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- 
wliere 2 is t he spectral d imen~ion[~]  

During 1 hermal oxidation of silicon t,wo basic pro- 

cesses occur: (a) the cheinical reaction at the Si/SiOz 

interface, aiid after ali initial growth of a thin oxide 

layer, (11) the transport by diffusion of oxygen from the 

gas phase tf rough the oxide layer to  the Si/Si02 int,er- 

fa,ce. Assuniing that the oxygen pa,rtial pressure a t  t he 

interface is 1)ot)li time independent and eqrial to its iii- 

put partia.1 llressure, the oxidation rate may be writ,ten 

where kf is the forward specific rea,ction ra.te coeffi- 

cient for the reaction Si(s) + Oa(g) - s i O ~ ( s ) ,  I<,. is 

the specific :.ea,ction ra.te coefficient for the reverse re- 

action SiOa(s) + Si(s) -+ 2SiO(g), p is the insta.nta- 

neous pressure of oxygen, p, is the instantaneous pa.r- 

tia1 pressure of S i 0  a t  the Si/Si02 interface, and m 

and n are t,he orders of the reverse a.nd forward reac- 

tions r e ~ ~ e c t i v e l ~ [ ~ ] .  If no passivation is talting pla.ce 

during the o:ridation process, the reverse reaction rate 

may be consi3ered negligible, in orcler that equa.tion (2) 

reduces to  : 

suhstituting equation (1) into equation (3) we obtain: 

This re-lt reproduces Nicollian and Reisinan power - 
law for = 6. Fòr one, two and three dirnensi~ns[~I in - 
Euclidean s p x e  the spectral dirnension 2 is calculated 

to  be equal to 1.00, 1.35 and 1.43, which in the present 

model produces b values of 0.50, 0.68, and 0.72 respec- 

tively. This rznge of values for b is in good agreement 

with t,he 0.30 5 6 5 0.72 range coming out from the ex- 

perimental d>.ta fit made by Nicollian and ~ e i s i n a n [ ~ I .  

In our moiiel we reason that as oxidat,ion is initiated 

in a clean anc' bare silicon substrate: the Euclidean di- 

mension of tlie fractal network formed by the silicon 

plane and the vertical direction of diffusion of the oxi- - 
dizing specie :O2) is three (2 = 1.43), and as the sur- 

face is coverecl by the newly formed SiOa this situation 

changes to  a :onfiguration of Euclidean dimension for - - 
the fractal network of two ( 2  = 1.35) and one (d = 1.00) 

as the oxide hyer grows and forms a bulky oxide thin 

film. 

This is understood when one recalls that in the early 

st,ages of oxida.t,ion the mndom walker (the oxidizing 

species) reacts alinost instantaneously with any free sil- 

icon oxidizing site in tlie plane (reaction limited oxida- 

tion in tlie Deal-Grove modeli'], 6 2-- 1). As this plane 

is being filled by the oxidation process the Euclidean 

dimensionality changes in t,he direction that for longer 

oxidation times it. goes into two and one, where the ran- 

dom ~valker ha.s t o  difuse through a11 the grown oxide 

(difusion limited oxidation i11 the Deal-Grove rnodel['], 

õ --i 0.5) until it reaches the Si/Si02 interface, with 

these liiilits being an asymptotic behavior. 

111. Experimental results and discussion 

From the previous discussion one may wonder what 

det,erinines tlie range of possible b values for a given 

oxidatioii process, and why b can a.ssume such values for 

different process conditions as it is demonstrated after 

careful a.nalysis of oxidation data obtained in different 

laboratories over the past thirty years[3]. In fact, this 

a.nalysis clearly shows a tendency for b to  decrease for a 

given set of data when it sweeps many decades of time. 

In a.n attempt to clarify some of these questions we 

performed a simple oxidation experiment as described 

below. 

Silicon tva.fers (100) oriented, p-type, two inch diam- 

eter, and of 1 SZ-cm resistivity were cleaned following 

a standard RCA cleaning process[71, except for the last 

step, wllere the wafers were immersed in a HF dip so- 

liition (2% H F  in deionized water) just prior to  furnace 

loading. This procedure is known to Ieave the silicon 

surface hydrofobic, therefore aiding in cleaning the sur- 

face a.nd removing a11 possible native oxide. The  oxides 

used in the experiment had thickness in the range of 

100-2500 A and were 'grown in dry O2 in a Thermco 

MB-80 furnace a t  1000 'C, followed by an in situ dry 

Na annealing at. t,he growth temperature for 30 min- 

utes. Oxidation times were varied between 1 and 500 

minutes t o  obtain a reasonable quantity of data  points 

for the oxidation curve. 

Tlie thicknesses of the grown thermal SiOa were 

measured using an Auto El-IV Rudolph Ellipsometer 

a t  severa1 wavelenglits. For each wafer oxidized ten 

points were inea.sured along its diameter t o  verify oxide 

uniformity, which wa,s better than 3 % in most cases. 
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Figure 1: Linear regressioii for tlie oxidation dat,a in loga- 
ritmic xale of tlie power law L = atb !  yielding 1->=0.57 for 
data point,s covering over t,wo clecades. 

Fig. 1 shows the oxide t,hiclrness results for dry ox- 

idation of (100) Silicon wafers for oxidation tiines be- 

tween 4 and 480 iniiiutes clrawn in a logarit,mic scale 

(power regression of z = ul". From tliis figure we ob- 

t,ain b=0.57. 

During 61ie proccss of ob1,airiiilg these data. anel 

it,s analisys we observecl some differences in hehavior 

(inainly oxidat,ion rate) for sa.mples oxidized for short 

times (up to  a few miiiut,es) and for sa.mples oxidized 

for a few hundred minutes. Thercfore we decided to ap- 

ply tlie a.l)ove discussion for t8ime intervals of oxidation 

that  we have named shurt (less tliail 20 minutes)! iizter- 

~izetlinte (from 20 up to 100 niinutes) a.nd long (above 

100 minutes). 

Fig. 2 (a),(b), and (c) sliow trlie experimeiit,a.l oxi- 

dation resulls fittecl l o  a power la\v (least squa.res) i11 
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Figure 2: Oxide tliickness versus time for dry oxides grown 
at 1000 'C. (a) short oxidation time (less than 20 minutes), 
(b) intern~ecliateoxidatioii time (from 20 iip to 100 minutes), 
(c) long oxidation time (above 100 miniites). 

According to  our model, one possibility is tha t  dur- 

ing oxide growtll, as tlie Si02 layer gets thicker, the 

diff~tsion coefficieilt varies. This is due to  tlie increas- 

ing difficulty tha t  the diffusing specie (Oz) has to per- 

form a randoin ~ a l l i  throughout the  on-growing film 

and reach the Si/SiO;! interface where reaction takes 

place. Therefore, the t,ransport of oxygen from the  gas 

phase throughout the oxide layer to  the Si/SiOz inter- 

face is altered, possibly by a reduction of the diff~tsion 

coefficieilt, inducing a rate reduction of the chemical 

reaction a t  the ii1t)erface. 

The  result of this process is a change with time, 

the forin x=cdD previously discussetl. The da.t,a clea.rly a.s tlie oxidation proceeds, of tlie euclidean dimension, 

sliow t,liat differeiit 1) values are obt,a.ineci for differeiit where for nlaybe up t,o a few monolayers of the oxide 

oxitlation time iiitervals shoi-t (b=0.69)! iilternzediuie this dimension is three and as  i t  gets thicker we start  t o  

(b=0.59), a.nd long (b=0.52). All da ta  fit vcry well t o  lia.ve a ra.iidom walli in a. fractal structure tha t  becomes 

the polver law and it is in gootl :igi'eernent with the trvo or one-dirnensional and therefore suggesting tha t  

ca.lculations from fract,al t,lic.(ii.~.. s i ~ g g e s h g  that  dur- b values may be in the range 0.50 to 0.72 as found 

ing oxidation the  dynainics OS t l i ( '  rc:act.ion in a certain tlieoretically in the model. 

oxidation period is niainly responsible for t,he ohserved The  Nicollian and Reisman model explains the ob- 

ra.nge of constant 11. served values of b based in the viscous flow in the ox- 
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ide as the rat,e limiting meclianism of tlie surface re- 

action during gro~~,tli["]. Honrever, wlieii one corisiders 

viscous Aow in t,lie oxide, necessarily one lias t,o ta.l<e 

into a.ccount any diffusion coiist,ant clianges t,liat may 

take place during oxide growt1-i: ancl t,liis necessa.rily has 

to take p l x e  during this process, as it ca,n he iiiferred 

frorn tlie f,ict that  intriiisic stress aiid oxide d e n ~ i t y [ ~ ]  

w r y  subst;mtially near the Si/Si02 int,erfa.ce wit,hin t,en 

t o  íifteen nionolayers, t1he so called "t~raiisition regioii" . 
Altlioui;h the niodel preseiit,ecl here succeedecl in 011- 

taining tbt: values of b consist,ent with t,liose cominp 

froin t,he power law fit. of the cxperiment,al cla.t,a exis- 

tent from the past thirty yea.rs["], it is not t,lie oiily in- 

terpretatio? one can follom using tlie fra.cta.1 approacli. 

It is possikle to  show["] tha t  with a ra.ndom walk o\ler 

tlie nuinbe r of available silicoii sit,es iii the  "tra,iisit,ion 

region" ne.tr tlie Si/Si02 interface one also obt,aiii a 

siini1a.r povrer law for t,he time tlependence of tjhe oxide 

tliickness. 

IV. Sumniary 

In sunmmry, we propose a rilodel for the t,herma.l 

oxidation o'silicon based i11 t,lie concept,~ of diff~ision Iíi- 

netics i11 fractal structures. The  inodel s~iggest~s t,liat the  

tlicrnial oxida.tion of silicon surface is goveriied by  clif- 

fusion of oxygen molecules into a. fractal net,worl< struc- 

ture which determines a power law t,ha.t rela.t,es oxide 

thickness x. t,o oxidation time t,. in the form x ( t )  = a.tb. 

The model presents evidence that  the exponent b 

in the pomer law is related to the spectral dimension 

during the  cliffusion of t,lie O2 throughout a fractal net- 

work wliicli riiay give us further clues on the physical 

origin of t,he consta.nts a ancl b in the power law. Possi- 

ble mechanisms leacling to  t.he observed values for these 

coiistants, aiid parameters t,hat affect their values are 

being investigated. 
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