
Brazilian Journal of Physics, vol. 24, no. 3, September, 1994 

A Consistent Spectroscopical Analysis for 
a Generalized Gauge Model 

R. M. Doria, F. A. B. Rabelo de Carvalho 
Universidade Católica de Petrópolis, ICEN 

Petrópolis, RJ, Brasil 

and 

G. Oliveira Neto 
Centro de Pesquisas Físicas, Rua Xavier Sigarid I50 

22.290, Rio de Janeiro, RJ, Brasil 

Received May 22, 1991, revised manuscript (3rd version) received February 1, 1994 

An Abelian gauge model based on the introduction of independent gauge connections is 
considered. The spectroscopy of this model shows tlie existence of two sectors, one vectorial 
and other scalar. It presents a massless photon accoinpanied by ot,her gauge bosons, vector 
mesons and scalar particles. However the richness of this model comes from the internal 
consistency that it displays: the existence of different field parametrizations that allom the 
accommodation of different basis for calciilations. This work also includes a study on the 
invariaiice of the quanta under field reparametrizations. 

I. Introduction 

Any particle data shows different particles witli spin 

I[']. There, they appear systernatized in two cate- 

gories: mediators and vector mesons. However their 

properties such as inass, cliarge, lifetime, principal de- 

cays aiid forces, are described by qualitatively differ- 

ent fundamentals. While the mediator class (photon, 

gluons, wf, Zo) is associated to  the gauge approach 

and the corresponding grandunification sche~ne[~], the 

class of the vector mesons ( p ,  I<*, w ,  $, J / $ ,  D*, Y) 

is associated to tlie quark c~nte i i t [~I .  However we still 

consider propitious to investigate on the possibilities 

for including both spin-1 families together in a same 

model, althoiigli knowing about their quark discrepali- 

cies. Sakurai has already tried a model for different 

spin-1 particles through a global gauge descrjptioi~[~]. 

Consider now a set of N vector fields transforming 

under a commom U (1) group according to tlie following 

relations: 

A&) - A&) + d,'a(x), (1.1) 

wliere I = 1,2 ,  ..., N and a(x)  is the real paraineter 

associated to Abelian group. The fact that tliey a11 

traiisform witli the real paraineter a (x)  does not pre- 

vent tliem from being actually N independent vector po- 

tentials that might eventually describe degrees of free- 

dom associated to quanta with differeiit physical atrihu- 

tions, sucli as mass or some other global internal quan- 

tum nuinbers (flavour, eletric cliarge). Different proofs 

derived from Kaluza-Klein approacli and from relax- 

ing supersymmetry constraints gives a basis to  assume 

eq.(I.l) as involving N distinct potential f i e ld~[~I .  In 

this regard, it is also wortliy to recall that differential- 

geometric considerations support tlie existence of sucli 

N fields witli traiisforinations as a b ~ v e [ ~ ] .  In the fibre 

bundle description of gauge tlieories, as i t  is weI1-known, 

from tlie principal fibre bundle orie derives connections. 

This means the possibility of adding to the connection 

genuine tensors over tlie princjpal hundle. In our case, 

we still maintain tlie picture of a simple connection on 
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the U(l) - b indle, and consider the N potentials as be- 

ing given by the genuine U(l) - connections to wliich 

one adds N mdependent tensors of the internal group. 

Historically the presence of different connections in a 

theory can t e  reviewed through relativity. There, the 

Palatini tenror is added to tlie Cliristofell symbol[7]. 

Thus it s possible to  make an analogy between a pc?ssi- 

ble non-mini mal gauge model derived from eq.(I. 1) and 

Einstein-Car ;an theory. 

A model considering the presence of different con- 

nections in single group is able to unify distinct 

spin families witli the saine nature (either bosons or 

fermions). Faom Lorentz group one gets the informa- 

tion that any vector potential field carries two quanta 

with spin-1 and spin-0. Consequently, reading off 

eq.(I.l) one gets the presence of two families with N- 

vector and N-scalar particles respectively. Then, re- 

membering that this non-minimal gauge model contains 

QED as boundary condition, one expects the presence 

of one mas~le~js  particle and one longitudinal degree of 

freedom to bo naturally frozen. Thus the subtraction 

of these restri:tions coming from tlie gauge niecliariism 

yields a spectioscopy determined by tlie following exci- 

tations: one niassless vector particle,(N-1) massive vec- 

tor particles, snd (N-1) massive scalar particles. This 

means that eq (1.1) contains instructions t o  accomodate 

a photon, a n'met with spin 1 (vector mesons), and a 

nonet with zero spin (pseudo scalar mesons). Therefore 

one notices that this formula develops a scalar-vector 

model witliout requiring a coupling with matter fields. 

String models contain many multiplets of massive 

vector mesonsl" as in extended supergravity mode~s[~] .  

Therefore sucl: theme involving the existence of differ- 

ent gauge inesons is already beiiig studied through dif- 

ferent models. However what differentiates one model 

from another is its consistency in front of physical needs 

as renormalizaility, unitarity, analiticity, and so 011. In 

this sense, one characteristic coming from a inodel in- 

volving different fields in a same group is that it adds 

another test tc the field approach: the requirement of 

consistency in the spectroscopy analysis. This means 

that prior to st ~dy ing  the renormalizability and unitar- 

ity properties cf this extended gauge model, we should 

first analyse wllether the quantiim numbers associated 

to the fields are derived consistently. Therefore there 

are three minimal conditions to turn eq.(I.l) a candi- 

date to build up physical models. They are the consis- 

tencies coming from the spectroscopy, the renormaliz- 

ability, and the unitarity programs. The main effort of 

this work will be on the spectroscopy aspect. 

A better understanding for eq.(I.l) instructions can 

be obtained t,hrough the following field reparametriza- 

tions: 

X C i ( ~ - l )  = Apl (2) - A ~ N ( x )  . (1.2) 

Tlius eq.(I.2) shows that there is only one genuine 

gauge field, D,(x), wliile the fields X,i(x) are gauge- 

singlets (for the Abelian case). Geometrically the po- 

tential fields X,,(x) arise from tlie torsion tensor of 

tlie higher - dimensional manifold that spontaiieously 

coinpactify to M4 xBk,  where M4 is tlie Minkowski 

space-time and Bk some K-dimensional internal space. 

Neverthless altliougli tliere is a geoinetric origin for XL 
fields we still slioiild argue about their distinction from 

tlie Proca case. We shoulcl discuss that such proposed 

non-mininial gauge model does not represent a combi- 

nation between the usual gauge theory written for a a 
D,(x)  field wit,h a Proca model containing (N-1) mas- 

sive potential fields. Eq.(I.2) offers gauge instructions 

as gauge fixing term and Ward identity, which iiiclude 

XPi(x) fields on their respective mechanisin; another 

difference comes from the fact that the XPi(x) fields 

longitudinal sector propagates. 

This work is organized as follows. In Section I1 

the structure of this generalized gauge model is pre- 

sented. Then it is observed the existence of different 

field parametrizations to be analysed. This fact moti- 

vates Section 111, which studies a Sl matrix that reg- 

dates  siich fidd hasis transformations. Then it is left 
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for Section IV the model spectroscopical analysis. In 

order to explore a litt.le more about this possibility of 

having different field frameworks wliich preserve quanta 

invariance, we work out a t  Section V a longitudinal 

diagonalized basis. An Appendix follows for showing 

explicit calculations involving two potential fields in a 

same group. 

11. Field parametrizations 

Symmetry can be dressed through different ba- 

sis, the field parametrizations. Tlie simplest case is 

when one derives the symmetry messages through the 

{D, Xi) - basis which is defined in Eq.(II.2). It is called 

the constructor set. It yields the general Lagrangian 

Decomposing tlie generalized field strenght, Zp,, in 

antisymmetric and symmetric pieces, one gets 

ZPV = Z[,l"] + Z(,") , (11.2) 

where 

and 

with 

gauge scalar developed by this extended model. As an 

exainple take d2, dai ,  and so on. Thus there is a 

total of free coefficients present in (11.1). They 

are numbers which cai1 take any real value. Their main 

conseqiieiice is on the pliysics dependence on their val- 

ues. This means that such Lorentz and garige scalars 

contain possibilities of parametrizing the physical enti- 

ties that symmetry organizes. For instance, a quantum 

number siich as the physical mass will be determined 

through these free coefficients, and so can take differ- 

ent values without breaking gauge syminetry as explicit 

calculations iii Appendix A are shows. - 
The contribution coming from Z,, is called a semi- 

topological ~a~ran~ ia i i [ " I .  It is a particularity from 

this generalized gauge model. This is due to the fact 

that even in four dimensions tlie Z,, tensor appears 

contributing to the interaction sector, altliough it does 

not to the kinetic sector. 

From Lorentz group representations, one gets iri- 

structions where spin-1 sector is localizecl in (11.3) and 

(11.4) wliile spin-0 part will be only in (11.4): Z[,,] 

and Z,, belongs to (0,1) e (1,0), while Z(p,) beloiigs 

(0,O) e (1,l). Tliis prediction can be directly tested 

by analysing that the covariant field strengtli Cf,, con- 

tributes to botli spin sectors wheri eq.(II.l) is orga- 

nized in terins of transverse and longitudinal operators. 

Froni Poincaré group, one expects that representations 

with different spins will present different masses for the 

transverse and longitudinal sectors. 

Being a gauge theory, this generalized gauge model 

requires a gauge fixing terin. Giveii the presence of only 

one gauge group we liave just one gauge fixing term to 

fix the potential field orbits. ~rom[''], the most general 

gauge fixing term involving sucli N-potential fields for 

the covariant case is 

and Observe the inclusion of u; parameters. They are 

- not necessary to fix a garige. However these parameters 
Zpp = E ~ ~ ~ ~ Z ~ ~  . (I1") are ailowed by tlie gauge mechanism, and so we have 

As a first product derived from this symmetry ex- to include them in the most general gauge fixing form 

tension, there appears the so-called free coefficients. which theory provides. Indeed there is nothing new in 

They are coefficients associated to every Lorentz and the ai parameters inclusion, and they can be compa.red 
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with the p - parameter which writes a QED with the 

following gauge-breaking term, & [%A' + ,BA,,A']~. 

In order to derive the Lagrangian spectrum more ex- 

plicitly, eq.(tI.3) should be rewritten in terms of trans- 

verse and lcngitudinal propagators. Defining 

V," G (D,, Xfi) , (11.8) 

it yields, 

and 

with 

and 

where 

with 

... daj ... 

Two basi: quantum numbers emerge from the kine- ical masses will be the ( B - I  M2) eigenvalues. 

matics of such generalized gauge model. They are tlie 

spin and thc mass. For the vector family, the corre- Three facts are showing that theory does not de- 

sponding ph!rsical masses are eigenvalues of the matrix pend on ui parameters. ~ i r s t ,  it is because the ~ h ~ s -  

( 1 < ~ 1 ~ 2 ) ,  .,d, for the scalar family orie gets that phys- ical entities should not depend on it. Then, one can 

show that it does not suffer any renormalization pro- 
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cess and that the theory stability does not suffer its three aspects that the paranieters ai should be only 

influence[12]. Tliird, the gauge fixing term does not re- iiiterpreted as anotlier fainily of free coefficients. 

quire it in order to the propagator to have an inverse. Alt,hough it is an Abelian case, sucli extended model 

Frorn (II.10), the existence condition for the longitu- has a gauge invariant interaction part. It is written as 
dinal propagator, < V,V, >L, is to have an invertible 

rnatrix Q = [(I(L + ata)u + M ~ ] .  For tliis, the co~i- L. - ~ ( 3 )  + ~ ( 4 )  
mt - int int 9 (11.16) 

dition of liaving a matrix at a invertible will be not 

essential. Consequently, one can conclude from these for 

where 

.=( t i )  , t = ( ; )  O 

( i )  ~ = ( ~ + 4 ~ ~  ) 1 

and 

Matrices A ,  A, 0, r ,  C are given by 
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The corresponding N-equations of motion derived from (11.9) are 

where Vp, is a (N x N) matrix given by 

vpv = apvv - avvp , (11.21) 

and J" is a (I'J @I 1) column vector originated from tlie kinetic scalar part and from tlie iiiteraction part. It  is given 

by 

J t  = B8" (8.V) - wd" [v t (@ + C)V] + 
+ [zt V" f V~'XV" + ~ & ' " " O ~ ~ V ] V  $ 

+ 8, [ z v ~ ~ X V "  + t [ S p " ~ t @ V  + vP~XV"] + 4 ~ ~ " ~ " z \ ~ ~ / , t X V , ]  
- [tt(dpV" + dVVP) + 2g;wtd,Va + ~ ~ v ~ @ V ~  + v ~ / \ v " ] X V ~  

- [ V , ~ ( ~ + C ) V ~ + ~ ( W + ~ ) ~ ~ , V ~ ] O V "  . (11.22) 

Eq. (11.20) works as anotlier proof of tlie presence of N 

independent iields in a same gauge group. This is so be- 

cause it shows the existence of N independent equations 

derived from Eq. (1.1). Observe that the equations of 

motion for fields V! 5 D p  and T/ifk XXf' differ basi- 

cally oii tlie (;auge fixing terin and on presence of tlie 

current J r  . 
Deriving ICq. (11.20) we obtain the followiiig set of 

(N-1) equations 

Eq. (11.23) shows that (N-1) scalars are iiot decoupled 

unless one is .tble to prove tlieir curreiit conservation. 

Another natural invariance from a gauge tlieory is 

tlie Noether t'leorem. For tliis extended case the differ- 

ence is that it will relate all fields transforming under 

a same gauge parameter, a ( x ) .  It yields 

N" = - &V: . (11.24) as, v; 
Substituing (11.24) in (11.23) oiie gets 

B , ~ ~ . v '  = O . (11.25) 

Tlierefore J,< currents will suffer contrihutions only 

froin elements BiI in (11.12). 

After an initial study tlirougli tlie construtor set, 

{V}, let us diagonalize the transversal sector. Then one 
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gets the {G) set, called as pliysical field parametriza- 

tion. This terminology is due to the fact that the trans- 

verse physical masses will correspond to tlie poles of 

their-two point Green's fiinctions. This set is defined 

through the followiiig transformation: 

V = R T G ,  (11.26) 

wliere 

wliere each of the column inatrices ZT, 

like 

Substituing Eqs. (11.26), (11.27) in Eqs. (11.10) and 

(II.lG), we liave 

LG~, [(O + rn+)p$' + (oE + ~ + ) P L " ]  G, , JM7) = 
(11.28) 

and 

, VT transforms 

(11.30) 

and each of tlie row matrices XT, ..., rT as 

XT = 52kXRT . (11.31) 

Observe theii the appearance of a RT matrix con- 

trolling tlie field basis transformations. It depends on 

the initial Lagrangian coefficients 

QT QT (d ,  ai, Pi, ~ i , m ? ~ )  . (11.32) 

Thus any information can be transposed from a given 

set of fields to some cliosen set. For instante, tlie rela- 

tionsliip between propagators is given by 

< T(VpV,) >= R < T(GpGv) > Qt , (11.33) 

where Q is a general matrix. 

Eq. (11.33) is tlie propagators covariance law. This 

means that wliile fields transform as matrices, prop- 

agators behave as tensors. Its importante is due to 

tlie fact that R expression does not depeiid on tlie mo- 

inenta. Tliis yields tlie property that propagators trans- 

formatiori (11.33) will preserve tlie pole structure (the 

influeiice coming from R matrix will affect only tlie 

residues). Anotlier conseqiience derived from (11.33) 

is that non-diagonal propagators are symmetric in any 

field basis. Considering tliat matrices in (11.10) are or- 

tliogoiial from gauge symmetry, one gets 

< V,V, >.L=< VpV, >i . (11.34) 

Tlien substituting (11.34) in (II.33), it gives 

wliere (11.35) verifies a expected result from functional 

formalism and from time order decornposition. 

Depending on tlie type of investigation, a certain 

field paiametrization can be more useful. For analysing 
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the spectroscopy the {Gr} basis is more direct. How- 

ever for the renormalization analysis there is another 

basis denoted by (5, x} where 

which is mcre useful (because it avoids mixing prop- 

agators in tlie transverse sector). Consequently, there 

exists a large variety of fields parametrizations to be 

explored. Iii this way, we feel obliged to explore in 

a next chapter the properties of a general R-matrix 

which controlls any transformation between these field 

parametriza1,ions. 

111. R matrix 

The intrc duction of more fields in a same group de- 

velops differmt possibilities for a given physics to be 

observed[13]. One can read off the symmetry instruc- 

tions in tliest: extended gauge models involvirig bosons, 

fermions, potentials, and other fields, tlirough differ- 

ent parametrization systeins. Neutrino piiysics already 

shows cases ~ ~ h e r e  physics can be studied under distinct 

fermion parametrizations[14]. Consequently, from this 

possibility oj' liaving different bases for physics to be 

analyzed, a iiew theoretical structure called R-niatrix 

naturally emerges. It describes tlie transformation be- 

tween two different sets of field parametrizations, 

where p, and @, represent any set of fields with a 

same spin structure. Tlie generalized index s repre- 

sents the nature of the particle family. For instance, 

for the case cC vector fields we have tlie following sets: 

{ y s }  z {D, Xi), {a,) E {Gr). Notation here is to 

associate @, '.o tlie physical fields, which are defined as 

containing explicitly tlie physical masses as the poles of 

tlieir corresponding two-point Green functions. 

In such generalized model the relationsliip betweeii 

quanta and ficlds is not more in a one-by-one correspon- 

dente. The situatioii generated from Eq.(I.l) makes the 

correlation bc tween fields and quanta to develop a new 

aspect wliere a given field can contain various quanta. 

This means tliat fields will work just as an auxiliary de- 

vice for the d;mamics to be observed, while quanta will 

emerge from 1,his dynamics. A viewpoint is to make an 

analogy where the length of such new coordinates - the 

fields - would be determined by tlie degrees of freedom, 

and so, Eq. (111.1) represents possible clianges on "field 

coordinates" while the involved quanta are preserved. 

Therefore, the task will be to understand under which 

conditions tlie R matrix does not affect tlie physics. 

The R matrix presence indicates that symmetry 

can be dressed with different field parametrizations. 

However tliis proposal witli field rotations must pre- 

serve physical structures such as, at least, S-matrix 

and the niinimal action principie. Borscher theorem 

states tliat any local field redefinition will not affect S- 

matrix, and consequently a first condition for R matrix 

validity is to have any of its elements not depending 

on momentum[15]. This is easily verified because the R 

matrix elements are obtained from tlie free coefficients 

derived from tlie covariant fields strength written in 

(11.2). Being real scalars, the Lagrangian and the ac- 

tion are also invariant under Eq. (III.l), 

which yield tlie following relationsliip between the min- 

imal actions: 

Thus Eq. (111.3) shows that whenever R has inverse, 

then tlie corresponding equations of motion in any set 

of field parametrization will preserve the on-shell infor- 

mation. Other two general aspects can work to com- 

pleinent the S-matrix and tlie minimal action princi- 

ple invariaiices. Tliey are tlie conservation of the num- 

ber of fields and tlie preservation of the spin structure 

under sucli R rotations. IIeuristically, given that any 

reparametrization conserves the number of degrees of 

freedom one expects the number of fields involved will 

be preserved. Similarly, the fact that R is a Lorentz 

scalar makes Eq. (111.1) to preserve the spin structure, 

and so, tlie cp, and @, families will belong to the same 

spin structure. 

After the fundamental conditions are satisfied by 

Eq. (TlI.1) (for further analysis see Ref. [13]), we should 
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investigate the characteristics which R develops. For 

this we will select two questions. The first would be 

whether C2 forms a group. Being a matrix, it contains 

the identity and associative properties, and satisfying 

the Borscher tlieorem, it contains the inverse. However 

the property that any two symmetry operations of a 

group performed in succession also corresponds to an 

operation in that group is not immediate. This means 

that closure property fails to hold in general, as soon 

we shall see. The second question, would be to under- 

stand the structure which S1 develops. This means to 

classify the expressions derived in this extended model 

relatively to Q, as the scalars and tensors generated, 

the similarity and covariant transformations obtained, 

and the relative and absolute quantities revealed. The 

present work will be interested in the study of the well 

known conservation laws respectively to Eq. (111.1). 

Space - time charges and interna] symmetries should 

be invariant under Eq. (111.1). The current density 

written in terms of components @,I, where I varies from 

1 t o N ,  is 

with 

Then one gets that Eq. (111.4) is a scalar with re- 

spect to transformation (111.1): 

Concluding, the equivalence between eqs. (111.4) and 

(111.5) show that the Weyl group is preserved for differ- 

ent field parametrizations. 

Further two invariances will be quoted here. They 

are the 0-invariance for the commutation rules and for 

the equations of motion. C'  ~ iven  

we have 

Similarly, 

(111.7) 

Nevertheless, the most profound insight from Eq. 

(111.1) is the possibility of modifying the simme- 

try shape without changing the substance of its 

instructions[131. Consider the following phase transfor- 

mation 

cpd = U(w)cp, . (111.8) 

Substituting (111.1) in (III.8), one gets 

where 

Relation (111.9) shows that similarities which the sym- 

metry refiects can change their shape according to 

the parametrization set. IIowever it must preserve 

the physics, as well as the established conservation 

laws. One can note from Eq. (111.9) is that althougli 

the principle of local symmetry is preserved, the di- 

agonal and non-diagonal versions of a same invari- 

ance are described through different matrices U(w) and 

T(w). Therefore a consequence from (11.10) is that a 

same symmetry can be accomplislied through isomor- 

phic groups. For T(w) = ei W a  H a ,  the corresponding 

change of basis is 
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For instancc:, restricting the group transformations to 

those with 2.n unitary determinant, one notes as a con- 

sequence of -;he above similarity transformation that the 

traceless coiidition of their generations is preserved. 

The intecference of R on U(w) keeps the number of 

group paraneters and the structure of the group alge- 

bra. Given 

[ta, tb]  = i f abc t, . (111.11) 

one gets 

[H,, H*] = i f abc H ,  . (111.12) 

Thus expresjions (111.12) and (111.13) show that a com- 

mon structure constant fabC organizes a same Lie Alge- 

bra with distinct generators. 

Classical!~, information derived from equations of 

motion, momentum-energy and angular momentum 

tensors, continous symmetries and their respective con- 

served currents, discrete symmetries, and current al- 

gebra are preserved under 52. On quantum grounds, 

the Wigner i,heorem ensures a unitary implementation 

for the inteinal symmetries. Thus although T(w) is 

not unitary in the space representation where tlie fields 

transform ac vectors, the Wigner theorem guarantees 

the existenct! of a corresponding unitary (or antiuni- 

tary) operator in the Hilbert space where the fields act 

as operators. This means that 

( x )  = ~ ( w ) q x ) u ( w ) - ~  , 
$ q x )  = S(W)~(X)S(W)-~ , 

where 

and 

Eqs. (111.13) - (111.17) show tliat 

(111.13) 

(III.14} 

(111.15) 

(111.16) 

(111.17) 

quantum- 

mechanically the isomorphic correspondence between 

representations is trivially represented. The basic U(w) 

and S(w) matrices differ functionally, but algebraically 

are equal. 

Up to now, this section has tried to understand R 
just abstractly. However, after this introduction, it 

turns now to be necessary to derive its expression. For 

this, a first clue is to consider the covariance of the 

equations of motion and conservation laws with respect 

to the fields parametrizations. As a result, one obtains 

two general matrix relationships, . 

R t I i - R  = 11 

Rt M2 R = m2 (diagonal) (111.18) 

(for complex fields case, take 52+ instead of 52'). 

The basic assumption for the invariance considered 

here is tliat any parametrization process must keep 

quanta invariance. Therefore any quantum number as- 

signed to the quanta must be equally conserved by any 

proposed parametrization. Tlien taking in considera- 

tion mass invariance, one derives from (111.18) the fol- 

lowing expression 

which shows that physical masses are invariant under 

(111.1). 

Tlius through Eqs. (111.18) and (111.19) one gets 

a first indication to determine 52. Nevertheless, only 

from quanta analysis is tliat R will be completely de- 

termined. For tliis one should rotate tlie initial general 

Lagrangian described by fields cp into that one written 

in terms of physical fields. Then one needs to diagonal- 

ize the kinetic and mass matrices. It finally yields 

where S and R are orthogonal (unitary) matrices whicli 

diagonalize K and the subsequent mass term, respec- 

tively. The diagonal matrix is given by 

Four consequences can be initially viewed from Eq. 

(111.20). First, it does not satisfy the closure relation- 

ship. Consequently it answers the initial question by 
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saying that the set of rotations R does not form a group. 

Other aspects are that 0 is not necessarily orthogonal 

(unitary) and that the conditions for fl be invertible 

will depend on I?-matrix eigenvalues be non zero. At 

last, it verifies the (111.19) similarity relation. 

In order to take some example with Eqs. (111.1) 

- (III.20), for simplicity one can choose a generalized 

scalar model. Consider the following Lagrangian in- 

volving N-scalar fields with a commom global transfor- 

mation 

where pt (v i ,  . . . , p ~ ) .  The corresponding equa- 

tions of motion are 

Substituting (111.18) and (1II.22), one gets 

Then working out from (111.24) the corresponding N- 

Klein Gordon equations and comparing with (111.23) 

through (111.18) one gets a kind of closure. 

IV. A consistent  spectroscopical analysis 

An abundance of degrees of freedom is obtained 

from this generalized gauge model based on the pres- 

ente of different connections associated to a single 

principal fibre bundle. Thus we should now investi- 

gate the physical excitations that Eq. (1.1) generates. 

From Borsher theorem, one gets that different field 

parametrizations sliould be available for describing the 

physics contained in a given Lagrangian. By consis- 

tent spectroscopical analysis we mean the physics in- 

variance under R matrix rotations. Tlierefore any quan- 

tum number necessary to classify the spectroscopy must 

contain the property of being invariant under these pos- 

sible choices of parametrizations. 

Spectroscopy analysis means to classify entities such 

as spin, mass, internal symmetries, residues of the prop- 

agators and discrete symmetries for each involved par- 

ticle. However the task here is not only to derive from 

a given Lagrangian the named spectroscopical entities 

but also to include a test of consistency, i.e., to sliow 

that they are invariant under transformations (111.1). 

For the spin case, as the fl matrix is a Lorentz scalar, 

one already lias the heuristic information that spin will 

be unnaffected. However this fact can be also proved. 

Taking the classical transformation[16] 

[ s k [ ~ l ,  ~(41 = b ( 4  , (IV .I) 

where Sb is the spin operator and 6y(r)  = w~'"C,,,p(x) 

measures tlie spin rotation. Substituting (111.1) in 

(IV.l), one gets 

[ ~ ~ [ a ] ,  a(.)] = a q x )  . (1v.2) 

Tlien, comparing (IV.l) witli (IV.2) we liave tliat spin 

rotations do not depend on Q matrix. 

For the mass case, Eq. (111.19) shows the invariance 

under different field basis for tlie physical masses. 

For internal symmetries, from Eqs. (111.4) and 

(III.S), one reads off that any associated Noether charge 

will be an invariant, although changing its functional 

shape. Thus for proving quanta invariance we still need 

to work out considerations ahout tlie residue signs and 

the discrete symmetries. 

Tlie physical contribution from the residues is on 

the relative value of their signs. They will reflect or not 

the presence of ghosts. However for. taking such con- 

sideration just the diagonal propagators are relevant 

(tlie spectral function wliicli determine each of the 1- 

particle state norm is only associated to them). Thus, 

considering a certain pole a t  k2 = m 2,  one derives that 

its corresponding residue matrix, RaQ(k2 = m2), will 

be related to tlie residues in another basis < T<py > 
through Eq. (111.1): 

Thus imposing tlie following diagonalized basis, 

we have 

R;$,* (kZ = m2) = C ( ~ , l ) 2  > 0 , (IV .5) 

and 
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Consequently from Eq. (IV.5) one gets that any residue 

matrix corresponding to  a given pole will preserve their 

diagonal resi iue signs. For off-diagonal terms, Eq. 

(IV.6) is showing an undetermined sign. However this 

information i:, not necessary to justify the intended con- 

sistent spectroscopy. Concluding, Eq. (IV.5) is showing 

that whether there is any ghost in the basis <P, it will 

also be detected in the basis 9,. 

Ref. [13] has analysed the invariance under the three 

discrete symrnetries P, C, and T .  Tlie proof has also 

shown how tliese separate discrete invariances are in- 

dependent on the field frameworks that Section I11 has 

contemplated. 

After concluding the discussion about quanta invari- 

ance, we have now to study properly the spectroscopy 

analysis. Thi:, means to derive the phenomenology con- 

tained in this ,:xtended gauge model. The starting point 

should be the Lorentz and Poincaré groups. They al- 

ready indicate that Lagrangian (11.1) contains two fam- 

ilies with spir 1 and spin O respectively, and also with 

components carrying different masses. Then, taking 

QED as a boundary condition, one is able to predict 

for the transversal sector the presence of N poles with 

spin 1, where st least one of them is massless. Similarly 

for tlie longitudinal sector, one expects the presence of a 

spurious massless pole together with other poles sliifted 

with radiativc corrections. 

A consequence from the quantum numbers invari- 

ance is that different channels of fields parametrizations 

appear offering the opportunity of choice for calcula- 

tions be done. In this way, one has to get the feeling 

on what would be the best indication for analysing tlie 

spectroscopy. The main quantum to01 for spectroscopy 

be analysed ir tlie propagator. From its poles one can 

read off the physical masses and from its residues the 

probabilities. Therefore our choice will be to work with 

a set of fields { C ) ,  which diagonalizes the transverse 

sector. 

Thus taking (11.28) one gets the following transverse 

and longitudiiial propagators, 

and 

(IV .7) 

where 

and 

Analysing tlie sector-T, physical masses are read in 

the diagonalized matrix m$. It contains a zero and 

tlie others elements are depending on the free coeffi- 

cients written in the initial Lagrangian. This means 

that tachyons can be avoided by controlling such coef- 

ficients. Analysing the sector-L, the mass spectroscopy 

analysis is less immediate. Tlie particles that it embod- 

ies ("scalar photons") display masses that are eigenval- 

ues of the matrix (B-lmT). However, sectors T and 

L are not completely independent. There is a relash- 

ionship between the masses in both sectors. It is given 

by 

where (IV.lO) is showing that the presence of any nu11 

mass in sector-T will correspond to a massless quantum 

in sector-L. 

To explore whether the degeneracy degree of 

tlie eigenvalues of the matrix m$ is the same for 

(B-lrng), consider a sector-T with M inde~endent 

fields G p r ( M  5 N) with zero mass: 

then multiplying by B-', one gets: 
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(h-' 2 m,)Gp~ = O X.det(X - s-'h12) = O . (IV .16) 

( B - l r n ? ) ~ , ~  = O (IV.13) 

Thus from (IV.11), (IV.12), (IV.13) one concludes the 

presence of a constraint where to each zero inass in 

sector-T will correspond a zero mass in sector-L. 

A next aspect to investigate on the mass spec- 

troscopy is its dependence o11 gauge-fixing parameters. 

Being the matrix B-l dependent on GF, we have to 

study explicitly this question. For this, consider the 

general (N x N) matrices 

where s and a are respectively (N-1) @J (N-1) and 1 @ 
(N-1) inatrices. Thus, 

whicli provides the following secular equation for the 

longitudinal masses, m i :  

Thus (IV.15) finally shows that sector-L spectra con- 

tains a zero solution and (N-1) eigenvalues of the ma- 

trix (s-lM2). Concluding, this result proves that the 

inasses are completely independent from the gauge pa- 

rameters a and ai. 

A further step for the understanding of the pliysics 

of the inodel is to notice the influente of tlie gauge fixing 

parameters, a ,  o11 tlie residues at the propagator poles. 

Physical entities such as the cross section or the norm 

of the physical states can not depend on a .  For this, we 

have to examine at each order in perturbative theory 

the residue matrix corresljonding to each pole. As we 

know, only the diagonal elements of ;very residue ma- 

trix should not depend o11 a. IIowever, for saving the 

cross section from any prejudice, we need to be sure 

that a11 elements in sucli matrices do not display such a 

dependence. By considering tlie {G) basis, tlie sector-T 

will work positively. Nevertheless for tlie sector-L, one 

needs to calculate explicitly the involved residues. For 

this we have to study the propagators. From (II.33), 

one gets tlie following matrices expression: 

Calculating in pieces, 

where 
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Observe then the following dependencies: a = 
a(k2; a, ~ i ) ,  b = b(k2; ai),  and the C matrix will de- 

pend on powers of momenta related to the number of 

involved fiel& (it represents a sector without any gauge 

fixing paran~eters) . 
For the !Z matrix, one takes formally the following 

expression 

where x is a number; y a row matrix 1 @ (N-1); w 

a column mztrix (N-i) @I 1, and Z a (N-1) QP (N-1) 

matrix. 

Substituting (IV.18), (IV.19) in (IV.17), it yields 

< GplGVi :>L= x2a(k2; a ,  ai) + x(byt + ~ b ' )  + YC$ , 
(IV .20) 

for i ,  j ,  k, 1 = 1, . . , N .  

Then the question here is to isolate the residues at 

the poles (k2 = O or k2 = S-'M2) witch contain con- 

tributions frcm the gauge parameters. For (IV.20), one 

notes that siich dependence is controlled through the 

element E x. For (IV.21), this situation is 

less restrictiv': because there are two parameters able to 

make such cancellation: x and wi. For (IV.22), it can be 

obtained through wi = O or w j  = O. Tliis would be the 

tree leve1 analysis. Concluding, we would observe that 

the spectroscopy for a generalized gauge model was de- 

rived in this chapter. The emphasys here was that Eq. 

(11.1) is not onIy a simple bag with vector and scalar 

excitations. ::t also carries an interna1 consistency for 

to physics be played which is given by the quanta in- 

variance undt:r field parametrizations. 

V. Longitudinal diagonalisation 

Anotlier possibility for deriving the spectrum should 

be to diagonalize the longitudinal part. It is defined by 

where L, are the physical fields in sector-L, SL and RL 

rnatrices are defined similary with G case, and & is 

B L  = SL BS; (diagonal) . 07.3) 

Longitudinal physics masses are now determined by 

Substituing the above expressions in (II.10), one 

rewrites 

1 1 r = -L: (oR + M2) P;"L,+-L: (O + rni)  P<"L, , 
2 2 

(V.5) 
where 

Here, the sector-T becomes more complicated. 

Propagators and residue matrices are given by 

and 

Thus, from 
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we get the invariance for transversal physical masses, 

m$. However, the information about ghosts is not pre- 

served. Given a positive-definitive matrix I h ,  from 

Eq. (V.6) one notes that the corresponding matrix KT 
will be not connected through a similarity transforma- 

tion. Eq. (V.8) is also indicating such information. 

It shows that only the sign of the residue determinant 

is preserved. Consequently the two equations are not 

enough for controlling the ghosts presence. Therefore, 

we will need to calculate explicitly the propagator and 

residues in sector T. 
From (V.7) a first step is to calculate ai1. Here SL 

and RL are orthogonal matrices defined through (V.3) 

and through the physical masses in the sector-L 

-5 
ma, = RL (B? SL M SL BLa ) R<L (diagonal) , 

(V.10) 

where 

and 

Observe that A i ,  ..., AN are B eigenvalues which de- 

pend on a. Calculating the matrix SL, one gets 

where s and C, respectively a line and a matrix, are 

given by 

and 

The matrix RL can be formally written as 

where each element can depend on a: Then, we finally 

get 

(V. 14) 

Note that Eq. (V.14) shows an explicit dependence on 

a. This result is very subtle. It  means that for a certain 

value of a there will appear a degenerate QL matrix, 

which implies a non-well-defined transformation (V.l). 

This fact can probably exclude the L,, parametriza- 

tion. In future work, with more experience, we expect 

I 

to understand whether a given extended gauge tlieory 

would not give a preference for a type of parametriza- 

tion which diagonalizes the highest, spin sector con- 

tained in the involved fields. 

Calculating formally the propagators, one obtains 
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where 

Observe then, the explicit a dependence from (V.16) to 

(V.18). 

Thus altt,ough the longitudinal basis preserves the 

quanta invariance, it brings two aspects for discussion. 

They are tha; the i2 matrix and the propagator residues 

appear deperiding explicity on tlie gauge fixing param- 

eter. 

VI. Stability 

where b, c, C are respectively the Lagrangian multiplier, 

the ghost, the antighost and 

Zpu = dDpv + aXpu + BCpu +gpva(X.X)  + 7XpXv . 
(VI. 1) 

The action C is invariant under the nilpotent BRS 
transformation: 

We are g ~ i n g  to follow the algebraic renormaliza- 

tion techniqiie. The method is based on BRS tech- SL) ,  = -apc, S X ,  = O ,  s c =  O ,  s ~ = o ,  6 .  

nique which combined with the Quantum Action Prin- (VI.2) 

ciple transforms the renormalizability as a cohomology The canonical dimensions and the ghost number of 
problem['8]. the fields D,, X,,  b ,  c, C are respectively 1, 1 ,  2, 2, O 

From (11. L ) ,  one gets and 0,  0 ,  0 ,  1 ,  - 1 .  
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The Slavnov identity corresponding 

invariance is 

The equations of motion are 

to the s- 

r = z + € r c ,  . (VI. 5) 

(VI.3) 
where rc express the counterterms. It is an integrated 

local functional, field polynomial with four dimension 

and zero ghost nuinber. 

Quantically, one gets 

For an effective quantic action, whose divergent part -- 6rc  6b - 0 ,  - = O  6 r C  - = O  6 r c  
6c ' 65 

. (VI.6) 
is local, one can define at each order ti the following fi- 

nite action Therefore rC(D,  X )  has the expression 

Verifying the stability for C(D, X,  b, c, c) under radiative corrections 

the initial parameters are redefined as 

Do = ( l + é Z o ) D ;  ... ;(o = ( 1 + ~  Zc)( ,  

where Zb,  2, and Zc depend on otlier renormalization 

terms; Zc and Zc can be redefined freely; parameter 

d can be incorporated on the field-D, redefinition, i.e. 

d = 1, Zd = O and ZD = $; and finally 

(VI -7) 

(a- b)  ( a + b )  j f 3 v  z, = - - - - - - - - + -- + 
4a2 4P2 2 ~ u  4 4By 

- z 
4(4p2 + y2 + 2py) 

3 

3 v 2 + -- + - 3(P - v) 
8 YP 8(4p2 + y2 + 2py) 8p/3 

(VI. 9) 

Concluding, the classical action is stable under ra- 

diative corrections, i.e. J d4x z:, ZpV0 preserves the 
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square shapc: and therefore is renornializable. A depen- 

dente on six renormalization .parameters is observed. 

VII. Concl  usion 

The gauge method is enlarged by taking the various 

connections ,hat a given group contains. Three general 

aspects emerge. They are the possibility of avoiding 

the Higgs particle, the fact that gauge particles are no 

longer defined strictly as those which intermediate in- 

teractions, a i d  that nature diversity can be explained 

more freely (without requiring the usual mechanism 

which consider multiples with a soft symmetry break- 

ing). This work has served as basis for these aspects. 

The spectroscopy of Eq. (LI), that was extensively 

studied liere, has shown a compulsory massless particle 

(associated to the photon) and other massive particles 

(associated to mediator and vector mesons plus scalar 

particles). Consequently, in principie, it was not nec- 

essary to adcpt the spontaneous symmetry breakdown 

process in order to develop a model with massive ex- 

citations, bu, note that a scalar sector is embodied. 

Another result from this spectroscopy was the variety 

of fields suffering gauge transformations that were gen- 

erated. This proliferation shows tliat not only inter- 

mediate particles as the photon, wf, Z0 and others 

should be articulated by symmetry. Particles as pions, 

Kaons, D - a l d  F - mesons, and many others are also 

now candidates for being described by the gauge ap- 

proach. Finally, Eq. (1.1) shows that the differences 

between the particles does not only need to follow the 

guide of soft heaking expressions, as in the Gell Mann- 

Okubo formula. Quanta with different masses can be 

obtained from a not broken Abelian group. 

Other two relevant features, altliough not original, 

that such ex',ended models develop are the distinc- 

tion between fields and quanta and the presence of 

non-diagonal propagators. The first aspect is observed 

through the transverse and longitudinal sectors contain- 

ing realities qlalitatively distinct. The other, similarly 

to the well known cases for chiral fermions, Weinberg- 

Glashow-Sala n model, and Kobayslii-Mashawa matrix 

is sliowing t h ~ t  the quanta can be propagated througli 

non-diagonal *,wo point Green's functions. 

Thus, afte. initial considerations about general as- 

pects tliat this generalized gauge model contains, one 

should now discuss the properties that it systematizes. 

The emphasys i11 this work was the property of work- 

ing with different fiels parametrizations. Tests have 

been studied for guaranteeing such diverse viabilities 

for physics be read off. Thus fields make a basis under 

which the various quantum numbers whicli build up the 

quanta are proved to be invariant, while other physical 

entities transform as tensors. For instance, the beta 

function becomes a tensor in flavour space[13]. 

Following this field parametrizations property this 

work got reasons for the so-called spectroscopical con- 

sistency. Sections I11 - V complemented with Appendix 

A were devoted to understanding this interna1 argu- 

ment tliat Eq. (I. 1) promotes. Therefore it was empha- 

sized in the introduction that before moving for renor- 

malizability and unitarity aspects, one should first con- 

sider tlie spectroscopical analysis. Evidently, there are 

other consequences coming from the existence of such 

possibility of working with different . field basis. One 

of them would be the opportunity of a strategy in the 

calculation. For instance, take the question about the 

necessity of a gauge fixing term in order to invert the 

propagator. {G) basis at Eq.(IV.8) does not answer 

it explicitly, but working on constructor basis one gets 

that without including a gauge fixing term, the propa- 

gator would not exist. Similarly, sometimes it is more 

useful to work with a basis that avoids mixing prop- 

agators between D, and X P i  fields. It is the set 6 , 
X defined by Eq. (11.35) which is more adequate for 

observing the counter terms. In Section V it was also 

also observed that a gauge model has preference for the 

sets of fields wliich diagonalize the highest spin state 

carried by the involved figds. 

Tlien, finally, let us now observe on the possible 

meanings that a generalized Abelian gauge model trig- 

gers. For this, we should first understand the context 

that it develops. Experimentally, a model with the free- 

dom of including an arbitrary number of particles is 

faded to be a disaster. The common tradition in phys- 

ical theories is the prediction aspect, and so, from such 

freedom of chosing the number of involved particles, 

one gets the indication that Eq.(I.l) will not develop 

this standard notion that a physical theory requires. 
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The traditional feeling of prediction will be lost. Then 

an answer of this basic inquisition must be given. We 

argue that the main aspect inserted in Eq.(I.l) is not 

to predict, but to organize. A model wliich proposes 

to organize a given number of particles would mean 

to describe tlieoretically their measured properties as 

mass, charge, lifetime, principal decays, and so on, but 

without requiring grand nnification principles. Eq.(I.l) 

is only be able of organizing a context and without 

the Higgs presence[l8]. Thus such an extended gauge 

model miglit be able to unify distinct spin families, but 

with a systematization just embedded in the organiz- 

ing context. The continency for the unification scheme 

dictated by Eq. (1.1) appears to be only to derive num- 

bers which fit tlie experimental facts (cross sections, 

lifetime, etc). Tliis means that this equation can be 

proposed only to solve half of the questions about par- 

ticles - its function consists only in describing the coex- 

istence between the particles without seeking for their 

roots. 

A physical theory needs the prediction aspect. How- 

ever Eq.(I.l) is limited by its organizative character. 

Therefore, something must complement it. A view- 

point is to consider that such expected thing are the 

quarks. The proposal is to consider that while quarks 

are the roots from which contact the predictions are 

made, Eq. (1.1) task will only be to organize tlie va- 

riety of facts that such roots develop. For example, 

consider the vectorial and pseudo-scalars nonet cases. 

There, from the quarks model one is able to predict 

the existence of particles with their wavefunctions, but 

their dynamics is maintained unknown. Thus tlie mis- 

sion for Eq. (1.1) pluriformity viewpoint would be to 

complement the Gellman-Zweing approach by offering 

a possibility of Quantum Colourless Dynamics. Thus 

as a first real challenge for Eq. (I.l), one sees the in- 

vestigation on the dynamics of the particles predicted 

in the nonet. For this, in further work we expect to 

introduce charged fields and interna1 global symmetries 
for trying some description. 
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Appendix A - A model involving two potential 

fields 

In order to exemplify abont the spectroscopical 

properties analysed in the text we are going to take tlie 

simplest case: a model involving two potential fields. 

Consider that a ,  b,  c, s, M2 are free coeficients, a fixes 

the gauge and a is another gauge parameter which tliis 

extended model allows to. 

We have now to understand the presence of 

tachyons, gliosts, and tlie influence of the a parame- 

ter at tree level. For performing these aspects we will 

initiate with {G,I) parametrization. 

The non existence of ghosts in the transversal sector 

is given by tlie condition of matrix tT, defined by Eq. 

(III.21), be positively defined. It gives 

where 

1 
A i  = [ ( a + b ) ~ J õ ]  , 

witli 

Thus for ghosts be avoided one gets from (A.2) the fol- 

lowing restrictions in the free coefficients 

A next step is to calculate the trknsformation ma- 

trix Cls, 

where 
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Thus we get 

a+' E O?'(a; b;  c) . ( A 4  

In sector-T, physical masses can be obtained 

through Eq. (111.18). As expected, one is zero and 

the other depends on the initial theory parameters of 

the initial tteory: 

rn$,,= ( A +  A +  A )  A- M' , ( A 4  

where SI:!  and s 2 2  are s-matrix elements (Eq. 111.21) 

given hy 

I h e  residue matrices corresponding to these poles are 

Res ( k 2  = 0) = (0 i) 
and 

Res ( k  - i - o o 
2 - m ) - . (AJO) 

The physical longitudinal propagators are 

Then taking XT = 0, there is no dependence on the 

gauge fixing paraineter a (and neither on a) .  

The residue matrices a t  the physical masses of the 

sector-L physical masses, O = O and = g, are and 
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Knowing the existence of a consistent spectroscopy, where 
one would expect to obtain the same physical informa- 

tion working with a parametrization system which di- 
agonalizes the longitudinal sector. The transformation 

matrix, aL, whicli relates the constructor and longitu- 

dinal basis is 

with 

Consequently (A.13) exihibits ai1 explicit a dependence 

$ 2 ~ 1  = C2i1(a; g; C) . 

Calculating the propagators 

where 

and 

The corresponding residue rnatrices for = O and 0 = are 
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