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The problem of treating quark degrees of freedom in the nuclear many-body problem is 
discussed in terms of the Fock-Tani method. This method was originally developed for 
applications in atomic and molecular physics to investigate physical problems where the in- 
terna1 degrees of freedom of atoms and molecules cannot be neglected. Given a microscopic 
Hamiltonian in terms of quark degrees of freedom, it is possible to derive an effective Hamil- 
tonian in terms of nucleon and meson degrees of freedom. To explain the formalism, I use 
a simple quark model where quarks interact by means of two-body forces and the nucleons 
are described as bound states of three quarks. Perspectives for realistic applications of the 
formalism in low-energy hadronic physics are discussed. 

H. Pntroduction 

The traditional approach to the nuclear many- 

body problem consists in solving the Schrodinger equa- 

tion for structureless nucleons interacting through two- 

body potentials[l]. Since the original suggestion by 

yukawat2], the nucleon-nucleon potential has been 

thought as being due the exchange of mesons. The 

range of the potential is proportional to the inverse of 

the mass of the exchanged meson; the long-range part 

is attributed to  the pion and the short-range part is 

attributed to the omega meson. Much has been pro- 

gressed on this picture since Yukawa's suggestion, and 

meson exchange models have achieved a high degree of 

sophistication. Presently, these models provide a rea- 

sonably precise phenomenological description of the nu- 

clear force. 

However, whereas the long-range part of the inter- 

action is well established in terms of one-pion exchange, 

the short-range part has to be regulated phenomenolog- 

ically. The regularization is made by introducing form 

factors or by pure adjustment to data. On the other 

hand, since nucleons and mesons are not elementary 

particles, one might hope to circumvent this difficulty 

by invoking the quark and gluon degrees of freedom. 

In the case of bound nucleons, there is an additional 

difficulty with the meson exchange picture. The av- 

erage distance between nucleons in a large nucleus is 

known to be of the order of d - põ1'3 = 1.8 f m ,  where 

po = 0.17 fm-3 is the normal nuclear density. The 

radius of a nucleon is of the order of 2 0.8 f m. From 

this, one has that two nucleons in a nucleus have great 

probability of superposition, and, therefore, a literal at- 

tribution of an exchange of an extended meson in such 

a situation seems to be quite artificial. 
It  seems, therefore, plausible that quark and gluon 

degrees of freedom will be invoked for a consistent de- 

scription of short-range phenomena in nuclear physics. 

In this sense, it would be very desirable to have a new 

theoretical approach, where one can deal with the si- 

multaneous presence of hadronic and quark and gluon 

degrees of freedom in nuclei. In other areas of physics 

there are examples of many-body systems where the 

interna1 degrees of freedom of composite particles can- 

not be neglected. Such examples include the super- 

conductivity in metals, partially ionized plasmas, and 

atomic collisions. However, there is a fundamental dif- 

ference between the constituents of these systems and 

the quarks and gluons of hadrons: the confinement of 

color, which implies that quarks and gluons are confined 

to a region of the order of the volume of the hadron. 

Moreover, since the overall picture of a nucleus is of 
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a system of hadrons, the dynamics of the color degree 

of freedom ir nuclei is certainly limited to very short 

distance pheiiomena[3]. This means that the new ap- 

proach, whicli considers explicitely quarks and gluons, 

should devia~e minimally from, and contain in some 

limit, the trajitional one, where the nucleus is treated 

as a system cf hadrons. 

Severa1 n-ethods Lave been developed in the past 

for dealing with problems where constituents and com- 

posites are sinultaneously present. In this talk, I will 

consider a m3thod which was invented independently 

by ~ i r a r d e a u [ ~ ]  and Vorob'ev and ~homkin['I. The 

method has been continuously improving in the last 

two decades, and has been used with success by Gi- 

rardeau and c o l l a b ~ r a t o r s [ ~ ~ ~ ]  in severa1 areas of atomic 

physics. The basic idea of the method is a generaliza- 

tion of a tranijformation employed by S. ~ a n i [ "  in 1960 

to study single-particle scattering by a potential with 

a bound state. The method also has some similarities 

to  the approxhes of ~ ~ s o n [ ~ ]  to  treat the Heisenberg 

model and to the method of Bohm and ~ines["] to treat 

collective modes in nuclei. Girardeau coined the name 

Fock-Tani method for the approach. 

In the Foc c-Tani approach, one starts with the Fock 

representatior of the system, where creation and an- 

nihilation operators of elementary constituents satisfy 

canonical conimutation relations. "Ideal" composite 

creation and annihilation operators acting on an en- 

larged Fock space are introduced. The enlarged Fock 

space is a di.ect product of the original Fock space 

and an ideal state space. These ideal operators have 

the same quentum numbers as the composite parti- 

cles of the sys tem; however, by definition, they satisfy 

canonical conimutation relations. Next, a given uni- 

tary transforrnation, which transforms the composite 

operators intc the ideal operators, is introduced. The 

application of this unitary operator on the microscopic 

Hamiltonian, m d  on other operators expressed in terms 

of the elemen,ary constituent operators, gives equiva- 

lent operators which contain the ideal composite oper- 

ators. When acting on the image of the part of the 

enlarged Fock space which contains no ideal compos- 

ites, such trar sformed operators explicitly express the 

interactions 01' composites and constituents. 

In the followingsections, I discuss the Fock-Tani for- 

malism in the context of a specific model for the quark 

structure of the nucleons. Although the results derived 

are valid in the context of the model, the method can be 

extended to other quark models. The aim is to  present 

the basic formalism, and discuss its applicability to  the 

nuclear many-body problem. There will be no attempt 

t o  present numerical results of specific applications of 

the method; these will be presented elsewhere. 

In Section 11, I present the quark model employed 

to define the nucleon structure. This is the necessary 

first step for the application of the method. Section 

I11 presents the formalism of the Fock-Tani method. In 

Section IV I derive an effective nucleon-nucleon inter- 

action and discuss the many-body problem in context 

of the Fock-Tani formalism, and Section V presents the 

conclusions and perspectives. 

11. Quark  s t r u c t u r e  of the nucleons 

The starting point of the Fock-Tani method is the 

specification of the microscopic Hamiltonian, expressed 

in terms of the field operators of the fundamental con- 

stituents (quarks and gluons), from which the hadronic 

bound states are derived. In principle, one would like 

to start with the fundamental Hamiltonian (or La- 

grangian) of quantum chromodynamics (QCD). How- 

ever, the problem of the confinement of the quarks and 

gluons has yet to be solved in QCD. For this reason, 

the use of models for the study of bound states in QCD 

is a practical necessity. 

There is a variety of models designed to describe 

the low-energy properties of hadrons. In principle, the 

Fock-Tani method can be implemented in a straight- 

forward way with any quark model that treats hadrons 

as bound states of a fixed number of particles. Non- 

relativistic and relativistic potential and bag models are 

particularly suitable for the application of the method. 

In order to  explain the method, I will consider nucleons 

only; the consideration of nucleons and mesons simulta- 

neously is more involved, but can be done in a similar 

way. For simplicity, I will consider a quark model in 

which the nucleon is described as a bound-state of three 

quarks, gluon and antiquark degrees of freedom are ne- 

glected. A variety of popular models of the nucleon, 
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such as potential and bag models, are of this sort. 

The model microscopic Hamiltonian I consider is of 

the general form 

t where qp and q,, are respectively the creation and an- 

nihilation operators of quarks with quantum numbers 

p ,  where p denotes the spatial, spin-flavor, and color 

quantum numbers p = {p', a ,  c}. The quark operators 

satisfy canonical anticommutation relations, 

has hadrons and quarks present. The usual many- 

body techniques, such as the Green's function method, 

Wick's theorem, etc, apply to creation and annihilation 

operators that sa.tisfy canonical relations. The nucleon 
t operators B, and B, are not convenient dynamical 

variables to be used. The idea of the Fock-Tani method 

is to change representation, such that the operators of 

composite particles are redescribed by operators which 

satisfy canonical commutation relations. Of course, the 

complications of the composite nature of the hadrons 

will appear somewhere else in the formalism. 

h', !lu) = o ,  h ,  q t )  = 6,u . (2) 
111. The Fock-Tani transformation 

A single-nucleon state, with center-of-mass momen- 

tum P, spin projection M s  and isospin projection MT, In this section the Fock-Tani transformation is pre- 

IP, Ms, MT >, can be written as sented in the context of the nucleon model presented 

in the previous section. The discussion follows closely 
-+ 

IP,MS,MT>= Ia>= B!~o>, (3) Refs. [4], [6], where the Fock-Tani method is discussed 

t in the context of atomic physics problems. where 10> is the vacuum state (no quarks), and Ba is 

the nucleon creation operator The main features of the Fock-Tani transformation 

are: 

Plp2fi3 t t t B: = -aa (4) 
1) The transformation is performed by an unitary trans- 

1/3! ~,,lq,,iQ,,3 r 
formation U :  

where a sum over repeated indices is implied. 5#-(1lP2p3 

is the nucleon wave-function. It  is convenient to work 

with Q normalized as 1Q>* 1Q) = u-llCl>, O  -, O F ~  = U - ' O U .  

< (.YIp>= < ~ * P I P z P ~ @ ~ P ~ P ~  = 6 
(8) 

a B ap . (5) IQ > is an arbitrary state vector and O an arbitrary 

Using the quark anticommutation relations of Eq. operator, both expressed in terms of the quark op- 

(2), and the normalization condition above, one can erators q, qt of the original Fock representation. 10) 

easily show that the nucleon operators satisfy the fol- and OFT are the corresponding quantities in the new 

lowing anticommutation relations: representationl. Since U  is unitary, scalar products 
and matrix elements are preserved under the change 

of representation 
{Ba,Bp}=O,  { ~ a , ~ J } = 6 a p - ~ a p ,  ( 6 )  

A,p = 3@~Pll"P3@~l"lYJ t p 4v,Q!J3 2) If Ia > is a single-nucleon state, it is redescribed by 

- c ~ p ~ y ~ z ~ 3 5 # - ~ ~ 3  t t an ("ideal") elementary nucleon state under the trans- 
p qv3qv2q~2qr3 e (7) 

formation: 

The composite nature of the nucleons is expressed 

by the term Aap in Eq. (6). The presence of this 

term complicates enormously the probiem when one /a>= B;(o>+ ~ - l I a > =  (a) = bL10) , (10) 

'Note that in the new representation states are represented by rounded, instead of angular, bras and kets. 
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where, by delinition, ideal nucleon operators ba and b, 

satisfy canonical anticommutation relations 

The state 10) is the vacuum of both q and b degrees of 

freedom in tlie new representation: 

In addition, in the new representation the quark op- 

erators qt and q are formally independent of the b t  and 

b , 

3) A n-nucleons state Ia i , .  e ,  a, > constructed 

from mutually nonoverlapping and well-separated wave 

packets is transformed into a n-ideal-nucleons state 

/ a i ,  , a,): 

This is particularly important for nucleon-nucleon scat- 

tering proce$ses, where asymptotic states are non- 

overlapping. However, this is not the case for a n- 

nucleons state of a nucleus, where considerable overlap 

among the nllcleons is in principle possible. 

4) The transformed Hamiltonian operator can generally 

be written =i 

H P ~  is the non-interacting part; it contains the single- 

quark part cf the original Hamiltonian, and a single- 

nucleon part which describes the free propagation of 

the composite-nucleons. VFT is the interacting part, re- 

sponsible for a11 possible interactions among the com- 

posites and the quarks. It  describes only the "true" 

interaction Frocesses, the binding of the quarks into 
(0) nucleons is iricluded in HFT. 

The unitxy operator U is constructed as follows. 

Eet the physical Fock space, constructed from a11 lin- 

ear combina1,ions of the quark operators qt satisfying 

the canonica' anticommutation relations of Eq. (2), be 

denoted by F. Define an independent Hilbert space 

N, the ''ided nucleon space" (Dyson approach[g]), as 

the space constructed from a11 linear combinations of 

the ideal nucleon operators bt which satisfy the an- 

ticommutation relations of Eq. (1 1). Next, define 

the "ideal state space" as the direct product of 3 and 

N, Z = 3 x N .  The quark and ideal nucleon opera- 

tors are kinematically independent and therefore satisfy 

Eq. (13) on Z. The anticommutation relations of Eqs. 

(2,6),initially defined on 3, as well as those of Eq. ( l l ) ,  

initially defined on n/, are also valid on Z. The idea is 

now to establish an one-to-one correspondence between 

the composite states in 3 and the ideal states of a sub- 

space of Z. 

In 5, there is a subspace which is isomorphic to the 

original Fock space F, namely the space Zo consisting 

of those states IR > with no ideal nucleons, 

where Nb is the ideal nucleon total number operator 

The meaning of this is that in Zo tlhe ideal nucleons are 

"redundant modes" (Bohm and Pines approach[lO]). 

The change of representation is performed by the 

operator 
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with B' given by Eq. (4). It  is not difficult to prove[6] 

that the transformation implemented by such an U in- 

deed has the characteristics 1) to 4) discussed above. 

U acts on Z, and cannot be defined on 3. However, 

it is defined on To, which is isomorphic to 3. The image 

FFT = U-'ZO of Zo is the subspace of 1 that consists of 

a11 states IR) in the new representation related to the 

states IR> of Zo by the transformation of Eq. (8) by 

IR) = U-lIR> . (19) 

Therefore, any calculation in the original Fock space 

3 is equivalent to a calculation in the Fock-Tani space 

FFT. For any two states ]!I> and Iat> and any ob- 

servable O in .F, one has 

The great advantage of working in FFT is that 

a11 creation and annihilation operators satisfy canon- 

ical commutation relations. However, the complica- 

tion of the composite nature of the nucleons will ap- 

pear elsewhere. First of all, the transformed operators 

O F ~  = U-lOU give rise to an infinite series, which 

physically represents, in some sense, an expansion in 

the density of the system. The method will be efficient 

for practical calculations if a few terms in the series are 

sufficient for describing the physical effects of the over- 

lap of the structures. This, of course, will depend on 

each system considered, and has to be analyzed case 

by case. The other potential complication is related to 

the constraint of Eq. (16), called the "subsidiary con- 

dition". The imposition of this constraint might make 

the solution of any practical calculation as complicated 

as that dealing with the original Bt and B operators. 

However, for scattering problems, which starts with the 

proper definition of the asymptotic states, Eq. (16) is 

trivially satisfied. For bound state problems, as in the 

case of the nuclear many-body problem, some caution 

in not violating this constraint has to be exercised. 

IV. Effective nucleon-nucleon potential and the 

nuclear many-body problem 

The nucleon-nucleon scattering matrix involves the 

computation of matrix elements involving the interac- 

tion Hamiltonian between asymptotic nucleon states. 

A general two-nucleon state is of the form 

t where B, is defined in Eq. (3). Since the two nucle- 

ons have no overlap in the asymptotic region, one has 

trivially 

In order to compute the scattering matrix in the new 

representation, one has to consider the Fock-Tani trans- 

formation of the quark Hamiltonian of Eq. (1): 

This, in turn, requires the transformation of the quark cated, since it involves the consideration of multiple 

operators: commutators of F and q. A practical way to evaluate 

the multiple commutators is provided by the "equations 

u-lq,u = e-4Fq,elF (24) of motion" method. This consists in the following. For 

any operator 0, one defines 
The evaluation of this expression is very compli- 



G. Krein 

g( t )  = exp (-t F )O  exp (t F )  . (25) 

Differentiatir g the above equation with respect to 

"time" t ,  onc gets an equation of motion for 0, 

d 
-O(t) = [O(t), F] . 
dt (26) 

One has the "initial condition" 

O(0) = o ,  (27) 

the physical value of t is t = n/2, and so 

The equation of motion for the quark operator q is 

given by: 

d 3 
-qp(t) = --- 
dt J 3 i 6 p , p 3 @ ~ 1 ~ P 2 1 P 3 ~ ~ 1  (t)~:2(t)b0(t) . (29) 

Note that a r.um over repeated indices is implied. 

To solve this equation, one needs the equation for 

b, (t) : 

This equation requires the equation for B,(t): 

where A,@ is given by Eq. (7). 

Eqs. (29-31), together with their Hermitean conju- 

gates, form a set of coupled nonlinear ordinary differ- 

ential equations. Obviously, this cannot be solved in a 

closed form and an approximation method is required. 

A convenient and physically appealing way to solve the 

equations is an iteration procedure: starting from a 

"zero-order" approximation, where the overlap among 

the nucleons is neglected, one proceeds to higher order 

by collecting terms in the same degree in the bound 

state wave functions @, and @Q. One then writes for 

each operator the expansions 

The superscript i denotes the power in which @, and an expansion in powers of the density of the system. 

<Pz appear. Ibr  consistency with the anticommutation The zero-order approximation is the one where the 

relation in Eq. (6), the implicit <P, and <P: in the defi- effects of the nucleon structure are neglected. This 

nition of BL m d  E, are not c o ~ n t e d [ ~ ] .  The expansion amounts to neglecting respectively the terms A,@ and 

in powers of the bound-state wavefunction is essentially @cp2*3 on the r.h.s. of Eq. (31) and Eq. (29): 

Using the init ia1 condition Eq. (27), one finds the zero- 

order solutioris: B;(t) = B, cost - b, sint , (35) 

bQ(t) = b, cost + B, sint , (34) q?)(t) = q!.'. (36) 
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If one were to stop here, one would have the sit- 

uation where a11 effects of quark interchange were ne- 

glected. The next iteration is obtained by collecting 

terms with one wavefunction: 

Since the initial conditions were assigned to the 

zero-order terms, one has from Eq. (27) and Eq. (32) 

that 

q;)(t) = - 3 5 , , 3 ~ ~ 1 p 2 p 3 q ~ l q ~ z  [b,  sin t + B,(1 - cos t)] . 
(42) 

The second order terms introduce a slight compli- 

cation. The complication is that a t  this order the solu- 

tions have secular terms, i.e., the "time" dependence 

does not appear in terms of trigonometric functions 

only, powers of t also appear. Among other things, 

the secular terms introduce post-prior discrepancies in 

the analysis of scattering problems. This problem was 

recently solved by Girardeau and Straton[ll]. They gen- 

eralized the F operator such that the secular terms can- 

cel. The new F operator is constructed order by order. 

Here I will simply present the result for the second or- 

der operators obtained with the Girardeau-Straton ap- 

proach. The details will be presented elsewhere. The 

second order operators are given by: 

ba)(t) = -3AmBBp sint , (43) 

~ ( 2 ) ( t )  = -3AcYpbp sin t , (44) 

(')(i) = 3/26 Q * ~ ~ ~ ~ < P $ ~ ~ ~ " ~  [bLqP3bbsin2t + 2~ 'q , , b~  sint q, Pfl3 a 

-BLq,, ~Bsin't  - baq,, Bp sin t cost - !?iqP3bp sin t cos t 

+2B~q,,Bg(l - cost)] - 3 / 2 6 p ~ 3 q > ~ 1 p 2 P 3 ~ ~ 1 " 2 " 3  [bLqtZqPZqP3bljsin2t 

t t  sin t - B,~,,~,,~,, Bpsin2t - bLq~2qp,q,, Bp sin t cos t 

- ~ ~ q t , q , ~ q , , b ~  sin t cos t + 2BLqt2qP2qfi3 Bp(l  - cos t)] . (45) 

The iteration process can be systematically contin- 

ued to higher orders in a straightforward way. However, 

as one goes to higher orders, the complexity of the op- 

erators increases significantly. Since there is a system- 

atic algorithm to be followed, it is probably feasible to 

program an algebraic manipulator on a computer to 

generate the more complex structures. 

Stopping a t  the third order is already sufficient to 

discuss an effective nucleon-nucleon potential. Substi- 

I 

tuting the expressions for the U - l q , ~ ,  and the corre- 
l i  sponding ones for U- q,U, to this order (the results 

for the third order operators will be presented else- 

where) in Eq. (23), one obtains the Fock-Tani Hamilto- 

nian. Among other terms, the Fock-Tani Hamiltonian 

presents a term involving the ideal nucleon operators 

only. This term is an effective nucleon Hamiltonian, 

and has the generaI form: 



where TE i5 the single-nucleon energy, corresponding 

t o  the nucleon rest mass and the nucleon c.m. kinetic 

energy 

The term V;;?* is a sum of terms which involves ex- 

plicitly the 'iound-state wavefunctions of the nucleon. 

One immediate consequence of this is that the effective 

potential is nonlocal in space. Note that a11 baryonic 

excitations can be taken into account in the scatter- 

ing problem; although the asymptotic states are ground 

state nucleoiis, the sum over a in Eq. (18) can include 

a11 the excitictions. These excitations would contribute 

as intermediate states as in the usual approach using 

elementary liadrons. 

In the foliowing, I discuss three representative terms 

that contribiite to  VNN. One of such terms comes from 

the kinetic energy of the quarks: 

Note that the quark indices are a11 contracted; the nu- 

cleon labels contract with the nucleon operators bt  and 

b (see Eq. (4.6)). This contribution can be represented 

graphicaily, ,is shown in Fig. (1) below. 

Figure 1: Ibiagrammatical representation of Eq. (48). 

Next, I present typical terms which arise from the 

quark-quark interaction. One of such terms is of the 

form 

The diagrammatical representation of this term is pre- 

sented in Fig. (2). 

Figure 2: Diagrammatical representation of Eq. (49). 

Note that this term does not involve quark exchange 

between the two nucleons. Such a term gives no contri- 

bution to VNN when the quark-quark interaction car- 

ries color, which is the case of an one-gluon exchange. 

However, i t  is a commonfeature in severa1 quark models 

that quarks interact via colorless bosonic fields, such as 

pions and scalar solitons. For such quark interactions, 

the diagram of Fig. (2) gives a nonzero contribution. 
Note that such an interaction term corresponds t o  the 

usual nucleon-nucleon interaction described in the lan- 

guage of elementary nucleons. 

Figure 3: Diagrammatical representation of Eq. (50). 
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There are severa1 terms in Eq. (46) which involve 

an interaction between two quarks belonging to dif- 

ferent nucleons and a simultaneous quark interchange. 

Fig. (3) presents a typical graph of this sort. In terms 

of the bound-state wavefunctions, it is given by 

Other graphs similar to  the one of Fig. (3) involve dif- 

ferent quark interchanges, with different quark-quark 

interactions. 

There is an extensive literature on the study of the 

nucleon-nucleon interaction in terms of the underlying 

quark structure of the hadrons. Since the pioneering 

work of ~ i b e r m a n [ l ~ I  and ~ e ~ a r [ ' ~ ] ,  who employed re- 

spectively a quark potential and the MIT bag model, 

different approaches employing different models have 

been used for more than a decade. An important piece 

of work on the subject employs the resonating group 

method. The work of ~ ibe i ro[ '~I ,  Oka and yazaki[15], 

and Warke and shanker[161 were the first ones in this 

line. Variations on the details of resonating group 

methods, as well as the use of different quark models, 

characterize basically a11 the work on the subject in the 

last decade. 

Maltman and 1sgur[17] employed variational tech- 

niques to study the ground state properties of the 

deuteron in the context of the potential quark model. 

They obtained an excellent agreement with experi- 

ment. The variational method was also employed by 

~einstein["] to study hadronic molecules. 

A different approach to treat hadronic interactions 

in terms of quarks appeared in the last year, the 

so-called "quark Born diagram" f~rmalisrn['~]. The 

formalism is based on the assumption that (nonres- 

onant) hadron scattering is dominated by perturba- 

tive one-gluon-exchange, followed by quark interchange. 

The non-perturbative aspects of QCD enter via the 

hadron bound-state wave functions. This approach has 

achieved a reasonable accurate description of a variety 

of hadronic processes[20]. 

An interesting feature of the Fock-Tani approach is 

that it contains both the resonating group and quark 

Born diagram methods. Solving the two-nucleon scat- 

tering Schrodinger equation for the Fock-Tani Hamilto- 

nian of is equivalent to  the resonating group calculation. 

Evaluation of the scattering matrix for the effective 

nucleon Hamiltonian in Born approximation is equiv- 

alent to  the quark Born diagra.m calculation. Perhaps 

the most attractive feature of the Fock-Tani method 

is that the traditional field theoretical methods can be 

employed in a straightforward way, since a11 operators 

satisfy canonical commutation relations. 

In connection to  nuclear structure studies, applica- 

tion of the Fock-Tani approach can be very interesting. 

Once one has an effective nucleon-nucleon interaction, 

the traditional approach can be applied to  the many- 

body problem. In the following I discuss one of such 

applications. 

Suppose one takes the zero order ground-state wave- 

function as being a Fermi gas of A ideal nucleons: 

t t IA) = ba lba2 - - -b~A10) .  (51) 

The Hartree-Fock energy of the system, calculated with 

the effective nucleon Hamiltonian is given by: 

where Tg and vG~,?' are defined in Eq. (46), and kF is 

the Fermi momentum. In the case that there is no over- 

lap among the (real) nucleons in the system, the state of 

Eq. (51) transforms under U to the usual Fermi-gas of 

real nucleons, and the Hartree-Fock energy calculated 

as above is equivalent to the traditional calculation. 

Now, the HFT Hamiltonian includes a11 possible 

processes involving quarks and hadrons compatible 

with the microscopic quark Hamiltonian: in addition 

to an effective nucleon-nucleon term, there are terms 

where two nucleons collide and one or the two nucleons 

are ionized into quarks. Such terms do not contribute 

(in principle) asymptotically due to  the confinement of 

the quarks. However, they may contribute as inter- 

mediate processes, and will produce deviations from 

the zero-order Fermi-gas state of Eq. (51). In real 

nuclei, these deviations certainly are limited to  short 

distances, and will manifest themselves as short-range 

correlations. Detection of signals of such effects would 

be very interesting, since one would have the unique op- 

portunity to  study interesting low-energy QCD physics 

which is unaccessible in a two-nucleon scattering in free 

space. 



V. Conclusions and perspect ives 

The sub,ject of quark degrees of freedom in nu- 

clei is an in;eresting and fundamental problem in nu- 

clear physics. Although there are no experimental ev- 

idence of quark effects in nuclei, it is very likely that 

quarks will 5e required for a consistent description of 

the short-range part of the nucleon-nucleon interaction, 

and short-range correlations in nuclei. The Fock-Tani 

method ma) provide a convenient to01 for treating the 

nuclear many-body problem with quark degrees of free- 

dom present . 
Although the discussion of the Fock-Tani formalism 

has been explained in terms of a specific quark model, 

its applicability is not limited to the model discussed 

in this talk. The method can be extended to nucleon 

models which include a cloud of qQ pairs. The tech- 

niques developed by ~ i l b e r t [ ~ I  would be adequate for 

this purpose. Another possibility is to use the Cloudy 

Bag ~ o d e l [ ~ ' ] ,  where elementary pions are coupled to a 

three quark state. This would be a simpler calculation 

as compared to the one with a qQ cloud. 

Before I zonclude, I would like to stress some of the 

limitations cf the Fock-Tani method. The most serious 

one refers to the fact that it is applicable only to models 

where the cc~mposites are bound states of a fixed num- 

ber of particles. The extension of the method to com- 

posites desci ibed by relativistic quantum field models, 

where bountl states are composed by an infinite num- 

ber of partitles and antiparticles, has yet to be made. 
However, t h x e  is no problem in applying the method 

to models based on the Dirac equation, such as bag and 

relativistic potential models. Another limitation is that 

the method is of practical use for systems where the de- 

gree of supei.position of the composites in the medium 

is not very h gh, in the sense that the composites do not 

become completely dissolved into constituents. This is 

because the change of representation is effectuated by 

an iterative srocedure, and as the superposition of the 

composites increases, the number of iterations has to 

be increased prohibitly. The method, as presently for- 

mulated, is mlso inadequate to treat phase transitions 

problems, in~olving the coexistence of the hadronic and 

quark-gluon phases. This sort of limitation was recently 

discussed by ~ i l b e r t [ ~ ~ ] .  

Concludi~g, I think that the Fock-Tani formalism 

has the potentiality of becoming an important to01 to 

investigate quark effects in nuclear matter. In applica- 

tions in atomic and molecular physics, this formalism 

has been used with success. There is no a priori reason 

why such a formalism should not be tried in realistic 

applications of low-energy hadronic physics. 
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