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Firstly a brief review is given of the ab initio Hartree-Fock and correlation corrected band 
s tructure calculation methods of periodic 1D and 2D polymers. In the 1D case, the extension 
of the theory to  disordered chains leading to the calculation of variable range hopping 
(onductivity of some native proteins is also outlined. In the cases of the ground state 
properties of (SN),, for the vibrational and excitonic spectra of quite different organic - 
:.nd biopolymers good agreement could be obtained with experiment. The same has been 
xhieved for the fundamental gap of alternating trans-polyacetylene, for the bulk modulus of 
polyethylene and for the hopping conductivity along the main chains of insulin and lysozyme. 
These examples demonstrate that if one applies sophisticated enough theoretical methods, 
m y  kind of physical property of any kind of periodic or non-periodic quasi-1D polymer can 
tbe computed in good agreement with experiment. This opens up the possibility to  predict 
polymers with optimal 3-5 correlated properties from a family of polymers with a huge 
rumber of members. The prediction of such "tailor-made" polymers is of course of large 

ractical importance. 

I. Introduction 

Polymers play a very important role as construction 

elements in houses, cars, trains, etc., in communication 

technology, i11 space research, as  ~ o t e n t i a l l ~  more effec- 

tive material5 in computer technology, in electrochem- 

istry (new 1i:;ht batteries based on highly conducting 

polymers). 
It  is very probable that they will find new applica- 

tions in microelectronics, in non-linear optics, as pos- 

sible new hig,h temperature superconductors (at least 

in the 2D case). Biopolymers (nucleic acids, proteins, 

polysaccharides etc.) form the basis of life. The great 

advantage of ~olymers in contrast to conventional solids 

is that they k ave much more degrees of freedom (more 

variants). To illustrate this let us look at polypara- 

phenylene which if doped becomes highly conducting. 

Let us assume that we have only 5 different types of 

substituents X = F, C1, Br, OH and NH2. Let us allow 

a11 possible single, double, triple and quadruple substi- 

tutions of the four H atoms in the unit cell. We have 

only Nsingle = 5 different single substitutions because 

the four hydrogen atoms are equivalent. The number 

of double substitutions (as can be seen from the formula 

which means that if a single substitution occurs for the 

second substitution there are 3 non-equivalent sites) is 

Ndouble = 5 x 5 x 3 = 75. In a similar way one can 

see that Ntriple = 5 x 5 x 3 x 5 x 2 - 5 x 1 x 3 x 5 = 
52 x (30 - 3) = 25 x 27 = 675 and finally, Nquadruple = 
365. Thus the total number of substituted chains (if we 

assume that each unit has the same substitutional pat- 

tern) is N = 5 + 75 + 675 + 365 = 1120. This simple 
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example shows the great number of possible polymers 

which belong to the same parent chain. If we start 

with a more complicated parent molecule and allow for 

a larger number of substituents, one ends up easily with 

ten- or hundred thousands of variants. 

In practical applications the usual problem is to find 

out from a family (given parent molecule and given sub- 

stituents for instance) those few chains (or 2D periodic 

systems) which posess simultaneously optimal 3,4 or 5 
different non-related properties. One knows that it is 

easy to correlate, based on a simple theory, one or two 

(related) properties witli some electronic structure in- 

dices and make predictions for the optimal systems in 
this way. On the other hand, if polymers with a larger 

number of unrelated optimal properties have to be pre- 

dicted, one has to apply a fundamental theory which 

starting from Hartree-Fock (HF) band structures cor- 

rects it and the one- electron wave functions for cor- 

relation. One can treat also disordered (non-periodic) 

polymers both a t  tlie HF and correlated leve1 and can 

take into account also interactions (at least in an ap- 

proximate way) between polymers as well as the effect 
of environment on their electronic structure. In tlie 

next point we shall very briefly summarize the main 

features of these theories and shall provide tlie relevant 

references. 

In the last part of this paper we shall bring ex- 

amples for very different polymeric systems (including 

biopolymers) where advanced enough calculations have 

provided results for very different properties in good 

agreement witli experiment. In this way we can be con- 
vinced that the quantum theory of polymers as solids 

is advanced enough to predict polymers with optimal 

different physical properties ("tailor-made'' polymers). 

This requires large CPU times in tlie case of a larger 

number of polymers with not-small unit cells. The ac- 

celeration of the programs by proper vectorization and 

parallelization, however, make such calculations nowa- 

days possible. 

11. Brief s u m m a r y  of  tlie mos t  impor t an t  parts 

of the q u a n t u m  t l ieory of polymers a s  solids 

11.1. Hartree-Fock theo ry  of crystals  a n d  peri- 

odic polymers  

One starts from a LCAO expansion of tlie one- 

electron orbitals of the crystal (polymer). Taking into 

account the periodic symmetry of the system one ob- 

tains in tliis way a non-linear generalized matrix eigen- 
value equation for the determination of tlie coefficients 

of the linear combination of Blocli orbitals (one lias as 

many Bloch orbitals as basis functions per unit cell). 

The theory automatically fullfils Bloch's condition and 

provides as eigenvalues the HF band structure of 

the ~ ~ s t e m [ ' - ~ ] .  In the case of 1D periodic systems the 

theory is formulated not only for simple translation, 

but also for combined symmetry operations (Mie helix 

= translation + ro ta t i~n) [~I .  

At the application of tlie programs for systems with 

a large number of basis functions i n  the unit cell one 

has to use tlie direct SCF method (no storage but recal- 

culation of a11 integrals at each iteration step) to avoid 

convergence difficulties. (Namely if in a generalized ma- 

trix eigenvalue equation the one-electron integrals are 

computed witli macliine accuracy and the two-electron 
ones are neglected below a given thresliold value, this 

non-consistent procedure leads also according to our 

own experiences17] to unsolvable convergence difficul- 

ties). For the 1D and 2D cases this is in progress. The 

insertion of this procedure into the 3D "crystal" pro- 

gram package of the Pisani Group is planned. 

The HF crystal orbital method has been applied 

to a large number of periodic 1D ~ ~ s t e m s [ ~ > ~ 1  to dif- 

ferent 2D ~ ~ s t e m s [ " ~ I  and also to a certain number of 

3D ~ ~ s t e r n s [ ~ ~ ] .  

11.2. Correlat ion corrected energy  b a n d s  

For the correct calculation of most properties of a 

periodic system the total energy per unit cell and the 

IIF band structure have to be corrected for correlation 

(with the exception of ground state properties in tlie 

case of nearly equilibrium geometry). For this pur- 

pose we have to dress the bare H F  particles with vir- 

tual electronic-hole pairs (electronic polaron model of 

~o~ozawa["l).  To apply this model for the ab initio 

case we can start from Dysonsls equation in its matrix 
form 

where and G are the Green's matrices of the HF and - 
correlated case, respectively, and M is the self-energy. 
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Multiplying (1) from left by ,&-' and from right by 

G-l,  we obt.iin - 

G - ~  = ~ - l  +j'g =o E - (2) 

Applying for the inverse Dyson equation (2) the diago- 

na1 approxiniation[121 we can write 

where the combined index I stands for a band index i 

and a k valul: k; in this band. 

Since ( ~ - " ) I , I  - at a pole is O and ( ~ õ ' ) ~ , ~  = wI +cI 

where 

(€1 is tlie HF energy in state I, and wI is the correspond- 

ing correlation corrected quasi particle energy), we can 

write. 

To solve eq. (4) for WI one needs an explicit expres- 

sion for M(WI)IJ. For this any size consisten't method 

for the calculation of correlation can be applied. In tlie 

sirnplest ~ o e l l e r - ~ l e s s e t / 2 [ ~ ~ ]  case 

Here @I, etc., are crystal orbitals expressed in a 

LCAO form 2s linear combination of Bloch orbitals. 

To solve e?. (4) for WI first a graphical method has 

been used. The wl - €1 straight line intersects, how- 

ever, the M ( ~ J ~ ) I , ~  function a t  severa1 points. To find 
the physically relevant solution one has to  calculate the 

' ) - I  pole strengths, and take their PI = (1- -e 
main value wt ere PI > 0.6. The corresponding WI value 

will be then t'ie physically relevant quasi particle (QP) 

energy. According to our experience one can always find 

an unique solution for the inverse Dyson equation for 

1D and 2D pclymers with a finite gap (this is, however, 

not always thl: case for metallic polymers; for instance, 

there is no m iin W I  value of the conduction band of a 

2D graphite layer a t  the M point where graphite be- 

comes metalli rIl4]). 

Recently, the quasi particle (QP) program has been 

rewritten in a vectorized form using instead of the men- 

tioned graphical method[15] an iterative procedure (in 

this way the solution of eq. (4) could be put in a simple 

loop). Calculations on the QP  band structure of poly- 

paraphenylene have shown an acceleration by a factor 

of 200 compared to the scalar version of the program 

which has used the graphical procedure to  solve the 

inverse Dyson equation for w ~ .  

Instead of(5) one can substitute into eq. (4) also 

the MP/2 + MP/3 expression which has been done in 

calculations of the fundamental gap of a H2 chain and 

that of alternating trans polyacetylene (PA). The ap- 

plication of the coupled cluster method[l71 in its T Z T ~  

approximation for 1D polymers is a1s.o in progress[18]. 

One should point out that in the MP/2 approxi- 

mation the QP  band structures have been calculated 

besides the mentioned case also for the 1D polydi- 
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acetylenes, polyethylene, polyglycine, polyalanine and 

a cytosine stack[lgl. For 2D cases besides tlie already 

mentioned graphite layer it has been been used for the 

Cu-O plane[a] of Laz Cu04,  for a boron-nitride plane[20] 

and for a Be layer[21]. With the help of the new acceler- 

ated version of the QP band structure program calcu- 

lations are in progress for different 1D periodic systems 

witli larger unit cells. 

11.3. The treatment of non-periodic 1D poly- 

mers 

For the calculation of the electronic density of states 

(DOS) of a periodic 1D polymers one can use the nega- 

tive factor counting (NFC) method in its matrix block 

form. We don't reproduce here tlie formulae of tliis 

method whicli is based on Dea.n's negative eigenvalue 

t h e ~ r e m [ ~ ~ ] ,  but refer to the original re fe rence~[~~I .  

The application of this method first of a11 to non- 

periodic polypeptide cliains witli different number of 

c ~ m ~ o n e n t s [ ~ ~ ~ ~ ~ ]  has shown that due to the aperiodic- 

ity the allowed regions of the valence and conduction 

bands, respectively, are strongly broadened as com- 

pared to the allowed DOS areas of (in a complicated 

way) periodic chains. 

The method has been successfully generalized also 

to the case of S-S- bridges[26]. In this way also tlie DOS 

of pig i n s ~ l i n [ ~ ~ 1  and egg-white ~ ~ s o z ~ m e [ ~ "  have been 

computed in their native conformation. Using tlie in- 

verse iteration m e t ~ i o d [ ~ ~ ]  the Anderson localization in 

4-component random polypeptides[24], in insulin and in 

lysozyrne[2~ Ias been determined. One has found very 

good (one amino acid residue) localization for the about 

40 highest unfilled levels in a11 of these systems. On 

the basis of these wave functions and using the simpli- 

fied expressions for the liopping frequencies given in the 

book of Mott and ~av i s [~O] ,  these quantities have been 

also determined for the inentioned disordered poly pep- 

tide chains. Their values have been found to be iii the 

same order of magnitude as in good amorphous conduc- 

tor glasses[30]. Fiiially, generalizing the random walk 

theory of Odagaki and ~ a x [ ~ ' ]  for tlie case of many or- 

bitals at one site, we have calculated the complex fre- 

quency dependent variable range hopping conductivi- 

ties, u(w) of i n s ~ l i n [ ~ ~ I  and lysozyme[2~ (for the discus- 

sion of tliese results see Section 111. of this paper). 

In applying tlie NFC method in its matrix block 

form, it is according to our e ~ ~ e r i e n c e [ ~ ~ ]  a rather good 

approximation if one constructs the Fock matrix Fi - 
and overlap matrix Si respectively, of the wliole dis- - 
ordered polymer witli tlie aid of tlie matrix blocks of 

overlapping dimers. For instance, in tlie case of a poly- 

mer ABC.. . one forms the matrix blocks 

Bere one has to take 

(wliere p ( i ) ( i  - = 1,2)  means tlie matrix block obtained 

for the i-th dimer). 

This provides an easy way[34] to  introduce correla- 

tion into tlie liypermatrices and L, respectively. 

Namely, if one solves tlie eigenvalue problem of c1 and 

F  and forms from tlie corresponding eigenvectors the 
=2 

unitary matrices g. one can  rit te[^^]: 

F t . = % . + S . U .  M . u +  S 
====a =$ -2 =z =L =á ' (8) 

If one multiplies tliis equation from left by E+ and 
-2 

from right by Q. and takes into account tlie normaliza- 
-2 

tion condition U+ S. U .  = one obtains =z =z =2 - 

U+ F 1 . U .  =u+ F . U . f M .  = E . + - .  ( i =  1 ,2 ) .  (9) 
3 =r -2 =r =a -2 =r -r 

In the diagonal approximation one has in this way 

W j  = f j  (JLi)j,j , (10) 

wliich is nothing else than the inverse Dyson equa- 

tion (in tlie diagonal approximation). Using as matrix 

blocks for all overlapping dimers (8) instead of the F!S, 
=2 

one cai1 treat also disordered polymers with correlation 

witli tlie help of tlie NFC method. 

Tlie applications of tliis met1iod.have shown that 

if one uses a sufficiently good basis set one obtains al- 

ready in the MP/2 approximation the major part of tlie 

co r r e l a t i~n [~~ l .  
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111. Calculation of different physical properties 

of polymerii 

Applying the briefly described methods (for the the- 

ory of interxtions between polymer chains and for 

the effect of environment on the electronic structure 

of them see Chapter VI and VII, respectively, of Ref. 

4 and furthe:. references therein). Different unrelated 

properties of completely different polymers calculations 

were performed in a larger number of cases. Here we 

mention as e.uamples only such polymer property cal- 

culations whme the corresponding experimental data 

were availabb:. 

Using HF band structures with a valence split ba- 

sis in the case of (SN),, which is a highly conducting 

polymer with an intrinsic metallic structure (there are 

3n electrons per unit cell), some of ground state prop- 

erties have been c ~ m ~ u t e d [ ~ ~ I .  The effective electronic 

mass at the I?ermi level has been found to be 1.7 me 

(experimenta:. value 2.0 me), the theoretical DOS at 

the Fermi level is 0.14 eV/(spin.molecule) (exp. value 

0.18). For tlie charge transfer S -t N the theory pro- 

vides a value of 0.4e, while the experimental one is 

0.3-0.4e. One should mention that (SN), becomes su- 

perconducting; a t  T, = 0.26 and it contains 4-8 mo1 

percent h y d r ~ g e n [ ~ ~ ] .  Performing a coherent potential 

approximatio:i[3" calculation for a SN-SNH randomly 

mixed chain we have f ~ u n d [ ~ ' ]  that with increasing H 

impurity concentration T, increases in agreement with 

the experimeiital findings of the IBM Group at San 

~ o s e [ ~ ~ l .  

Remainin~; a t  the calculation of ground state prop- 

erties a t  the ab initio HF level, one should mention 

that different authors using Zerbi's formalism have 

calculated the vibrational spectra of polymethinamine 

(NCH), [~~] ,  ol'trans alternating PA[~'] and of (F-H ... F- 

H), [431 (the 3 dots indicate here a hydrogen bond). In 

a11 cases good sgreement with experiment was achieved. 

Turning tc excited state properties, the fundamen- 

tal gap of PA :which is experimentally about 2 eV) was 

found to be by Suhai 3.0 eV using the generalized elec- 

tronic polarori model in the MP/2 approximation[44]. 

On the other hand, ~ie~ener["I  applying the inverse 

Dyson equation witli MP/2 + MP/3 self-energy has 

obtained a theoretical gap of 2.2 eV for this system in 

very good agreement with experiment. 

Using an ab initio form of the intermediate-exciton 

t h e ~ r ~ [ ~ ~ I  with QP  energies in the denominator of 

tlie occurring Green's matrix e l e m e n t ~ [ ~ ~ I ,  the ex- 

citon spectrum of different polydiacetylenes[46], of 

polyethylene[47], of a cytosine s t a ~ k [ ~ " ,  of polypep- 

tides, polyglycine and polyalanine[49] has been com- 

puted. In a11 tliese cases tlie agreement with experi- 

ment is strikingly good[46-49] but only if one applies 

QP one-electron energies and not the HF ones. 

Usiilg the correlation corrected total energy per unit 

cell of polyethylene one could calculate also its bulk 

m o d ~ l u s [ ~ ~ ]  in good agreement with experiment (theo- 

retical value 303 GPa, experimental values, depending 

on the methods applied, 235-340 GPa's). 

Most recently as was mentioned in Section 11.3, 

the hopping conductivity of (a(w)) of in~ulin[~']  and 

lysosyme[2" along their main chains was cornputed. 

The theoretical la(w)l values of both proteins fali in 

the frequency range of 104 - l0%ec-' between the ex- 

perimentally measured curves (Fig. 7.15 of ref. 30) 

of different chalcenogides (amorphous glasses). Since 

the measured systems are well known good amorphous 

hopping conductors, one can conclude that native pro- 

teins are also good Iiopping conductoss along those seg- 

ments of their main chains which close only a small an- 

gle with the direction of the acting electric field['" (the 

calculated conductivity value of the mentioned proteins 

were not compared with the measured ones, because of 

lack of pure enough and well characterized protein sam- 

ples). This fact has important implications in biological 

charge tran~fer[~O] (oxygen metabolism, photosynthesis, 

action of oxidation-reduction enzymes, signal transfer 

etc.), as Szent-Gyorgyi predicted already in 1941[511. 

IV. Conclusion 

From the above mentioned examples one can see 

that if one applies a "state of the art" quantum mechan- 

ical theory for the electronic structure of very different 

1D polymers, one can compute in good agreement with 

experiment their different ground and excited (ionized) 

state properties. This supports strongly the possibility 

to predict polymers with 3-5 different unrelated optimal 

properties from a polymer family with a large number 
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of members. 

This sort of calculations is in progress in Erlangen 

for a larger number of different properties of different 

ordered and disordered 1D and periodic 2D polymeric 

sys tems. 
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