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We present a study of some aspects of the properties of single mode superpositions of 
squeezed states as well as their interaction with a single two-leve1 atom, in the framework 
of the Jaynes-Cummings model. We compare the behavior of systems having two partic- 
ular types of superpositions as initial fields, corresponding to different orientations of the 
constituent states in phase-space. We investigate the collapses and revivals of the atomic 
inversion, as well as the field purity and its connection with the evolution of the Q-function 
in phase-space. 

I. Introduction 

The study of optical macroscopic superposition 

states (or "Schrodinger cats") has been rather fruitful 

over the past few year~[ ' -~] .  Tlie natural candidates for 

such states are linear superpositions of coherent states, 

which exhibit quite unusual statistical properties, such 

as quadrature squeezing, strong oscillations in their 

photon number distribution, as well as sub-Poissonian 

~ h a r a c t e r [ ~ ~ ~ ] .  At the sarne time they are relevant to 

Schrodinger's cat problem[6]., especially because the co- 

herent states are the "most classical" pure sta.tes al- 

lowed in quantum mechanics. More recently, however, 

a new class of superposition states has been introduced: 

the superpositions of squeezed coherent s t a t , e ~ [ ~ - ~ ] .  Be- 

cause of the already intrinsic nonclassical properties of 

the constituent states (squeezed states), the resulting 

superpositions should exhibit even sharper nonclassi- 

cal features than the superposition states using coher- 

ent states. Nevertheless, despite the possibility of con- 

structing squeezed coherent states with a "macioscopic 

number of p hotons" , their superpositions still can not 

be considered legitimate Schrodinger cats, just because 

each component state is nonclassical, unlike the super- 

position of coherent states, where each component state 

is "quasi-classical" . 

The main purpose of this paper is to  investigate 

some of the fundamental aspects of the interaction of 

superpositions of squeezed coherent states with two- 

leve1 atoms in the framework of the exactly-solvable 

one-photon Jaynes-Cummings model (JCM)[~']. The 

model, a single two-leve1 atom interacting with a single 

mocle of the electromagnetic field in an optical cavity, 

allows a deep inspection of the process of interaction 

of nonclassical light with matter, and studies involv- 

ing squeezed ~ t a t e s [ ~ ~ ~ ~ ~ ~ ~ ] ,  as well as superpositions of 

coherent statesL5] as initial fields, for instance, can be 

founcl in the literature. Because the superpositions con- 

sidered here present both a coherent amplitude and 

squeezing in each constituent state, as we are going 

to see, there will be an interesting blend of features 
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due to each fact, bringing important consequences on 

the dynamics of both the atom and the field. Due to 

the peculiar phase-sensitive noise p r ~ ~ e r t i e s [ ~ ]  of the 

squeezed states of light, we a.re able to construct an in- 

finite number of superposition states given a coherent 

amplitude. In this paper we will be concerned only with 

two of these possible combinations, i.e., superpositions 

of squeezed states with both constituent states having 

squeezing parameters (equal and real) either positive or 

negative, corresponding, to super-Poissonian and sub- 

Poissonian states, respectively. The coherent amplitude 

will also be chosen real, ;.e., the states will lie on the 

real (x) axis in phase space. We have chosen these two 

cases not only because they represent extreme situa- 

tions, but also because some methods of production as 

well as properties of such fields have been already clis- 

cussed in the literature["gl. We will show that the evo- 

lution of the atom (field) will be substantially different 

in each case, and that the destruction of the nonclassi- 

cal properties due to the interaction will be less effective 

if the squeezing parameter of the constituent states of 

the initial field is positive, and what corresponds, in 

the examples studied here, to sub-Poissonian photon 

statistics. This also means that the component states 

are squeezed in the x quadrature, while lying on the x 

axis. 

This work is constituted by the following main 

parts: in Section I1 we will review a few properties of 

superpositions of squeezed coherent states. In Section 

I11 and IV we will discuss the dynamics of the atom and 

field, respectively, and in Section V we will summarize 

our conclusions. 

and squeezing operators, re~pect ivel~[~1.  The coherent 

amplitude a will be chosen real and positive, and the 

squeezing parameter r, will he either positive or nega- 

tive (real), depending on the orientation wanted for the 

constituent states Ia, r) and I - a,  r ) .  The constituent 

states are squeezed with respect to the quadrature op- 

erators, 

which means that one of them displays fluctuations 

below the vacuurn level, for instance, ( A x 2 )  < 1/4 

for r > O and ( A Y ~ )  < 1/4 for r < O. Neverthe- 

less, because of the commutation relation in equation 

(2), the uncertainty relation is always preserved, i.e., 

( A X ~ ) ( A ? ~ )  > 1/16. 

It is interesting to note that superpositions of 

squeezed states exhibit a higher degree of squeezing 

than the constituent states[", and this is due to the 

quantum interference arising from the superposition 

process. In order to better illustrate the squeezing prop- 

erties of the superposition state in equation (I), it is in- 

teresting to calculate its Wigner function. The Wigner 

function is one of the possible quasiprobability distri- 

butions in phase space that can be defined within quan- 

tum mechanics, and its usefulness in the description of 

(nonclassical) quantum optical fields has been widely 

recognized, particularly concerning quantum superpo- 

sition statesL2]. If a field is prepared in a quantum state 

described by j, we can define an infinite number of (s- 

parametrized) quasiprobability distributions in phase 

space as: 

11. Some properties of superpositions of 

squeezed coherent states of light 
where the quantum characteristic function is: 

11.1 Squeezing and the Wigner function 

The states we consider here as input fields, i.e., 

quantum superpositions of squeezed coherent states of 

light, are defined as: 

where Ia) = B ( a ) ~ ( r ) l ~ ) ,  with i ) (cr) = exp(aâ7 - a*â )  

and ~ ( r )  = exp[r/2(â2 - ât2)] being the displacement 

Here ,B = x + iy, with (x, y) being the c-numbers corre- 

sponding to the quadratures (x, ?), respectively. For 

particular values of s we obtain the well known distri- 

butions, e.g., for s = O we have the Wigner function, 

and for s = -1 the (Husimi) Q-function. The Wigner 

function of our superposition state (I) ,  is given by: 
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where JV is a normalization factos close to 112. 

Figure 1: Wigner function of a superposition of two 

squeezed coherent states with r = -0.7 and cu = 2. 

We can already see in expression (5), that for r < 0, 

for instance, there is squeezing in the variance of Y for 

each constituent state. The resulting state also presents 

squeezing. This is better illustrated in Fig. 1, where 

we plot the Wigner function [in equation (5)] talting 

r = -0.7 and cr = 2. We note an elongated struc- 

ture, which is basically formed by tlie two peaks cor- 

responding to the individual squeezed states plus the 

interference structure, the latter being responsible for 

the nonclassical effects as well as for the negativity of 

the Wigner function. 

Another quantity to  characterize the field statistics 

that often shows nonclassical effects is the photon num- 

ber distribution. The atomic response in the JCM is 

extremely sensitive to  the photon number distribution 

of the initial field, and therefore it would be worth to 

examine it in some detail. 

11.2 Photon number distribution 

Tlie photon number clistribution is defined as: 

i.e., as the probability of having n photons in a quan- 

tum state describecl by i. In our case, for the state in 

equation ( I ) ,  the photon number distribution can be 

written as: 

N 
Pn = -- (-i tanhr)n exp[-n2(l + Rtanhr) ]  

n! cosh r 

x ['Hn + M n  (-A)' + 2'& (A)'& (-A)] , 

where R = r/IrI (equals -1 or 1 in our case), and 

'Hn (A) is a Hermite polynomial with argument 

a (1 + Rtanh r )  
A =  

(2Rtanh r) l I2 ' 

Because of the complexity of the expression above, 

it is suitable to  depict Pn for both r positive and neg- 

ative. In Fig. 2a we have a plot of Pn with a = 5 

and r = 1. We can immediately identify two main fea- 

tures: "microscopic" oscillations (os non-existente of 

odcl photon numbers) and "macroscopic" oscillations 

for n > 02 .  The formes ones a.re due to  interference 

in the "coherent part" of the superposition, i.e., just 

because one of the constituent states has coherent am- 

plitude a ,  while the other has amplitude -a. This is 

a well-known property[1~2] of such superposition states. 

The latter oscillations are also a well-known feature of 
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the photon number distribution of squeezed states with 

r > O. We see that,  in superpositions of squeezed co- 

herent states both effects are present, as we would ex- 

pect. In Fig. 2b, we have a plot of Pn for a = 5 
and r = -1. In this case, the constituent states are 

oriented in such a way that squeezing occurs in the Y 

quadrature, and the distribution is broader than in the 

former case (super-Poissonian). The "macroscopic" os- 

cillations are not present, but the "microscopic" ones 

are, i.e., there is absence of odd photon numbers. This 

absence is due again to the fact that the coherent ampli- 

tudes in the constituent states have the same absolute 

value but oposite s i g n ~ [ ~ ~ ~ I .  

LI 

Figure 2: Photon number distribution of a superposition of 
two squeezed coherent states with a) r = 1 and b) r = -1. 
In both cases cu = 5. 

As we are going to show in the next Sections, these 

peculiarities of the initial field will have a strong influ- 

ente on both the atomic and field dynamics. 

111. Atomic  response  to t h e  field 

111.1 Approach  t o  the p rob l em 

Here we are going to apply the method already used 

to treat similar problems[14~5~9]. We are interested in 

the evolution of the purity of the quantum states in- 

volved, and this favors, because of its generality, a so- 

lution in terms of the density operator. The Jaynes- 

Cummings m ~ d e l [ ' ~ ]  consists of a two-leve1 atom with 

ground state (g) and an excited state (e) placed inside 

a lossless cavity and interacting with a quantized sin- 

gle mode of the electromagnetic field. Its Hamiltonian 

in the rotating wave approximation, where only energy 

conserving terms are ltept, may be written as: 

where the atomic operators are c73 = le)(el - Ig)(gl; 

CT+ = (e)(g(; a- = Ig)(el, the field (bosonic) operators 

obey [â, ât] = 1, and X is the atom-field coupling con- 

stant. Here we are going to consider only the resonant 

case, i.e., the atomic transition frequency wo equal to 

the field frequency w .  In the case of having the atom 

prepared in the excited state le), and uncorrelated with 

the field at t = 0, the density operator (of the system 

atom-field) at a time t in the atomic basis is given by[l4]: 

where Â = c o s [ ~ t ( â â t ) ~ l ~ ,  and B = 

-iât sin[~t(âât)'/~]/(âât)~/~. 

The density operator in equation (10) completely 

characterizes the system atom-field, and we can use it 

directly to evaluate some important expectation values. 

We can calculate, for instance, the probability of hav- 

ing the atom excited minus the probability of having it 

in the ground state, i.e., the so-called atomic inversion 

ww. 

111.2 Atomic  inversion 

The atomic inversion can be written as W(t )  = 

Tr[/'juZ], and after a straightforward calculation using 

(10) we obtain: 

Despite the simplicity of the expression for W(t), in 

general we have to employ numerical methods to  obtain 

information from it. We clearly notice the dependence 

of the inversion on the photon number distribution of 

the initial field, Pn. The simplest case (not requiring 

numerical evaluation) is the one when the field is ini- 

tially prepared in a number state Im), i.e., P, = 6,,. 
Equation (1 I ) ,  then, yields simple sinusoidal oscilla- 

tions, which means that the atom is periodically excited 

and de-excited, performing the well-known Rabi oscil- 

lations. The situation is more complicated if the field 
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is prepared in a superpositon of number states, e.g, in 

a coherent state, whose Pn is given by: 

Pn = ~ x P ( - I ~ ~ ) I ~ ~ ~  , (12) 
n! 

which is a Poisson distribution for the n's. The depha,s- 

ing and rephasing of the oscilla.tions due t,o clifferent 

photon numbers in equation (11) cause the Rabi oscil- 

lations to collapse and revive at characteristic times, 

which depend on the intensity of the field[15], and that 

we will cal1 T, and T,, respectively. The collapse and re- 

vival phenomenon, which is basically due to the spread 

o i  quanta in a coherent state, also occur if the initial 

field is prepared, for instance, in a squeezed coherent 

and in superpositions of coherent ~ t a t e s [ ~ ] .  

However, specific features of the photon distributions of 

those states of the field, sucli as oscillations, will cause a 

variety of atomic responses. If the field is initially pre- 

parecl in a squeezed coherent state, its photon riumber 

distribution is giveii by: 

hr 
P, = -- (-i tanhr)n expl-a2(l + ~ t a n h  T)]H,(A)~, 

n! cosh r 

for the particular case we are considering here, i.e., a 

real squeezing parameter r, and a real coherent ampli- 

tude a. The argument A is definecl in equation (8). 

In this case, the atomic response will strongly depend 

on the sign of the squeezing parameter r ,  and ringing 

revivals will àppear for r > O due to tlie characteristic 

oscillations in Pn [ l 2 l 9 ] .  It would be convenient now to 

define a scaled time X, = A i /  (2n Jw) , in 

such a way that we have a well defined revival at T,. 
In Fig. 3a there is a plot of the atomic inversion as 

a functioii of the scaled time T,, from numerical eval- 

uation of ( l l ) ,  having the field initially iii a squeezed 

coherent state with cr = 5 and r = 1.5. We clearly 

see the ringing revivals accompanying the main ones, 

as well as the longer collapse time for the Rabi oscilla- 

tions. In Fig. 3b, we have the same atomic inversion, 

but with r = -1.5. We notice a quite different response, 

as it was already pointed out[l1]. The broader photon 

distribution when r < O is responsible for the irregular 

atomic response (revivals not well defined), which ac- 

tually resembles the response as if the initial field was 

prepared in a thermal state[16]. If the field is prepared 

in a superposition of squeezed coherent sta.tes, the re- 

vival time is reduced by one half, which corresponds 

to the appearence of additional revivals, as in siiperpo- 

sitions of coherent This liappens because of 

the absence of odd pliotori numbers in the initial field, 

the time needed for a rephasing of the va.rious Rabi 

oscillations involved will be approximately half of the 

time needed for a Poissonian di~tr ibut ion[~] .  In Fig. 3c 

(r  > O ) ,  and 3d ( r  < O), we have plots of the atomic 

inversion versus the scaled time T,, using the photon 

number disti:ibution in equation (7) and numerically 

eva,luating (11). We would lilie to point out that despite 

the irregularity of the Rabi oscillations when r < O ,  ad- 

ditional revivals, due to  the quantum interference in the 

superposition state, can stin be noticed. 

We can identify, then, features arising from the "co- 

herent part" of the superposition, such as halving of 

the revival time, and features clue to the squeezing of 

the constituent states, such as ringing revivals, simul- 

taneously present in the atomic response in the case 

considered here. Nevertheless, these effects seem to oc- 

cur independently, i.e., there is no apparent interference 

between thein. 

IV. Evolution of tlie cavity field 

IV.l Field entropy 

\Ve are now interested in examining some aspects 

of the cavity field. Atom and field can be treated as 

separate subsystems, and their corresponding reduced 

density operators are obtained by the following tracing 

operation: 
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1.0 by (14) is no longer a pure state, at  least during most 

of tlie time. A way of measuring the degree of purity of 
0.5 

the field is through the so-called von Neumann entropy, 

w 0.0 defined, for each one of the subsystems, as[l7]: 

-0.5 s.f(a)  I -Tr { ~ j ( a )  ( t )  ln[6j(aj(t)I) . (15) 

Figura 3: Atomic inversion for an initial field prepared in: 
a) a squeezed coherent state with r = 1.5; b) a squeezed co- 
herent s ta te  witli r = -1.5; c) a superposition of squeezed 
coherent states with r = 1.5; d) a superposition of squeezed 
coherent states with T = -1.5. In a11 cases a = 5. 

performed on the total density operator i ( t )  in equation 

(10). SVe are assuming that the field is not correlated to 

the atom at t = 0,  and tliat each one is in a pure state. 

However, as soon as the interaction starts, the result- 

ing entangled state is such that the state represented 

The entropy is zero for any quantum mechanical pure 

state, assuming non-zero positive values for mixed 

states, and reaching a (possible) maximum value that 

depends on the number of available states in the sys- 

tem. In our case the maximum possible value for the 

entropy is S,,, = 1n 2 N 0.69. According to the Araki- 

Lieb theorem[l", provided that the total initial entropy 

is zero (closed system), the entropy of the subsystems 

will be equal, i.e., SI = S,. We are going take advan- 

tage of this fact, because in the present case it is more 

convenient to calculate the atomic entropy rather than 

the field entropy. From the total density operator in 

(10), we obtain: 

where 
00 

Having diagonalized the atomic density operator, the 

voii Neumann entropy is simply given by: 

where 

It is ~e l l - l i nown[~~]  that if the field is initially pre- 

pared in a coherent state, it almost returns to  a pure 

state approximately at half of the revival time (T,/2). 

It lias also been f ~ u n d [ ~ ]  that if the field is prepared in 

a squeezed coherent state, instead, the field is almost 

pure at both half of the revival time and at the revival 

time itself. This can be seen in Fig. 4a, where we have 

a plot of the field entropy (numerically evaluated) as 

a function of tlie scaled time T, for an initial squeezed 

coherent state with r = 1 and cu = 5. In Fig. 4b, the 

situation is the same, but with r = -1, instead. We 

immediately notice a decrease in the degree of field pu- 

rity. In this case it is more difficult for the evolution 
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to "reconstruct" a pure state, and in our opinion, this 

happens because the field is super-Poissonian ( r  < 0) 
instead of sub-Poissonian ( r  > O) .  If we now have the 

initial field prepared in the superposition state )ii) de- 

fined in equation ( I ) ,  i.e., ;(O) = jii)(QI, the situation 

is very different. For instance, for a superposition state 

having a = 5 and r = 1 in both constituent states, 

the field entropy presents strong oscillations, that reach 

minimum vâlues approximately at the corresponding 

revival times. This feaiure, already found when the 

field is prepared in a superposition of coherent 

can be appreciated in Fig. 4c. However, there is an 

important differexce between the present example and 

the coherent state case studied in Reference [5]. The 

maximum degree of field purity is greater in ibe for- 

mer than in the latter, and this also can be understood 

using phase-space representations of the field. We are 

using the squeezing parameter r  = 1 precisely because, 

as it has been already pointrd outLg], it corresponds 

to an "optimum value" (when a = 5), for which the 

field almost returns to  itç initial features (a  squeezed 

coherent state) approximately a t  the revival time. For 

these particular values of r and a ,  the field is extremely 

sub-Poissonian, so that both atom anc! field can slmost 

return to  their initial configurations at certain times. 

The revivals of the atomic inversion, for instance, are 

more "complete", in ihe sensc. that the atom is almost 

able :o reach its initiâl !evel po~ulat ion as the initial 

field apprczches an ideal süb-Poissonian state!"]. 'fie 

notice thai,  at  least regarding the fieíd entropy, this is 

also trce if the field starts in the superposition state {I). 

On the other hand, this reconstruction is not possible if 

the orier?tations of the constituent states are changed, in 

such a way the initial field is super-Poissonian ( r  = -1). 

In this case, as we see in Fig. 4d, the field is rapidly 

reduced to a mixed state, remaining in this conùition 

as time goes cn. 

We would also lilre to note that the non-diagonal 

matrix eiements in (16) are zero if the field is initially 

prepare3 in z superposition O:' squeezed states, uniilte 

when it is 2repired in a single squeezed state. For that 

reason the maximum purity reacked by the field during 

the evolution will be always smaller in the former case 

than in the latter, fact that can be seen by comparing 

Fig. 4c with 4a. 

Figura 4: Field entropy for an initial field prepared in: a) a 
squeezed col~eient state with T = 1; b) a squeezed coherent 
state with r = -1; c) a superposition of squeezed coherent 
states with r = I;  d) a superposition of squeezed coherent 
states with r = -1. In a11 cases a = 5 

IV.2 Phase-space r ep re sen t a t i on  

A very clear way of depicting the field evolution 

in the JCM is through the phase-space representations 

(or quasiprobability d i s t r ibu t ion~)[~~I .  The Q-function 

is especially suitable for that,  and in fact it has been 

extensively used in this lrind of problems[5~9~1g]. The 

Q-function of a field described by pf can be obtained 
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from its definition in (3), but it is more convenient to 

calculate it using the form: 

where IP) is a coherent state with amplitude /? = x-tiy. 
It is well-known[lgJ that the splitting and recombi- 

nation of branches of the Q-function in phase space is 

associated with the collapses and revivals of the atomic 

inversion. For instance, if the field is initially prepared 

in a coherent state, when a splitting of the Q-function 

occurs, we have the collapse of the Rabi oscillations, ac- 

companied by a complicated evolution of the field. At 

the time when the two branches are most "far apart", 

i.e., at t = TT/2, the interference effects are such that 

the field is nearly in a pure state. At t = T,, a recombi- 

nation of the two branches in the Q-function occurs, but 

in this case the field is no longer in a pure state. Tlie 

correspondence between the collisions of Q-function's 

branches and the revivals of the atomic inversion also 

occurs for other initial fields, e.g., with superpositions 

of coherent statesL5]. This general behavior will also 

be present here. In Fig. 5 we have the Q-function 

of the cavity field at t = O and t = T,. for the field 

initially prepared in a superposition of two squeezed 

coherent states with r = 1. We notice that in fact at 

t = T, the field has evolved towards a configuration 

resembling a superposition of two squeezed coherent 

states, but with different orientation from the original 

ones, i.e., a superposition state as in equation (I) ,  with 

r < O and an imaginary amplitude a' = i(a1. On the 

other hand, if we take a squeezing parameter r = -1 

for the initial superposition, there is a rapid diffusion 

along a circle (with radius=a) in phase-space, which 

corresponds to the reduction of the field to  a mixed 

state. We would like to  remark that there is a clear 

connection between the orientation, the fluctuations in 

photon number of the (initial) constituent states and 

the way they are reduced to statistical mixtures. It is 

easier for the field to almost recover its purity during 

the evolution if r > O (sub-Poissonian), rather than if 

r < O (super-Poissonian) in the initial superposition 

state, and this corresponds to a splitting of the distri- 

bution along the direction in which there is already an 

increase in quadrature noise. For times long enough, 

homever, there is an even spread of the field Q-function 

along a ring-lilte structure in both cases, as the field 

becomes basically a statistical mixture. 

V. Conclusions 

We have presented an investigation of a new cla.ss 

of quantum superposition states of the quantized elec- 

tromagnetic field, that is, superpositions of squeezed 

coherent states. We have mainly discussed the interac- 

tion of such non-classical states of the field with matter, 

using a simple model of optical resonance (the Jaynes- 

Cummings model). The constituent states themselves 

(squeezed states), already show remarltable statistical 

properties, lilte oscillations in the photon number distri- 

bution, but because of the quantum interference, some 

non-classical properties are even more pronounced in 

a superpostition of two squeezed coherent states. Due 

to the inherent phase-sensitivity of the squeezed states, 

we are allowed to construct an infinite number of dif- 

ferent types of superpositions, each one leading to a 

different evolution of the system atom-field. We have 

concentrated our analysis upon two particular superpo- 

sitio11 states, both having the corresponding constituent 

states oriented either along the x (real) or the y (imag- 

inary) axes in phase-space, and we have noticed that 

there are two distinct types of oscillations in the photon 

number distribution of the superposition states consid- 

ered here. TVe were also able to verify the consequences 

of having such non-classical features in the initial cav- 

ity field by simple inspection of the atom (field) evolu- 

tion. The collapses and revivals of the atomic inversion, 

for instance, are very clearly affected by the different 

types of oscillations in the photon number distributions 

present in the superposition state. We would also like 

to recall a,n interesting feature concerning the evolution 

of the cavity field. We found that it is possible to  obtain 

a more effective return of the field to an almost pure 

&te if we have a superposition of squeezed coherent 

states with an "optimum" squeezing parameter r N 1 

(if cu = 5), for which its photon number distribution 

is the narrowest possible (most sub-Poissonian). The 

existente of such ai? squeezing parameter for the initial 
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Figura 5: Q-function contours for an initial field prepared in a superposition of squeezed coherent states with r = 1 and 
cu = 5, at: a) t = O; b) t =T,. 

Figura 6: Q-function contours for an initial field prepared in a superposition of squeezed coherent states with r = -1 and 
cu = 5, at: a) t = O ;  b)t= T,. 

state of the field related t o  its purity during the evo- 

lution has been already devised in a worli concerning 

only a single squeezed coherent state as an initial field 

in the JCM[']. From the phase-space point of view, this 

is related to  the fact that there is less amount of noise 

in the quadrature "perpendicular" to  tl-ie direction in 

which the bifurcation in phase-space occurs, that  is, 

the x quadrature in our case. Otherwise there is just 

a dramatic reduction of the state of the field towards a 

statistical mixture. 
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