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I:ight-field and a four-field kinetic theories are developed for a dense gâs of rigid disks based 
c~n Enskog's dense gas theory and on Grad's metliod of moments. The constitutive relations 
f x  the pressure tensor and for the heat flux are obtained from the transition of the eiglit-field 
theory to the four-field theory through an iteration method akin to the so called Maxwellian 
procedure. 

I. Introduction 

In 1922 :3nskog['] proposed a kinetic theory for a 
dense gas of hard spherical particles based on a gen- 
eralization of tlie Boltzmann equation. In this theory 

we consider mly two-body collisions but take into ac- 

count the difference in position of the colliding parti- 

cles. In adc.ition, the influence of triple and higher- 

order collisicns is approximatted by scaling the Boltz- 

mann collision integral with the local equilibrium ra- 

dial distribu tion function a t  contact. Comparison of 

the transport coefficients obtained by the Chapman- 

Enskog ~ o l u t i o n ~ ~ ~ ~ ]  witli those from experimental data 

shows a reasonable agreement at moderate dei~sities.[~] 

The aim of tliis paper is the determination of the 

laws of Navier-Stokes and Fourier for a moderately 

dense gas of Ilard disks using the method of moments of 

~ r a d . [ ~ > ~ ]  In this method the macroscopic state of the 

gas is charac,;erized by the fields of mass density, veloc- 

ity, pressure tensor and heat flux. The corresponding 

balance equations for tlie basic fields are obtained from 

a transfer equation derived from tlie Enskog equation. 

The moments of tlie distribution function and the pro- 
duction terms are calculated by using the distribution 

function of Grad for a two-dimensional space. The tran- 
sition from the eight-field theory to the four-field theory 

(mass density, velocity and temperature) is obtained by 

means of ai1 iterative sch'eme akin to the Maxwellian 

iteration method.L7] As a consequence the constitutive 

relations for the pressure tensor and heat flux are de- 

rived and expressions for tlie transport coefficients of 

shear viscosity, volume viscosity and thermal conduc- 

tivity are obtained. 

Cartesian notation for tensors is used and two in- 
dices between angular parentheses denote the symmet- 

ric and traceless part of a tensor. 

11. The equation of transfer 

The theory of Enskog for a moderately dense gas 

of rigid disks is based on the two-dimensional Enskog 

equation 

which is a generalization of the Boltzmann equation locities of two particles before and after the collision, 

for the single-particle distribution function f (x, c , t ) .  g = c1 - c is the relative linear velocity, a is tlie di- 

In the above equation (c, c i )  and (c', c:)  are the ve- ameter of the particle and k is the unit vector in the 
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direction of the line which joins the two particles centers 
at collision, pointing from the particle labeled 1 to the 
other. Furthermore, externa1 body forces are neglected. 

The collision term on the right-hand side of the En- 
skog Eq. (1) has the two modifications introduced by 
Enskog in the Boltzmann equation, namely: 

(i) the two distribution functions should be evalu- 

ated at different points, since the centers of the two 

particles are separated by a distance f a k at collision 

(the plus and minus sign refer to collisions that take 

(C, c1) or (C', C;) as initial velocities); 
(ii) the product of the two distribution functions 

should be multiplied by a factor X,  since the probabil- 
ity of a collision increases for a dense gas. The factor 

x may be a function of the density, i.e. of position and 

time, and should be evaluated a t  tlie point of contact 
of the two disks at collision x f 2 k. 

2 
Assuming that the conditions in the gas are suffi- 

a 
ciently smooth we expand the functions x ( x  f - k,  t ), 

2 
f (x + ak,  C:, t) and f (x  - ak, c l ,  t) in a Taylor series 

near x and neglect the third- and liigher-order terms. 
Then, Enskog's equation may be written as 

where 

In Eqs. (3)-(5) we have introduced the abbrevia- 

tions f = f ( x , c , t ) ,  f l  = f ( x , c i , t ) ,  f' = f (x ,c l , t ) ,  

fi  = f(x,  c:, t )  and x = x(x , t ) .  Jo (f f )  with x = 1 
is tlie usual collision term of the Boltzmann equation 

for a rarefied gas. JI (f f )  includes only the gradients 

of first order while JII (f f )  contains the gradients of 

second order and the products of gradients. 

The transfer equation follows through the multipli- 

cation of Eq. (2) by an arbitrary function 4 (x, c ,  t)  

and integration over a11 values of c. This equation of 

transfer can be written in a simplified form as 

In the above equation !P is the density of an arbitrary 

additive quantity; 4Q, 4: and 4:' are flux densities 

which correspond to contributions due to the flow of 

the particles (the kinetic part 4:) and the collisional 

transfer (the potential parts 4: and .4IX); and Po, PI 
and PII are the production terms. The quantities that 

appear in the transfer Eq.(6) are defined by 
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In order to get the transfer Eq. (6) we have trans- 

formed a11 giadients of x into gradients of integrals and 

the latter wrre defined as gradients of fluxes as indi- 

cated by equations (9) and (10). The introduction of 4' 
follows from standard transformations of the unprimed 

into primed velocities. Moreover, we liave introduced 

the abbreviation dI' = a (g . k) dk  dcl dc. 

111. The eight-field theory 

The macroscopic state of a dense gas of rigid disks 

can be characterized by the eight scalar fields of den- 
sity e,  ve1oci:y v i ,  kinetic pressure tensor pij and kinetic 
heat flux qi defined by 

(iii) Balance of kinetic pressure tensor: 

wliere m is the molecular mass and Ci = ci - vi is the 

peculiar velocity. 

In tliis section we are interested in a linearized the- 

ory witli first order gradients. Accordingly we disregard 

the terms 4;' and PII in the transfer Eq. (6) in order to 

get the balance equations for the basic fields (14)-(17). 

These balance equations are obtained by choosing 4 in 
Eq.(6) equal to m, mci, mCiCj and mC2Ci/2: 

(i) Balance of mass: 

(ii) Balance of linear momentum: 

apij 8 avj  - p.. 
+ p~ - + - ( ~ i j v k + ~ i j k + ~ : > k ) + ( ~ j k + ~ : k  d t  d x k  + ( p i k + p i k ) - -  d x k  ,,, 
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(iv) Balance of kinetic heat flux: 

The quantities p i j k  and pfjk are the kinetic and poten- 

tia1 part of the flux of the pressure tensor, respectively, 

while qij and q!j are the corresponding parts of the heat 

flux. The potential parts of the pressure tensor and of 

the heat flux are, respectively, P,!j and q!, while Pij, 

Ph, Qi and Q: are production terms. 

If a relationsliip can be established between the 

quantities (22)-(31) (henceforth called constitutive 

quantities) and the basic fields (14)-(17), the system of 

balance equations (18) through (21) becomes a system 

of field equations for e, vi, pij and qi. The objective of 

the next section is the determination of such relations. 

IV. Evaluation of the constitutive quantities 

The dependence of the constitutive quantities upon 

tlie basic fields is attained if we know the distribution 

function f as a function of e, v i ,  pij and qi. We assume 

that tlie distribution function may be expressed in tlie 

following form 

where 

is the two-dimensioiial Maxwell distribution function, 

T is the absolute temperature and kB is the Boltzmann 

constant. In the kinetic theory the specific interna1 en- 

ergy of the gas E is defined directly in terms of the 
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peculiar velocities by the relation 

According to the principie of equipartion of energy, the 

specific interna1 energy E of a monatomic gas consisted 

of rigid disks in a two-dimensional space is equal to 

rEuT/m, so t hat the absolute temperature is defined by 

The coeficients ai,  aij , aijk, ..., which depend on 

x and t but not on c ,  are first, second and higlier or- 

der symmetric tensor functions. The determination of 

these coeffici-nts follows from the use of the definitions 

of the basic fields (14)-(17). By neglecting tlie contri- 

bution of the traceless part of aijk and a11 higher terms 

of the expansion, we obtain after some calculations that 

ai = O,  a,, = 0, a(ij) = p ( i j ) / ~  and ai,, = 2 qi/e, where 

p(ij) = pij - (p,,/2) Sij is tlie pressure deviator, i.e., the 

traceless pari) of tlie pressure tensor. Insertion of these 

coefficients irito Eq. (32) leads to the expression 

Insertion sf the distribution function (36) into Eq. 

(23) and Eq. (25) leads after integration over a11 values 

of c to  
1 

Pi; k = 2 (qibjk + qj6ik + qkdij ) , (37) 

The evaluation of the fluxes P/j, p&k and q$ and 
of the production terms Pij, Qi, ~4 and Q! is more 

involved. By neglecting a11 nonlinear terms we get 

(43) 

rkuT 112 
Q .  2 - - - ax A (,) *i, (44) 

(45) 

,2bX ( %) Q; = - 
2 m d ~ i  ' (46) 

where b = (aa2/2rn). The quantity ~b is called the 

co-area of the particles. 

V. The linearized field equations 

We insert the calculated values of the constitutive 

quantities (37)-(46) into tlie balance Eqs. (18)-(21) to  

get a system of field equations for the basic fields (14)- 

(17) or, equivalently, for e, vi, T, p(ij) and qi. Dis- 

regarding a11 nonlinear terms in vi, p(ij), q i ,  dp/8xi, 

dT/dxi and their derivatives it follows a system of lin- 

earized field equations which reads 
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Eq. (49) and Eq. (50) represent tlie trace and the 

traceless part of Eq. (20), respectively. 

VI. The four-field theory 

We characterize now a macroscopic state of a dense 

gas of rigid disks by the four scalar fields of density c, 
velocity vi and temperature T. For tliis purpose, the 

kinetic pressure tensor pjj and the kinetic heat flux qi 

must be expressed in terms of the basic fields e,  vi and 

T .  In a linearized theory the constitutive relations for 

pij and qi are given in terms of tlie basic fields e, vi, 

T and of its gradients. Hence in the derivation of the 

balance equations for e, vi and T we must consider the 

I 

terms @:I and PII of the transfer Eq. (G), since 4:' 
liolds a gradient of the distribution function. 

The balance equations for the basic fields g, vi and 

T are obtained by choosing S, in tlie transfer Eq. (6) 

equal to m, mci and mc2/2: 

(i) Balance of mass: 

(ii) Balance of linear momentum: 

(iii) Balance of energy: 

In the above equations p;j and qf are tlie total pressure tensor and the total heat flux, respectively. They are 
defined as 

~ ~ ~ = p i j + ~ ~ ~ + ~ { {  and q $ = q i + q { + q j ,  (55) 

where 

In tlie four-field theory the constitutive quantities sic fields e, vi and T, the system of balance Eq. (52) 

are tlie total pressure tensor p:j and the total heat flux through Eq. (54) becomes a system of field equations 

qf. If we know the dependence of them on the ba- 
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for e, vi an-l T. 

Let us first evaluate the quantities p:/ and q!' wliich 

are defined Sy Eq. (56) and Eq. (57). Since we are look- 

ing for a lir earized theory with gradients of first order 

in e, vi and T, we substitute the Maxwellian distribu- 

tion function (33) into Eq. (56) to Eq. (57) to get after 

integration: 

where 

. (59) 

Since the constitutive quantities p!j and q: are 

known functions of e, T ,  p(,) and qi (see Eq. (39) 
and Eq. (40)), we need only to evaluate p( ; j )  and qi as 

functions of e, vi and T. In order to achieve this objec- 

tive, we use the Eqs. (50) and (51) and a method akin 

with the Maxwellian iteration procedure.7 For the first 

iteration step we insert the equilibrium values p( i j )  = O 

and qi = O in the left-hand side of Eq. (50) and Eq. 

(51) and get the first iterated values of p( i j )  and qi on 

the riglit-hand side, i.e., 

2 k3,T 112 

and Ao=;(,) 

are, respectively, the coefficients of shear viscosity and thermal conductivity for an ideal gas of hard disks. Hence 

the insertion of Eq. (58), Eq. (59) and Eq. (60)1,2 into Eq. (55)1,2 yields 

Eq. (62),,2 are the mathematical expressions of the 
laws of Navier-Stokes and Fourier, respectively. In these 
equations thl: pressure p and the coefficients of volume 
viscosity q, shear viscosity p and tliermal conductivity 
X are given by 

ka 
p = e -T( l+  ebx) , 

m 

1) = -- IiO (ebx),, 
X 

p = [i + ebx + (i + a) (ebx),] , 
X 

The above expressions for the pressure p and for the 
coefficients of volume viscosity 7, shear viscosity ,U and 
thermal conductivity X are the same as those obtained 
by ~ a s s [ ~ l  using tlie Chapman-Enskog procedure. 

The variation of tlie various transport coefficients 
with the co-area of the particles pb is shown graphi- 
cally in Figs. 1, 2 and 3. This is achieved by using for 

tlie factor x the following viria1 e ~ ~ a n s i o n [ ~ ]  

We note that tlie theory of Enskog predicts a uni- 

form behavior of p/po and X/Xo as a function of the 
co-area of the particles eb. Moreover, the transport co- 

efficients for a rarefied gas of hard disks are recovered, 

if put in the above equations eb equal to zero. 
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Figure 1: p/po as a function of eb.  

Figure 2: q/po as a function of ~ b .  

Figure 3:  A/& as a function of eb. 
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