  ; 

3V s ((5e4 + ::e2 + 9) 
arctge - 

e2 

As a result, the following relaxation equation for the deformation rate Ll(t)  of the oblate shape is obtained: 

where the dimensionless growth rate of the oblate shape is expressed as 

Here, the following characteristic times are intro- 

duced - the deformation time of the droplet: 7-d = 

4r1,(3~/4a)1/3/a and the characteristic time rf = 

q ~ ~ / q ~  determined by the viscosity of the surrounding 

fluid. 

Relation (15) allows to determine the growth in- 

crement of the nonaxisymmetric deformations of the 

oblate shape as a function of its axis ratio, which ac- 

cording to the relation (11) increases with the increase 

of magnetic Bond numher (magnetic field strength). 

For that dependence, the magnetic Bond number and 

the droplet angular velocity are determined according 

to the relations (11) and (12). Results for ~ T B  = 1 and 

I 
~ B / X T ~  = are shown on Fig. 1 for severai vaiues of 

the magnet,ic permeability. One can see that if the mag- 

netic permeability of the droplet is rather high, there 

exists a range of axis ratio of oblate shape at which 

the axisymmetric oblate shape is unstable to symme- 

try destroying perturbations (Fig. la).  That  result is 

in accordance with experimental observation~[~I which 

show that at  intermediate values of the magnetic field 

strength, the oblate shape is unstable and wormlike ex- 

tended droplet configurations are developing. As one 

can see from Fig. l b  the critica1 value of magnetic per- 

rneability at which such phenomenon can be observed 

is about 11. Thus high magnetic susceptibility of the 
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concentrated phase of magnetic colloid is essential to Values of the critica1 axes ratio at which according 

observe such instability. to the data on Fig. 1 shape transitions "oblate - pro- 

late" and "prolate - oblate" occur are correspondingly 

near 1 and of the order of magnitude of 20, what cor- 

responds quite well to experimental observations. 

It is of the interest to rernark that the range of 

oblat,e shape axis ratio unstable with respect to syrn- 

metry destroying perturbations shrinlcs with the in- 

crease of the frequency. That is illustrated on Fig. 2, 

where growtli increment of nonsymmetric perturbations 

is plotted at the experimental situation value of mag- 

netic permeability p = 25 for w r ~  = 10-%nd UTB = 3 

(rB/xrj = 10-2). At high-frequencies of the rotating 

field the instability disappears a t  all. That is connected 

with the decrease of magnetization value of the droplet 

which follows the increase of rotating field frequency. 

5 t 'i 

Figure 2: "Oblate - prolate" shape transition growth incre- 
ment versus axes ratio a/c of the oblate ellipsoid at magnetic 
permeability p = 25 for two values of w r ~  . r ~ ~ - l r f '  = 
1 r 2 .  

Figure 1: "Oblate - prolate" shape transition growth incre- 
ment cu versus axes ratio a/c of the oblate ellipsoid at differ- 
ent values of the magnetic permeability. = 1 0 ~ ~ .  111. Formation of the "star-fish" configuration 

The next point to  be described concerning intricate 
It should be mentioned that the value of magnetic 

behaviour of the droplets in high- frequency rotating 
permeability chosen for the plot on Fig. l b  corresponds 

fields is connected with the formation of the %ar-fish" 
to  the value of real experimental ~ a m ~ l e [ ~ ] .  The value 

configurationdg]. As i t follows from experimental ob- 
rB/xrf = 1 0 - ~  for 77 = 10-' P, R = 15,um, ,u = 25 cor- servations the number of the arms of the %ar-fishes" 
reVonds to  the Brownian relaxation time 4 sec - is proportiona1 to the square of the field strength The 

a quite reasonable value for the concentrated phase of mechanism of their development as well as the main pe- 

the magnetic colloid. culiarities of their behaviour can be understood on the 
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basis o£ a simple model, in which the infinite cylindrical 

volnme of magnetic fluid is considered under the action 

of the rotating in a plane normal to its axis magnetic 

field. As above, we assume that the characteristic time 

of the droplet shape relaxation is much larger tha.n the 

period of the rotating field and time averaging with re- 

spect to rotating field period is possible. That means 

that symmetric configuration of cylinder corresponds to 

the possible figure of equilibrium. 

Let us consider its shape stability with respect to 

perturbations in polar coordinates described as r = 
((4) = R + SC(4) = R + a, C O S ( ~ ~ ) ,  where R is the ra- 

dius of unperturbed cylinder. The instantaneous value 

of magnetostatic potential (H = V$) in the case of un- 

perturbed shape in rotating field with cartesian com- 

ponents (No cos(wt), H. sin(wt)) is given as (I - region 

occupied by droplet, I1 - outside it). 

2Ho 
4; = cos(wt)r cos g) + - sin(wt)r sin 4 ; 

a + 1  

H. cos(wt)(p - 1)R2 cos g) H. sin(wt)(p - 1) R2 sin g) $I I  = H. cos(wt)r cos 4 + +Ho sin(wt)r sin g) - - 
( IA + l ) r  (I*: + 1 ) ~  

The perturbation of the magnetostatic potential arising at shape perturbations is found as a solution of the 

Laplace equations inside and outside the droplet obeying the following boundary conditions at unperturhed surface 

of the cylinder 

As a result the following expression for the perturbed potential inside the droplet is obtained: 

2Ho cos(wt)(p - l)rn-I cos(n - l)4)a, 2Ho sin(wt)(p - l)r7"' sin(n - l)g))an $í = - 
(p + Rn-1 (I*: + q 2 R n - l  

Let us find an growth increment of the surface per- dition dS</dt = and calculating the magneto- 

turbations for ideal magnetic fluid. In that case the static field strength according to (16) and (17) after 

Cauchy - Lagrange integral for the velocity potential time averaging when following relations are obtained: 

on unperturbed surface of the cylinder accounting for 

capillary forces and surface magnetic forces allows to (H: H') = 2H,2(p - a, ( n  - 1) cos(n6) ; 
(a  + 1)3R 

ohtain 

" t  , - " " a " " "  ' \A", 

allows to obtain the following equation for the ampli- 

Relation (18) taking into the account kinematic con- tude of the circunferential mode: 
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As follows from (19), symmetrical configuration is un- 

stable with respect to  the circumferential mode at 

H: > N2(n)  : 

TVe can remark that according to the analysis in the first 

part also in the simple model considered there exists in- 

stability with respect to the transition to nonsymmet- 

ric shape with elliptic crossection whicli takes place at 

critica1 field strength H"2) = m u ( p  + 1)3/R(p - I ) ~ ,  

which by the order of magnitude quite well corresponds 

to the experimental data. 

From equat,ion (21) it is possible to obtain the num- 

ber n, of the dynamically most unstable mode, which 

have the greatest growth rate. For large n, it is ob- 

tained as 

Linear dependence of the number of arms of the ro- 

tating "star- fish" on pa.rameter H o 2 ~ / õ  is observed in 

e ~ ~ e r i m e n t [ ~ ] .  Thus the simple model considered al- 

lows to explaiil the "star-fish" configurations observed 

as due to  tlie development of specific magnetic instabil- 

ity in high-frequency rotating field. 

More realistic model of the dynamics of the %ar- 

fish" formation must include viscosity effects. If the vis- 

cosity of the surrounding fluid is neglected, the bound- 

ary conditions 

dv -+ u  
- p + 2 r l m 2  - ~ ~ ( A J z ) ~  -t - = const (22) 6 r R, 

and the equation of the viscous magnetic fluid motion 

allow to obtain the following equation for the growth 

increment of the circunferentia1 mode of cylinder (t = 

( p ~ ~ ~ / ~ r n ) ~ ' ~ )  : 

where In is the modified Bessel function of the first 

kind. 

IV. Stability of the magnetic fluid layers 

Magnetic free surface instabilities are observed also 

in rather specific Iameliar systerns - fe r ros rnec t ic~[~~~.  In 

Ref. [18] such instability under the action of the normal 

to  ferosmectic layers magnetic field was described as an 

undulation instability of the multilayer magnetic media 

arising due to the tendency to decrease the demagnetiz- 

ing field energy. From the point of view of the complex 

magnetic fluid dynamics due to specific magnetic in- 

stabilities, it is of interest to consider the stability of 

the single magnetic fluid layer under the action of the 

high-frequency rotating magnetic field. 

I 
Let us talie an infinite magnetic layer with thick- 

ness 2h and with boundaries in unperturbed state par- 

ale11 to xy plane. Let us consider a perturbation of 

layer periodical in the x direction when the equations 

of boundaries can be written in the following way z = 

&h + [(2)(((x) = [ cos(kx)), which corresponds to the 

undulation mode of the layer. Perturbation of the po- 

tential of the magnetostatic field in the general case of 

an homogeneous field oblique to  the layer (Ho,, O,  HoZ) 

is found as solution of the Laplace equation at following 

boundary conditions at layer interfaces (1 - magnetic 

fluid region, 2 - region z > h,  3 - region z < - h) 
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As a result for tlie magnetostatic potential perturbation 

in the magnetic fluid we have 

Thus the dynamical boundary condition p = ã/Rc- faces 

2 ~ ( M í i ) ~  and the Cauchy-Lagrange integral for the 

ideal magnetic fluid motion (5  = Vq5) 

con 

after time averaging with respect to  high-frequency ro- 

tating field (Ho, = H0 cos(wt), Ho, = H. sin(wt)) allow 

the following equation for growtli increment of the un- 

accounting for kinematic condition on the layer inter- dulation (Ho, = ~ 0 1 8 )  

From relation (23) it follows that the layer is stable bility of ferrosmectics where due to  the vanishing of 

under the action of the high-frequency rotating field. the surface tension restoring force arising at deforma- 

This is quite natural since opposite to the case of a tion of layer boundaries is caused by bencling elasticity 

constant magnetic field normal to  the layer, when for and long-range magnetic interaction between layers is 

the growth increment we have important. In that case tlle finite tliicltcness D of the 

sample leads to a finite vaIue of the critical wavelength 

- 0 k 3 )  , ((25) 
which turns out to beIl81 

A' = cth(kh) 

due to  the symmetry in high-frequency field there does 

not exist a preferred layer orientation. In the case of Kb is the bending elasticity constant, B is the compres- 
the constant normal field the situation is different and a 

sion modulus of smectic layers, and 2d is tlle thicltness 
preferred from the point of view of the demagnetization 

of the magnetic layers in ferrosmectic. 
field energy orientation of the layer along the field direc- 

The critical value of the magnetic field strength for 
tion can be achieved due to  the undulation instability 

the development of the undulation instability in that 
of the layer. A critica1 value for that instability of tlie case expressed in following ruay[lq: 
magnetic field strength Ho, in the limit Ich -+ O which 

corresponds to the rotation of the layer as a whole can 

be found from the relation (28) and is determined by 

47rpa where Ki = 21(b/2d in the orientation elasticity con- 
H;* = 

h ( p  - ' stant, X = ( I ~ ' ~ / B ) ' / ~  a thickness of 21 [19] is the pene- 

There we can mention the result of Ref. [18] and dis- tration length of smectic liquid crystal, water layers in 

cuss the peculiarities for normal field undulation insta- ferrosmectic. 
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The relation (25) accounting for I l d  $-'I2 [17] 

allows to conclude that the critical magnetic field 

strength is proportional to 4-3/4 (4 - volume fraction of 

the magnetic particles in ferrosmectic layers. Evidently 

to achieve a correspondence with experimental result[17] 

Ho, - 4-'12 it is necessary to know the variation of the 

material parameters of the ferrosmectic (Ki is the ori- 

entation elasticity constant and B is the compression 

modulus) with volume fraction of magnetic particles. 

Concerning single magnetic layer undulation insta- 

bility in high-frequency rotating and normal magnetic 

fields described by relations (23) and (24), respectively 

one can conclude that the observations of small undu- 

lations of extended prolate shapes in e ~ ~ e r i m e n t [ ~ ]  are 

connected with comparable values of the field period 

and characteristic time of the prolate droplet shape de- 

formations. Work is under progress to  simulate those 

instabilities n~merically[ '~] as well as to  account for vis- 

cosity and droplets finite dimensions effects on undula- 

tion instability. 
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