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It is described a mechano-statistical formalism able to deal with dissipative processes in 
systems arbitrarily away from equilibrium. The method is considered to be encompassed 
in the context of Jaynes' Predictive Statistical Mechanics. The formalism allows for the 
construction of a nonlinear generalized transport theory of large scope. It also provides 
foundations for phenomenological thermodynamics in what is clenominated Informational 
Statistical Thermodynamics, and an accompanying non-classical hydrodynamics (Informa- 
tional Statistical Hydrodynamics). In the context of the latter, we derive generalized equa- 
tions of evolution for the ordinary fluxes of Classical (Linear) Irreversible Thermodynam- 
ics. These time evolution equations for the fluxes are shown to be of the type of a large 
generalization of Mori-Langevin equations, wliich are nonlinear equations including space 
correlations, inemory, and dissipation. We also consicler how sucli equations reduce, talting 
a linear approximation in the fluxes and ali instantaneous in time approach, to  nonlocal in 
space coustitutive-lilie equations for tlie fluxes. 

As it is well lrnown, it is usually stated tliat the 

objective of statistical mechanics is to explain and pre- 

dict the properties of macroscopic matter from the un- 

derlying microscopic dynamics of its constituents. It 

is divided into two parts, namely that associated to 

equilibrium states and that associatecl to nonequilib- 

rium states. Within its owii structure Statistical Me- 

chanics possesses a number of quite difficult concep- 

tua1 problems[l]. Among them there is tlie question 

about the pliysical ineaning of Gibbs ensemble algo- 

rithin. Also, one may wonder how to justify the use of 

the usual ensembles for systems in equilibriuin. 1s such 

possibility feasible and, if sol what would their struc- 

ture be like in order to deal with the case of systems 

arbitrarily out of equilibrium? Another question is how 

to reconcile the reversibility inherent in the equations 

of rnicroscopic mechanics, with the irreversible behav- 

ior of macroscopic systems in nature. So we see that 

conceptual difficulties may be even associated to the 

well established and highly regarded equilibrium statis- 

tical mechanics. It is really a puzzling fact that Gibbs 

ensemble algorithm for systems in equilibrium works so 

stupendously we11[~]. 

It is then not surprising that the analysis of nonequi- 

librium systems presents far greater difficulties than 
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those faced in the t,heory of equilibrium systems. This 

is due firstly to the fact that non-equilibrium states 

are not uniquely defined and secondly because a more 

detailed discussion is necessary to determine the tem- 

poral dependence of measurable properties, and to cal- 

culate the time and space - dependent transport coef- 

ficients associated with the irreversible processes that 

take place in these systems. At present several theoret- 

ical methods exist for studying the macroscopic evolu- 

tion of nonequilibrium systems. The usefulness of these 

methods can be assessed through comparison of the 

theoretical results with experimental data. However, 

the reason why these methods worli well within their 

own domains of application cannot be properly under- 

stood until a profound insight on the basic conceptual 

problems associated to the irreversible processes is ob- 

tained. Existing formalisms have inherent difficulties, 

typically those related mainly to the introduction of 

coarse-graining procedures, the question of irreversibil- 

ity, and the definition of initial and boundary condi- 

tions. 

Those approaches cai1 be grossly associated with 

two main directions of thought in nonequilibriuin statis- 

tical mechanics: (1) The lrinetic theory of gases where, 

starting with a few hypothesis although very controver- 

sial, one obtains a description of how simple systems 

approah equilibrium (e.g. the celebrated Boltzmann's 

'7-theorem). An extension of these ideas to dense sys- 

tems has followed several paths Mie, for example, the 

construction of generalized liinetic t he~ r i e s [~ ] ,  and the 

equations of the BBGKY h i e r a r ~ h ~ [ ~ ] .  (2) A general- 

ization of the theory of the Brownian motion, wliere 

the complicated dynamic equations - the generalized 

Newton-Langevin equations - that follow from the laws 

of mechanics (used to  describe the microscopic dynam- 

ics of molecules, or atoms, or quasiparticles, that consti- 

tute the system) are accompanied by statistical assump- 

tions. Belonging to this approach are, for example, the 

formalism of the correhation functions or memory func- 

tions due to  Mori L51, and some aspects of the master 

equations metho~l[~I .  

This situation arose from stagnation: for a long time 

tliere way no general prescription for choosing appropri- 

ate ensembles to clescribe tlie behaviour of nonequilib- 

rium systems. Hence the rise of kinetic theories, some 

more reliable than others, to deal with the great vari- 

ety of nonequilibrium phenomena in physical, chemical, 

and biological (i.e. natural) systems. It has been rightly 

stated[7] that: "The piototype and still rnost successful 

of a11 lrinetic equations is Boltzmann's famous equation 

for tlie time evolution of the position and velocity distri- 

bution of atoms in a gas. The beautiful elegance of this 

equation, so easy to derive intuitively and so difficult to 

justify rigorously, is as impressive today as it was over 

a hundred liears ago when it sprang like Minerva fully 

clothed from the head of Jupiter. It still stands today 

as a practical to01 ancl a rnodel of what a kinetic equa- 

tion should be. The philosophical problems it raised 

and the heated arguments it engendered are also still 

with us today." 

It has been considered[" that the basic goals of 

nonequilibrium statistical mechanics are: (i) to  derive 

transport equations and to understand their structure; 

(ii) to understand how the approach to equilibrium oc- 

curs in natural isolated systems; (iii) to study the prop- 

erties of steady states; (iv) to  calculate the instanta- 

neous values and the temporal evolution of the phys- 

ical quantities which specify the macroscopic state of 

the system. The approaches to  develop a theory en- 

compassing the programme just stated have also been 

classified by Zwanzig as: (a) Intuitive techniques; (b) 

Techniques based on the generalization of the liinetic 

theory of gases; (c) Techniques based on the theory 

of stochastic processes; (d) Expansions from an initial 

equilibrium ensemble; (e) Generalizations of Gibbs en- 

semble algorithm. 

The last of these items, (e), is placed among the 

long souglit attempts to search for a generalized Gibb- 

sian statistics for systems arbitrarily away from equi- 

librium, and encompassing as proper limiting cases the 
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successful theories of linear response (near equilibrium 

conditions) and finally equilibrium. A modality of this 

theory, that can be called the Nonequilibrium Statisti- 

cal Operator Method (NSOM for short form now on), 

has been an object of interest and research in tlie last 

tliree decades. The NSOM is considered to have a quite 

appealing structure and seems to be a very effective 

technique to deal with a large class of experimental sit- 

uations; we will return to this point in the last section. 

This formalism has been formulated by several authors, 

either using heuristic argu~nentsIg~lO], or projection op- 

erator techniques["]. It has been s h o ~ n [ ~ ~ ]  that these 

approaches can be brought together under a unifying 

variational method, which is to be reviewed and fur- 

ther discussed in next Section. 

The important point to stress here is that such uni- 

fying variational method seems to place the formalism 

within the scope of Edwin T. Jaynes predictive Statis- 

tical Mechanics (PSM)['~], which seems to encompass a 

new paradigm in the scientific method. PSM is founded 

on the principles of Bayesian statistical inference[14] 

along with a constructive criterion for setting up proba- 

bility distributions, namely, the maximum entropy for- 

malism (MaxEnt for short), based on an informational- 

theoretical approach[15]. As pointed by Jaynes, we are 

beginning today to realize how much of a11 physical sci- 

ence is really only information organized in a particular 

way. However there remains a lmotty question, namely, 

to what extent does this information reside in us, and 

to what extent it is a property of Nature. The point, 

mainly that the foundations of probability theory and 

the role of human information have to be brought in, 

is also considered by Jaynes in connection wity the dif- 

ficulties inherent to quantum measurement theory[l6]. 

According to Jaynes the question of what the theoreti- 

cally valid, and pragmatically useful, ways of applying 

probability theory in science has been approached by 

Harold ~ e f f r e ~ s [ ~ ~ ] ,  in tlie sense that he stated the gen- 

eral philosophy of what scientific inference is and pro- 

ceeded to carry both the mathematical theory and its 

practical implementations. ~ e f f r e ~ s [ l ~ ]  indicates that 

"the fundamental probiem of scientific progress, and a 

fundamental of everyday Iife, is that of learning from 

experience. Knowledge obtained in this way is partly 

merely description of what we have already observed, 

but part consists of making inferences from past expe- 

rience to predict future experience. This part may be 

called generalization or induction. I t  is th most impor- 

tant part." Jeffreys also quotes James C. Maxwell as 

stating that the true logic for this world is the Calculus 

of probabilities, which takes into account the magni- 

tude of the probability which is, or ought to  be, in a 

reasonable man's mind. 

Such approach can go beyond physics, chemistry, 

biology and other sciences, encompassing even the so- 

cial ones. As a consequence a point of view adopted by 

several authors is that it provides an unifying scientific 

method for them - meaning that the different branches 

of science that seem to be far apart may, within such 

new paradigm, grow and be hold together organically. 

Jacob ~ronowslti[l" conjectured that this may be 

the revolutionary thought in modern science. It re- 

places the concept of the inevitable effect for that of the 

probable trend. Further, Ilya Prigogine, in his quest for 

the meaning of time and the role of irreversibility in the 

emergence of complex behavior in the natural sciences, 

has stressed that it is not surprising that probability 

could play an even more relevant role, that the one 

so far provided, in the description of natural phenom- 

ena; the innovation being to introduce probability in 

physics not as a mean of approximation but rather as 

an explanatory p r i n ~ i ~ l e [ ~ ~ I .  

Also, following ~ a ~ n e s [ l ~ ]  and Ander~onL~~] ,  what 

seems to be the most appropriate probability theory 

for the sciences is the Bayesian approach. The Bayesian 

interpretation is that probability is the degree of belief 

which it is consistent to hold in a proposition being true, 

according to which other conditioning propositions are 

taken as true. Or, according to ~ n d e r s o n [ ~ ~ ] ,  "What 

Bayesian does is to focus one's attention on the ques- 
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tion one wants t o  ask of the data: It says in effect, How 

do these affect my previous knowledge of the situation. 

It is sometimes caled maximum likelihood thinlting, but 

the essence of it is to clearly identify the possible an- 

swers, assign reasonable a priori probabilities to them 

and then ask which answers have been made more likely 

by the data." 

After these general considerations, let us return to 

the particular question we have in hands, namely to see 

how nonequilibrium statistical mechanics can become 

a predictive science. To proceed in that direction, as 

pointed out by Jaynes "How shall we best thiilk about 

Nature and most efficiently predict her behavior, b' J iven 

only our incomplete knowledge? [. . .] We need to see it ,  

not as an example of the N-body equations of motion, 

but as an example of the logic of scientific inference, 

which by-passes a11 details by going directly from our 

macroscopic information to  the best macroscopic pre- 

dictions that can be made from that information [...I 
Predictive Statistical Mechanics is not a physical the- 

ory, but a method of reasoning that accomplishes this 

by finding, not the particular that the equations of mo- 

tions say in any particular case, but the general things 

that they say in "almost all" cases consistent with our 

information, for these are the reproducible things." The 

construction of the statistical approach should be based 

on a rather basic principle: "[ ...I if any macrophe- 

nomenon is found to be reproducible, then it follows 

that a11 microscopic details that are not under the ex- 

perimenter's control must be irrelevant for understand- 

ing it .  [...I We never know the microstate, only a few 

aspects of the macrostate. Nevertheless the aforemen- 

tioned principle of reproducibility convinces us that this 

should be enough; the relevant information is there, if 

only we can see how to recognize it and use it." 

Hence, in Jaynes approach, when the basic ques- 

tion of the physicist: How does the system behave? 

is asked, the physical theory instead of seeking to an- 

swer it by deductive reasoning from the known laws of 

physics, searchs for an answer to the question: Given 

the partia1 information that we do have, what are the 

best predictions we can malte of observable phenomena? 

We cannot claim deductive certainty for its predictions, 

but it must be ensure the objectivity. In a colloquial 

vein we can say that, to ensure the honesty of the pre- 

dictions we do make, we ought to  forbide ourselves from 

the use of extraneous assumptions beyond the data at 

hand. The formal devise which accomplishes this relies 

on the idea of drawing inferences only from that proba- 

bility distribution whose sample space represents what 

is ltnown about of the structure of microstates. PSM 

claims that considering that Gibbs standard of logical 

reasoning is powerful enough to give a formalism, that 

can be put under a unifying variational principle, of - 

as already stated - tremendous success in dealing in the 

realm of Physics and Chemistry for a century, then it 

also must be powerful enough to be appropriately gen- 

eralized to irreversible processes[13-15~21]. 

The constructive criterion for deriving the proba- 

bility assignment for the problem on the basis of the 

available information is the principle of maximization 

of informational entropy, the already mentioned Max- 

Ent for short. In other words, according to Jaynes' 

MaxEnt, the least biased probability assignment ( p j )  

for a set of mutually exclusive events {xj) is the one 

that maximizes the quantity 7,  sometimes referred to 

as the informational entropy, given by the expression 

subject to the constraints imposed by the available in- 

formation. This is based on Shannon's ideas, who first 

demonstrated that, for an exhaustive set of mutually 

exclusive propositions, there exists a unique function 

measuring the uncertainty of the probability assign- 

ment, namely, the function 7 defined a b o ~ e [ ~ ~ ] .  

The fact that a certain probability distribution max- 

imizes the informational entropy subject to certain con- 

straink representing our incomplete information is the 

fundamental property which justifies the use of that dis- 

tribution for inference; it agrees with everything that is 
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ltnown, but carefully avoids assuming anything that is 

not ltnown. In that way it enforces - or gives it a logical- 

mathematical viewpoint - the principle of economy in 

logic, known as Occain's razor, namely, Entia non sunt 

multiplicanda praeter necessitatem (Entities are not to 

be multiplied except of necessity). Jaynes' PSM pre- 

dicts a tliermodynamic beliavior of a system, not on the 

basis of the usual viewpoint of mechanical trajectories 

and ergodicity of classical deductive reasoniiig, but by 

the goal of using inference from incomplete inforniation 

rather than deduction: The MaxEnt distribution rep- 

resents the best predictions me are able to malte from 

the information we have[13-15]. 

As described in next Section the NSOM cai1 be 

brought under the variational principle just stated, 

and so we will refer to  it as the MaxEnt-NSOM. 

We mean that in that way we recover, generalize 

and extend the existing NSOM in its lieuristic ancl 

projection techniques approaches[g-12]. Furtliermore, 

the MaxEnt-NSOM recovers as a special case equi- 

librium statistical mechanics, and in particular, in 

the thermodynamic limit it is a manifestation of tlie 

second law of t h e r m ~ d ~ n a m i c s [ ~ ~ ~ ~ ~ ] .  Also it pro- 

vides mechano-statistical basis for classical equilibrium 

thermodynamics, linear response theory, and classical 

hydrodynamics[25]. We are considering a.n extension of 

these results to tlie case of irreversible tlierinodyiiamics 

and non-classical hydrodynamics for systems arbitrarily 

away from equilibrium. Tliis seems to be possible wlieii 

resorting to tlie MaxEiit-NSOM including nonliiieari- 

ties and nonlocality in space and time (what implies in 

incorporating space correlations and memory), leading 

to what can be referred to as Informationul ,Statistical 

~ h e r r n o d ~ n a r n i c s [ ~ ~ ~ ~ ~ ~ ~ ~ ] .  

In Section I1 we describe tlie construction of tlie 

MaxEnt-NSOM for a system in quite general nonequi- 

librium conditions. In this MaxEnt-NSOM the char- 

acteristic macrovariables describing the states of the 

system are defined from an appropriate set of basic cly- 

namical variables, by talting the average of the latter 

in terms of a "coarse-grainecl" probability density. The 

main gist beliind this coarse-graining operation is to 

eliminate all tlie "irrelevant" information necessary to 

characterize tlie macrostate. The MaxEnt iionequilib- 

rium statistical operator is obtained, and within the 

formalism a generalized nonlinear quantum transport 

theory is constr~~ctecl. This is used to derive consti- 

tutive equations in non-classical liydrodynamics, and 

from tliem, together with the equations of continuity, 

tlie equations of propagation (damped wave motion) 

for tlie liydrodynamic modes. Tliis is done in Section 

111 in orcler to provide an illustrative application of the 

metliocl. Concluding remarks are included in Section 

IV. 

11. Tlieoretical background 

The NSOM can be considered as a generalization of 

statistical formalisms based on Boltzmann ancl Gibbs 

fundamental icleas. Different approaclies h a ~ e  been de- 

veloped by severa1 autliors, relying on either heuristic 

arguments, or using projection operator tecliniques. A 

unifying approach based on a variational principle is 

described e l~ewl i e r e [~~~~" ] .  

Tlie NSOM is based, in any of its formulations, 

oii Bogoliubov's assertion (principle of correlation 

~ea l t en i i i g ) [~~]  that in general there exists a hierarchy 

of relaxation times such that as time goes on, the sys- 

tem lieeps loosing memory of the previous evolution, 

so tliat as equilibrium is approachecl an ever clecreas- 

ing number of variables is enough for the description 

of tlie macroscopic state of tlie systern. This contrac- 

tion is connectecl with the separation from the total 

Hamiltonian of strong interactions with certain sym- 

metries; sucli interactions are those relatecl to the fast 

relaxing processes[31]. In the contracted description 

tlie macroscopic state of the system is cliaracterized by 

a reduced set of thermodynamic variables, say Q j  (t) 

with 1 , 2 ,  ... , R, which are the average values, calculated 

with the use of the nonequilibrium statistical operator 

(NSO), of a corresponding set of dynainical variables 

Pj ,  the NSO being a functional of these variables. It 
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ought to be noticed that,  for inhomogeneous systems, 

these variables should be locally defined (position de- 

pendent), that is one introduces the densities P j ( q  and 

the thermodynamic fields Qj (r', t)). The choice of these 

variables is not unique and one of the fundamental ques- 

tions of the theory consists in defining their complete- 

ness in some One way associated to the 

NSOM, which is shown to be closely connected with 

phenornenological irreversible t l i e r m ~ d ~ n a m i c s [ ~ ~ ] ,  is 

based on the separation of the total Hamiltonian into 

two parts, namely 

where H. contains the kinetic energies and the con- 

tributions of the interactions that produce very rapid 

relaxation processes, and H' is related to tlie slow re- 

laxation processes. Moreover, the quantities Pj and the 

relevant part of the Hamiltonian, No, are connected by 

what we cal1 the Peletminsliii-Zubarev symmetry con- 

dition, namely 

n 

in an appropriate quantum representation, and wliere 

C2 are c-numbers. In this way it may be said that the 

fast relaxing variables have been eliminated from the 

description and the macrostate of the system is charac- 

terized in terms of the contracted description generated 

by the set of slow relaxing variables. 

As already mentioned, the NSOM can be put under 

a unifying approach resorting to  a variational princi- 

ple, namely Jaynes' principle of maximization of infor- 

mation entropy[14-16], with memory effects and ad hoc 

hypothesis[12~29]. The method consists in maxirnizing 

Gibbs functional 

where to to  5 t' < t ,  with to  being the initial time 

of preparation of the system and t the time at which 

a measurement is performed. Eq. (4) introduces a 

dynamical character in the information (after-effects) 

since these conditions involve the evolution of the sys- 

tem from the initial time of preparation to (to be un- 

derstood as much larger than the relaxation times in 

Bogoliubov's hierarchy associated to the principle of 

correlation wealtening) up to time t .  It must also be 

noted the formal character of Eq. (4) where one makes 

tlie assumption that there is a knowledge of the values 

of varkbles Qj  on the time interval ( to ,  t ) .  Hotvever, 

this information-gathering interval can and ought to be 

reduced to information recorded at a unique time: the 

formalism generates equations of evolution for variables 

Qj (r, t )  which give their values at any time t > t o ,  once 

initial values Qj (r', to) are provided. 

We omit the details of tlie description of the va i -  

ational procedure, and refer tlie reader to references 

[12,29], It suffices to say that the Lagrange multipli- 

ers that the variational method introduces are specified 

in a special way in order to: (i) fix an initial condi- 

tion from which the irreversible evolution of the macro- 

scopic state of the nonequilibrium many-body system 

proceeds so that one is able to  introduce from the outset 

a condition for dissipativity in an ad hoc manner; (ii) 

introduce a set of functions Fj(< t) such that they play 

tlie role of intensive variables thermodynamically con- 

jugated to the intensive variables Qj(r',t), to generate 

a complete connection with phenomenological nonequi- 

librium thermodynamics; and (iii) separate the NSO 

into two parts 

where p is the NSO, subject to the constraints that the 

set of macrovariables Qj(r',t) are those that properly 

describe the macroscopic state of the system, and that 

where the first term, p(t), in an auxiliary generalized 

Gibbsian distribution which defines the instantaneous 

values of the macrovariables, and p'(t) carries the in- 

formation on the microscopic dynamics relevant to the 
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description of the irreversible evolution of the macio- 

scopic sta.te of the system. The auxiliary distribution 

is given by 

where 

ensures its normalization. 

Condition (ii) stated above, applied to the vari- 

ational Lagrange multipliers, requires the addjtional 

property that . 

which stands for a coarse-graining condition. This 

property has a relevant role providing for the simulta,- 

neous normalization of both p(t) and P(t), namely Eq. 

(7) in the latter case, and malting of $(t) a generating 

functional in the sense that 

where 6 stands for functional deri~ativeL~~1. Eq. (9) 

defines the conjugation of both kind of variables ( F j  

and Q j )  in the sense of phenornenological irreversible 

thermodynamics[271. I t  is the generalization to  nonequi- 

librium situations of the relation that stands in equilib- 

rium and near equilibrium conditions; it also implies in 

the result provided by Eq. (32b) below which is a man- 

ifestation of the equations of state in nonequilibrium 

conditions. 

Particular cases of the NSOM given in the literature 

are recovered within the variational method (Cf. Ref. 

[E]) .  In particular Zubarev's N S O [ ~ ~ ] ,  which is to be 

used in next section, is given by 

dt'eC("-'1 ln ?(ti, t' - t)} , (10) 

where p is given by Eq. (6) with the first time in the 

argument referring to  the time dependence of the ther- 

modynamic variables 4 (r', t)  and the second standing 

for the time evolution of operators Pj (r', ti-t) in Heisen- 

berg representation. E is a positive infinitesimal ensur- 

ing irreversibility in the description which goes t o  zero 

after the trace operation in the calculation of average 

values has been performed. Integration by parts in Eq. 

(10)  yields 

t d 
p,(t) = enp 8)  - L_ dt'e6("-'1- ln p(ti, 1' - t )  

dt' 

which can be put in the form of Eq. (5) (See Appendix 

A). It is worth noticing that Zubarev's NSO satisfies a 

modified Liouville equation of the form 

where L is the Liouviile operator for the system. The 

presence of the infinitesimal source breaks the otherwise 

time reversal symmetry. In that way it has been intro- 

duced in the formalism, in an ad hoc manner, a condi- 

tion for irreversible behavior in the evolution of the sys- 

tem from an initial condition of preparation at time to.  

This implies in the use of Bogoliubov's method of quasi- 

a v e r a g e ~ [ ~ ~ ] ,  a procedure that involves a symmetry- 

brealiing process to deal with the remotion of degen- 

eracies connected with one or severa1 transformation 

groups. In the present case the symmetry-breaking is 

that of time-reversal symmetry. Here the presence of 

E selects the sub-group of retarded solutions from the 

total group of solutions of Liouville's equation for, as 

stated, establishing from the outset irreversible evolu- 
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tion for increasing times from an initial value condition. 

We note that  the initial condition for the NSO is 

or in words, the state characterized by the initial val- 

ues Qj(-a) of the macrovariables with no correlation 

among them; for t > to (= -co) the term pl(t) is 

present in p, and with it the irreversible evolution under 

the dynamics generated by the system's Namiltonian. 

The MaxEnt-NSOM proves to be a very powerful 

mechano-statistical formalisrn for the treatment of sys- 

tems arbitrarily away from equilibriurn. In particular 

it provides a mechano-statistical foundation for phe- 

nornenological irreversible thermodynamics and within 

its scope, it contains the Glansdorff- Prigogine univer- 

sal criterion of evolution, Prigogine's theorem of mini- 

mum entropy production, and Glansdorff-Prigogine sta- 

biIity c r i t e r i ~ n [ ' ~ ~ ~ ~ ] .  Also, within the framework of 

the MaxEnt-NSOM it is possible to construct a re- 

sponse function theory for far-from-equilibrium systems 

and an accompanying nonequilibrium thermodynamic 

Green function formalism[12]. 

On the other hand, the most important part of the 

MaxEnt-NSOM is the derivation of a nonlinear quan- 

tum transport theory for the basic variables, fundamen- 

tal in a11 applications since they give the description 

of the irreversible evolution of the macroscopic state of 

the system. Such a theory follows from the general time 

evolution equation for the macrovariables, namely, 

where, as usual, [A,B] is the commutator of operators 

A and B. Using the separation of Eq. (5) and some 

mathematical manipulations we are lead to  the result 

that[361 

(15) 
where 

dtle'("-')~r - [H, [H1(t - t'), Pj(F,t - t')]] p(t1, O) + 4(r7t) = - J 
zh -, {:h 1 

+ 2 Jd3r1aQk(P,t') [6Tr { [ ~ ' ( t  
k = l  

dt' 

where, we recall, 6 stands for functional derivative, and 

the operators are given in Heisenberg representation. 

The collision operator of Eq. (16) is clearly nonlo- 

cal in space and time and highly nonlinear in the state 

variables; also it is extremely complicated for use ín 
practical calculations, in fact of unmanageable propor- 

tions. However, the separation of the Hamiltonian as 

given by Eq. (I), and the use of the symmetry condition 

of Eq. (2) allows t o  write i t  in ways easier to handle. 

In fact, some mathematical manipulations allows to go 

from ttie Liouville equation for the NSO [Eq. (12)], to 

an integral equation, namely[37J 



Here and in what follows, for the sake of simplic- 

ity, we have omitted writing explicitly the dependeiice 

on the space variables and, f~lrther, subindex nauglit 

defines the corresponding operator Heisenberg's repre- 

sentation with the partial Hamiltonian Ho. 

Eq. (17) is an integral equation for the operator 

p,p(t), which admits a solution by iteration that takes 

where 
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the form 

1 * - dllc'(tl-t) 61i(t"t'ot)o Trl[Hl, pj]p!m-l)(t~, O ) a j  , 
ifi j=l 6Qj (t') 

for M 2 1. 

Using this result, the equations of evolution for the 

basic variables are 

where 

Eq. (19) shows that the collision operator of Eq. (16) 

has been transformed in an infinite series of partial col- 

lision operators. We omit to write down the derivation 

of this equation and the expressions for the partial col- 

iision operators, Ieaving the details for the interested 

reader to follow in Ref. [37]. 

According to the formalism developed in Ref. [37] 

the complicated collision integrals can be rewrit- 

ten individually as a series of collision integrals J ( ~ )  

each containing the interaction strength only to a given 

order n and which are instantaneous in time. This sim- 

ply means that they are given in the form of correla- 

tion functions defined over the ensemble characterized 

by the auxiliary distribution operator p(t, O )  given at 

the time when a measurement is performed. For that 

purpose, making use of Zubarev-Peletminskii symme- 

try conclition of Eq. (4), we have been able to introduce 

an operator O which may be referred to as a memory 

propagation operator in the sense that 

(Cf. Eqs. (43), (47) and (51) in Ref. [37]. It ought to 

be noticed the relevance of this result once it is real- 

ized t1ia.t in Eqs. (15) the use of the recurrence relation 

given hy Eq. (13b) allows us to  write any p!m)(t', tl-t)o 

in terms of p(tl, t1 - t)". Finally, 

for m 2 2. Furthermore, we introduce the collision in- 

tegral~ of a given order n in the interaction strength, 

namely 

~ ( ~ ) ( t )  = (m) J(")(t) 

The connection between collision operators R and J is 

summarized in Table I, and we recall that details of the 
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Table I - Organization of the partial collision integrals. 

procedure and explicit expressions for them a.re given 

in Ref. [37]. 

Replacing Eqs. (23) in Eq. (22), and the ensuing 

result into Eq. (19) we are left with the compact ex- 

pression 

8 00 

-Qj dt (t) = C Jjn)(t)  
n=O 

It needs to be emphasized that Zubarev- 

Peletminsltii symmetry condition of Eq. (2) is of fun- 

damental relevance for the derivation of the ensuing 

nonlinear quantum transport theory in the frameworli 

of the MaxEnt-NSOM that lead to Eqs. (24). Such 

symrnetry condition can be obtained in each case in 

an appropriate representation: For inhomogeneous sys- 

tems, once local densities are introduced, say e(?'), its 

commutator with the liinetic energy operator contained 

in H. produces the divergence of a flux. This means 

that Qjt  in Eq. (2) would be a differential operator and , 
1 

not a c-number. Hence, to  recover the proper symmetry 

condition it  is necessary to  report to  a transformation to 

inomentum, or crystal mornenturn, representation, as it 

is clearly shown, for example, Ref. [27] when we dealt 

with the hydrodynamic approach to the photoinjected 

plasma in semiconductors. After the calculations are 

performed according to tlie metliod, a transformation 

back to tlie local space can be performed if desired. 

The form of the collision operator given by Eq. (24) 

allows us to introduce approximations by rneans of a 

truncation of the series of partial collision operators 

J(") for a given order of interaction. The lowest or- 

der that introduces relaxation effects is a truncation 

in second order in the interaction strengths: it renders 

equations wliicli are instantaneous in time (memory- 

less) which we have called in Ref. [37] the second order 

approximation in relaxation theory, SOART for short. 

This approximation is usually referred to in the liter- 

ature as the linear theory of rela~ation[~"],  a name we 

avoid because of the misleading term linear that refers 

to a certain approximation in the operator p' in Eq. (5) 

and in the expression for the information-entropy pro- 

duction in MaxEnt-NSOM. 1n the SOART the equa- 

tions of evolution are a set of coupled highly nonlinear 

integro-differential equations, namely 

d 
-Qj (t) 2 JjO)(t)  + b7j1)(t) + ~ j ~ ) ( t )  , (25) dt 

where J( ' )  and ~ ( l )  are given in Eqs. (20a) and (20b), 

and 

o 
@')(t) = (ih)-2 d t ' e ' t l ~ r  { [ ~ ' ( t l  - t)o, [H1, Pi]] &ti O)} 

where H'(t')o is expressed in Heisenberg's representation with Harniltonian H o .  
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It is worth noticing that the equations of evolution for the n~ne~ui l ibr ium thermodynamic variables can, through 

the use of the result of Appendix A, be alternatively written in the form 

where i? is the MaxEnt-NSOM-entropy production operator 

(dots stand for time derivative) and we have introduced the super-correlation function 

1 

{A(ti); B(t2)It) = duTr{A(t~)Y(âlu)p(t, O)]YA~(t2)[P(t, o)]-~+'} , 

with 

AB = B - Tr{p(t, O))  . 

and the operator Y satisfies the equation 

t 

Y (81.) = 1 + Iu drY (+lr)[p(t, O)]" dtle'("-')b(tl, -t)[p(t, O)]-" ; 

where we have made use of the fact that Tr{âp(t, O ) )  = 
0, meaning that there is no dissipation in the ensemble 

characterized by the auxiliary operator p. 

Since Eq. (38b) can be solved by an iterative pro- 

cess, we can see that the super-correlation function of 

Eq. (27) can be expressed as a series of infinite terms 

containing the MaxEnt-NSOM-entropy production op- 

erator in ever increasing orders. Thus, this allows for 

a classification of the series of collisions operators in 

orders of 6, in what may be termed higher and higher 

orders in the relaxation processes. Putting Y = 1 in 

Eqs. (5), and making the approximation Fj ( t i )  r Fj (t), 

what amounts to neglect terms of order higher than the 

second in H1, we obtain the already mentioned SOART, 

as explained before. The linearity arising in SOART 

refers to the order in b in Eq. (27), namely by putting 

Y = 1, but the equations of evolution remain, in gen- 

eral, highly nonlinear in the state variables. In SOART 

the right hand side of Eqs. (27) reduces to three terms, 

namely the collision integrals given by Eqs. (20) and 

(26). 
The connection of the MaxEnt-NSOM with phe- 

nomenological irreversible thermodynamics proceeds 

through the definition of the MaxEnt-NSOM-statistical 

entropy namely, 

to be set in correspondence with the thermodynamical 

entropy. This function ~ ( t )  satisfies the Pfaffian form 

where 

Fj (r', t )  = 6S'(t)/6Qj (r', t )  , (32b) 

we recai1 that 6 stands for functional derivative and 

we have reintroduced explicitly the dependence on the 

space variable. Hence, the Lagrange multipliers Fj 

in the variational formulation of the MaxEnt-NSOM 
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where { F j  , G j )  are the Lagrange multipliers, or inten- lently, Eq. (11). 
-+ 

sive thermodynamic variables, conjugated to Aj aiid I j  , To derive the generalized constitutive equations for 

respectively, as defined by Eq. (32b). Zubarev's NSO, tlie fluxes we start with Eq. (27) for G(F, t ) ,  that is to 

based on p'of Eq. (34), given by Eq. (10) or, equiva- say 

where now 

Next, in Eqs. (36) we separate in the auxiliary operator of Eq. (34) its homogeneous and inhomogeneous parts, 

as indicated below. Next, through the use of tlie operator identity 

where 

Y(B12) = 1 + d u ~ ( ~ l u ) e - ~ ~ ~ e " ~  , 1" 
we obtain that 

where 

AFj (T, t)  Fj (F, t )  - Fj (t) ; A á j  (F, t)  = Gj (F, t )  - cr j  (t) 
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AO = Q - Tr{Q&(t, O)), for any operator Q, and 

ph(t,0) = e~p{-mh(t) - E F~(~)P)  - C u j ( t )  . & )  (41) 
j j 

is the auxiliary NSO that describes the homogeneous state of tlie system. The approximate sign before the last 

term in Eq. (39) means that we are taking only the linear teim in the inhomogeneities. Next we relate the fluxes 

to the nonequilibrium thermodynamic variables A F  and AG, namely 

where we have talten into account that the average value of the flus vanishes in the homogeneous state. From Eq. 

(42) we find that 

++ -1 + 7 / d 3 ~ '  / ~ T " B ~ ~  (F, I?; t)Âjt(?, ?", t )AFf(7 ' ,  t )  , 

an expression that relates the thermodynamic variableç 

G to the fluxes aiid also to A F .  

Consider now the collision operators ~7') and J ( ' )  

in Eq. (36). For simplicity we neglect the latter which 

usually vanishes in a variety of practical cases as a result 
-+ 

of symrnetry considerations. Operator J ( O )  involves the 

time variation of the flux under the action of tlie secu1a.r 

(or conservative) part of tlie Hamiltonian, namely Ho.  

It gives rise to the divergence of a second rank tensor 

(which can be interpreted as the divergence of the flux 

of the flux, or second order flux of the density, and so 

is the contribution to the equation of conservation for 

6 ) .  We write it as 

I 

We now work the case of an isotropic material, so 

that the divergence of a tensor in Eq. (44) becomes the 

gradient of a scalar 

70) J j  (F, t) = -Wj (F, i) , ( 4 5 ~ )  

or in reciproca1 space we can write 

++ 
Also, on account of isotropy, tensor B in Eqs. (42) 

and (43) is a scalar quantity. Further, because the av- 

erages a.re over tlie homogeneous macrostate, the de- 

pendente on positions ? and ?' becomes a dependence 

on the relative coordinate F- F' .  In reciprocal space 

the auxiliary NSO of Eq. (39) now becomes 
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In Eq. (46) ph is given by Eq. (41) and the prime over the sum in qindicates that the term q= O is not included 

(it corresponds to the homogeneous part). 

Using this linear approximation in p(t, O) we can express, ùi of Eq. (45) as 

where the hat over Q stands for the corresponding dy- erage value over the homogeneous state vanishes. Also, 

namical operator. It should be noticed tliat the dissi- in the homogeneous and isotropic system in Eq. (47) 

pative effects accounted for p: in p, = p + p: [cf. Eq. a11 contributions to the super-correlation functions with 

(5)] have heen neglected. q' # f vanisl-i so that we may set Cg, + & ,  bF,d 1 .  

Since Q is related to a local (tensorial) flux, its av- Then, 

Eq. (43) in reciproca1 space becomes 

Gj(U,t) = B;(ht)G(ht) +C ~ ~ ( h t ) ~ ~ r ( f , t ) & ( f , t )  , 
k kt 

which replaced in Eq. (48) and this in Eq. (45b) yields 

where 
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In direct space it follows that 

We consider now the collision operator X given by Eq. ( 3 6 ~ ) ~  where p is still given by the complete expression 

of Eq. (34). Recalling that the MaxEnt-NSOM-entropy production operator takes the form 

where the upper doi stands for time derivative, we obtain that 

where 

4 4 )  r .  I k (T- t t )  = e t ' - t { j ( ; G k ( , t ' -  t - t }  
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Eq. (55) is an extremely cornplicated expression the fluxes are taken as MaxEnt-NSOM-bsic variables 

that contains non-local effects in space and in time we cai1 apply to the collision operator X the approx- 

namely correlations in space and nzemory eflects. More- imate treatments already available. In particular, we 

over, as already noticed, tlirough the NSO of Eq. (32) resort to  SOART, described in section I1 [cf. Eq. (25)I. 

it involves in its expression the fluxes to a11 orders. In SOART, neglecting J:') reduces to  the collision op- 

Now, since in the thermodynamic approa~h[2"2"42-44] erator 

o 
J:~'(T, t)  = (;h)-' dt1e"'~r{[H1(t1)oi [H', cj (F')]]p(t, O)} L (57) 

The details of the caIcuIations are given in the Appendix B and a.s shown there we find that the equations of 

evolution for the fiuxes talte the form 

After mutiplying by the inverse of 0 - I  we find alternativey that 

+ 
Replacing 3') of Eq. (53) in Eq. (59) and considering the quasi-static case, which implies setting d l l d t  E 0, 

we find the equivalent of a constitutive equdion f o r  the flux, namely 

where 
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which play the role of liinetic coefficients. Eq. (60) is 
4 4 

invariant under the change I -, -I and V -+ -V, as 

expected. 

Thus, we have obtained constitutive-like that are 

non-local in space equations although they are instan- 

taneous in time (memoryless) because of the use of 

SOART. It can be seen that these constitutive equa- 

tions for the fluxes consist, each one, of five terms. The 

first is the expected one that relates linearly the flux to 

the thermodynamic forces (gradients of F). This term 

and the next two have their origins in J!'), as shown 

by Eq. (51). The fourth and fifth come from the col- 

lision operator J:') [cf. E q  (B2)] The second and 

third term on the right hand side of Eq. (60) have their 

origin in the fact that the fluxes have been raised to 

the hierarchy of basic variables, and therefore produce 

"driving forces'' acting on tliemselves. Tlie fourth tern 

depends on the inhomogeneities of the quasi-conserved 

basic variables, being a result of the expansion we have 

performed around the homogeneous state. The last 

term involves relaxation processes in the homogeneous 

state. Introducing a Fourier transform in the space co- 

ordinate, Eq. (60) becomes 

Defining the matrix 

and its inverse, M - l ,  Eq. (62) can be written as 

where 

and 

Mrl  f $ ) g m k ( ~ t ) A F k ( 6 t )  + f i j ( a t )  = C j m (  
km 

= C M~;(c, t ) ~ ~ ~ ( f ,  t)X(")(& t )  , (65b)  
k m  

Eqs. (65) te11 us that the compact expression of Eq. 

(64) is expressed in terms of new kinetic coefficients 

that are the original liinetic coefficients A, n/, 0, mod- 

ified by the presence of the matrix M - l .  Finally, in 

direct space Eq. (64) acquires the form 

The results contained in Eq. (66) can be summa- 

rized as follows: 

1. The nonlocality of the constitutive equations 

arises in a straight-forward manner from the method. 

As far as the time dependence is concerned they are 
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instantaneous in time (no memory effects) because we 

used SOART approximation. As demonstrated in Ref. 

[37], memory effects, present in Eq. (55), are obtained 

when going beyond SOART, and are contained in con- 

tributions in H of order higher than two. The Proce- 

dure t o  handle the collision operator described in such 

reference allows one to write it as an infinite series of 

collision operators instantaneous in time. That is, they 

are evaluated in terms of the macroscopic state of the 

system at the time a measurement is performed, and 

containing H' in ever higher orders, as summarized in 

Eq. (24). Because of this construction we briefly com- 

ment, without any further extension of this paper, that 

going beyond SOART using such approach we retrieve 

equations of the type of Eqs. (64) (or Eqs. (66) in 

direct space), except that the coefficients Ã and Q are 

composed of a series of terms corresponding to the dif- 

ferent successive contributions by the series of partia1 

collision operators (scattering of two, three, and so on, 

particles). 

2. We have shown that within the context, of In- 

formational Statistical Thermodynamics wherein in the 

approach just described the fluxes are raised to the rank 

of basic thermodynamic variables, it is possible, first, 

to relate the kinetic coefficients to a characteristic time 

tensor O j ,  (whose diagonal terms are a kind of time 

between collisions of kinetic theory). They are given 

through an explicit form of calculation in terms of the 

microscopic dynamics averaged over the nonequilibrium 

ensemble. Second, the kinetic coefficients contain cor- 

rections due to the effect of the presence of the same 

fluxes in the macroscopic description of the system (the 

matrix M-' in A). Thirdly, an additional term, 6, is in 

principle also present in the otherwise usual form of tlie 

constitutive equations, playing the role of a dissipative 

force. 

IV. Concluding r emarks  

We have described how a mechano-statistical for- 

malism, that is a generalization of Gibbs and Boltz- 

mann ideas, can be derived - and different approaches 

unified - using a variational method. This theory is 

based on an attempted new paradigm in the scientific 

method, which is encompassed in Jaynes' Predictive 

Statistical Mechanics. The formalism introduces the 

variational procedure MaxEnt, but in such a way to 

include memory effects and an ad hoc hypothesis to  en- 

sure irreversible behavior in the evolution of the macro- 

scopic state of the system from an initial condition. In 

the Introduction we have already pesented some com- 

ments on Jaynes' PSM and its foundations on Bayesian 

theory of probability. We restate that, according to 

Jaynes, the question of what are the theoretically valid, 

and pragmatically useful, ways of applying probability 

theory in science has been pproached by Jeffreys, in 

the sense that he stated the general philosophy of what 

scientific inference is, and its connection with probabil- 

ity theory. Also, according to Jaynes and Anderson, 

what seems to be the most appropriate probability the- 

ory is tlie Bayesian approach. The formulation of the 

MaxEnt-NSOM on this basis is described in Section 11. 

We have also noticed that the MaxEnt-MaxEnt-NSOM 

provides a framework for the construction of a nonequi- 

librium nonlinear transport theory of large scope, with 

its general aspects briefly reviewed in Section 11. As 

already remarked, the collision operators involved re- 

quire a quite difficult mathematical handling. How- 

ever, a practical method can be devised which allows 

for an expression for the collision operators in the form 

of a series of simpler ones, organized in ever increasing 

order in the strengths of the interactions responsible 

for the dissipative processes that develop in the me- 

dia. Within the extent coveréd by the informational 

constraints used in each case, we are then in posses- 

sion of a transport theory of a quite large scope. I t  

involves nonlinearity and nonlocality in space and time 

(that is, space correlations and memory, respectively, 

are included), providing a description of the evolution 

of the macrostate of systems arbitrarily away from equi- 

librium. The condition of nonlinearity permits that 

the theory, when applied to open systems far-away- 

from equilibrium, may provide microscopic foundations 

and an accompanying macroscopic description to  self- 

organizing synergetic processes, usually dealt with on 

t,he basis of phenomenological thermodynamic and ki- 

netic theories. 

We have also briefly considered, in the last part 

of Section 11, how the MaxEnt-NSOM can provide 
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microscopic (mechano-statistical) foundations to phe- 

nomenological irreversible thermodynamics in a the- 

ory of large scope dubbed Informational Statistical 

Thermodynamics. Hence, the MaxEnt-NSOM should 

contain an hydrodynamic theory, that may be called 

Non-Classical Informational Statistical Hydrodynam- 

ics. One aspect of it is illustrated in Section 111. We 

have shown how, within such formalism, one can derive 

quite general equations of evolution for the fluxes of a 

certain set of dynamical densities. These equations of 

evolution have severa1 particular aspects: (i) The ki- 

netic coefficients are given in terms of the microscopic 

mechanics - at the quantum leve1 - of the system av- 

eraged over the nonequilibrium ensemble; (2) Nonlocal 

in space and memory effects are encompassed by them, 

but at a certain step we introduced the approximation 

SOART that makes them instantaneous in time; (3) We 

considered a weakly inhomogeneous system and used a 

linear expansion in the fluxes and in the spatial inho- 

mogeneity of the basic variables. The resulting equa- 

tions are given by Eq. (58), and we have shown that 

in the quasi-static limit (meaning movement involving 

low frequencies, in the sense that w Ojk < 1) one ob- 

tais constitutive-like equations for the fluxes, that are 

generalizations of the usual ones of Classical (Linear) 

Irreversible Thermodynamics. 

As final words we comment that the MaxEnt-NSOM 

constitutes an excellent method to provide a power- 

ful and practical theory to the study of experimen- 

tal data in far-from-equilibrium systems. A few ex- 

amples are (i) the case of semiconductors under high 

intense electromagnetic f i e l d ~ [ ~ ~ ] ;  (ii) ultrafast time- 

resolved laser spectroscopy of the plasma in highly pho- 

toexcited sernicondu~tors[~~]; (iii) charge transport by 

photogenerated carriers in semic~nductors [~~] ;  (iv) self- 

organization (Prigogine's style) in plasmain highly pho- 

toexcited s e m i c o n d u ~ t o r s [ ~ ~ ~  and in modelled biological 

~ ~ s t e m s [ ~ ~ ] .  A particular application of Informational 

Statistical Thermodynamics to describe the nonequilib- 

rium thermodynamics in the case of a simplified model 

of semiconductor is reported in Ref. [50]. 
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Appendix A: The separation of the NSO according to Eq. (5) 

Consider the expression for the statistical operator p, given by Eq. ( l l ) ,  namely 

where 

A=lnp( t ,O)  , 

and 

Using the well ltnown operator identity of Eq. (37) we obtain 

i.e. having the form of Eq. (5), where 

P:(t) = D 4 t )  + P(t, 0) 1 
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1 cl o 
Cc(t) = - / dt'e'" - ln p(t + t', t') = 

dt' 
dt'ed'ii(t + t', t') . 

-03 

(A44  

In Eq. (A.4d) 3 is tlie MaxEnt-NSOM-entropy production operator of Eq. (28); this clearly points out to the 

fact that p: contains the dynainics associated to dissipation in the iionequilibrium system on the other hand, as 

already noted in the main text, the ensemble c11ara.cterized by ,I? is dissipation free. 

Appendix B: Calculation of Eq. (58) 

The collision operator i of Eq. (55) takes in SOART tlie form 

Replacing in tliis Eq. (Bl)  tlie expression for A 6  given hy Eq. (44), and using that the averages are taken over 

the homogeneous state, we obtain that 

where 

where O is a second rank tensor (double dots stand for a dyadic product), and I? are vectors; in the last term 

in the expression for I? it should be understood that it is present the scalar product Ai7 . B - ~ A .  Finally, replacing 

Eq. (B2) into Eq. (55) we find Eq. (58). 
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