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This work is based on the integral - equation method proposed by S. Kuhn [Phys. Fluids 27, 
1321 (1984)l for solving the general linearized perturbation problem for a one dimensional, 
uniform collisionless plasma with thin sheaths, hounded by two planar electrodes. In a first, 
predominantly analytical applications this method was used to  analyse the Pierce diode with 
a non-trivial external circuit. Here, on the other hand, we apply the method to ion-acoustic 
eigenmodes in a one- dimensional, collisionless bounded plasma consisting of non-drifting 
tliermal electrons and a cold ion beam propagating through them. This case is of relevance 
iri the context of both Q- and DP-machines. In this case, the eigenfrequencies can no longer 
b ?  obtained as solutions o€ an analytically explicit equation but follows as the eigenvalues of 
a rather complex, homogeneous system of linear integral equations. Via appropriate basis set 
expansion o€ a11 perturbation functions involved, this system is transformed into a system of 
linear algebraic equations for the expansion coefficients, from which the eigenfrequencies can 
b ?  obtained as the zeros o€ the system determinant. Preliminary numerical results include 
eigenfrequencies and related eigenmode profiles. For the specific situation considered, these 
modes turn out to  be unstable. We are developing now an analytical approximation to  
simplify our numerical calculation in a strong cooperation with a team in Innsbruck and we 
expect to  apply it to other kind of instabilities occuring in these plasma configurations. 

I. Tlie collisionless plane-diode model: lin- 

ear ized  b a s k  equa t i ons  

We consider a one-dimensional diode (Fig. 1) where 

the surfaces of the (ideally conducting) electrodes are 

located a t  x = O ("left-hand electrode") and x = L 

("right-hand electrode)'), and the far ends o€ the elec- 

trodes are connected through an external circuit with 

specified properties. The intervening space ("interelec- 

trode region", "diode gap") is filled with a collisionless 

plasma consisting of n, particle species. The particle 

charge and niass of species u(u = 1, ... n,) are denoted 

by eu and mo, respectively. Fig. 1 shows the model 

geometry, wiijh a monotonically decreasing equilibrium 

distribution as an example. Each physical quantity Q 

involved is de,composed in the form 

where Q is the (given) time-independent, or "equilib- 

rium" part, and Q is the small amplitude perturbation, 

which is to be calculated. For the equilibrium state 

we assume a uniform plasma with two thin sheaths ad- 

jacent to  the electrodes. This "uniform-plasma, thin- 

sheath approximation" is of relevance, e.g., for longi- 

tudinal modes in a single-ended Q-machine a t  "mod- 

erate" values o€ the interelectrode bias, whereas for 

"very high" values the sheath widths may no longer be 

negligible[4~5]. The small amplitude longitudinal per- 

turbations in tlie collisionless plane diode are governed 

by the following set of equations[l]: 

linearized Vlasov equations with u = 1, .... n,,. 
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(Poisson's equation) 

(equation of total current conservation). 

(external-circuit equation). 

(left-hand particle boundary condition) 

+ 2 lm 6:"' (v, v')f:l (v', l)dul , 
a l= l  

(right-hand particle boundary condition), where 

E(x,  t )  = E(x,  t )  is the electrostatic field, fU(i, v, t )  = 

p ( v ) + f "  (x, v, t )  is the velocity distribution function of 

species a, f,a(v) dfaldv; ;,(t) is the perturbation of 

the external circuit current density (i.e., of the externa1 

circuit current per unit electrode area), 2 is the (linear) 
(1. impedance operator" of tlie "extended external cir- 

cuit" (by which we mean the "real" external circuit plus 

the two electrodes sheaths); fP, and f~~ are externally 

generated (and, hence, explicitly given) perturbations, 

and the "generalized reflection- coefficient functions" 

bi'ol(v > 0, v' < 0) and bf(v < O,  v' > 0) essentially 

represent the probabilities for a sheath-bound particle 

of species a' with velocity v' to "produce" a plasma- 

bound particle of species a with velocity v. Clearly, 

t ( v  > 0 , t )  and f ~ ( v  < 0, t )  are the perturbations of 

the distribution functions of the plasma-bound parti- 

cles at the sheath-plasma boundaries, and lience may 

be sloppily referred to  as "injection distribut.ion func- 

tions". Eqs. (1) to (7) constitute a complete system of 

evolution equations (including boundary conditions) for 

the perturbations. In (1) they have been transformed 

into (2 + 271,) time Laplace transforms j(eo),  k (x ,  w), 

p ( v  > 0, w), and !:(v < O, w),. These "Laplace- 

transformed integral equations" (Eqs. (37)-(40)) of Ref. 

[I] are tlie basis of our analysis, and their specific form 

appropriate to the physical situation considered here 

(Sec.11) will be given in Sec. 111. 
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rleft-hand right- hand 
sheath sheath 

Figure 1: Geonietry of the one-dimensional diode, witli one- 
minimum equilibrium potential distribution. 

0 

3 
5 
5 

11. Special case: ion acous t ic  oscillations in t l ie  

negatively hiascd single c n d e d  Q-macliine 
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For Q-inachines under a wide range of operating 

conditions, the sheath regions are iisually far less ex- 

tended than tlie plasma region, so that the uniform 

thin-sheath approximation is applicable. As- 

suining Iialf-Maxwellian emission from the hot plate 

(whose teinperature is T), the injection distribution 

functions at the left hand plasma houndary are cut-off 

Rlaxwellians for hoth the electrons and the ionsr5i. At 

the right hand houndary plane (x = L-), on the otlier 

hand, a11 ions are absorbed, while a11 electrons are spec- 

ularly reíiected due to  the cold plate sheath (Fig. 1). 

A quantitative analysis of tliis model has heen given in 

Ref. [5]. In this first approach to tlie problem, we try 
, . 

to simplify our model as much as possible, while still 

keeping the essential physics. In particular, we approx- 

iinate the electron velocity distrihution function by the 

"waterbag" function given by 

i :  
I / j 

X 

left - hand right-hand 
electrode electrode 
(emitter) (collector 1 
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where np is the equilibrium plasma density, fie, = 
J i  s the waterbag cutoff velocity, and the dis- 

tribution by the cold beam is given by 

with ci as the ion average velocity. For the initial per- 

turbations of the distribution functions we assume, 

?(x, v) = o 
and 

E ( X , V )  = s ( x - J ) ~ ( v  -c i )  , (10) 

which, although the simplest possihle perturbatioli, is 

sufficient to 2xcite a11 eigenmodes of the system. Since 

we do not allow for any externally imposed modulation 

of particle injection througli the boundary planes, we 

have that = $ = f:g = fjg = O. Most of the gener- 

alized reflect on-coefficient functions introduced in Eqs. 

(6) and (7) ~ranish (bfi = bfe = bFZ = b? = bfe = bzz I = 
bf = O), and the only non-trivial one is 

O;~(V < O,  v' > 0) = 6(v + v') . (11) 

Finally, the exterhal circuit is taken to be a short- 
circuit, which corresponds to Z E 0. 

111. Solving the eigenmode problem by means of 

tlie integral-equation method 

With the specifications of Sec. 11, the Laplace- 

transformed integral equations yield the explicit rela- 

tions 

and the "reduced" systek of coupled integral equations: 

(external-circuit equation) 

-- k,(x, w)j.(w) + E(.,;) + &(x, [x'], w)k([xl], w) + v&(x, [v < O ] ,  w)$(v, w) = &(x, W) , (14) 

(Poisson's equation) E(x, w) and jp(v, w) must be determined. Here, k g  

and ti8 are known functions, So and S, are known 2- 

space operators, and v& is a known v-space operator. 

< 'x'17 w)É([r'l' w)+  w, = O ' (I5) While for tlie full details of these functions and opera- 

(right hand electron boundary condition) tors the reader has to be referred to Refs. [I] and [3], 

from which tlie remaining unknowns fuktions ;,(w), we present here, as an exanl~le,  the operator S: : 

L - x' 
S ~ ( V  < O ,  [xl], W)E([X'I, W)  = 2114e(ü:,)~ enp ~ ( v  + exp (iw?) ~ ( x ' ,  w)dxl . 

v,, 

Using appro~riate  basis-set expansions of a11 fuictions written as the matrix equation 

and operators involved, Eqs. (13-15) are then trans- 

formed into a system of linear algehraic equations for 

the w-depenc!ent expansion coefficients, whicli can be - 
D(w) . G(w) = k(w) , 
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Figure 2: First and second eigenmodes for a negatively biased single-ended Q-macliine. 

(20) 
V(-)= (-i5 'L$o i) (18) 

Here, V(w) is the system matrix, i (w)  is the vector 

of known expansion coefficients. The formal solution 

to our perturbation problem is obtained by inverting 

Eq. (17) and performing the inverse Laplace transfor- 

(19) mation: 

where V-' is the inverse matrix, A(w) is the adjoint by 
matrix, and D is the determinant of V(w). More specif- 

ically, one can show that the n-th eigenmode is defined 
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where w, is the n-th solution of the eigenfrequency 

equation 

D(wn) = O (23) 

and Res, denotes the residue at the pole w = w, and 

D'(w) G dD( w)/d(w). 

IV. Resulte and discussions 

Fig. 2 shows the first and second eigenmodes 

for a negatively biased single- ended Q-machine cliar- 

acterized by the following parameters: electron-I<+ 

plasma; interelectrode distance L = 30 cm; hot-plate 

temperature T = 2200 I<; electron emission density 

nzo = 1010cni-3; ion emission density n$, = 10%m-~ 

(with neutra ization parameter cr E n$,/n:o = 10F2); 

plasma densii,y np = 2 . 1 0 ~  ~ m - ~ ;  plasmapotential q$, = 

-1.3V; electron waterbag cutoff velocity v:, = 2.7.105 

cm/s; electrcm plasma frequency wp, = 2.5.10' s-l;  

ion beam velocity vi = 2.7.105 cm/s; ion plasma fre- 

quency 9.4.105 s-l;  and externa1 short-circuit. Each of 

the relevant ~rariable spaces (O 5 x 5 L; O _< v 5 v,,, 
and v,i, < u 5 0) was discretized by a one dimen- 

sional mesh consisting of 21 grid-points, and the basis 

functions were chosen to be square functions whose lo- 

calization int-rval essentially coincides with one mesh- 

width. The eigenfrequencies corresponding to the first 

and second eigenmodes shown in Fig. 2 have been 

found to be wl = (3.2204.104 + 1.5235.103i)s-I and 

w2 = (6.3512.104 + 6.6399.102i)s-1, respectively. The 

positive imae;inary parts mean that these modes are 

unstable, so that ion acoustic turbulence should be ex- 

pected in the negatively biased single-ended Q-machine 

for the parameters considered here. These results are 

the first concerning unstable modes in this system of 

~ ~ e r a t i o n [ ~ ] .  We are trying to  simplify our numerical 

calculations, and we expect to  include this in a future 

work, showing how the eigenfrequencies depend on ex- 

terna1 circuit parameters and to study other instabili- 

ties of interest in these plasmas as the Buneman insta- 

bility. 
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