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Finite-Size-Scaling and Conforma1 Invariance are used in order to find the phase diagram 
and critical exponents of a quantum spin chain with spin S = 312. The model has a 
tetracritical point besides critical lines. The conforma1 anomaly and anomalous dimensions 
of some primary operators are calculated at the tetracritical point. 

Conforma1 invariance enable us to classify a large 

number of field theories in two dirnensi~ns[~j~] ,  however 

it is not obvious that there exist Statistical Mechanics 

models realizing such field theories. Meanwhile severals 

examples of Statistical Mechanics models described by 

such field theories are knowni3]. In particular Andrews 

et al.L4] and Husd5] introduced the RSOS model which 

gives a realization of the minimal seriesL2] with central 

charge 

However the quantum Hamiltonian associated to the 

RSOS model are rather complicated. 

Recently senL6] introduced a serie of simple spin- 

S Hamiltonians. Based in a Zamolodchikov's Landau- 

Ginzburg theory he conjectured that,  at special multi- 

critica1 points, these models also give realizations of the 

ininimal series in Eq. (1). These models are defined by 

the Hamiltonian 

where Sr, Sr and Sf are spin-S representations of 

SU(2) algebra acting on site i of an L sites chain and 

periodic boundary conditions (PBC) are imposed. The 

integer I< in Eq. (1) are related to the spin S in Eq. 

(2) by I< = 2s. The degree of the polynomial is [SI, 

the largest integer less than or equal to S. According to 

Ref.[6], such Hamiltonian present a multicritical point 

where I< + 1 phases are indistinguishable. If S = 112 

then Ii = 1 and c = 112. Then Hisl reduces to the 

Ising Hamiltonian. In the case S = 1 we have I< = 2 

and is given by 

which is a particular case of the Blume-Emery-Griffths 

m ~ d e l [ ~ I ,  having a tricritical point governed by a Con- 

formal Field Theory (CFT) with c = 7/10. 

In case S = 312 the Hamiltonian is the same as 

in Eq. (3) and a tetracritical point is expected with 

c = 4/5161. This tetracritical point is the crossing point 

where two second order lines end up in a first order 

transition line. 

In this work, by using F'inite-~ize-~calin~['l (FSS) 

and the Conforma1 Invariance (CI) predictions for finite 

~ ~ s t e m s [ ~ ~ l ~ ~ ~ ~ l ,  we studied the Harniltonian Hplal for 

S = 3/2 to test the conjectures of Ref. [6]. 

First, in order to calculate the phase diagram we 

locate the second order lines by using FSS. These lines 

can be found by extrapolating the sequence of curves 

obtained from the relation 

where L and L' are the sizes of two finite chains with 

L' = L + 1 and GL(y, a2) is the m a s  gap of the Hamil- 

tonian Hpla1 evaluated at (y, u2) for the finite chain of 

size L. 



The spectral calculations were done numerically us- 

ing the Lariczos algorithm[12] for lattices sizes up to 

L = 11. Be;rond the translation invariance the Hamil- 

tonian Hplq commutes with the parity operator 

and consequently we can separate the Hilbert space into 

disjoint secfors labelled according to the momentum 

q = %I, wi;h 1 = 0 ,1 ,2  ,..., L-  1, and parity p = fl 

eigenvalues. 

The groiind state (GS) is a zero-momentum state 

with parity +(-) for latices sizes L even (odd), and the 

first excited state is also a zero-momentum state but 

with opposi1,e parity. 

- L = 3 , L ' = 4  
rt. L = J , L ' = 6  
- L = 7 , L ' = 8  

H t h r e e  lattices crossingpoin 

Figure 1: Curves satisfying Eq. (4) for some values of L 
and, in a large scale, the region where the intersections of 
curves occur. Three lattices crossing points satisfying Eq. 
(6) and the tctracritical point P = (0.3702,-0.0661) is also 
showed. 

In Fig. 1 we show in the parameter space of y and a2 

the curves sc.tisfying Eq. (4) for some values of L. We 

also show in s large scale the region where the intersec- 

tions of these curves occur. Notice verify the qualitative 

agreement of' Fig. 1 with the phase diagram proposed 

in Ref. [6]. 

The tetracritical point P in Fig. 1,  where a confor- 

mal anomaly c = 415 is expectedL6], is obtained by the 

intersection of the two second order phase transition 

lines. Unfortunately, as we can see in Fig. 1, in the re- 

gion where these intersections occur, the second order 

lines are almost parallel, which make difficult a high 

precision determination of the finite-size estimative of 

the point P. This difficulty obviously will be reflected 

in the convergence of the numerical sequence used for 

the bulk limit (L + ca) evaluation of P. 

An alternative way[13], which give us better estima- 

tives of the tetracritical point P, is obtained by using 

the sequence of points calculated by a generalization of 

Eq. (4) according to 

where L" = L' + 1 = L + 2. This condition is sat- 

isfied at the crossing point obtained by using Eq. (4). 

These crossing points are denoted in Fig. 1 and we show 

their coordinates in Table 1. The tetracritical point is 

obtained by extrapolating the coordinates of these es- 

timators. Unfortunately, due to the small number of 

points these extrapolations are poor, specially for the 

sequence related to the coordinate y. The best estima- 

tives we get for these extrapolations are y = 0.36f  0.01 

and a2 = 0.065 3 0.002. 

Table 1 - Three lattices crossing points satisfying Eq. (6) 

and extrapolated values. 

A further analysis of Table 1 show us that these 

points obey, with a very good fitting, the following re- 

lation 

L, L', L" ( 

with squares mean deviations 3% and 8% for a2 and y, 

respectively. On the other hand in Ref. [6], based in 

a 2 

2,3,4 1 0.61867 1 -0.153 
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a pesturbation exparision of Hp12] uP to order y4, the 

point P should also lay in the curve 
5, 

An estimative of P is then obtained by equating Eqs. 

(7) and (8). Apart from spurious solutions we obtain 
' 

P = (0.3702, -0.0661), which we believe, considering 

the s ~ a l l  number of data available, to be our best esti- 

mative for this tetracritical point. 

Once the point P is calculated the next step to- 

wards the verification of the conjecture of Ref. [6] is 

the calculation of the conformal anomaly and dimen- 

sions the operators of t'he underling CFT governing the 

large physics at this point. This is'done by explÒiting 

at point P the consequences of C1 in the finite-size- 

corretions of the eigenspectra. The conformal an,omaly 

c can be obtained, for periodic chains, from the finite- 

size-corrections of the GS energy Eo(L), i. e. 

r- 

where e, is the bulk limit of the GS energy per particle. 

In Eq. (9) is the sound velocity (non-universal) and 

can be calculated from the mass gap associated to the 

first excitated state with momentum 2n/L in the sector 

with the same parity of the GS, i.e., 

Using Eqs. (9) and (10) we obtain for several points 

in the second order phase transitions lines of Fig. 1 a 

value dose to c = 1/2 (Ising). As we move in Fig. 1 

along the second-order transition line, we verify around 

the point P a clear cross-over (finite-size-effect) of our 

estimatives of the conformal anomaly, and at the point 

P we obtain: e, = -0.2512, c = 0.67 and c = 0.76. 

Clearly this is very different of the value c = 0.5 of the 

Ising line and due to numerical instability in our ex- 

trapolations, it is also compatible with the conjectured 

va~ue[~I c = 0.8. A better numerical test of the univer- 

saiity class of the point P is obtained calculating the 

anomalous dimensions of the field theory associated to 

this point. Associated to the dimension x4 of a given 

primary operator of the theory 4, with spin s4, there 

is a tower of eigenstates'with energy and momentum 

given by 

and 

Using these expressions we obtained finite-size esti- 

mators for the several dimensions associated to the 

eigenenergies of In particular the lowest gap 

(with opposite parity of the GS), gives the dimen- 

sion x4, = 0.052, and in the sector with the par- 

ity of the GS tlie lowest gap give us x4, = 0.130. 

These values are much smaller than the values along 

the second-order transitions lines (c = 0.5), which are 

x6, = 0.125 and xb, = 0.5. According to the conjec- 

ture of Ref. [6] these gaps should be compared with 

the two magnetic operators of the modular invariant 

series[l0>l41 A(5), with dimensions x4, = 1/20 = 0.05 

and x4, = 2/15 = 0.1333 .... As we can see the agree- 

ment with our results, taking into account the small 

number of lattices, is good. 

In conclusion, our results for spin 3/2 and early re- . 
sults for S = 1 are clear indications in favour of the 

conjecture of Ref. [6], In other words, the Hamiltonian 

H[sl gives us statistical mechanics models with multi- 

critica1 points governed by the modular invariance se- 

ries A(K + 2) of CFT, having central charge given by 

Eq. (1) with K = 2s .  After the completion of our cal- 

culations we became aware of a preprint[15] with results 

in agreement with our conclusions. 
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