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Recent experimental results on systems where the underlying dynamics is dominated by a 
stochastic Hamiltonian are examined using the Random Matrix Theory (RMT). This theory 
is shown to be a powerful to01 in describing statistical features of quantum systems with few 
degrees of freedom, whose classical limit is chaotic, as well as for new facets of many-body 
systems at energies far above the ground state. 

I. Introduction 

In recent years, in many interesting papers, the ex- 

pression "quantum chaos" has been used to discrim- 

inate a very broad variety of phenomena in different 

branches of science, such as atomic, molecular, nuclear 

and condensed matter physics and chemistry. In this 

contribution we shall present some recent examples of 

phenomena related to chaos and fluctuations in nuclear 

physics, or with direct interest for this field. 

Since "quantum chaos" is in order, let us summa- 

rize the spirit of the present approach trying to avoid 

as much as possible a discussion based on semantics. 

As is it extensively discussed in the literature, chaos in 

Hamiltonian systems is only properly defined in clas- 

sical mechanics (see for example Ref. [I]). There, its 

manifestation is essentially related to time evolution of 

trajectories in phase space. One fascinating aspect of 

chaotic dynamics is that, even if the equations ruling 

the evolution of a system are known, under the pres- 

ente of chaos it is impossible to compute accurately a 

trajectory for an arbitrary long time. As far as quan- 

tum mechanics is concern, this is never the case. Once 

a state is prepared in an au tonornous quantum system, 

its time evolution is trivial, and can be obtained with 

arbitrary precision. This is one of the reasons why no 

real consensus about the exact meaning of "quantum 

chaos" is yet achieved. 

One current approach to "quantum chaos" is con- 

cerned with the quantum counterpart of classical 

chaotic systems with few degrees of freedom. Here re- 

search has been done developing a semiclassical formal- 

ism for these systems, which serve to study new aspects 

of the correspondence principie. Another aspect of 

these systems has its origin in 1984, when Bohigas and 

collab~rators[~] postulated a correlation between the 

statistical fluctuations of the spectrum of a quantum 

system with a classical chaotic counterpart and those 

of the Gaussian Orthogonal Ensemble (GOE). This in 

distinction to the integrable case, where the quantum 

spectrum is characterized by Poissonian fluct~ations[~]. 

In recent years many numerical studies and also few an- 

alytical worksi3] came to support this conjecture. In the 

mean time, however, some simple counter e ~ a m ~ l e s [ ~ ]  

showed that Bohigas conjecture has its limitations. The 

extent and limitations of this universal behaviour are 

currently under investigation, particularly, extensions 

to scattering as well as to driven system are still open 

questions. 

Another approach is concerned with systems with 

many degrees of freedom, where a classical counterpart 

is not defined and/or not attainable. In many cases, 

sucli as in nuclei, not even the Hamiltonian is pre- 

cisely known. Here the GOE was introduced by Wigner 
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many years agoL5] to model the lack of inf~rmation[~]. 

This statistical modelling is very successful in explain- 

ing different aspects of nuclear reactions[q, moiecular 

and atomic ~ ~ e c t r a [ ~ ]  and electronic transport in dis- 

ordered media[']. Its connection to "quantum chaos" 

is basically: (a) these ensembles can be defined by few 

intrinsic synimetries of the system to be modelled and 

by minimizi ng the inf~rmation[~]; (b)  the rnodelled sys- 

tems are toc "complex" (many coupled degrees of free- 

dom, very large density of states, etc.) for a microscopic 

description['l; (c) Bohigas conje~ture~~] .  

In what lollows both lines will be addressed. In sec- 

tions 11 and 111, RMT is used to obtain qualitative and 

quantitative understanding of nuclear physics phenom- 

ena. In sections IV and V, recent experimental results 

on systems with few degrees of freedom will be dis- 

cussed in terms of RMT. A short summary is present 

in section VI. 

11. Damptn g of muliti-phonon giant resonances 

In this wction a basic review of the philosophy of 

stochastic modelling of complex systems is presented. 

In addition, its application for the description of the 

fragmentation of highly excited collective states is dis- 

cussed. 

A generic system can be described in terms of el- 

emen ta r~  exc:itations (quasi-particles). Their energy 

spectrum a n i  effective interaction determine the ob- 

servables of the system and its response to  externa1 

perturbationii. In the mean field picture, the quasi- 

particles are stationary states with infinite lifetime. 

This is the niost convenient basis to represent the ex- 

cited states. ::n Fermi systems, such as nucIei, the basis 

states (k) an ,  shell-model-type configurations of exci- 

tons which will be called simple states. 

Any state Ia) is a (normalized, Ck = 1) su- 

perposition 

The number .V, of simple configurations Ik) contribut- 

ing significan ily to the combination (1) is the localiza- 

tion length of the state (a) in the mean field basis. The 

average weigk t of the individual simple components is 

estimiites for qualitative as well as quantitative conclu- 

sions. 

The interaction between the quasi-particles is cru- 

cial in many aspects. Its coherent part singles out spe- 

cial superpositions (1) with enhanced response to spe- 

cific operators Q which are "simple" in the sense of the 

exciton structure: they act within the given exciton 

class or between the neighboring classes. The random 

phase approximation (RPA) is an example of a micro- 

scopic theory which allows one to find such superposi- 

tions. Coherence of the state Ia) with respect to the 

operator Q means the following: let q k  be the matrix 

element of Q for a simple excitation /L), then the am- 

plitude of the excitation Ia) is xk qkCF; this sum is 

coherent if q k  and C; are correlated so that the sum 

can be estimated as N , ~ N z " ~  = N ~ ' ~ Q ,  i.e. the tran- 

sition is enhanced by factor in amplitude and Na 

in probability as compared to typical values for simple 

states. For Na » 1, such a state (a) corresponds to 

collective synchronous motion of Na elementary exci- 

tations and it will be referred to as a Giant Resonance 

(GR) although this definition covers low-lying shape vi- 

brations as well. Contrary to that, for a generic state 

(1) or an arbitrary operator Q the sum consists of a 

large number of uncorrelated terms so that the result- 

ing amplitude as a rule will be less than in the coherent 

case by factor 6. 
There are numerous processes of incoherent 

collision-like interactions. Their role grows immensely 

with tkie increasing excitation energy. As a result, sim- 

ple exciton states cease to be stationary; they have 

a finite lifetime and the corresponding energy uncer- 

tainty I'l. This process being usually referred to 

as darnping[ll] resuIts in formation of actual station- 

ary wave functions which are extremely "complicated" . 
The number N of significant components is huge (about 

106 already at the nucleon separation energy in heavy 

nuclei) and the statistical description is unavoidable. 

Using the time evolution language, one can start with a 

pure configuration that will be mixed after a short time 
with "doorway states" of the nearest exciton classes 

which evolve in the same direction. Although in the 

case of many degrees of freedom the hierarchy of exceed- - 
then ICFl2 = N;l. Similar to Refs. [9,10] we use such ingly complex excitations is in many aspects similar to 
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a heat bath and the damping process is practically ir- 

reversible, the time dependence of the initial excitation 

does not need to be exponential. The energy profile 

(linesha~e), correspondingly, is not necessarily of the 

Breit-Wigner or Lorentzian type. 

With increasing excitation energy, the decay to the 

continuum becomes more and more important. The dy- 

namics is driven by the competition between intrinsic 

mixing and emission of particles. The role of the escape 

contribution ri to the total width grows and new phe- 

nomena connected with the coupling of intrinsic states 

via comrnon decay channels[12] emerge. 

Below we consider a collective mode of the RPA 

type of relatively high excitation energy as multipole 

GR. The excitation energy is assumed to be low enough 

to neglect the escape width. This approach is reason- 

able up to temperatures of order 2 MeV in heavy nuclei. 

The collective state is embedded into a background of 

complicated states generated from the original simple 

(non-collective) configurations in the mixing process. 

The question arises: 1s it possible to draw any physi- 

cal conclusions'from the very idea of completely mixed 

states? 

Eet us consider a collective excitation at some en- 

ergy, which can be taken as an origin of the energy 

scale, interacting with the background of the compli- 

cated states Iv) with energies E,. In the stochastic limit 

the latter are completely mixed so that each of them 

contains on average the same portion of the doorway 

states appropriate for the damping. The local fluctua- 

tions and correlations of the background states are pre- 

sumably of the GOE type but their exact properties 

are not significant: we need only their average spacing 

D and the spreading width 2a or the effective number 

N = 2alD of contributing states. 

The background states are coupled to the collective 

one by the matrix elements V, scaled in the stochas- 

tic limit as V - v / f l  where v stands for the average 

matrix element of the residual interaction between the 

collective and doorway states. Generally, the matrix 

elements v and a are of the same order of magnitude 

unless there is no specific selection rules. 

The problem of a "bright" leve1 (0) interacting with 

the background {lv)) can be easily ~olved['~]. The ex- 

act solutions I f )  are 

If) = a o )  + Ccl14- 

Their energies Ef are the roots of the secular equation 

Making the following assumptions: (i) background 

energies form an equidistant infinite sequence (picket 

fence model) with the step D;  (ii) a11 squared matrix 

elements, V:, are of the same order of magnitude and 

can be substituted by their common value V2 E (V:}; 

and (iii) V2 > D ~ ,  one obtains the "standard model" 

result[13] where the strength function takes the Breit- 

Wigner shape, 

with the centroid at the unperturbed position of the 

resonance and the "standard" width 

Kowever, the standard model does not take into ac- 

count the intrinsic scale a associated with the equilibra- 

tion of the background states. This model corresponds 

to the limit of a + co which implies the relation v < a 

between the two types of matrix elements. 

Assuming the standard model and N-scaling of ma- 

trix elements, we can present the spreading width (5) 

As was discussed in[l4], it means that in the stochastic 

limit characterized by the N-scaling of generic matrix 

elements the spreading width of the collective resonance 

is expressed in terms of the residual interaction and 

does not depend on the underlying leve1 density and, 

therefore, on temperature. The same procedure for the 

resonance built, in the spirit of the Brink-Axel hypoth- 

esis, on an excited state, is equivalent, in the stochastic 

limit, to the shift of the resonance curve by the average 

energy of the intrinsic excitation with no increase of the 

damping width. The localization length N grows expo- 

nentially but the damping width is saturated because 

of the fall of the coupling matrix elements. 



Recent e~~er imen t s [ '~ ]  indicate as well saturation 

of the spreibding width of the giant dipole resonance 

(GDR) in hot nuclei. It confirms that at  temperature 

about 2 Me'V we have to deal with stochastic dynamics 

in nuclei. ('I'his regime is reached presumably even at 

lower tempcratures in heavy nuclei as follows from the 

leve1 statist ics[l6].) 

The standard model of the strength function be- 

comes invalid[l71 as far as the spreading width (5) for 

the collecti~re mode becomes comparable to the intrin- 

sic spreadirg width of complicated states. Then the 

response pattern is determined by the relationship be- 

tween the corresponding parts v and a of the residual 

interaction. 

Energy 
Figure 1: Ensemble average of the strength function for 
the single phsnon, modelled by a GOE background with 
given by Eq. :7), see text for parameters. 

In order to simulate a more realistic pattern, we in- 

troduce a nz.tural smooth cut-off of the coupling matrix 

elements asr<ociated with the intrinsic spreading width. 

This was done by the ensemble of the GOE spectra 

representing the intrinsic levels E, and by the random 

coupling ma trix elements V,. The latter were supposed 

to be Gausrian distributed with the variance decreas- 

ing with the increasing distance from the collective res- 

onance, 

= h ~ X ~ ( - E : / ~ A ~ ) .  (7) 

The width A of the distribution (7) can be related to 

our scale parameter as a = 4 W A  = 1.18A. 

The strength distribution obtained from the GOE 

ensemble of 1000 matrices N = 200 with V. = 1/S is 

shown on Fig.1 for A = 25. For comparison, the dashed 

line shows the Breit-Wigner curve for the constant ma- 

trix elements equal to %, i.e. for v = % 14. At 

these values of the parameters the "empirical" distribu- 

tion is intermediate between the Breit-Wigner function 

of the standard model and the Gaussian one given by 

the dashed line. 

Whence, the standard model is applicable in the 

case of relatively weak coupling of the collective mode 

to the incoherent background. In the strong coupling 

case the shape of the strength function gets more com- 

pact. The scale for estimating the coupling intensity 

is determined by the spreading width of the intrinsic 

states. 

Recent measurements of the excitation of double 

GDR[~"'~] indicate that the width r2 of these reso- 

nances is typically about 1.5 of the width ri of the sin- 

gle GDR. As mentioned above, this width is associated 

with the damping of the collective mode the contribu- 

tion of the escape width still being rather small. 

The problem of widths of multiphonon GR was 

discussed from the viewpoint of stochastic dynamics 

in[l71. Since the dominating excitation mechanism is 

associated with the sequential excitation of the single 

GR, and the anharmonic effects are weak, the result- 

ing strength function S2(E) of the double GR can be 

found by the convolution of the corresponding functions 

Si (E) for single resonance~[~~I,  

As well known, the convolution of Breit-Wigner (or 

Lorentzian) distributions Si with centroids e and e' and 

widths r and I" leads to the similar distribution S2 with 

the centroid e + e' and the width I' + I". It would give 

the ratio r, = rn/r1 of the widths of the n- phonon and 

single resonances equal to the number of phonons n. At 

the same time, folding (8) of the Gaussian distributions 

gives r, = 6. The latter result is of general nature 

being valid for any distribution Sl(E) with the finite 

second moment ( L ~ E ) ~ :  we expect that the widths are 

scaled in the same way as those variances and therefore 
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add in quadratures which results in r 2  = 4. Thus, the distribution very distinctly so that the resulting distri- 

wings of the strength functions due to the coupling of bution for the double phonon resonance is already close 

the collective state to the remote background states are to the Gaussian (Fig.2). 

crucial for the lineshape and the observable ratio r,. 

From the microscopic point of view, the double GR .O35 0- 
decays predominantly to the states "one phonon built 

on the intrinsic state lu)". The point is that the back- 

ground states [v) here are the same as for the decay 

of the single phonon (Brink-Axel hypothesis). Hence, 

using the standard model (5), the level density is the 

same in both cases. The only difference is the Bose fac- 

tor which makes squared matrix elements twice 

as large in the case of the decay of the double phonon 

state. As a result, the standard model predicts r, = n. 

It is confirmed by the detailed calculations using spe- 

cific models like the doorway model[l". 

The common shortcoming of a11 such arguments 

goes with the fact that the intrinsic energy scale a as- 

sociated with the spreading width of the background 

states is not taken into account properly. As we dis- 

cussed, the standard model, with the uniform coupling 

of the collective mode to a11 complicated states, implies 

the limit a -i cal or the inequality v < a between the 

two parts of the residual interaction which leads also, 

according to  Eq.(5), to r,/a ( ~ / a ) ~  < 1. The Breit- 

Wigner shape and the ratio r, = n correspond to the 

irreversible (exponential in time) independent decay of 

n phonons to this continuum. 

We have seen already that in the opposite limit 

v > a the strength covers the region increasing linearly 

with v and therefore growing as Jn with the phonon 

number. It  turns out that the deviations from the stan- 

dard model and the transition from the Breit-Wigner 

shape with r, = n to the Gaussian shape with r, = Jn 
occur already in the region v E a which seems to be ap- 

propriate for the GDR. One can say that, due to the 

finite intrinsic fragmentation width, phonons do not de- 

cay independently: they are coupled via common decay 

"channels" . 
To demonstrate the transition between two dynam- 

ical regimes leading to different predictions regarding 

the damping widths, we come back to the solution of 

the "bright level problem" for the background with the 

GOE spectrum and the coupling to the bright level with 

the natural cutoff (7). Even for the intermediate case 

of Fig.1, the folding (8) developes the properties of the 

Energy 
Figure 2: Folded double phonon strength function from the 
ensemble of Fig.1. The solid line is the Gaussian fit; the 
dashed line is the Breit Wigner curve, and the histogram 
represents the numerical simulation. 

Figure 3: Double phonon - single phonon width ratio, as a 
function of A,  points stand for numerical simulation for a 
GOE background (ensembles of 500 matrices), and dashed 
line is the exact solution for a picket fence. 

The ratio r 2  of the widths extracted from such 

simulations is shown on Fig.3 as function of A/r, = 
0.27a2/v2. The transition frorn r2 = fi a t  A E r, (or 



v w a/2) to r 2  w 2 (or v w a/4) is seen clearly. Such 

ratios presuinably correspond to a realistic physical sit- 

uation which makes it possible to get an information on 

mixing interactions from the damping widths of multi- 

phonon GR Reliable data for r, at n > 2 as well as 

systematics for r 2  for various mass numbers would help 

to  make quantitative conclusions. 

We believe that the discussed scenario is common 

for quantum many-body systems. Near the ground 

state there i3 an energy range where Landau's picture 

of weakly in1,eracting elementary excitations is valid so 

that the response of the system to an external perturba- 

tion can be cxpressed in terms of the long-lived quasi- 

particles. Beyond this range, the fragmentation of sim- 

ple modes becomes important and their damping width 

increases reaching saturation in the region of stochas- 

tic dynamics. In the same region one should expect to 

encounter the generic signatures of chaos in the local 

level statistics as well as in the statistical properties 

of wave functions and matrix elements. The saturation 

will persist uiitil the escape processes became dominant 

preventing the system from reaching the complete equi- 

Iibrium. 

111. P a r i t y  violat ion in compound  nucleus reac- 

t ions 

Compound Nucleus (CN) reactions are believed 

to be a usefiil to01 to study some fundamental pro- 

cesses in natire.  In particular, one of the most ex- 
citing recent ?xperimental proposals (TRIPLE collab- 

oration) is to study time-reversal symmetry breaking 

investigating the limits of validity of detailed balance. 

Such an experiment seems to be competitive with the 

other present set-ups to parameterize the Kobayashi- 

Mazkawa m o ~ l e l [ ~ ~ ] .  

The very hasic pedestrian motivation for this idea 

relies on the Fermi golden rule: w w 2m2p,  where 

even if one hiw a very small matrix element v (for a 

strongly suppressed process), a very large level density 

p can eventually enhance the cross-section sufficiently 

to make a hindered effect sizeable. The CN is definitely 

a good candidate for that. 

The first s;ep in this project is to understand how 

parity violation, where fewer uncertainties are involved, 

is enhanced in CN reactions. This step has a long his- 

tory and started with the observation of large parity- 

violation effects in the transmission of epithermal po- 

larized neutrons by heavy n ~ c l e i t ~ ~ ]  that has led to sys- 

tematic experimental investigations on several target 

nuclei. Most unexpectedly, the data on 232~h[231 have 

not shown randomness in sign. The observed asymme- 

try does not correspond to predictions of the statistical 

model. 

This sign correlation effect stays as a puzzle in the 

literature. Its understanding is important for the ap- 

plication of random matrix modelling, since a precise 

knowledge of the smooth behaviour of a system is nec- 

essary for the understanding of its fluctuations. And 

also: if one has problems understanding parity viola- 

tion, how can one hope to learn about time-reversal 

symmetry breaking using CN reactions? It  is nowa- 

days believed that the origin of the sign correlation is 

related to the presence of a direct reaction. However, 

although several explanations have been offered for this 

phenomenon[24~25~2"271 none of them is able to  concili- 

ate the experimental data, a "natural" direct reaction 

mechanism and reasonable matrix element values. In 

what follows the observables are shortly reviewed, and 

a direct reaction me~han i sm[~~] ,  following strictly from 

formal scattering theory without further external ele- 

ments, is discussed. 

It is customary to present the data in terms of the 

quantity 

P ( E )  = c,+ (E)  - a,- ( E )  
.$(E) + up (E) ' 

Here, upf (E) is the total pwave cross-section for neu- 

trons with helicity f transmitted by an unpolarized 

target at energy E. This quantity indicates parity vi- 

olation: We have P ( E )  = O if parity is conserved. 

Sizeable values of P are found only at neutron ener- 

gies E = Ep;  p = 1, . .., Np corresponding to the Np 
p-wave neutron resonances identified in a given exper- 

iment while IPI 5 outside these resonances. So 

far, it is not known experimentally whether a given p 

wave resonance has spin 112 or spin 3/2. Only spin 

112 resonances can mix via parity violation with si/2 

resonances; only here sizeable values for P(E,) are ex- 
pected. (The p3/2 resonances can mix with d3/2 reso- 

nances. However, penetration effects suppress this re- 

action so strongly that no observable parity violation is 

expected there). 
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Using first-order perturbation theory for vPV, 
the parity-violating weak nucleon-nucleon interaction 

Sushkov and  lambau um[^^] first predicted that parity 

violation could bring P to a few percent level. The 

prediction of Ref. [28] was experimentally confirmed 

by Alfimenkov et al. on a I3'La target[22]. This ex- 

perimental work generated severa1 more quantitative 

theoretical w ~ r k s [ ~ ~ ]  than the qualitative prediction of 

Ref. [28]. The standard e ~ ~ r e s s i o n [ ~ ~ ]  for P(E,), ob- 

tained by mixing the pll2-resonance I,u) a t  E = E, with 

the neighbouring sl/z-resonances [v) located at energies 

E , , v =  I , . - . , N s  is 

where y; (7;) are the partial-width amplitudes for neu- 

tron decay of the p1/2 (the s l p )  resonances, respec- 

tively. According to the statistical model, the quantities 

y;, y; and (,u (vPV I v) are expected to be uncorrelated 

Gaussian distributed random variables with zero mean 

value. Therefore, it was expected that the average po- 

larization asymmetry, 

would vanish for Np -+ m. But the Np = 23 pwave res- 

onances in 232Th contradict this e ~ ~ e c t a t i o n [ ~ ~ ] .  There- 

fore, the analysis of these data was r e d ~ n e [ ~ ~ I ,  with the 

following form for P(E,): 

The first term on the r.h.s. takes account of close-lying 

s-wave resonances; it is expected that this term does 

satisfy the predictions of the statistical model. The 

constant B in Eq.(12) accounts for the observed de- 

viation from the statistical model. The square-root 

factor accounts for p-wave penetration effects; it has 

the same dependence on E, as the ratio y;/yi. In 

the framework of Eq.(12), we have obviously P = 
(BIN,) zZI Jm. (It is customary in neutron 

physics to refer to the energy 1 eV, although the p- 

wave resonances of interest here typically rather have 

energies in the 10 eV region). A maximum-likelihood 

method was used to determine B, the r.m.s. value M of 

(,u IvPV I v),  and q from the data. Here, q is the frac- 

tion of pwave resonances carrying spin 1/2. On statis- 

tical grounds, one expects q = 1/3. Using random ma- 

trix modelling Bowman and collaborators obtainedLZ4] 

q = 0.44, M = 1.2 ('::i) meV and B = 8 (+?i) %. 

A careful theoretical examination of a11 intrinsic 

o n  resonance reaction mechanisms using Feshbach 

projection formalism leads to a non-negligible term 

pdir(E,) to be added to Eq.(lO). pdir(E,) can be writ- 

ten in a compact way by introducing yiPV as 

where E = E, and H is the many-body Hamiltonian. factor which is tiny a t  E' = E, and approaches unity at 

The integral in Eq.(13) is completely dominated by con- about 1 MeV. This justifies the approximation Ep O 

tributions arising from E' > E. This is because both which yields 

matrix elements in Eq.(13) carry a pwave penetration 

Eqs.(l3) and (14) demonstrate the existence of an en- by replacing the principal-value integral in Eq.(13) by 

hancement: While the on-shell contribution (defined the imaginary part of the same integral) to pd" would 



be tiny becense of penetration effects, the contribution one can assume that H is surface-peaked, which yields 

arising from E' » E in Eq.(14) is sizeable. to good results in nuclear spectroscopy. After a few 

To evaluate the integral in Eq.(14) approximately, straightforward manipulations one obtains 

It is gratifyjng to see that pdir(E,) does n o t  depend 

on y! and therefore it is independent of p (save for 

a smooth dependente on E,) showing that pdir con- 

tributes onl,v. to the constant B in Eq.(12), and not to 

the stochastic piece. 

To estimate the integral in Eq.(15) cpp(kR) can be 

taken as thc solution of the one-body scattering prob- 

lem (this approximation is possible because xC(E) is the 

antisymmet-ized product of the target nucleus wave- 

function tirr es a neutron wave function in the channel 

c) in a Woods-Saxon potential (without absorption), 

parameterized in the usual The matrix element 

(xp(E) I v ~ " I  xS(E))  can be evaluated in the one-body 

~cenario[~l] ,  using the parameterization 

where f ( r )  == ( l ~ e ( ' - ~ ) l " ) - ' ,  C? = 2s'' p'= -ihf is the 

momentum operator and the weak coupling constant E 

should be of the order of 10-~.  

Convertillg these results into the parameterization 

of Eq.(12), we obtained B = 3.0..  .1.0%, for E = 
4 x I o - ~ .  The range reflects various choices of the 

depth of Lhe Woods Saxon potential and reveals the 

presence of z. "sharp" single-particle shaper pwave res- 

onance near the t h r e s h ~ l d [ ~ ~ I .  Unfortunately these re- 

sults are not simultaneously consistent with the exper- 

iment, proposed reaction mechanisms and theoretical 

estimates foi E. 

As it was stated before, this fact raises many doubts 

over our pre~ent  knowledge of stochastic phenomena in 

nuclear systems. It is important to stress again that 

although the presented discussion does not directly ad- 

dress RMT, it is crucial to understand exactly the av- 

erage energy behavior of a system in order to extract 

and interprei, its fluctuations. 

The presmt avaliable experimental results support 

the conjectu .e that smooth and fluctuating processes 

I 

are equally important for P. If for other heavy nu- 

clei this large sign correlation is confirmed the theory 

needs badly to be improved. Understanding will be 

only achieved, once the extraction of the typical two- 

body matrix element from the fluctuating part of P and 

the one-body term from the smooth one turn to be con- 

sistent with each 0ther[~O1 and with estimates coming 

from a microscopic t h e ~ r ~ [ ~ ' ] .  

IV. Cavity exper iments  

In this section, let us focus on applications of RMT 
for systems with few degrees of freedom, illustrating it 

by recent experimental results obtained using a super- 

conducting microwave ~ a v i t ~ [ ~ ~ ] .  Two-dimensional bil- 

liards are among the most thoroughly studied models 

for classical chaos and its quantum manifestat ion~[~~I.  

The transition from integrable to non-integrable clas- 

sical behaviour can be studied by changing the shape 

of the billiard. On the quantum level, this transition 

is accompanied by a crossover from Poisson statistics 

to GOE statistics in the semiclassical region. These 

systems can be studied e~per imenta l l~ :  In sufficiently 

flat microwave resonators, Maxwell's equations reduce 

to the Schrodinger equation for the free particle, and 

the condition of classical chaos is realized by properly 

shaping the ~ a v i t ~ [ ~ ~ ] .  

The here presented results were obtained with a 

superconducting niobium cavity with Q N 105 - 107, 

which has the shape of a quarter of a Bunimovich 

stadium billiard with inner dimensions: circle radius 

r = 20 cm, straight segment a = 36 cm and height 

d = 0.8 cm, corresponding to y = a / r  = 1.8. The 
geometry of a quarter of a stadium restricts the quan- 

tum problem to a single symmetry ~ l a s s [ ~ ~ I .  The cav- 

ity has been put into one of the cryostats of the new 

superconducting Darmstadt electron linear accelerator 
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S-DAEINAC, where it was cooled down to 2K. Three 

antennas were located in small holes (3 mm diameter) 

and to keep their influence o11 tlie field distributions 

negligibly small care was taken that they did not pen- 

etrate into the cavity. Three independent transmission 

spectra were taken by using a vector network analyzer 

and different combinations of the antennas. A11 spec- 

tra were checked against each other for consistency and 

finally combined into a single spectrum. It  consists of 

1.8.10~ data points in the range from 0.75 to 18.75 GHz. 

The step widtli of the measurement was 10 kHz. The 

large signal-to-noise ratio (> 100) allows us to identify 

each resonance by taking many data points in the tails. 

This is why one is almost certain not to have missed 

any modes. Further support for this statement derives 

from the fact that the smallest observed spacing is 300 

kHz and by semiclassical analysis. By cooling the cavity 

from 300 K to  2 K a striking resolution improvement of 

about three orders of magnitude was achieved. To en- 

sure the two-dimensionality of the cavity the analysis of 

the spectra has been confined to f < 17.5 G H Z [ ~ ~ ] .  Up 

to this frequency 1060 eigenmodes were counted (com- 

pared to 898 modes a t  room temperature). It is worth 

to recall that many years were necessary to accumu- 

late such large set of resonances in compound nucleus 

reactions. 

A naive statistical analysis using the Weyl average 

level density semiclassical formula to extract (see [36]) 

the fluctuating part of the spectrum leads to strong 

deviations from the GOE prediction This interesting 

result points to the fact that we are dealing with a dy- 

namical system and have to understand its special char- 

acteristics. The universal signatures of chaos ought to 

emerge only when a11 its "pathological" features have 

been taken into account. In the case of the Bunimovich 

billiard the phase space is fully chaotic except for a 

set (of measure zero) of non-isolated periodic orbits 

that bounce between the two straight bounda r i e~ [~~] .  

These trajectories, called bouncing ball orbits, are only 

marginally unstable. In the spirit of the Gutzwiller for- 
mula, taking their contribution for the cumulative level 

density into account, one obtains: 

The inclusion of Nbb(k) in the unfolding ~ c h e m e [ ~ ~ ]  

changes the results quantitatively. For the unfolded 

spectrum the correlation between neighbouring level 

spacings is C = -0.298 f 0.030 in agreement with 

the GOE predicting C = -0.271 [36]. For the Near- 

est Neighbour spacing Distribution (NND) the effect 

of Nbb(k) is not very large (Fig.4 depicts NND with- 

out the inclusion of ~ ~ ~ ( k )  in the unfolding). For the 

A3(L) statistics the difference is striking. The pres- 

ente of marginally stable periodic orbits dramatically 

changes the rigidity of the spectrum for large values 

of L (measured in terms of the mean level spacing). 

Proper handling of these orbits, brings the spectrum 

back to the expected GOE-like behaviour of classically 

chaotic systems. Moreover, the A3(L) statistics very 

closely follows the GOE prediction up to L = 20, where 

it saturates, as predicted by ~ e r r ~ [ ~ l .  

So far only the sharp resonance spectrum of the cav- 

ity was discussed. In the present case one is allowed to 

associate the resonance energies with the eigenmodes of 

the cavity since the mean resonance spacing d is much 

smaller than the average resonance width r. The exper- 

imental data provides one, however, with more informa- 

tion. Microwave experiments measure the full S-matrix 

(matrix elements with phases[37]). These experiments, 

provided the cavities are properly shaped, are in close 

analogy to CN reactions. Thus, new experimental in- 

formation can in principle help one to illustrate and un- 

derstand in a simple system some still open questions of 

statistical scattering theory. Quantum manifestations 

of chaotic scattering are also a very interesting subject 

per se, where little semiclassical work is done. 
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Figure 4: Ne.irest Neighbour spacing Distributions (upper 
part). The histogram corresponds to the data and the 
dashed lines to the theoretical predictions. Lower part: 
As(L)-statistc of the experimental data set compared with 
theoretical p:.edictions (dashed lines). The open circles 
(squares) derive from the unfolded spectrum with (without) 
the bouncing ball orbit contribution. 

V. Quantu:m dots 

In the pmt few years technological developments 

in the field of microstructures allow one to produce 

devices in tlie nanometer range. Early conductance 

g m e a s ~ r e m ~ n t d ~ ~ ]  on micrometer long metallic de- 

vices drove attention to  many nove1 questions related 

to  quantum inechanical phase coherence over distances 

encompassin,; thousands of atoms and electronic trans- 

port theory. Surprising new physics carne from such 

experiments: although the measured average ( g )  is a 

function of t$e length of the probe L, the fluctuations 

(g2)1/2 for different L's are universal and of order unity 

in units of e 2 / h ,  provided that the electronic mean free 

path 1 is s m d e r  than the localization length (0 and 

smaller than the electron-phonon mean free path ( I + ) ,  
in other words, low temperatures are required. This 

interesting nt:w phenomenon, called Universal Conduc- 

tance Fluctuations (UCF), motivated intensive theoret- 

ical effortsl" and it  is understood in terms of random 

matrix modelling, nowadays the basic to01 to study 

electronic transport in the diffusive regime in disor- 

dered systems. Such results have a direct technologi- 

cal impact: at  a time where so much effort is put in 

miniaturizing systems, one faces a limitation at an un- 

expected long scale, where even a t  zero temperature 

sizeable intrinsic fluctuations due t o  disorder are un- 

avoidable. 

Further new e ~ ~ e r i r n e n t s [ ~ ~ I  explored the possibility 

of producing very small probes, where L < 1 and thus 

study conductance fluctuations in the ballistic regime 

- no disorder. Such GaAs/A1,Gai-,As quantum dots 

can be fabricated in any specific shape. Since the geom- 

etry of the experiment is naturally quasi 2-D, the cor- 

respondence to  classical mechanics can be easily done 

and chaotic as well as integrable dynamics are achieved 

by properly shaping the dots. In this manner one is 

able to  study the influence of the underlying classical 

dynamics on electronic transport phenomena. 

The relevante of this measurement for nuclear 

physics is given by the fact that the conductance can 

be expressed by the Landauer formula. For a two leads 

device this formula reads 

where SL?(EF) is the S-matrix element connecting the 

channel a (defined by the geometry of the lead) in the 

"entrance" lead (defined arbitrarily by the current) L 
to the channel b in the "exit" lead R. EF is the Fermi 

energy and defines the number of allowed transverse 

modes in the leads, or open channels A. In the absence 

of direct processes the conductance is determined by the 

fluctuating part of the S-matrix. In analogy with the 

Bohigas conjecture, chaotic scattering is then groperly 

modelled by assuming that the quasi-bound states, cor- 

responding to the dynamics in the dot, are G ~ ~ l i k e [ ~ ~ I .  

Due to the nature of the modelling, here there is also 

a strong relation between these data and CN reactions 

cross section fluctuations. An important difference is 

that,  based on the ergodicity hypothesis, the statistical 

treatment of the compound nucleus replaces energy av- 

erages by ensembles averages. The most difficult part of 

the referred experiments is to  produce the probes, less 

difficult but also involving is to vary the gate voltages 

in the leads and in this manner vary EF. So far the 

experiments study g as a function of the magnetic field 

i?. The ergodicity hypothesis is based on the classical 
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picture that for different B-fields electrons coming from 

the same point in phase space in the entrance lead will 

follow different paths in the dot and the chaotic dynam- 

ics guarantees different realizations of a ensemble, it is 

presently however unclear how to construct S-matrix 

ensembles as a function of B. 

From the considerations above the statistical ap- 

proach predicts that g can be expressed by a Hauser- 

Feshbach-like formula 

where T: (T:) is the transmission coefficient corre- 

sponding to the channel c in the lead L (R) and 

(nLR)-I = Cc(T? + T:). As it  is known from CN 

reactions, this formula is an approximation and correct 

only in first order in powers of DLR. This implies that 

Eq.(19) works best in cases where many channels are 

open. 

The interesting quantity here is 692 defined as - 
g2 - g2. Since Eq.(18) contains a summation over 

a11 channels L and R, a calculation of demands 

more than the knowledge of the leading term of S,L6R as 

ab~ve [~ ' ] .  Despite of the technical difficulties this prob- 

lem was solved in the context of UCF, by considering 

higlier terms[']. There, nLR is a good expansion pa- 

rameter since in a typical experimental geometry one 

has of the order of 103 open channels. For quantum 

dots this is no longer the case. The present experi- 

ments deal with one up few open channels per lead. A 

quantitative understanding of the conductance fluctu- 

ations for the stochastic theory can then be acquired 

by numerical simulation. On the other hand, ballistic 

electrons moving in a given geometry are suitable for an 

exact treatment, since one can solve an one-body scat- 

tering problem for a given potential[42]. Although this 

calculation gives very detailed information about the 

process, it is very important to  extract from it univer- 

sal and non-universal features. Moreover, one should 

not forget that the one-body scenario as well as the 

modelled boundary conditions are approximations to 

the real physical problem. One of the aims of this in- 

vestigation is to  learn some general features of quantum 

dots, even when they do not have an ideal shape, there 

is where the random matrix modelling can help. 

The results presented in this section are originated 

from a numerical simulation on a fully stochastic scat- 

terer: the resonance part of the S-matrix is constructed 

as inL4'1, each point corresponds to  an average over 10 

matrices each containing 200 poles. Here the only input 

parameter is the number of open channels A (each chan- 

nel c with T, = 1, a feasible experimental situation). 

The motivation is to have a hint how one evolves from 

the few-channel case to the regime were one can use 

results from UCF. In this regime (A » I), the Hauser- 

Feshbach formula (19) predicts g = A/2 and 7 = 112. 

Indeed, this is the observed behavior in Fig.5. It is, 

however, surprising how fast the semiclassical limit sets 

in, confirming results from detailed ca l c~ l a t i ons [~~] .  

A 
Figure 5: Averaged conductance (7) A in units of e 2 / h  
scaled by the number of open channels 0 and its variance 
(592) as a function of A .  For A » 1 asymptotic expansions 
predict 112 for both quantities. 

These results correspond to a variation in the Fermi 

energy and fixed magnetic field. Further theoretical in- 

vestigation is necessary on averaging over the B field 

and fixed EF.  Here one would like to  understand if the 

conductance-conductance fluctuations (g(B)g(B+SB)) 

can be related to Ericson fluctuations and how should 

the ergotic hypothesis for the ensemble defined for 

S(EF) be modified for S(B). Another important fea- 

ture of the quantum dot experiments is "dephasing". 

In condensed matter this effect is normally attributed 

to  electron-phonon or electron-electron scattering. In 

considering the second, the analogy to precompound 

nucleus reactions is an appealing subject t o  be explored. 

These are questions we are trying to  answer presently. 
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VI. Outlook 

In the f o ~  r given examples it was showed that many 

aspects of "~:omplexity" in many-body and one-body 

systems havc to  be modelled in terms of Random Ma- 

trix Theory, since very little can be learned from mi- 

croscopic descriptions - in the case where they can be 

performed. Gaussian ensembles are very powerful tools 

for this purpwe. However, for many specific situations 

refinements are necessary. In the case of multiple giant 

resonances one has to introduce a localization length, 

which would come naturally if one had taken banded 

m a t r i ~ e s [ ~ ~ ]  and seems also to be a better modelling of 

the nuclear ':=e. For parity non-conservation in CN 

reactions a better treatment of the smooth background 

is in order. If the magnitude of the sign correlation is 

experimentally c~nf i rmed[~~I ,  it crucial to understand 

the interplay between one-body and two-body matrix 

elements. Global hard chaos (pure hyperbolic dynam- 

ics) is as rarv in physical systems as full integrability. 

Therefore sit uations where one faces chaos in the classi- 

cal limit are in general globally non-universal. Here, one 

of the interests is to device methods to extract the uni- 

versal behavor. The semiclassical theory is one possi- 

bility, and wzs applied in the microwave cavity example. 
Finally, with the development if new field of nanostruc- 

tures very many experimental possibilities are open to 

test the validity of our concepts of stochastic modelling, 

and to the s,udy of temperature effects and quantum 

coherence. 
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