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Thiswork is based on the integral - equation method proposed by S. Kuhn [Phys. Fluids 27,
1321 (1984)] for solving the general linearized perturbation problem for a one dimensional,
uniform collisionless plasmawith thin sheaths, hounded by two planar electrodes. In afirst,
predominantly analytical applications this method was used to analysethe Pierce diode with
a non-trivial external circuit. Here, on the other hand, we apply the method to ion-acoustic
eigenmodes in a one- dimensional, collisionless bounded plasma consisting of non-drifting
thermal electrons and a cold ion beam propagating through them. This case is of relevance
in the context of both Q- and DP-machines. In this case, the eigenfrequencies can no longer
b= obtained as solutions of an analytically explicit equation but follows as the eigenvalues of
arather complex, homogeneous system of linear integral equations. Viaappropriate basisset
expansion of all perturbation functions involved, this system is transformed into a system of
linear algebraic equationsfor the expansion coefficients, from which the eigenfrequencies can
bz obtained as the zeros of the system determinant. Preliminary numerical results include
eigenfrequencies and related eigenmode profiles. For the specific situation considered, these
modes turn out to be unstable. We are developing now an analytical approximation to
simplify our numerical calculation in a strong cooperation with a team in Innsbruck and we
exxpect to apply it to other kind of instabilities occuring in these plasma configurations.
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where Q is the (given) time-independent, or “equilib-

earized basic equations

We consider a one-dimensional diode (Fig. 1) where
the surfaces of the (ideally conducting) electrodes are
located at X = 0 (“left-hand electrode™) and x = L
("right-hand electrode)"), and the far ends of the elec-
trodes are connected through an external circuit with
specified properties. The intervening space ( “interelec-
trode region”, "diode gap") isfilled with a collisionless
plasma consisting of n, particle species. The particle
charge and mass of species o(¢ = 1,...n,) are denoted
by e¥ and m?, respectively. Fig. 1 shows the model
geometry, with a monotonically decreasing equilibrium
distribution as an example. Each physical quantity Q
involved is decomposed in the form

Qz,v,1) = Q(v) + Qz, v,1) (1)

rium” part, and @ is the small amplitude perturbation,
which is to be calculated. For the equilibrium state
we assume a uniform plasma with two thin sheaths ad-
jacent to the electrodes. This "uniform-plasma, thin-
sheath approximation™ is of relevance, e.g., for longi-
tudinal modes in a single-ended Q-machine at “mod-
erate” values o€ the interelectrode bias, whereas for
"very high" values the sheath widths may no longer be
negligible[*5]. The small amplitude longitudinal per-
turbations in the collisionless plane diode are governed
by the following set of equations!l:

aflf 6fa ¢ =
= —— 2
oY T Tl @)

linearized Vlasov equations with o = 1, ....n,,
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0F o o,
—(—9—:6-—47r;e /_oof dv (3)
(Poisson’s equation)

16E~'(:I:,t - o [ 2 ~ ‘
y— +a§=:1e /_oovfdvzje(t), 4)

(equation of total current conservation).

L.
-/ E,t)de = 2(je(1)) , (5)

(external-circuit equation).
Fo(w>0,t) = ff(v,1)

[

b (0, )7 0, (6)
gl=1v ">
(left-hand particle boundary condition)

fo(v < 0,1) = fo (v,1)

N5 [es]
Y [ v, @
o'=1

(right-hand particle boundary condition), where
E(z,t)= E(z,t) is the electrostatic field, f7(z,v,t)=
f”(v)+f" (x, v,t) isthevelocity distribution function of
species a, f2(v) = df? /dv; j.(t) is the perturbation of
the external circuit current density (i.e., of the external
circuit current per unit electrode area), Z is the (linear)
“impedance operator” of tlie "extended external cir-
cuit" (by which we mean the "rea" external circuit plus
the two electrodes sheaths); f,”g and »~ﬂg are externally
generated (and, hence, explicitly given) perturbations,
and the "generalized reflection- coefficient functions"
b7°' (v > 0,V < 0) and 429" (v < 0,V > 0) essentially
represent the probabilities for a sheath-bound particle
of species & with velocity v' to "produce” a plasma-
bound particle of species a with velocity v. Clearly,
f7(v>0,t) and f7(v < 0,t) are the perturbations of
the distribution functions of the plasma-bound parti-
cles at the sheath-plasma boundaries, and lience may
be sloppily referred to as "injection distribution func-
tions”. Eqgs. (1) to (7) constitute a complete system of
evolution equations (including boundary conditions) for
the perturbations. In (1) they have been transformed
into (2 -+ 2n,) time Laplace transforms 7(w), E(x, w),
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ff(v > 0,w), and f7(v < 0,w),. These "Laplace-
transformed integral equations" (Egs. (37)-(40)) of Ref.
[1] aretlie basis of our analysis, and their specific form
appropriate to the physical situation considered here
(Sec.IT) will be given in Sec. III.
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Figure 1: Geonietry of the one-dimensional diode, witli one-
minimum equilibrium potential distribution.

I1. Special case: ion acoustic oscillations in the
negatively biased single cnded Q-machine

For Q-inachines under a wide range of operating
conditions, the sheath regions are iisualy far less ex-
tended than tlie plasma region, so that the uniform
plasma, thin-sheath approximation is applicable. As-
suming half-Maxwellian emission from the hot plate
(whose temperature is T), the injection distribution
functions at the left hand plasma houndary are cut-off
Maxwellians for both the electrons and the ions®l, At
the right hand houndary plane (x = L-), on the other
hand, all ions are absorbed, while all electrons are spec-
ularly reficcted due to the cold plate sheath (Fig. 1).
A quantitative analysis of this model has heen given in
Ref. [5]. In thisfirst approach to the problem, we try
to simpiif-y our model as much as possible, while still
keeping the essential physics. In particular, we approx-
iinate the electron velocity distrihution function by the
"waterbag" function given by

F) = ap[U(v +58,) - U(v — 55,0/ (25%) ,  (8)
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where n, is the equilibrium plasma density, o5, =
\/(3kT/m) sthe waterbag cutoff velocity, and the dis-
tribution by the cold beam is given by

F () = npé(v — ) , (9)

with % as the ion average velocity. For the initial per-
turbations of the distribution functions we assume,
fe(z,v)=0

and

fi(z,0) = §(z = )6(v ~ 7') , (10)
which, although the simplest possihle perturbation, is
sufficient to sxcite all eigenmodes of the system. Since
we do not allow for any externally imposed modulation
of particle injection througli the boundary planes, we
have that f;‘; = flig = ~fa = f,’:a = Q Mogt of the gener-
alized reflect on-coefficient functions introduced in Egs.
(6) and (7) vanish (bf% = bi® = bg* = bi® = bf¢ = b’ =
bt = 0), and the only non-trivial one is

be¢(v < 0,v >0) =6(vTV) . (11)

Finally, the external circuit is taken to be a short-
circuit, which corresponds to Z = 0.

ITI. Solving the eigenmode problem by means of
tlie integral-equationmethod

With the specifications of Sec. 1II, the Laplace-
transformed integral equations yield the explicit rela-
tions

.fle(v > OAvw) = ngl(v > Oaw) = f:‘(v < O,UJ) =0, (12)

and the "reduced" system of coupled integral equations:

L.
/ E(z',w)dz' =0, (13)
04

(external-circuit equation)

- ks(z, w)Je(w) + Bz, 0) F So(a, [X], w)E(['], W) + Vi, (2, v < 0, w) F (v, W) = (2, w) , (14)

(Poisson's equation)

Si(v < 0, [2"), w)E([2"], w) + fr(v,w) =0 , (15)

(right hand electron boundary condition)
from which tlie remaining unknowns functions j.(w),

L_
$:(0 < 0 B, (e, w) = 2, 12600+ 0%) [ e (iwE
JO4 v

Using approf riate basis-set expansions of all functions
and operators involved, Egs. (13-15) are then trans-
formed into a system of linear algehraic equations for
the w-depenclent expansion coefficients, whicli can be

=

E(z,w) and f¢(v,w) must be determined. Here, ks
and IES are known functions, Sy and S, are known z-
space Operators, and v§,. IS a known v-space operator.

While for tlie full details of these functions and opera-
tors the reader has to be referred to Refs. [1] and (3],
we present here, as an example, the operator Sy :

L=2

) i wyis' (16)

cw

[

written as the matrix equation

D(w) . 4(w) = k(w) , (17)
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Figure 2: First and second eigenmodes for a negatively biased single-ended Q-macliine.

with ~
Je
0 LT oF ww)=| £ (20)
Dwy=| —ks 1+8 ¥, (18) Iz
0 S ! Here, D(w) is the system matrix, i:(w) i1s the vector
of known expansion coefficients. The formal solution
to our perturbation problem is obtained by inverting
0 Eqg. (17) and performing the inverse Laplace transfor-
l?:(w) = | k, (29) mation:
0
_
~ dw —-iwt dw —jwtny—1 1. /dw -4 t-A(w) 7.
= | = = [ ——¢ . = [ —emWII 2.k 21
i) = [ Greiu) [ G D w) k) = [ G k) (21)
l
where D=1 is the inverse matrix, A(w) is the adjoint by

matrix, and D isthe determinant of D(w). Morespecif-

ically, one can show that the n-th eigenmode is defined Gn(t) = —iResa[D™ (w)- F(w)e=iY]
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= —i[A(wn)/D'(wn)] - k(wn)e™ ™" (22)

where wy, is the n-th solution of the eigenfrequency
equation
D(wy,) =0 (23)

and Res, denotes the residue at the pole w = w, and
D'(w) = dD(w)/d(w).

IV. Resulte and discussions

Fig. 2 shows the first and second eigenmodes
for a negatively biased single- ended Q-machine char-
acterized by the following parameters: electron-K+
plasma; interelectrode distance L = 30 cm; hot-plate
temperature T = 2200 K; electron emission density
ny = 101%m~3; jon emission density n}, = 10° cm=3
(with neutraization parameter o« = n}/n}, = 10-2);
plasmadensisy n, = 2.107 cm~3; plasmapotential ¢, =
—1.3V; electron waterbag cutoff velocity v?, = 2.7.10°
cm/s; electron plasma frequency w,. = 2510 s~i;
ion beam velocity vi = 2.7.10% cm/s; ion plasma fre-
quency 9.4.105 s—1; and external short-circuit. Each of
the relevant variable spaces O < x < L; 0<Vv <Yy
and vmin < v < 0) was discretized by a one dimen-
sional mesh consisting of 21 grid-points, and the basis
functions were chosen to be square functions whose lo-
calization intz=rval essentially coincides with one mesh-
width. The eigenfrequencies corresponding to the first
and second eigenmodes shown in Fig. 2 have been
found to be w; = (3.2204.10* * 1.5235.103)s~* and
we = (6.3512.10% + 6.6399.10%)s~ 1, respectively. The
positive imaginary parts mean that these modes are

unstable, so that ion acoustic turbulence should be ex-
pected in the negatively biased single-ended Q-machine
for the parameters considered here. These results are
the first concerning unstable modes in this system of
operationl®l. We are trying to simplify our numerical
calculations, and we expect to include thisin a future
work, showing how the eigenfrequencies depend on ex-
ternal circuit parameters and to study other instabili-
ties of interest in these plasmas as the Buneman insta-
bility.
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