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Tetracritical Behaviour in a Spin-3/2 Quantum Chain
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Finite-Size-Scaling and Conformal Invariance are used in order to find the phase diagram
and critical exponents of a quantum spin chain with spin S = 3/2. The model has a
tetracritical point besides critical lines. The conformal anomaly and anomalous dimensions
of some primary operators are calculated at the tetracritical point.

Conformal invariance enable us to classify a large
number of field theories in two dimensionst*2, however
it is not obvious that there exist Statistical Mechanics
models realizing such field theories. Meanwhile severals
examples of Statistical Mechanics models described by
such field theories are known!®l. In particular Andrews
et al.l and Huse!®! introduced the RSOS model which
gives a realization of the minimal series!? with central
charge

6
T(K+2)(K+3)

However the quantum Hamiltonian associated to the

c=1 K=123,.. (1

RSOS model are rather complicated.
Recently Senl®! introduced a serie of simple spin-
S Hamiltonians. Based in a Zamolodchikov's Landau-
Ginzburg theory he conjectured that, at special multi-
critical points, these modelsaso give redlizations of the
ininimal series in Eq. (1). These models are defined by
the Hamiltonian
L | [S]
H(S] =Y~ | 587 = S5pa) + 757 + D aa(S7)™
i=1 n=1
)
where S¥,S¢ and S are spin-S representations of
SU(2) algebra acting on site i of an L sites chain and
periodic boundary conditions (PBC) are imposed. The
integer K in Eq. (1) are related to the spin Sin Eq.
(2) by K = 2S. The degree of the polynomial is [9],
the largest integer lessthan or equal to S. According to
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Ref.[6], such Hamiltonian present a multicritical point
where K+ 1 phases are indistinguishable. If S= 1/2
then X = 1 and ¢ = 1/2. Then Hs; reduces to the
Ising Hamiltonian. In the case S= 1 we have K = 2
and His) isgiven by
L
Hyyy = Hisjgy = = )_[S7 57 — (1+a2)(S7)* — 7S],
i=1 3)
which is a particular case of the Blume-Emery-Griffths
modell], having a tricritical point governed by a Con-
formal Field Theory (CFT) with ¢ = 7/10.

In case S = 3/2 the Hamiltonian is the same as
in Eq. (3) and a tetracritical point is expected with
c= 4/56. Thistetracritical point is the crossing point
where two second order lines end up in a first order
transition line.

In this work, by using Finite-Size-Scaling!® (FSS)
and the Conformal Invariance (CI) predictionsfor finite
systems!®1911] we studied the Harniltonian Hiss for
S= 3/2 to test the conjectures of Ref. [6].

First, in order to calculate the phase diagram we
locate the second order lines by using FSS. These lines
can be found by extrapolating the sequence of curves
obtained from the relation

LGL(y,a2) = L'Gri(y,a2) , (4)

where L and L' are the sizes of two finite chains with
L' = L+1 and GL(v, as) is the mass gap of the Hamil-
tonian Hjs/2) evaluated at (y,as) for the finite chain of
size L.
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The spectral calculations were done numerically us-
ing the Larczos algorithm(*? for lattices sizes up to
L = 11. Beyond the translation invariance the Hamil-
tonian Hjz;;; commutes with the parity operator

=
P =131y - 7871 (5)

and consequently we can separate the Hilbert space into
disjoint sectors labelled according to the momentum
qg= 2%, with1=0,1,2,..,L -1, and parity p = %1
eigenvalues.

The groiind state (GS) is a zero-momentum state
with parity +(-) for latices sizes L even (odd), and the
first excited state is also a zero-momentum state but
with opposite parity.
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Figure 1. Curves satisfying Eq. (4) for some vaues d L
and, in alarge scae, the region where the intersections of
curves occur. Three lattices crossng points satisfying Eq.
(6) and the tetracritical point P = (0.3702,-0.0661)is a0
showed.

In Fig. 1 weshow in the parameter space of y and a;
the curves setisfying Eq. (4) for some values of L. We
also show in 2 large scale the region where the intersec-
tionsof these curvesoccur. Notice verify the qualitative
agreement of Fig. 1 with the phase diagram proposed
in Ref. [6].
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The tetracritical point Pin Fig. 1, where a confor-
mal anomaly ¢ = 4/5 is expected!®l, is obtained by the
intersection of the two second order phase transition
lines. Unfortunately, as we can see in Fig. 1, in the re-
gion where these intersections occur, the second order
lines are almost parallel, which make difficult a high
precision determination of the finite-size estimative of
the point P. This difficulty obviously will be reflected
in the convergence of the numerical sequence used for
the bulk limit (L — oo) evaluation of P.

An alternative way!'®!, which give us better estima-
tives of the tetracritical point P, is obtained by using
the sequence of points calculated by a generalization of
Eqg. (4) according to

LGL(')’; Cl2) = L/GL’(')I; (12) = L”GL" (7: Clz) » (6)

where L* = L't 1= L+ 2 This condition is sat-
isfied at the crossing point obtained by using Eq. (4).
These crossing points are denoted in Fig. 1 and we show
their coordinates in Table 1. The tetracritical point is
obtained by extrapolating the coordinates of these es-
timators. Unfortunately, due to the small number of
points these extrapolations are poor, specialy for the
sequence related to the coordinate y. The best estima-
tives we get for these extrapolationsarey = 0.36£0.01
and a; = 0.065 % 0.002.

Table 1 - Three lattices crossing points satisfying Eq. (6)
and extrapolated values.

L,L,L" ~ az
2,34 0.61867 -0.153
3,4,5 0.473 -0.10033
45,6 0.4266 -0.084526
5,6,7 0.404 -0.077047
6,7,8 0.39166 0.073026
7,8,9 0.384 -0.070553

extrap. | 0.3620.01 | -0.065+0.002

A further analysis of Table 1 show us that these
points obey, with a very good fitting, the following re-

lation
as(y) = 0.036883 — 0.23522y — 0.1159y ,  (7)

with squares mean deviations 3% and 8% for a2 and vy,
respectively. On the other hand in Ref. [6], based in
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a pesturbation exparision of Hjzs up to order 1%, the
point P should also lay in the curve

1, 25 ,
as(y) + 5’)’ +@‘Y .

(8)
An estimative of P is then obtained by equating Egs.
(7) and (8). Apart from spurious solutions we obtain
P = (0.3702, —0.0661), which we believe, considering
the small number of data available, to be our best esti-
mative for this tetracritical point.

Once the point P is calculated the next step to-
wards the verification of the conjecture of Ref. [6] is
the calculation of the conformal anomaly and dimen-
sions the operators of the underling CFT governing the
large physics at this point. Thisis'done by exploiting
at point P the consequences of CI in the finite-size-
corretions of the eigenspectra. The conformal anomaly
¢ can be obtained, for periodic chains, from the finite-
size-corrections of the GS energy Eo(L), i. e

Eo(L) we

-2 !
I —600—"6—L—§+0(L ), (9)
wheree isthebulk limit of the GSenergy per particle.
In Eq. (9) ¢ is the sound velocity (non-universal) and
can be calculated from the mass gap associated to the
first excitated state with momentum 2=/ L in the sector

with the same parity of the GS, i.e.,
L L—oo
(= 5(Bo(l) = Ero) =%¢. (10)

Using Egs. (9) and (10) we obtain for several points
in the second order phase transitions lines of Fig. 1a
value close to c = 1/2 (Ising). As we movein Fig. 1
along the second-order transition line, we verify around
the point P a clear cross-over (finite-size-effect) of our
estimatives of the conformal anomaly, and at the point
P we obtain: € = —0.2512, ¢ = 0.67 and ¢ = 0.76.
Clearly thisis very different of the value ¢ = 0.5 of the
Ising line and due to numerical instability in our ex-
trapolations, it is a'so compatible with the conjectured
valuel®! ¢ = 0.8. A better numerical test of the univer-
sality class of the point P is obtained calculating the
anomal ous dimensions of the field theory associated to
this point. Associated to the dimension z4 of a given
primary operator of the theory ¢, with spin s4, there
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is a tower of eigenstateswith energy and momentum
given by
_ 2n( ’ ~1
Em,m’(Ii)‘_EO(L) = —L—(x¢+m+m )+O(L N ) s (11)
and

.Pm,m/(L) = —2E7£(s¢+m+m’) ;mem' =0,1,2,... (12)

Using these expressions we obtained finite-size esti-
mators for the several dimensions associated to the
eigenenergies of Hiz/z. In particular the lowest gap
(with opposite parity of the GS), gives the dimen-
sion z4, = 0.052, and in the sector with the par-
ity of the GS tlie lowest gap give us zg4, = 0.130.
These values are much smaller than the values along
the second-order transitions lines (c = 0.5), which are
zg, = 0125 and z4, = 0.5. According to the conjec-
ture of Ref. [6] these gaps should be compared with
the two magnetic operators of the modular invariant
seriesl!®14 A(5), with dimensions z4, = 1/20 = 0.05
and x4, = 2/15 = 0.1333.... As we can see the agree-
ment with our results, taking into account the small
number of lattices, is good.

In conclusion, our results for spin 3/2 and early re- .
sults for S = 1 are clear indications in favour of the
conjecture of Ref. [6], In other words, the Hamiltonian
Hsy gives us statistical mechanics models with multi-
critical points governed by the modular invariance se-
ries A(K + 2) of CFT, having central charge given by
Eqg. (1) with K = 2S. After the completion of our cal-
culations we became aware of a preprint!*®! with results
in agreement with our conclusions.
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