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An Abelian gauge model based on the introduction of independent gauge connections is
considered. The spectroscopy of this model shows tlie existence of two sectors, one vectorial
and other scalar. It presents a massless photon accoinpanied by other gauge bosons, vector
mesons and scalar particles. However the richness of this model comes from the internal
consistency that it displays: the existence of different field parametrizations that allow the
accommodation of different basis for calculations. This work also includes a study on the
invariaiice of the quanta under field reparametrizations.

l. Introduction

Any particle datashows different particles witli spin
11}, There, they appear systematized in two cate-
gories: mediators and vector mesons. However their
properties such as mass, cliarge, lifetime, principa de-
cays aiid forces, are described by qualitatively differ-
ent fundamentals. While the mediator class (photon,
gluons, W%, Z;) is associated to the gauge approach
and the corresponding grandunification scheme!?), the
class of the vector mesons (p, K*, w, ¢, J/¢¥,D*.Y)
is associated to tlie quark content!. However we still
consider propitious tO investigate on the possibilities
for including both spin-1 families together in a same
model, although knowing about their quark discrepan-
cies. Sakurai has already tried a model for different
spin-1 particles through aglobal gauge description!,

Consider now a set of N vector fields transforming
under acommom U (1) group according to tliefollowing
relations:

Aur(z) — Aur(z) + 0ua(z), (.Y

where | = 1,2,..,N and «(z) is the rea paraineter
associated to Abelian group. The fact that tliey all
transform with the real parameter «(z) does not pre-
vent them from being actually N independent vector po-
tentials that might eventually describe degrees of free-
dom associated to quantawith differeiit physical atrihu-
tions, sucli as mass or some other global internal quan-
tum numbers (flavour, eletric cliarge). Different proofs
derived from Kaluza-Klein approacli and from relax-
ing supersymmetry constraints gives a basis to assume
eq.(1.1) as involving N distinct potential fieldssl. In
this regard, it is also worthy to recall that differential-
geometric considerations support tlie existence of sucli
N fields witli transformations as abovel®. In the fibre
bundle description of gaugetlieories, asit iswell-known,
from tlie principal fibre bundle one derives connections.
This means the possibility of adding to the connection
genuine tensors over tlie principal hundle. In our case,
we still maintain tlie picture of a simple connection on
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the U(l) - bindle, and consider the N potentials as be-
ing given by the genuine U(l) - connections to wliich
one adds N independent tensors of the internal group.
Historically the presence of different connections in a
theory can te reviewed through relativity. There, the
Palatini tenror is added to tlie Cliristofell symbol[7].
Thus it s possible to make an analogy between a pdssi-
ble non-mini mal gauge model derived from eq.(I.1) and
Einstein-Car ;an theory.

A model considering the presence o different con-
nections in a single group is able to unify distinct
spin families witli the saine nature (either bosons or
fermions). From Lorentz group one gets the informa-
tion that any vector potential field carries two quanta
with spin-1 and spin-0. Consequently, reading off
eq.(I.1) one gets the presence of two families with N-
vector and N-scalar particles respectively. Then, re-
membering that thisnon-minimal gauge model contains
QED as boundary condition, one expects the presence
of one massless particle and one longitudinal degree of
freedom to be naturally frozen. Thus the subtraction
of these restriztions coming from tlie gauge mechanism
yields a spectioscopy determined by tlie following exci-
tations: one niassless vector particle,(N-1) massive vec-
tor particles, snd (N-1) massive scalar particles. This
meansthat eq (1.1) containsinstructionsto accomodate
a photon, a nonet with spin 1 (vector mesons), and a
nonet with zero spin (pseudo scalar mesons). Therefore
one natices that this formula develops a scalar-vector
model without requiring a coupling with matter fields.

String mocdels contain many multiplets of massive
vector mesons!® as in extended supergravity modelst®l.
Therefore sucl: theme involving the existence of differ-
ent gauge mesons is already being studied through dif-
ferent models. However what differentiates one model
from another is its consistency infront of physical needs
asrenormalizasility, unitarity, analiticity, and soon. In
this sense, one characteristic coming from a inodel in-
volving different fields in a same group is that it adds
another test tc the field approach: the requirement of
consistency in the spectroscopy analysis. This means
that prior to st :1dying the renormalizability and unitar-
ity properties cf this extended gauge model, we should
first analyse whether the quantiim numbers associated

to the fields are derived consistently. Therefore there
are three minimal conditions to turn eq.(I.1) a candi-
date to build up physical models. They are the consis-
tencies coming from the spectroscopy, the renormaliz-
ability, and the unitarity programs. The main effort of
this work will be on the spectroscopy aspect.

A better understanding for eq.(I.1) instructions can
be obtained through the following field reparametriza-

tions:
Du(z) — Du(@)+ Ouc(z)
Xui(z) — Xu(z),
where
Du(z) = Au(e)+Aup+ ... +Aun(2)
Xu(@) = Au(z)— Au(z)
Xu(N—«l) = Aul (37) - A,uN(w) . (12)

Tlius eq.(1.2) shows that there is only one genuine
gauge field, D, (z), wliile the fields X ,;(z) are gauge-
singlets (for the Abelian case). Geometrically the po-
tential fields X,;(z) arise from tlie torsion tensor of
tlie higher - dimensional manifold that spontaneously
coinpactify to My xBp, where My is tlie Minkowski
space-time and By some K-dimensional internal space.
Neverthless although tliere is a geometric origin for X%
fields we still dlioiild argue about their distinction from
tlie Proca case. We should discuss that such proposed
non-minimal gauge model does not represent a combi-
nation between the usua gauge theory wr(jitten for a
D, (z) field with a Proca model containing (N-1) mas-
sive potential fields. Eq.(I.2) offers gauge instructions
as gauge fixing term and Ward identity, which iiiclude
X,i(z) fields on their respective mechanism; another
difference comes from the fact that the X,;(z) fields
longitudinal sector propagates.

This work is organized as follows. In Section II
the structure of this generalized gauge model is pre-
sented. Then it is observed the existence of different
field parametrizations to be analysed. This fact moti-
vates Section III, which studies a  matrix that reg-
ulates such field hasis transformations. Then it is left
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for Section 1V the model spectroscopical analysis. In
order to explore a little more about this possibility of
having different field frameworks wliich preserve quanta
invariance, we work out at Section V a longitudinal
diagonalized basis. An Appendix follows for showing
explicit calculations involving two potential fieldsin a
same group.

II. Field parametrizations

Symmetry can be dressed through different ba-
sis, the field parametrizations. Tlie simplest case is
when one derives the symmetry messages through the
{D, X;} - basis which is defined in Eq.(IL.2). It is called
the constructor set. It yields the general Lagrangian

L= 22" + 22" + mL XXM 4 Lop, . (IL1)

Decomposing tlie generalized field strenght, Zy,, in
antisymmetric and symmetric pieces, one gets

ZI“/ = Zhw] + Z(py) , (11.2)
where
2wy = dDpy + aiXi,, + 'Y[ij]X:;X,J,. , (II3)
and
Z(l“’) = ,Bisz + Piguuzia + 7(ij)Xf,X,J,. +
+ T g Xe X, (11.4)
with
D;w = 6yDy - 3;,,D,,
X;w = auX:/ - aI/XL
T, = 0uXi+0.X, (IL5)
and
Zuw = €avpa 277 . (IL.6)

As a first product derived from this symmetry ex-
tension, there appears the so-called free coefficients.
They are coefficients associated to every Lorentz and

gauge scalar developed by this extended model. As an
exainple take d?, do;, m;, and so on. Thus there is a
total of Ml—g—"—ll free coefficients present in (11.1). They
are numbers which can take any real value. Their main
conseqgjiieiiceis on the pliysics dependence on their val-
ues. This means that such Lorentz and garige scalars
contain possibilitiesof parametrizing the physical enti-
ties that symmetry organizes. For instance, a quantum
number such as the physica mass will be determined
through these free coefficients, and so can take differ-
ent values without breaking gauge syminetry as explicit
calculations iii Appendix A are shows.

The contribution coming from EHU is called a semi-
topological Lagrangian!®. It is a particularity from
this generalized gauge model. This is due to the fact
that even in four dimensions tlie Z,, tensor appears
contributing to the interaction sector, altliough it does
not to the kinetic sector.

From Lorentz group representations, one gets in-
structions where spin-1 sector is localizecl in (11.3) and
(114) while spin-0 part will be only in (11.4): Zj,.,
and Z,, belongs to (0,1) e (1,0), while Z,,) belongs
(0,0) e (1,1). Tliis prediction can be directly tested
by analysing that the covariant field strengtli X}, con-
tributes to botli spin sectors when eq.(II.1) is orga-
nized in terms of transverse and longitudinal operators.
Froni Poincaré group, one expects that representations
with different spins will present different massesfor the
transverse and longitudinal sectors.

Being a gauge theory, this generalized gauge model
requires a gaugefixing terin. Giveii the presence of only
one gauge group we have just one gauge fixing term to
fix the potential field orbits. From(!1], the most general
gauge fixing term involving such N-potential fields for
the covariant case is

Lo = = [0.D + 0iX")]°

- (1L7)

Observe the inclusion of o; parameters. They are
not necessary to fix a garige. However these parameters
are allowed by the gauge mechanism, and so we have
to include them in the most general gauge fixing form
which theory provides. Indeed there is nothing new in
the o; parametersinclusion, and they can be compared
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with the § - parameter which writes a QED with the

following gauge-breaking term, - [9,4*  BA, A#]*.
In order to derive the Lagrangian spectrum moreex-

plicitly, eq.(I1.3) should be rewritten in termsof trans-

verse and lcngitudinal propagators. Defining
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L= Li+ Cint , (IL.9)

where

Lg = %v; (0Kt + M*)PE" + (BO + M*)PL*]V,
Vi = (D X)), (118) (IL.10)
it yields, with
1
d? day da;
da1 a% + ,3%
Ke=4| (IL11)
do; oo + ﬂiﬂj
and
B =Ky +Gr, (11.12)
with
0 0 0
0 By +p1)? +3p3 BiBn-1+ prpn—1+201pN-1
Kp=8] : : : o (IL13)
0 Bn-1B1+4pn-_1p1+2BN-1p1
(By-1+pn-1)? +3p% 4
1 1 20
Gr =~ ( e ) (IL14)
and
0 0 0 0
2
wo| ! mh e vy (11.15)
0 mn-1n m?N—n(N-l)

Two basi: quantum numbers emerge from the kine-
matics of such generalized gauge model. They are the
spin and the mass. For the vector family, the corre-
sponding physical Masses are eigenvalues of the matrix

(Krf M 2), and, for the scalar family one gets that phys-

I

ical masses will be the (B~ M?) eigenvalues.

Three facts are showing that theory does not de-
pend on ¢; parameters. First, jt is because the phys-

ical entities should not depend on it. Then, one can
show that it does not suffer any renormalization pro-
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cess and that the theory stability does not suffer its
influencell2]. Tliird, the gauge fixing term does not re-
quire it in order to the propagator to have an inverse.
Frorn (I1.10), the existence condition for the longitu-
dinal propagator, < V,V, >, is to have an invertible
rnatrix Q = [(KL + olo)d + Mz]. For this, the con-
dition of liaving a matrix o a invertible will be not
essential.  Consequently, one can conclude from these

3

int

4+

tOFV VAV,

-+

where

d

223

).

V=

-~

and

£

int

Matrices A, A, ©, T, C are given by
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three aspects that the paranieters o; should be only
interpreted as anotlier family of free coefficients.
Although it isan Abelian case, sucli extended model
has a gauge invariant interaction part. It is written as
£

Lint = LG+ (11.16)

for

z‘&“V”[VIfAV,, + €pupa VAV ] +

+

W O VHVIAVY] + 0 8, VRV OV,

0
08;

)

Bi + 4pi

o
<

(I1.17)

).

[VH O]V To ] + [V IV, +
+ ePVAVIIVIAG] .

(IL.18)

0 0 0 0
0 0 Y12) Y1, N-1]
A= 10 ey 0 V2,N~1]
0 ynv-11] Yv-1,2) 0
0 0 0 0
0 vay Y(12) Y(1,N=1)
A=10  7Ye Y(22) Y(2,N~1)
0 7wn-11) YN-1,2) Y(N-1,N=1)
0 0 0 0
0 T11 Ti2 Ti,N-1
=10 m™ T22 T2,N-1
0 7v-11 TN-1,2 TN—1,N~1



R. M. Doria, F. A. B. Rabelo de Carvalho and G. Oliveira Neto 719

0 0 0
0 Y1) + 2712 Ya,N-1) + 271 N1
0

=

Y(21) + T2t Y(z,N-1) + T2, N1

0 Yw-1,1)+27N-1,1 YN-1,N=-1) + 27N -1, N -1

0 0 0 0
0 711 Y12 Y1,N-1
n=91{0 7T Y22 Y2,N-1 (I1.19)
0 vv-11 IN-12 YN-1,N-1 -
The corresponding N-equations of motion derived from (11.9) are
1
Kpd, V* + ZM?v" =Jy, (11.20)
where V,,,, isa (N x N) matrix given by
Vl“/ = auVy _ 61/Vu ) (1121)

and J” isa (N ® 1) column vector originated from tlie kinetic scalar part and from tlieiiiteraction part. It is given
by

B& (8.V) —wd"[Vi(© + )V T

[V + VIOAVY 4+ 46" O VIV, 1A Ve +

AulzVHAVY Fafghrviov + vV Y]+ 4P 17 VAT,

- [tHo.vr V) T 2giwto Ve + givieveE T ViV IAYH
- ViO+ D)V + 2w +1)'0,VHOV" .

JV

+ +

(11.22)

—

ence is that it will relate all fields transforming under
a same gauge parameter, o(z). It yields

Eq. (11.20) works as anotlier proof of tlie presence of N
independent fields in asame gauge group. This is SO be-
cause it shows the existence of N independent equations

derived from Eq. (1.1). Observe that the equations of 4,N" =0,
motion for fields V¥ = D, and V/ = X/ differ basi- ‘
. . . . with

cally on tlie gauge fixing terin and on presence o tlie
current J/. 5L .

Deriving 13q. (11.20) we obtain the followiiigset of N = 0, V,”M/’ ' (11.24)
(N-1) equations Substituing (11.24) in (11.23) oiie gets

1
Oulf = MGV . (11.23) B, d.Vi=0. (I1.25)

Eq. (11.23) shows that (N-1) scalars are iiot decoupled

unless one is able to prove tlieir curreiit conservation.
Another natural invariance from a gauge tlieory is

tlie Noether theorem. For tliis extended case the differ-

Tlierefore J/ currents will suffer contrihutions only
from elements B;; in (11.12).

After an initial study tlirougli tlie construtor set,
{V}, let usdiagonalizethe transversal sector. Then one
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gets the { G) set, caled as pliysical field parametriza-
tion. Thisterminology is due to the fact that the trans-
verse physical masses will correspond to tlie poles of
their-two point Green's functions. This set is defined
through the following transformation:

V=00G, (11.26)

wliere

QLErQr =1

QLM2Qr =m?  (diagonal)

o
1

+ + 4+ +

wliere each of the column inatrices zr, ..., v transforms

like
zr = Qb2 , (11.30)
and each of tlie row matrices Ar, ..., I'r as
At = Q5AQr . (11.31)

Observe then the appearance of a Qt matrix con-
trolling tlie field basis transformations. It depends on
the initial Lagrangian coefficients

Qr =Qr (d, a;, Bi, pi,my;) . (11.32)

Thus any information can be transposed from a given
set of fields to some cliosen set. For instance, tlie rela-
tionsliip between propagatorsis given by

<T(V,V,) >=Q<T(G,G,) >0,  (11.33)

where  is a general matrix.

OLBQr =B . (11.27)

Substituing Egs. (11.26), (11.27) in Egs. (11.10) and
(I1.16), we have

L(G) = Lx(G) + Line(G) ,
with
Lx(g) = %G; [(D +m2)p + (0B + mZT)Pﬁ‘v] Gy,

(11.28)
and

ZGY(GIATG) + € po GPATGT) +

15,04 G (GLAG,) + whd,GH (G ATGY) +
19 GH(G,01G") + (GM'Z:Gy)* +
(G*OrG ) (G TrG,) +
G“UPU(GL/\TG,,)(G;)\GU) ,

(I1.29)

Eqg. (11.33) is tlie propagators covariance law. This
means that wliile fields transform as matrices, prop-
agators behave as tensors. Its importance is due to
tlie fact that R expression does not depend on tlie mo-
menta. This yieldstlie property that propagatorstrans-
formation (11.33) will preserve tlie pole structure (the
influeiice coming from R matrix will affect only tlie
residues). Anotlier consegiience derived from (11.33)
is that non-diagonal propagators are symmetric in any
field basis. Considering tliat matrices in (11.10) are or-

tliogoiia from gauge symmetry, one gets

< VWV, >p=< VuV, >t . (11.34)
Tlien substituting (11.34) in (11.33), it gives
< GuGy >1,=< GG, >, (11.35)

wliere (11.35) verifies a expected result from functional

formalism and from time order decomposition.
Depending on tlie type of investigation, a certain

fidd parametrization can be more useful. For analysing
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the spectroscopy the {G} basis is more direct. How-
ever for the renormalization analysis there is another
basis denoted by {D, X;} where

Dou(z) = Dy(2) + -dl—za,-ij(x) , (11.36)

which is mcre useful (because it avoids mixing prop-
agators in tlie transverse sector). Consequently, there
exists a large variety of fields parametrizations to be
explored. In this way, we fed obliged to explore in
a next chapter the properties of a genera R-matrix
which controlls any transformation between these field

parametrizations.

III. R matrix

The intrcduction of more fields in a same group de-
velops different possibilities for a given physics to be
observed(!3]. One can read off the symmetry instruc-
tionsin these extended gauge modelsinvolving bosons,
fermions, potentials, and other fields, tlirough differ-
ent parametrization systeins. Neutrino physics already
shows cases where physics can be studied under distinct
fermion parametrizations!'4. Consequently, from this
possibility of liaving different bases for physics to be
analyzed, a iiew theoretical structure called ©2-matrix
naturally emerges. It describes tlie transformation be-
tween two different sets of field parametrizations,

0, = Qb (IIL1)

where ¢, and &, represent any set of fields with a
same spin structure. Tlie generalized index s repre-
sents the nature of the particle family. For instance,
for the case of vector fields we have tlie following sets:
{ps} = {D, Xi}, {®:} = {Gr}. Notation here is to
associate @, o tlie physical fields, which are defined as
containing explicitly tlie physical masses as the poles of
their corresponding two-point Green functions.

In such generalized model the relationsliip betweeii
guantaand ficlds is not morein a one-by-one correspon-
dente. Thesituation generated from Eq.(1.1) makesthe
correlation be tween fields and quantato develop a new
aspect where a given field can contain various quanta.
Thismeanstliat fields will work just asan auxiliary de-
vice for the dynamics to be observed, while quanta will
emerge from this dynamics. A viewpoint is to make an

analogy where the length of such new coordinates - the
fields- would be determined by tlie degrees of freedom,
and so, Eq. (111.1) represents possible clianges on "field
coordinates” while the involved quanta are preserved.
Therefore, the task will be to understand under which
conditions tlie R matrix does not affect tlie physics.

The R matrix presence indicates that symmetry
can be dressed with different field parametrizations.
However tliis proposal witli field rotations must pre-
serve physical structures such as, at least, S-matrix
and the minimal action principle. Borscher theorem
states tliat any local field redefinition will not affect S-
matrix, and consequently afirst condition for R matrix
validity is to have any of its elements not depending
on momentum!!®l. Thisiseasily verified because the R
matrix elements are obtained from tlie free coefficients
derived from tlie covariant fields strength written in
(11.2). Being rea scalars, the Lagrangian and the ac-
tion are also invariant under Eq. (I11.1),

Loy = L[0@)]= L[,

Sles] = 5@ (I11.2)

which yield tlie following relationsliip between the min-
imal actions:
8S[ps)

—_— = Q—l
b 50,

Thus Eq. (111.3) shows that whenever R has inverse,
then tlie corresponding equations of motion in any set

=0. (I11.3)

of field parametrization will preserve the on-shell infor-
mation. Other two general aspects can work to com-
pleinent the S-matrix and tlie minimal action princi-
ple invariances. Tliey are tlie conservation of the num-
ber of fields and tlie preservation of the spin structure
under sucli R rotations. Heuristically, given that any
reparametrization conserves the number of degrees of
freedom one expects the number of fields involved will
be preserved. Similarly, the fact that R is a Lorentz
scalar makes Eqg. (111.1) to preserve the spin structure,
and so, tlie ¢, and ®, families will belong to the same
spin structure.

After the fundamental conditions are satisfied by
Eq. (T11.1) (for further analysis see Ref. [13]), weshould
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investigate the characteristics which R develops. For
this we will select two questions. The first would be
whether © forms a group. Being a matrix, it contains
the identity and associative properties, and satisfying
the Borscher theorem, it contains the inverse. However
the property that any two symmetry operations of a
group performed in succession also corresponds to an
operation in that group is not immediate. This means
that closure property fails to hold in general, as soon
we shall see. The second question, would be to under-
stand the structure which € develops. This means to
classify the expressions derived in this extended model
relatively to £2, as the scalars and tensors generated,
the similarity and covariant transformations obtained,
and the relative and absolute quantities revedled. The
present work will be interested in the study of the well
known conservation laws respectively to Eq. (111.1).

Space - timecharges and internal symmetriesshould
be invariant under Eq. (111.1). The current density
written in terms of components ®,r, where | variesfrom
lto N, is

81“7” [‘bs] = 0 )
with
% ~ OL(®,0%,)
H — T v s
JH®,] = —TH[®,]é6z +'__~68,,<I>; §®%
mie,] = Mau‘bsl—g“uf . (111.4)

99,®, 1

Then one gets that Eq. (111.4) is a scalar with re-
spect to transformation (111.2):

8ud"ps] =0
with
OL(ps:0ps
e = ~Tilplsat + sy,
nY¥'s
OL(ps Dops
THvlps] = ——é%s—oflau%f—g#uz. (111.5)

Concluding, the equivalence between egs. (111.4) and
(111.5) show that the Weyl group is preserved for differ-
ent field parametrizations.

Further two invariances will be quoted here. They
are the Q-invariance for the commutation rules and for
the equations of motion. Given

[ps1(2,1), M, s(', 1)) = i6778°(2 — "),

we have

[®,r(2,1), 12, (' )] = 6rs6(z — 2') . (111.6)
Similarly,
oL 0L oo JOL  OL
wf@%w‘m)”%@ 56,33

(1117

Nevertheless, the most profound insight from Eq.

(1111) is the possibility of modifying the simme-

try shape without changing the substance of its

instructions!!3l. Consider the following phase transfor-
mation

o, = Uw)ps . (1118)
Substituting (111.1) in (II1.8), one gets
3, = T(w)®,
where
T(w)=Q U (Ww)Q . (I11.9)

Relation (111.9) shows that similarities which the sym-
metry refiects can change their shape according to
the parametrization set.
the physics, as wdl as the established conservation
laws. One can note from Eq. (111.9) is that although
the principle of local symmetry is preserved, the di-
agonal and non-diagonal versions of a same invari-
ance are described through different matrices U (w) and
T(w). Therefore a consequence from (11.10) is that a
same symmetry can be accomplisied through isomor-
phic groups. For T(w) = ¢ “* # ¢ the corresponding

However it must preserve

change of basisis

Wi H, = Q" Hw,)Q . (I11.10)
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For instance, restricting the group transformations to
those with en unitary determinant, one notes as a con-
seguence of ;he above similarity transformation that the
traceless condition of their generations is preserved.

The intecference of R on U{w) keeps the number of
group pararieters and the structure of the group alge-
bra. Given

[ta, )] = if dbC t, . (111.11)

one gets

[H,, Hy) =ifabc H, . (111.12)

Thus expressions (111.12) and (111.13) show that a com-
mon structure constant f,;. organizes a same Lie Alge-
bra with distinct generators.

Classically, information derived from equations of
motion, momentum-energy and angular momentum
tensors, continous symmetriesand their respective con-
served currents, discrete symmetries, and current al-
gebra are preserved under £2. On quantum grounds,
the Wigner rheorem ensures a unitary implementation
for the inteina symmetries. Thus although T(w) is
not unitary in the space representation where tlie fields
transform as vectors, the Wigner theorem guarantees
the existence of a corresponding unitary (or antiuni-
tary) operator in the Hilbert space where the fields act
as operators. This means that

&lz) = UW)d(z)U(w)™t, (11113
(@) = Y(wp(x)SwW)™, (I11.14)
where
Ulw) = v Qlel (111.15)
S(w) = e ¥ el (111.16)
and
Qalpl = / & z Jo[o] = Qa[2] . (111.17)

Egs. (11113) - (111.17) show tliat quantum-
mechanically the isomorphic correspondence between
representationsis trivially represented. The basic U{w)

and S{w) matrices differ functionally, but algebraically
are equal.

Up to now, this section has tried to understand R
just abstractly. However, after this introduction, it
turns now to be necessary to derive its expression. For
this, a first clue is to consider the covariance of the
equations of motion and conservation laws with respect
to the fields parametrizations. As a result, one obtains
two general matrix relationships,

QFKQ = 1

Ot M2R m? (diagonal)  (111.18)

(for complex fields case, take Q7 instead of 02!).

The basic assumption for the invariance considered
here is tliat any parametrization process must keep
quantainvariance. Therefore any quantum number as-
signed to the quanta must be equally conserved by any
proposed parametrization. Then taking in considera-
tion mass invariance, one derives from (111.18) the fol-
lowing expression

QYK 'MHQ =m? (11L.19)

which shows that physical masses are invariant under
(111.2).

Tlius through Egs. (111.18) and (111.19) one gets
a first indication to determine 52 Nevertheless, only
from quanta analysis is tliat R will be completely de-
termined. For tliis one should rotate tlie initial general
Lagrangian described by fields ¢ into that one written
in terms of physical fields. Then one needs to diagonal-
ize the kinetic and mass matrices. It finally yields

0! = RKY/?3 (111.20)

where Sand R are orthogonal (unitary) matrices which
diagonalize K and the subsequent mass term, respec-
tively. The diagonal matrix X is given by

K =SKS, (111.21)

Four conseguences can be initially viewed from Eq.
(111.20). First, it does not satisfy the closure relation-
ship. Consequently it answers the initial question by
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saying that the set of rotations R does not form a group.
Other aspects are that € is not necessarily orthogonal
(unitary) and that the conditions for £ be invertible
will depend on K-matrix eigenvalues be non zero. At
last, it verifiesthe (111.19) similarity relation.

In order to take some example with Egs. (1111)
- (II1.20), for simplicity one can choose a generalized
scalar model. Consider the following Lagrangian in-
volving N-scalar fields with a commom global transfor-
mation

L=¢"(KO+ MY, (111.22)

where ¢! = (¢4, ...
tions of motion are

, ¢~). The corresponding equa-

(KO+M?%)p=0. (111.23)
Substituting (111.18) and (I11.22), one gets
L=20'(0+m?o . (111.24)

Then working out from (111.24) the corresponding N-
Klein Gordon equations and comparing with (111.23)
through (111.18) one gets a kind of closure.

IV. A consistent spectroscopical analysis

An abundance of degrees of freedom is obtained
from this generalized gauge model based on the pres-
ente of different connections associated to a single
principal fibre bundle. Thus we should now investi-
gate the physical excitations that Eq. (1.1) generates.
From Borsher theorem, one gets that different fied
parametrizationssliould be available for describing the
physics contained in a given Lagrangian. By consis-
tent spectroscopical analysis we mean the physics in-
variance under R matrix rotations. Tlierefore any quan-
tum number necessary to classify the spectroscopy must
contain the property of being invariant under these pos-
sible choices of parametrizations.

Spectroscopy analysismeansto classify entitiessuch
asspin, mass, internal symmetries, residues of the prop-
agators and discrete symmetriesfor each involved par-
ticle. However the task here is not only to derive from
a given Lagrangian the named spectroscopical entities

but also to include a test of consistency, i.e., to diow
that they are invariant under transformations (111.1).

For the spin case, asthe 2 matrixisal orentz scalar,
one already lias the heuristic information that spin will
be unnaffected. However this fact can be also proved.
Taking the classical transformation!!®]

[S*[e], o)) = 6p(e) 1v.1)
where S isthe spin operator and §p(z) = w** T, p(z)
measures tlie spin rotation. Substituting (111.1) in
(IV.1), one gets

[34@), 8(x)] = 60(2) . (Iv.2)
Tlien, comparing (1V.l) with (IV.2) we have tliat spin
rotations do not depend on €2 matrix.

For the mass case, Eq. (111.19) shows the invariance
under different field basis for tlie physical masses.

For internal symmetries, from Egs. (1114) and
(I11.5), one reads dff that any associated Noether charge
will be an invariant, although changing its functional
shape. Thusfor proving quantainvariance westill need
to work out considerations ahout tlie residue signs and
the discrete symmetries.

Tlie physical contribution from the residues is on
the relative value of their signs. They will reflect or not
the presence of ghosts. However for. taking such con-
sideration just the diagonal propagators are relevant
(tlie spectral function which determine each of the 1-
particle state norm is only associated to them). Thus,
considering a certain pole at k2 = m2, one derives that
its corresponding residue matrix, Rga(k* = m?), will
be related to tlie residues in another basis < T'pp >
through Eq. (111.1):

Ry,p,(k* =m?) = Q7' Rp 0, (k* = m?)Q™1* . (IV.3)

Thus imposing tlie following diagonalized basis,

Ri o, (K = m?) = §7* | (v 4)

we have

Riu (8 =m®) =305 >0,  @V9)
J .

and
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(IV.6)

R, (8 = m?) = 3051

1
Conseguently from Eq. (1V.5) onegets that any residue
matrix corresponding to a given pole will preserve their
diagonal resilue signs. For off-diagonal terms, Eq.
(IV.6) is showing an undetermined sign. However this
information is not necessary tojustify theintended con-
sistent spectroscopy. Concluding, Eq. (1V.5) isshowing
that whether there is any ghost in the basis ®; it will
also be detected in the basis ;.

Ref. [13] hasanalysed the invariance under the three
discrete symrnetries P, C, and T. The proof has also
shown how these separate discrete invariances are in-
dependent on the field frameworks that Section III has
contemplated.

After concluding the discussion about quantainvari-
ance, we have now to study properly the spectroscopy
analysis. This. meansto derive the phenomenology con-
tained in this :xtended gaugemodel. Thestarting point
should be the Lorentz and Poincaré groups. They a-
ready indicate that Lagrangian (11.1) contains two fam-
ilies with spir 1 and spin O respectively, and also with
components carrying different masses. Then, taking
QED as a boundary condition, one is able to predict
for the transversal sector the presence of N poles with
spin 1, where at least one of them is massess. Similarly
for tlielongitudinal sector, one expects the presence of a
spurious massless pole together with other polesdliifted
with radiative corrections.

A consequence from the quantum numbers invari-
anceisthat different channels of fields parametrizations
appear offering the opportunity of choice for calcula-
tions be done. In this way, one has to get the feeling
on what would be the best indication for analysing tlie
spectroscopy. The main quantum tool for spectroscopy
be analysed ir tlie propagator. From its poles one can
read off the physical masses and from its residues the
probabilities. Therefore our choice will be to work with
aset of fields {G}, which diagonalizes the transverse
sector.

Thus taking (11.28) one gets the followingtransverse
and longitudinal propagators,

_ b o7

< GuiGyr >7= O+ m"gr Puy ) (Iv.7)

and
< G IGVJ >rL= —,.,1— B—IPLV , (IVS)

# O+ B~'mZ #
where

B =QL(KL + Gp)0% , (1V.9)

and
mi = QN (K7 m?)Qr . (Iv.10)

Analysing tlie sector-T, physical masses are read in
the diagonalized matrix mZ. It contains a zero and
tlie others elements are depending on the free coeffi-
cients written in the initial Lagrangian. This means
that tachyons can be avoided by controlling such coef-
ficients. Analysing the sector-L, the mass spectroscopy
analysisislessimmediate. The particles that it embod-
ies ("scalar photons") display masses that are eigenval-
ues of the matrix (B~!m%). However, sectors T and
L are not completely independent. There is a relash-
ionship between the massesin both sectors. It is given
by

miyp .- m?VN,T = (detB) det(B~'m%), (IV.11)

where (1V.10) is showing that the presence of any null
mass in sector-T will correspond to a massless quantum
in sector-L.

To explore whether the degeneracy degree o
tlie eigenvalues of the matrix m2 is the same for
(B~'m2), consider a sector-T with M independent
fields G,r(M < N) with zero mass:

m%G,,l =0

m%GW =0, (IV.12)

then multiplying by B!, one gets:
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(é—lm’zr’)GuI =0

(B~'m2)Gun =0 (IV.13)

Thus from (IV.11), (IV.12), (1V.13) one concludes the
presence of a constraint where to each zero mass in
sector-T will correspond a zero mass in sector-L.

A next aspect to investigate on the mass spec-
troscopy is its dependence on gauge-fixing parameters.
Being the matrix B~! dependent on Gr, we have to
study explicitly this question. For this, consider the
general (N x N) matrices

{00 171 ¢
KL—.<0 S> and GF';(& crta)’

(IV.14)
where s and a are respectively (N-1) @ (N-1) and 1 Q)
(N-1) inatrices. Thus,

=1 ag2
(Ki+ Gp)™* M? = (g oy ) . - (IV.15)

which provides the following secular equation for the
longitudinal masses, m? :

Adet(A—s"*M?) =0. (IV.16)

Thus (1V.15) finally shows that sector-L spectra con-
tains a zero solution and (N-1) eigenvalues of the ma-
trix (s~*M?). Concluding, this result proves that the
inasses are completely independent from the gauge pa-
rameters a and o;.

A further step for the understanding of the physics
of theinodel isto notice the influence of tlie gaugefixing
parameters, a, on tlie residues at the propagator poles.
Physical entities such as the cross section or the norm
of the physical states can not depend on a. For this, we
have to examine at each order in perturbative theory
the residue matrix corresponding to each pole. Aswe
know, only the diagonal elements of every residue ma-
trix should not depend on «. However, for saving the
cross section from any prejudice, we need to be sure
that all elements in sucli matrices do not display such a
dependence. By considering tlie{ G) basis, tliesector-T
will work positively. Nevertheless for tlie sector-L, one
needs to calculate explicitly the involved residues. For
this we have to study the propagators. From (11.33),
one gets tlie following matrices expression:

P 1 ’ -1| (o=1\ pL
< GuG, >1.= Q7 [D+(I{L+GF)_1M2 (K1, + Gr) (QT )P!“, . (Iv.amn
Calculating in pieces,
1 - -1 a b
[D+(1{L+GF)-1M2(AL+GF) ]“ (bf c> ’
where
a = % [a-— os I MA A+ s MY (s + %a’to)_lat] .
1 1. -1
{1—20(1-}-200) 0’:'
I _ - -
b = —508 1[1—1\/123 Yo+ s71M?) 1]
¢ = (@+s MY s, (IV.18)
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Observe then the following dependenciess a =
a(k? a,0:), b = b(k% e;), and the C matrix will de-
pend on powers Of momenta related to the number of
involved fields (it represents a sector without any gauge
fixing parameters).

For the {2 matrix, one takes formally the following

- X
QTI:(w %) ’

where X is a number; y a row matrix 1 & (N-1); w
a column matrix (N-1) @ 1, and Z a (N-1) & (N-1)
matrix.

Substituting (IV.18), (1V.19) in (IV.17), it yields

expression

(IV..19)

< GG = x2a(k% o, 03) T 2 (by' T ybt) + yCy'
(IV.20)

< GpiGyi >1=zwia(k* a,0)
+zbi (Z%)ji + yjb;w,- + i Cip(Z ki
(Iv.21)

<GuGuj>L = wiwja(k®;a,0) +wibi(Z s +
+  Zixbrwj + ZinCri(ZY)y; , (1V.22)

fors, 5, k, 1 = 1, .., N.

Then the question here isto isolate the residues at
the poles (k? = 0 or k? = s~!M?) witch contain con-
tributions frcm the gauge parameters. For (IV.20), one
notes that such dependence is controlled through the
element (27311 = 2. For (IV.21), this situation is
lessrestrictivz because there are two parameters ableto
makesuch cancellation: X and w;. For (IV.22), it can be
obtained through w; = 0 or w; = 0. Tliis would be the
tree level ansalysis. Concluding, we would observe that
the spectroscopy for a generalized gauge model was de-
rived in this chapter. The emphasys here was that Eq.
(1112) is not only a simple bag with vector and scalar
excitations. 't also carries an internal consistency for
to physics be played which is given by the quanta in-
variance under field parametrizations.

V. Longitudinal diagonalisation

Another possibility for deriving the spectrum should
be to diagonalize the longitudinal part. It isdefined by

V, =L, , (V.1)

QL= S.B. R (V.2)

where L, are the physical fields in sector-L, 51, and Ry,
rnatrices are defined similary with G case, and EL is

BL = SLBS:  (diagonal) . (V.3)

Longitudinal physics masses are how determined by

mi = QL M?Qy, . (V.4)

Substituing the above expressions in (11.10), one
rewrites

I = %Lj, (o + %) PR L, + %LL( o+m?)PH'L,,
(V.5)

where

IA{'T = QLK'TQL '

M? =0 M20, . (V.6)

Here, the sector-T becomes more complicated.
Propagators and residue matrices are given by

1

< L,‘Lu >7= QEI (m
T

K,;l) Qrtt, (V.7

and

(BE) =3 (a0h),; (BY),, (g, - (V-8)
ik
Thus, from
KitM? = Q7 (K31 M2) Qy, (V.9)



728 Brazilian Journal of Physics, vol. 24, no. 3, September, 1994

we get the invariance for transversal physical masses,
m2.. However, the information about ghosts is not pre-
served. Given a positive-definitive matrix Ky, from
Eg. (V.6) one notes that the corresponding matrix Kt
will be not connected through a similarity transforma-
tion. Eqg. (V.8) is also indicating such information.
It shows that only the sign of the residue determinant
is preserved. Consequently the two equations are not
enough for controlling the ghosts presence. Therefore,
we will need to calculate explicitly the propagator and
residues in sector T.

From (V.7) afirst step isto calculate Q7. }. Here S
and R, are orthogonal matrices defined through (V.3)
and through the physical masses in the sector-L

m? = Re (B suMSEB ) B, (diagonal)
(V.10)
where
1 1
B= [ e, Tl ]
~lot s—ioi0
and
A1
- A2

AN

-1 r)\ilz +riA
Q= \172
1 + rzA

Note that Eq. (V.14) shows an explicit dependence on
«. Thisresult isvery subtle. It meansthat for acertain
value of a there will appear a degenerate 2, matrix,
which implies a non-well-defined transformation (V.1).
This fact can probably exclude the L, parametriza-

tion. In future work, with more experience, we expect

|

Observe that Ay, ..., An are B eigenvalues which de-
pend on a. Calculating the matrix Sy,, one gets

1 i—sl

Sp=11
>
1

where s and C, respectively a line and a matrix, are
given by

§1 = i (s - lcrtO'— /\1) (V.11)
a o

2 (s—Loto —A2)

Y= : (V12)

2 (s— Loto — Ay)

and

The matrix Ry, can be formally written as

r ™
T2 T3

where each element can depend on «. Then, we finally

(V.13)

get

%’\1/231 + -‘1;1'131/22 14
SAL res1 + grabzl

to understand whether a given extended gauge theory
would not give a preference for a type of parametriza-
tion which diagonalizes the highest, spin sector con-
tained in the involved fields.

Calculating formally the propagators, one obtains

1 2
< LulLul >7 = (7'/\15 + 7’1A) P+
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RimRlm

+ o+ o+
|~

2

i3

< L,AL,,.' >p =

!
o
1

+ + o+ o+

729

(17 4 mA) (A7 P8t + PR +
(rz\i/zsl + r{l?l/?z) (rAi/ZP’ + P‘rlA) +

(r,\i/zsl + rlZWz) (r,\}/zQs’1 + QE'zl/zri) ,

(V.15)

(r)\% + rlA) (/\1/27"2 + At'r'é) Py +

(rA}/2 + 7)) (A/2Psiry + PEBY2r) +
" (1’/\}/231 + 7'131/22) (z\ilthré + P’A'ré) +
% (r/\i/zsl + r151/22) (/\}/21)‘1‘5 + P‘A‘r}',) +

1 - .
=5 (A %s1 +riB2g) (WQstrh + QEEY2)

(V.16)

<Lubvi>r = (Wra+rsh) (A0 +A15) Pu+
1

+ = (/\}/21'2 + rsA) (A}/:’P‘S‘lré + PE‘EI/"’T;',) +

«

1 - N
+ = (A ?rass +1a825) (M/*Qstrt + QT /)

where

1 K=l = (Pu P)

o+ Kkp'm2™ T TP Q)
Observe then, the explicit & dependence from (V.16)to
(V.18).

Thus although the longitudinal basis preserves the
quantainvariance, it brings two aspects for discussion.
They are tha: the 2 matrix and the propagator residues
appear depending explicity on tlie gauge fixing param-
eter.

(V.18)

M. Stability

We are going to follow the algebraic renormaliza-
tion technique. The method is based on BRS tech-
nique which sombined with the Quantum Action Prin-
ciple transforms the renormalizability as a conomology
problem!!3],

From (IL.1], one gets

1/.1/2 > 1/2
- (AI/ ro81 + r3b1/22) (/\1/ Pl + PtAtré) +

(V.17)

1
2 = —Z/dqu”VZ"V

2
+ /d4:c [ba.(D+aX)+f%+562c] ,

where b, c, ¢ are respectively the Lagrangian multiplier,
the ghost, the antighost and

Z;w = dDuu + aXul/ + /Bzuu +guu5(X~X) + 7’XuXu .
(V11)

The action C is invariant under the nilpotent BRS
transformation:

sDy=~0uc, sX, =0, s¢c=0,sb=0, sc=b,
(VI1.2)
The canonical dimensions and the ghost number of
thefidds D,, X,, b, ¢, C are respectively 1,1, 2, 2,0
and 0,0,0, 1,-1.
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The Slavnov identity corresponding to the s-
invariance is

[=%+ele, (V1.5)

where I'¢ express the counterterms. It is an integrated

6%
/d“x [cau—‘s-z-+b—f] =0. (VI1.3) _ _ o _ _
6D, bc local functional, field polynomial with four dimension
The equations of motion are and zero ghost nuinber.
Quantically, one gets
% = 0.(D+oX)+&b
88 ., 65 _ §T°(D,X) _
66 = 6 c, (SE = 3 c, (VI.4) 6“-———67—— = O
For an effective quantic action, whose divergent part 55\%3 =0, 6k SFe =0 (V1.6)
islocal, one can define at each order % the following fi- bc sc
nite action Therefore I'°(D, X) has the expression
(D, X) = —-f/d‘*mD,”,D’“’ +j/d4xDu,,X‘“’ +
+/d4m [a(0.X)? + e8#X,8, X" + p(X.X)(8.X) +
vX, XPO X, + 2(X.X)(X.X)] . (VI.7)
Verifying the stability for £(D, X, b,c, ) under radiative corrections
T+ el = E(DOa XO, €0, Co, bO) @Q, /3(); Yo, dO) Po, 60760) + 0(62) s (VIS)
]
the initial parameters are redefined as
7 _(a—b)_(a+b)___j__;f_+
Do =(14¢€2Zp)D; ...;60=(1+¢€ Z¢)E, i 4a2 432 2 4
+ Y z 21(p — v) )
where Z,, Z, and Z¢ depend on otlier renormalization 4v8  4(4p? + % + 2p7) 28p3 ’
terms; Z, and Z; can be redefined freely; parameter
d can be incorporated on the field-D, redefinition, i.e. , _(a=b) (a+b) J_f + 3v +
d=1,Z;=0and Zp = £; and finally ¢ 4a? 487 2 4 4By
Z
4(4p2 T y2 T 2p7) ’
g - 3@ 3ty Tj 1. Ty
* T T8 o 8 p? 4a 4
3v z 3(p—-v) 3(a—b) 3(a+d) 35 3
- - ; Zx = = = +-=+4+=-f+
88 8(4p% + 42 + 2p7v) 8pf X 8 a? 8§ B2 izt 8f
+ 3 v + z _3p-v)
878 8(4p% + 7 +2pv) 8pf
P T(a=b) T(@+b) 75 '_7_f+ (VI.9)
P = 78 o2 T8 B 4a 8
3 v p 3(u—v) Concluding, the classical action is stable under ra-
T 8aB 84+ 1i+207) | 808 ; diative corrections, i.e. [ d* Z%, Z#*° preserves the
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square shape and therefore is renornializable. A depen-
dente on six renormalization parameters is observed.

VIl. Conclusion

The gauge method isenlarged by taking the various
connections :hat a given group contains. Three genera
aspects emerge. They are the possibility of avoiding
the Higgs particle, the fact that gauge particles are no
longer defined strictly as those which intermediate in-
teractions, aad that nature diversity can be explained
more freely (without requiring the usual mechanism
which consider multiples with a soft symmetry break-
ing). This work has served as basis for these aspects.
The spectroscopy of Eq. (I.1), that was extensively
studied here, has shown a compulsory massless particle
(associated to the photon) and other massive particles
(associated to mediator and vector mesons plus scalar
particles). Consequently, in principle, it was not nec-
essary to adcpt the spontaneous symmetry breakdown
process in order to develop a model with massive ex-
citations, bu; note that a scalar sector is embodied.
Another result from this spectroscopy was the variety
of fields suffering gauge transformationsthat were gen-
erated. This proliferation shows tliat not only inter-
mediate particles as the photon, W%, Z° and others
should be articulated by symmetry. Particles as pions,
Kaons, D - aad F - mesons, and many others are also
now candidates for being described by the gauge ap-
proach. Finally, Eq. (1.1) shows that the differences
between the particles does not only need to follow the
guide of soft breaking expressions, asin the Gell Mann-
Okubo formula. Quanta with different masses can be
obtained from a not broken Abelian group.

Other two relevant features, altliough not original,
that such exsended models develop are the distinc-
tion between fields and quanta and the presence of
non-diagonal propagators. Thefirst aspect is observed
through the transverse and longitudinal sectors contain-
ing realities qaalitatively distinct. The other, similarly
to the well known cases for chiral fermions, Weinberg-
Glashow-Sala n model, and Kobayslii-Mashawa matrix
is diowing thet the quanta can be propagated througli
non-diagonal swo point Green's functions.

Thus, afte: initial considerations about general as-

pects tliat this generalized gauge model contains, one
should now discuss the properties that it systematizes.
The emphasys in this work was the property of work-
ing with different fiels parametrizations. Tests have
been studied for guaranteeing such diverse viabilities
for physics be read off. Thusfields make a basis under
which the various quantum numbers whicli build up the
quantaare proved to be invariant, while other physical
entities transform as tensors. For instance, the beta
function becomes a tensor in flavour spacel13].

Following this field parametrizations property this
work got reasons for the so-called spectroscopical con-
sistency. SectionsIII - V complemented with Appendix
A were devoted to understanding this internal argu-
ment tliat Eq. (1.1) promotes. Therefore it was empha-
sized in the introduction that before moving for renor-
malizability and unitarity aspects, one should first con-
sider tlie spectroscopical analysis. Evidently, there are
other consequences coming from the existence of such
possibility of working with different.field basis. One
of them would be the opportunity of a strategy in the
calculation. For instance, take the question about the
necessity of a gauge fixing term in order to invert the
propagator. {G) basis at Eq.(IV.8) does not answer
it explicitly, but working on constructor basis one gets
that without including a gauge fixing term, the propa-
gator would not exist. Similarly, sometimes it is more
useful to work with a basis that avoids mixing prop-
agators between D, and X, fields. It isthe set D,
X defined by Eq. (11.35) which is more adequate for
observing the counter terms. In Section V it was also
also observed that a gauge model has preference for the
sets of fields wliich diagonalize the highest spin state
carried by the involved fields.

Then, findly, let us now observe on the possible
meanings that a generalized Abelian gauge model trig-
gers. For this, we should first understand the context
that it develops. Experimentally, a model with the free-
dom of including an arbitrary number of particles is
faded to be a disaster. The common tradition in phys-
ical theories is the prediction aspect, and so, from such
freedom of chosing the number of involved particles,
one gets the indication that Eq.(I.1) will not develop
this standard notion that a physical theory requires.
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The traditional feeling of prediction will be lost. Then
an answer of this basic inquisition must be given. We
argue that the main aspect inserted in Eq.(I.1) is not
to predict, but to organize. A model which proposes
to organize a given number of particles would mean
to describe tlieoretically their measured properties as
mass, charge, lifetime, principal decays, and so on, but
without requiring grand nnification principles. Eq.(I.1)
is only be able of organizing a context and without
the Higgs presencel18]. Thus such an extended gauge
model might be able to unify distinct spin families, but
with a systematization just embedded in the organiz-
ing context. The continency for the unification scheme
dictated by Eqg. (1.1) appears to be only to derive num-
bers which fit tlie experimental facts (cross sections,
lifetime, etc). This means that this equation can be
proposed only to solve half of the questions about par-
ticles- itsfunction consists only in describing the coex-
istence between the particles without seeking for their
roots.

A physical theory needs the prediction aspect. How-
ever Eq.(I.1) is limited by its organizative character.
Therefore, something must complement it.
point is to consider that such expected thing are the
quarks. The proposal is to consider that while quarks
are the roots from which contact the predictions are
made, Eq. (1.1) task will only be to organize tlie va-
riety of facts that such roots develop. For example,
consider the vectorial and pseudo-scalars nonet cases.
There, from the quarks model one is able to predict
the existence of particles with their wavefunctions, but
their dynamics is maintained unknown. Thus tlie mis-
sion for Eq. (1.1) pluriformity viewpoint would be to
complement the Gellman-Zweing approach by offering
a possibility of Quantum Colourless Dynamics. Thus
as a first real challenge for Eq. (I.1), one sees the in-

A view-

vestigation on the dynamics of the particles predicted
in the nonet. For this, in further work we expect to

introduce charged fields and internal global symmetries
for trying some description.
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Appendix A - A model involving two potential
fields

In order to exemplify abont the spectroscopical
properties analysed in the text we are going to take tlie
simplest case: a model involving two potential fields.
Consider that a, b, ¢, s, M2 arefree coeficients, a fixes
the gauge and ¢« is another gauge parameter which tliis
extended model allows to.

We have now to understand the presence of
tachyons, ghosts, and tlie influence of the a parame-
ter at tree level. For performing these aspects we will
initiate with {G,r} parametrization.

The non existence of ghostsin the transversal sector
is given by tlie condition of matrix Kr, defined by Eq.
(111.21), be positively defined. It gives

(5 ) 0= (2 )

Kr

0 0 1 ¢
k= (9 0)ee=(0 ) @y
- (Ay 0
I‘T‘(o ,\_>
where
1
A= {@+b)+va]
witli
O=(a—b)?+c*. (A.2)

Thus for ghosts be avoided one gets from (A.2) the fol-
lowing restrictions in the free coefficients

2

a>0 b>0, ab>%. (A.3)

A next step is to calculate the transformation ma-
trix Qr,

Vi (A.4)

/D,
(&)=,

where
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-1 __ [T Yr
w7 = (T 5)-

with
— ( —b+\/ﬁ+fz(l+a+b—\/ﬁ)
=5 7a |1 )
yr =c¢/2
o2
r = — ab— — . (A5)
4
Thus we get
Q7' E Q7 (a; b C) . (A.6)

In sector-T, physical masses can be obtained
through Eq. (II1.18). As expected, one is zero and
the other depends on the initial theory parameters of
the initial tteory:

733

= (fa)we, 49

where s12 and s22 are s-matrix elements (Eq. 111.21)
given by

22 (e
S22 _212] (@A) (A.9)

¢ Jia-A)¥Fe

The residue matrices corresponding to these poles are

Res (k?=0) = (é 8) ,

and

Res (k = m2) = (g (1)) . (A.10)
m?},l =0, (A7) The physical longitudinal propagators are
|
az? oy, M2t
<GuGiu>L = ——%ZPJ‘V + ——Sl(icTU— 29y +v%) (D + = P,
_ zr(—ozr +yr) o1
<Gu Gu2>L = —;m‘)— v
= 4 L All
<GuGue>r = :(—5—_'*_-7"_;—),“,- (A.11)
I
Then taking zp = 0, there is no dependence on the
.. . . am2 T
gauge fixing paraineter a (and neither on a). RL (k2 =0) = ( C:)-Z'T (1)) ,
The residue matrices at the physical masses of the
sector-L physical masses, 0 =0 and O = "{;, are and
|
M2 ozr(zio — 2yr +v3) zr(yr — z70)
L o2 M\ _ T(Zt Yyr + Yr T(yr T
RE (k= =—) = ( er(yr — 70) 2 . (A.12)
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Knowing the existence of a consistent spectroscopy, where
one would expect to obtain the same physica informa-
tion working with a parametrization system which di-

16
agonalizes the longitudinal sector. The transformation Ty = - —;—\/—%
matrix, €2z, whicli relates the constructor and longitu- 2% !
dinal basis is oo = Ty
u = -5
Q= (zL yI’) , with
0 =z
l
61 = (1+ as — a?)? + 407
1 9 o2 9
by = —2-(1+as—a + o 153> —}-—;(a—l-*—as—a - 63)
1 2\? 4o
b3 = (————S'f‘f—“) +-£2' . (A.13)
o [44 42
Consequently (A.13) exihibits an explicit a dependence
Q7t= Qzl(a; ;0 . (A.14)
Calculating the propagators
1 [fla,o;as)  g(o,0;as)
L, = =
< Lu Loy >r a[ k? +k2—m%
1 1 ha,0;s)
L = =
< Lpz2 Lya >r a2a(62—§%) k% — mZ
s 1
< Lﬂl L,,2 >r = —E;t-:—%'m (A15)
where
o = 2
2
¢ 4 o 1 e/ —a
. SRR ¢ SN S i SNk SOOI
9la, o;s) aby ' adab—c? [ V61 2t aa]
—QS (
h{a,o;a8) = (—ﬁ—> 1/2)[62 + 4ac] (A.16)
and
1
<Ly La>r = EP'“’
1 D
< Ll‘2 Lys>r = o+ m_zr;{;/ . (A17)

R

The corresponding residue rnatrices for 0= 0 and O = —1‘3%3 are

1 o,0;Q
R{(k2=0)=;<f( 7509) 8)



Rk =20 (
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