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IVe investigate the occurrence of chaotic behaviour in the context of heavy ion reactions 
a t  energies close to  the Coulomb barrier. At the classical level the presence of chaos is 
kery natural as soon as a significant coupling arises between the relative motion and some 
collective degree of freedom. At the quantum level the signatures of chaotic behaviour are 
more elusive, but we are able to  find their emergent role by considering Husimi transforms 
of the S-matrix. The method is rather simple and of general applicability. 

I. Introduc tion 

In this paper we will review a recent analysis that 

we have undertaken about the relevante of chaotic scat- 

tering in heavy ion rea~tions[l-~].  Our aim is here to  

introduce thc main points and methods in a short and 

informal presrntation that might appeal to  the nuclear 

reaction specialist who does not want to  follow in full 

detail the intiicacy of the modern description of chaotic 

behaviour (se: e.g. Ref. [3] and other references quoted 

in Refs. [I-21'). 

The unde~standing of nuclear dynamics usually goes 

through a clarsical step involving some phenomenologi- 

cal degree of freedom. Thus rotations, surface vibra- 

tions, heavy ion reactions, rotations in gauge space, 

etc., provide classical images appropriate for the de- 

tailed descripiion of how nuclei behave. As soon as two 

or more such degrees of freedom are significantly cou- 

pled we expect that chaotic motion will appear, usually 

inextricably clixed with regular behaviour. Therefore, 

classical chaoic motion should be a very common oc- 

currence in nuclear physics, and should appear both 

for bound anc' scattering situations in regions of phase 

space close t o  separatrices. In the scattering of heavy 

ions the separatrix occurs as the phase space trajectory 

at the top of the Coulomb or centrifugal barriers, and 

therefore any coupling to other degrees of freedom will 

result in a breakup of this separatrix into a chaotic re- 

gion. It is then quite relevant to  investigate the effects, 

if any, that this simple realization has in our descrip- 

tion and understanding of the all-important phenomena 

that occur in the vicinity of a potential barrier. 

Our wording above has been purposefully cautíous 

because, although the presence of classical chaotic mo- 

tion is almost unavoidable, the correct description of 

nuclear scattering is quantum mechanical and the cor- 

respondence is far from trivial. In fact, it is still an open 

question how the principle of correspondence works in 

detail when the classical motion is chaotic. 

The standard theoretical description of a scatter- 

ing problem coupled to  some other degree of freedom is 

a coupled channel calculation. These have been per- 

formed with great sophistication and computational 

complexity and there is no doubt that they provide the 

best available description of experimental data. The 
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presence or absence of chaos is irrelevant to these cal- 

culations. However the interpretation that one gives to 

their results can be greatly enhanced if a good knowl- 

edge of the underlying classical motion exist. 

11. Formulation of the Problem 

We consider the coupling of the relative motion of 

two ions to an intrinsic harmonic mode, as expressed 

by an effective hamiltonian of the form 

p, a ,  n) = H(&, P) + Hint(a, H) + Koup(a, r )  . 
(1) 

Here r is the distance between the centers of mass of 

the colliding systems and a is the dimensionless variable 

that measures the amplitude of the vibrational motion. 

The variables p, II are, respectively, their conjugate mo- 

menta. Using m for the reduced mass and C and D for 

the restoring force and mass parameters associated with 

the mode we take 

The real potential U(r) represents the combined effects 

of the Coulomb interaction and of the nuclear potential 

V,(r), which we take here to be a Woods-Saxon version 

of the Christensen-Winther empirical potential of Ref. 

[4]. The parameters C and D are related to the energy 

h and deformation parameter ,L3 of the mode by 

In many instances we will use the action angle variables 

n, cp instead of II, a for the description of the intrinsic 

motion. 

The coupling term VcOuP arises from the Coulomb 

and surface-surface nuclear interactions between pro- 

jectile and target. In leading order both these contri- 

butions are proportional to the deformation amplitudes 

a . Note that in (1-4) the different ycomponents of a 

mode of multipolarity X have been combined into an 

effective "monopole" amplitude. This procedure, jus- 

tified in a coupled-channels approach because of their 

degeneracy in energy, is also appropriate for the head- 

on case we treat below. The actual multipolarity of the 

mode is taken into account in the radial dependence 

of the coulomb component of the form factor. These 

simplifications are introduced to keep the classical de- 

scription as simple as possible while keeping the scales 

and general form of the potentials appropriate for a 

quantitative study. 

111. Classical analysis 

The equations of motion derived from the hamil- 

tonian (I),  supplemented by appropriate initial condi- 

tions, define entirely the classical evolution of the sys- 

tem. Because this motion is in two degrees of freedom 

and the couplings are non linear we expect the system 

to be non-integrable and therefore to show regions of 

chaotic behaviour. These regions will develop princi- 

pally around the separatrix that occurs at the top of 

the barriers at each angular momentum. 

We first explore the uncoupled situation. In Fig. 1 

we show the potentials and phase-space trajectories for 

the relative and intrinsic variables. On the left the 

relative motion occurs in the effective ion-ion poten- 

tial. The calculation corresponds to the system 40Ca 

+ 40Ca and sets the centrifugal terms to zero (head-on 

collision). The most characteristic feature of the phase 

space trajectories (bottom) is the separatrix - shown in 

full line - which sharply divides trajectories that scat- 

ter above or below the barrier from those bound inside. 

The intrinsic motion, depicted on the right, is simply 

harmonic. Depending on the initial conditions, the to- 

tal energy Eiot is fragmented into ElOt = E,,, + E,,, 
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and both energies are conserved separately. Therefore, 

i t  is always :?ossible t o  determine if the motion is above 

or below the barrier (according to  whether E,,, is larger 

or smaller tlian VB) and this transition is sharp. 

relative rnotion intrinsic rnotion 
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Figure 1: Quditative representation of the potentials that 
determine tht: evolution of the relative motion (left) and 
intrinsic motion (right) in the absence of coupling. The 
lower frames E ~ O W  characteristic contour levels of the classi- 
cal hamiltonians in the phase space corresponding to either 
degree of free3om. Scales in this figure are arbitrary and 
thus the equipotentials for the intrinsic hamiltonian in the 
(cyII)-plane were chosen to appear as circles. The combi- 
nation of bombarding energies and excitation energy of the 
harmonic mode indicated with a full l h e  corresponds - for a 
given total entirgy Etot - to the situation where the relative 
motion explores the separatrix. 

To introdlice the effects of the coupling we consider 

the potential surface obtained by setting ali kinetic en- 

ergies in eq. 1:1) t o  zero, namely 

ZlZ2e2 t2 C 
(r ,  Q) = VN ( r )  + - + -+I-a2+~,..p(r, a )  . r 2mr2 

(6) 
One can thinl; of the coupled motion as that of a parti- 

cle of masses in and D in the directions r and a moving 

in this potential landscape. The classical motion is re- 

stricted to  thc region Ue(r, a) i Etot. 

Contours of the function Uo are shown in Fig. 2, for 

a case in which the energy of the vibrational mode is 

fw=4 MeV ar:d the deformation parameter is P = 0.05. 

The  main fe?.ture of this landscape is the potential 

pocket connected by a "valley pass" to  the asymptotic 

region (r + 00). This pocket is responsible for the 

trapping of scattering trajectories and, as we shall see, 

for the irregular nature of the motion. I t  has no par- 

ticular symmetries, and its general shape depends on 

the angular momentum and the details of the coupling 

form factor. The value of /3 sets the scale for its size. 

One such contour has been indicated with a full line; it 

corresponds to  Etot = 60 MeV, a value of the constant 

of the motion HeZo that will be used below. 

Figure 2: Contours of the potential in the ra-plane in which 
the classical motion evolves in time. The calculation is for 

the reaction 40Ca + 40Ca, and corresponds to values of the 
parameters /3 = 0.05, hw=4 MeV and partia1 wave e=0. 
The specific contour drawn with a full line corresponds to 
Etot=60 MeV. This value of the constant of the motion HL 
is the one used in the illustrations that follow in figs. 3-4, 
7-8. 

It  is now obvious what the dynamical effect of the 

coupling will be. Trajectories tha t  come in from the 

asymptotic region will have very different fates accord- 

ing to the oscillator phase with which they enter the in- 

teraction region. Very small changes in this phase can 

produce widely different results in the outgoing quanti- 

ties as soon as trajectories bounce around severa1 times 

in the pocket. The sharp separation of phase space into 

motion below or above the barrier, or inside and outside 
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the interaction region is blurred and replaced by a com- 

plex mixture of regular and irregular patterns. Without 

going into the technical definition of chaotic scattering 

(which requires an infinite amount of unstable periodic 

motions in the interaction region) we immediatel~ see 

that a dramatic change in the organization of phase 

space has occurred in the vicinity of what was the sep- 

aratrix of the uncoupled motion. We present two views 

of this structure in Fig. 3 and Fig. 4. 

E,,,(O) = 2 MeV 

i 7  

Figure 3: Final excitation energy of the harmonic mode as 
a function of the angle variable p, that specifies the initial 
phase of the intrinsic motion. The calculations are for the 
reaction 40Ca + 40Ca a t  Et,t = 60 MeV. Intrinsic motion 
parameters are p = 0.1 and L = 4 MeV. The frames are, 
from top to bottom, constructed using scattering trajecto- 
ries corresponding to EOsc(O) =2, 4 and 6 MeV. Notice that 
- as a consequence - the energy initially available to the 
relative motion increases going upwards in the sequence of 
frames. 

E = 60 MeV 
Poincare section iI=0 

r ífm) 

Figure 4: Poincaré section for the reaction 40Ca + 40Ca a t  
Etot = 60 MeV. Intrinsic motion parameters are /3 = 0.05 
and l iw = 4 MeV. The plot is in the rp-plane and cor- 
responds to cuts for II=0, IfI > O. The frame displays the 
outcome for scattering trajectories that were started asymp- 
totically wjth Eos,(0) = 2 MeV, together with intersections 
that reveal tlie structure of the phase space a t  Et,t = 60 
MeV also in a region that is unaccessible for initial condi- 
tions corresponding to scattering states. The latter identify 
bound motion of both regular and irregular character and 
were obtained by giving initial conditions inside the area. 

In Fig. 3 we show the final excitation energy of the 

harmonic mode, E,,,, as a function of the angle variable 

v,. Because of total energy conservation the selected 

quantity represents also the kinetic energy change in 

the relative motion. The calculations are always for 

the reaction 40Ca + 40Ca at EtOt = 60 MeV. Intrinsic 

motion parameters are p = 0.1 and h = 4 MeV. We 

show the distribution for three different situations, cor- 

responding to E,,,(O) = 2,4,  and 6 MeV. Note that the 

initial energy of relative motion increases as we move 

through the column from bottom to top. It  is seen that 

a transition occurs in the sequence of frames. The curve 

for Erei(0) = 54 MeV exhibits a smooth continuity be- 

tween the input of the calculation and its outcome. At 

E,,,(()) = 56 MeV, however, an area of mostly erratic 

response has developed in the interval of 9, between 

100° and 220°. By the time ETel(0) has reached 58 

MeV, disordered motion has set in most of the angular 

range. We note that these results are quite general and 
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have also been found, for instance, in connection with 

couplings to rotational degrees of freed~m[~I.  

Fig. 4 presents a different perspective. We show the 

Poincaré section (at Ií = O) of the trajectories occurring 

in the top f ~ a m e  of Fig. 3. To present a complete pic- 

ture of the section we have also added those trajectories 

that do not reach the scattering region but are bound 

inside the potential a t  the same total energy. The latter 

show the familiar pattern of perturbed integrable mo- 

tion, with a stable trajectory (the bottom of the well) 

and a chain of four stable islands clearly visible. This 

chain is surrounded by irregular trajectories that con- 

stitute a chaotic layer which extends into the scattering 

region. Within this region there are many periodic tra- 

jectories which do not show up in the plot because they 

are unstable. However, as we will discuss later, they are 

mainly responsible for the structures observed in Fig. 3. 

IV. Q u a n t u m  analysis 

The hamiltonian (1) also defines a quantum me- 

chanical problem which is routinely solved numerically 

by means of a coupled channel calculation. The intrin- 

sic motion is described in the unperturbed eigenstates 

H;,t(n) = ( n +  t)twln) = cnln) (7) 

and the total wavefunction (Q) is expanded in the form 

(..I@) = C x n ( 4  (.I.) (8) 
n 

Projection into the intrinsic states leads to the set of 

coupled-channel differential equations 

where the coiipling form factors are defined by 

To compa-e with the classical results, we solve the 

coupled-chanriel equations (9) for ! = O,  subject to the 

asymptotic (screened) boundary conditions 

lim xn,ni(r) = &,n, exp(-ikn,r) + r,,,, exp(+ik,r) , 
r- w 

(11) 
where kn = d2m(E - c,)/fi2. In this expression Ini) is 

the state in wl ich the intrinsic system is prepared to re- 

ceive the inconiing flux and therefore the index ni labels 

both the resulting wavefunctions and reflection ampli- 

tudes. While in a normal situation the target would be 

in the ground state, ni = O, we contemplate other pos- 

sibilities in order to  explore the scattering matrix in its 

full extent. A numerical solution of the coupled-channel 

problem requires the truncation of the harmonic ladder 

to a finite number of states. The size d of the space is 

chosen so as to ensure that the outermost state, (nd) ,  is 

not significantly populated. The output of such a cal- 

culation are the channel eigenfunctions ~ , , , ~ $ ( r )  and 

the S-matrix elements rnj,n,. 

Although these are the quantities familiar to the nu- 

clear reaction practitioner they are not the most suit- 

able to show explicitly the connection with the previous 

classical analysis. To establish this contact it is conve- 

nient to introduce a phase-space representation in terms 

of coherent states that displays, in a way maximally 

compatible with the uncertainty principle, the classical 

structures underlying wavefunctions and operatorJ61. 

The Husimi transform 



C. H. Dasso, M. Gallardo and M. Saraceno 

provides a positive-definite phase space distribution 

that can be directly compared with the classical scat- 

tering trajectories. Notice that  q takes the place of r in 

this representation. 

Figure 5: Phase-space representation of the coupled-channel 
mechanism for a total energy E = 62 MeV, above the bar- 
rier. The initial state of the intrinsic system corresponds to 
ni = O and the parameters used for the intrinsic mode are 
B = 0.05, h = 2.5 MeV. The figure provides an overview of 
the process at this energy, by coilecting the contours of the 
functions Fni=o,nJ for nf < 3. For the sake of comparison 
the contours are displayed in an absolute gray-scale, defined 
so as to yield ten contours for the overall maximum. 

This is shown in Fig. 5, where a classical image is 

given of how a coupled channel calculation (E = 62 

MeV, nj = 0) proceeds in phase space. The first frame 

shows the elastic channel with flux in both the incom- 

ing and outgoing channels. The other two frames show 

the inelastic channels, and how probability is gradu- 

ally picked up from the interaction region to  yield the 

outgoing flux. A region around q 7 fm is avoided 

in a11 three channels indicating the presence of reso- 

nances that  have a classical counterpart in the trajec- 

tories bound inside the potential (see Fig. 4). Taken 

together, these three frames (plus the eventual reso- 

nances) give a blurred picture of the structures present 

in Fig. 4. Clearly, not much detail can be expected 

unless the value of ti is artificially decreased so as to ex- 

plore the same classical region with an increasing num- 

ber of states. 

Figure 6: Probability of scattering in the ground state as a 
function of total energy E for different coupling strengths. 
The values of P are given in the figure and the intrinsic 
mode is defined with the same parameters as in Fig. 5. The 
dashed lines indicate the gradually-increasing range of en- 
ergies around the Coulomb barrier where fine structures in 
the excitation function appear. These result from quantiza- 
tion within the chaotic layer and the aforementioned range 
roughly grows linearly with P. 

Next we analyze the energy dependence of the r- 

matrix. For coupling to  surface vibrations, the modu- 

lation of the barrier height extends to  a range roughly 

equal to  VB f ,f3RdV/drlVB l .  This range roughly de- 

fines the extent of the region where chaotic behaviour 

is expected. This can be appreciated in Fig. 6, where 

the reflection coefficient in the entrance channel is plot- 

ted as a function of energy for severa1 increasing values 

of ,O. As one can see, the excitation functions exhibit 

sharp oscillatory structures that extend gradually more 

and more above the barrier (for this case VB 6OMeV). 

'This result is correct only in the limit of vanishing Q-values. The fbite excitation energy of the mode, hw>o, actually causes the 
interval to be asymmetricalIy distributed around v,. 
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At energies below the dotted lines we have found sharp 

resonances (not visible in the plots) that correspond to 

the quantized motion inside the pocket. They are more 

relevant for the description of the bound states of the 

compound s,ystem as they are only fed by quantum tun- 

neling. The structures in the barrier region are more 

interesting Eecause they represent long-lived states that 

quantize in i;he chaotic layer that has replaced the sep- 

aratrix. These could be thought of as molecular res- 

onances and they are the candidates for carrying the 

imprints of rhaotic rnotion. For the parameter values 

that we hav,: chosen, realistic for a light heavy-ion re- 

action, t h e x  imprints are weak and one might have as 

well overlooked them (as most people doing coupled- 

channel calculations have rightly done so in the past). 

The reason for this is that nuclear vibrations involve 

only a few phonons and thus the situation is far from 

the classical limit. If the parameters were changed by 

softening tht: mode (h 4 O ,  /? =const) the larger num- 

ber of active channels would bring more resonances in 

the chaotic region. In this regime a statistical descrip- 

tion of the resonances might be appropriate and/or cor- 

relations might show some universal behaviour. 

o eo 180 270 38 

vi 
Figure 7: FiniJ number of phonons in the harmonic mode as 
a function of the (arbitrary) initial phase cp; in the (O, E)- 
plane (points). The situations in a) and b) correspond, 
respectively, 1.0 regular and irregular regimes. The initial 
number of phonons is, in both cases, ni = 3 and h = 2.5 ; 
other relevant parameters are quoted in the figure. Superim- 
posed are con ;ours of the quantal distributions Pni (nf , v,), 
constructed ujing a s  initial condition a coherent state that 
trades a small delocalization in the quantum number n; by 
a sharper defiaition of the angle variable vi. 

t a-a' b-b' 1 

-0.7. I....'...') 
6 10 16 
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Figure 8: The top frame zooms in a high-structure region 
in the interval 280' 5 pi 5 310' shown in Fig. 7. The 
enlargement reveals the emergence of similar structures at 
a lower scale. Discontinuities in this curve are associated 
with sudden, major changes in the trajectories of relative 
and intrinsic motion, as shown in the frames below for the 
specific cases a-a', b-b' in a projection on the (07)-plane. 

To conclude this study we show that, even a t  the 1ow 

quantum numbers involved in our case, one can con- 

struct quantities that reflect quite clearly, in the fully 

quantum rnechanical calculation, the emergent chaotic 

behaviour. To this end we define a quantal counterpart 

to  the correspondence between final number of phonons 

and initial phase angle that so clearly indicated irregu- 

lar motion in Fig. 3. The construction, easily adapted 

to  other cases, is just a Husimi transform of the S- 

matrix to a coherent state representatíon r61), but now 

for the oscillator states In >. 

A simultaneous specification of nj and cpi in the ini- 

tia1 state can best be rnet within the limitations of un- 

certainty by constructing the coherent state 
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this end we have considered the coupling of the rela- - 
r 1II2 

11) = - exp -- In) , 
2 (13) tive motion to  harmonic intrinsic modes and have used Jnr 

values of parameters, potentials and form factors which 
where the complex number I is given by 

have the magnitude and radial dependence characteris- 

I(ni ,  pi)  = ~ ~ ( C O S  pj + isin pi). (14) 

An amplitude for populating the quantum number nf 

starting from the initial state (13) can then be con- 

structed through 

Contours of the probability distribution Pn,(nf ,  pi) = 

lan,(nf, pi)12 have been plotted in Fig. 7 for two situ- 

ations in the regular (a) and chaotic (b) regimes. Su- 

perimposed in the figure are the results of the classical 

calculation. Even with the coarse angular resolution 

obtained with the interferences of a few quanta, the dis- 

tribution shows a remarkable correspondence with the 

complex pattern that characterizes the fractal structure 

of the classical solutions. I t  is encouraging to find that 

the main features of the S-matrix in this representa- 

tion are indeed of a classical origin and provide a clear 

signature of the onset of chaotic behaviour. 

In Fig. 8 we study the characteristics of the motion 

underlying the structures observed in Fig. 7 around 

280'. The top part shows a blowup of the small an- 

tic of actual nuclear systems. 

We have discussed aspects of chaotic motion that 

arise in the vicinity of the coulomb and centrifugal bar- 

riers in the classical problem and explored also its quan- 

tal counterpart. An important to01 for this analysis is 

provided by the Husimi transforms of the scattering 

wavefunctions and of the S-matrix. These phase-space 

distributions establish a point of contact between the 

classical and quanta1 descriptions and display clearly 

the incipient signatures of chaotic behaviour. 

The S-matrix transforms probe the basic output 

of any coupled-channel calculation and give a sensitive 

test of the emerging chaotic behaviour, even when the 

quantum numbers involved are so small that statistical 

tests based of random fluctuations would prove useless. 

The degrees of freedom considered in this analysis were 

deliberately kept to a minimum, so as to  maintain rela- 

tive transparency in the presentation. We do hope that 

the concepts introduced here will prove useful in the 

analysis of coupled channel calculations of more com- 

plex situations. 
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