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The susceptibility of the model medium consistinf of identical and parallelly oriented columns
(wires) was considered by use of the generalized method of the integral rquations (MIE).
Such a model resembles mesostructure of the porous silicon (PS) samples. For a given
mesostructure the optical anisotropy is closely connected with the porosity of the medium.
We predict a great anisofropy of tlic PS nonlinear susceptibility tensor.

|. Introduction

The discovery of eflicient photoluminescence of
highly porous silicon (PS) in a visible range at room
temperaturell] has generated a great interest in this
maferial in view of its possible use for optoelectronic
applications.  The attribution of this luminescence
to quantum-confined carriers in crystalline Si columns
(wires) has been supported by direct transmission elec-
tron microscopy measurements.d The detected optical
anisotropy of the PS samples under optical reflectome-
try investigationsld also validates this claim. Thus the
concept that the microstructure of highly porous silicon
can be characterized by an array of tiny (as narrow as
scveral nm) Si columns, in which the crystalline order
1s preserved, 1s now widely accepted.

From the optical viewpoiut, such an unusual PS
micromorphology with the sizes larger than the mfer-
atomic ones but much less than wavelength creats a
problem of finding a proper approach for calculation
of its optical properties. When the distances between
colummns are of the same order as their diameters, we
may be sure that local field effects foi linear and non-
linear susceptibilities will play the prominent role. The
method of integral equations (MIE) is the unique ap-
proach for exact allowance of all these effects and calcu-

lation of macroscopic susceptibilitics of a medium with

any microstructure. But MIE has never been applied
to two-dimensional mesostructural media. Here we are
developing tlie general MIE approach® for planar sys-
tems. The mesoscopic effects of PS structure are taken
into account by means of the concept of a mesoscopic
“elementary radiator” - dielectric cylinder. MIE to-
gether with this new concept allows us to calculate a
susceptibility of porous silicon with arbitrary porosity.
The basis for two-dimensional consideration of PS films
leans on the fact that their properties in a vertical di-
rection are more or less uniform. For the limiting cases
of high and small porosity, our results coincide with
the formulae (9), (10) of ref. [3]), which were obtained
by perturbation theory when local field effects are ne-
glected. Investigation of the optical properties of PS
films, in particular an optical anisotropy, gives valu-
able information about porosity of the material and
permits some conclusions about the connection of the
photoluminescence spectra with the nanostructiire of
the porous silicon. Since the optical properties of the
two-dimensional systeins may strikingly differ from the
three-dimensional ones, we cite here the results of the

MIE application to this special case.

II. MIE for planar systems

By analogy witii the 3D-casel¥), in the 2D-case the

“two-dimensional dipole” (i.e. double charge string)
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may be wristen in the form

-

. (1) . . -
L= ﬂ'ikif{—[Qﬁ(ﬁ ~d)y —d] + «Tisz(E])[(l— (i - d)]

H,=—ak2dWVi 4 F= (5., 5,00 (1)

For E,-component of the clectric field and planar

vector [T = (H,.H,,0) there arc the relationships

—

B, = mik2HV4,, H=—ink*H 6, - id, | (2a)

where H((,]) and H(()l) are the Hankel functions of the
first kind, 7 is the unit vector in the x, y plane,
andR = 7~ 77t = 1?/[?,. The two-dimensional vectors
# and 7 describe position of a dipole and the observa-
tion point, respectively; d is the linear density of the
dipole moment, k = w/c is the wavenumber, and &, is

the Pauli y-raatrix:

&:( _Oi 6> (20)

Using Eqs. (1-2) we may construct tlie integral

cquation in jist the same manner ris in the 3D-case:
B = Ei+ E, + /v x V x PGd*F (3)

where l'jz is the incident field. £, is the field of the
dipoles inside the Lorentz “two- dimensional sphere®
(cylinder), P is the volume density of the dipole mo-
ment, and G = ﬂiliél)(k[ﬂ) is the Green function of a
two-dimensional wave equation.

By use of the substitution of variables proposed
earlier, which corresponds to the passage from micro-
scopical field T to tlie new variable-field £, the follow-

ing relation may be written:

ﬁ:?/—f-j'ﬁ, (3)
where 7 is an arbitrary tensor of the second rank. If
one tries to connect the newly introduced quantity E
with any measurements of the electric field inside the
medium, it bezomes evident that in a general case ten-
sor 3 would depend both on the properties of the sep-

arate radiators and the microstructure of the medium.

345

Let us impose aphysical constraint on this new variable
E by the requirement that, in addition to the integral

equation, it must satisfy the wave equation as well

V XV x Ek*E = —4nk?P . (4)

Then it may be shown that Egs. (3 and (4) to-
gether impose on the tensor 3 quite a definite limita-
tion so that it may depend on the microstructure of
the medium only. For the given polarizahility of a sep-
arate radiator, the tensor 3 totally determines all opti-
cal properties of the inediuin, in particular the dielec-
tric permittivity i. In the case of the three-dimensional

chaotic or cubic lattice, this tensor has the form

~ag o

3= 8 - 531 0o (5)
3

lii the considered 2D-case of infinitely long "dipole

threads” oriented along the z-axis and disposed in the

z, y plane chaotically or in a quadratic lattice manner,

the tensor 3 takes the form

) —2r 0 0
=1 0 -2r 0 (6)
0 0 0

IT1. The choice of tlie “elementary radiator”

The peculiarity of the porous silicon microstruc-
ture lies in the intermediate (between the interatomic
distances @ and wavelength A) characteristic size, i.e.,
cylinder’s diameter D: « << D << A. Inside the cylin-
ders atoms may be considered as arranged in the regu-
lar manner, but the cylinders, are disposed accidentally.
Therefore, we come to the problem of nonuniform dis-
tribution of atoms inside Lorentz sphere, i.e. aspatially
nonuniform problem. For any type of micromorphology
of the medium it leads to great mathematical difficul-
ties. In order to avoid these difficulties, we take ad-
vantage of the fact that just asa sphere in a uniform
electric field gives rise to an exact dipole radiation, in
the external uniform field the radiation from a dielectric

cylinder of an arbitrary radius coincideswith the " plane
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dipole” field5). Then we may choose such a cylinder as

an elementary radiator { “atom”) and apply the MIF for

a collection of such chaotically disposed radiators.
Under chaotic distribution of the cylinders the uni-
form electric field in the region of the Lorentz cav-
ity’s center appears. As a result, we can consider the
medium as If it would be constructed not from cylin-
ders but from thin threads. Therefore we may apply
Fq. (1). For obtaining the solution, it is necessary to

determine the polarizability of cach cylinder.

V. Application of the method to tlie PS-type

structure

Using the known solution for the cylinder in a
uniform field.5) we have for the polarizability tensor

a : (P= N&E) the following expressions:

Opr 0 0
a = 0 g 0
0 0 ;.
le—=1
Upgp = (yy = 5(—;7]“5, (7)
e—1 .
a,, = Trf) .

Tlie components of the dielectric permittivity tensor
¢ are connected with tlie tensor w components by the

relations

E—1=47Na (1 +477 Va)™! (8)
ctldeleml)
e+ 1—~cle—1)
¢, — L=rclc=1).

e = Cyy =

where A is the density of the cylinders in 'LU-case and
thespheres in 3D-case, ¢ is the dielectric permittivity of
the volume material, and ¢ = 72V isthe bulk material
concentration.

For description of the optical properties of the film
it is convenient to introduce the optical anisotropy pa-

rameter
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Figure 1: | he optical anisotropy dependence vs concentra-
tion of silicon V in tlie case o silicon columns.

Then from (8) and (9). we obtain

(e —1)*
e+ 14c(e=1)"

For small concentrations (¢ << 1). Eq. (10} coin-

3=c(l~c) (10)

cides with the results of Ref. [3]

Gt

e+1 (1)

which holds when the influence of the dielectric columns
on cach other is not taken mto account. (When intro-
duced n such a way an anisotropy parameter 3is con-
nected with the amsotropy parameter 3 of the Ref [3]
by the relation 3—1=(3 - 1)2).

For large bulk material concentration [l — ¢} << |
Lq. (10) takes the form

(c —1)? -

S3=01=-0) 5

(12)

In both of the limit cases, 3 naturally turns to zero for
homogeneous one-component media

Tlie optical anisotropy dependence vs concentration
cisshown m Fig. 1

The maximum value of an anisotropy is

3 = (V26 = e+ 1)? (13)

at the concentration

cm:,/:i; (VI = VTF D) (14)
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From (11) it follows that ¢, < 0.5 for any ¢. With
¢ — o¢. €, acquires the lower il Chay = V2 — |
0.41. This shift and assymetry of the 3(¢)-dependence
is the manifestation of the elongated column-like mor-
phology of the porous silicon. For any “symmetrical”
{relative to tlie transformation vacuum «— diclectric)
form of inclusions, anisotropy | will be maximal at
c=10.D.

Perhaps the question may arise: how is it possible to
obtain large concentrations ¢ (more than the limit con-
centration ¢¢ = 7'1=Z ~ 0.90 for the close packing of the
identical cylinders)? The answer lies in the mesoscopic
cylinders treatment as elementary radiating “threads”
which in fac. takes into account their possible “over-
lappings”. I 1ysically these overlappings mean twofold
enhancement Of tlie dielectric permittivity in the over-
lapped area. Therefore. the formulae hold true up to
c=1

It iS possisle to calculate tlie dielectric permittivity
of aset of the vacuum columns in the crystalline silicon.
For this it is 1ecessary to perform a substitution 1 — ¢
for cand ¢! for ¢ (the last follows from the fact that in
these equations really enters the ratio of tlie fractions’
permittivities .

As aresull we obtain

2% (e = 1)

€m, s =c¢— (1 —e)c—1)

(15)

Cop — (.'/U =

where ¢ is the concentration of the crystalline silicon.

Fig. 2 shows how the anisotropy 3 depends on the
silicon concentration in this case. This dependence is
critically distirct from that shown in Fig. 1. The max-

imum value of the anisotropy is:

1—cm=____“+ll(\/52_\/f—1) (16)

(V2 — e+ 1)? .
In = ————— (17)
¢
and for large ¢ > 1 this value is ¢ times less than foi.

the silicon colwnns-type geometry.
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Figure 2: Tlie optical anisotropy dependence VS concentra-
tion Of silicon c in tlie case of vacunm colurnns.

Thus, tliese examples vividly demonstrate that the
macroscopic optical properties of the composite system
depend dramatically not only on the concentration of

tlie material but on the form of the inclusions as well.

V. Nonlinear properties of PS

Tlie foregoing consideration allows definite conclu-
sions about PS nonlinear optical cliaracteistics. Firstly,
all tlie nonlinear sources in the right-hand part of the
wave equation Will differ from the respective nonlinear
polarization by the factor

ez + 1 e+1
2 T e+1l—cle—1)

(18)

in distinction from the three-dimension case when this
factor is equal (¢ t2)/3.

Sccondly. the “mesoscopical” field acting on each
column Will be enhanced by the same factor in compar-
isoii with the miacroscopic fiedld (the permittivity eg,
must be taken, naturally, at the considered frequen-
cics). But these considerations do not relate to the
z-component o the field since it is the same for the
mesoscopic and niacroscopic fields. Thus, due to elon-
gated mesostructure of the PS, a strong anisotropy of
the nonlinear susceptibility tensor appears even for the
media. with the isotropic microstructures.

Finally, all these considerations may be generalized

for the case of nonlinear quadrupolar medium. For this,
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into the egs. (1) we must add tlic field of a “two-
dimensional” quadrupole:

" B2
B o= omicg <R1{§1)~k}18])>
(77 ) — it q)+

+ miktHVE G- A oa-qL (19)

and into eq. (3) add theterm V xV xV.Q (here § and
Q are tlie planar and bulk densities of the quadrupole
moment).

After rather cumbersome calculations, we come to
the conclusion that the local field enhancement fac-
tor for tlic quadrupole moment is exactly tlic same as
for tlie dipole one. It strongly differs from the three-
dimensional case.

Therefore the enhancement relative to the bulk ma-
terial of the macroscopic nonlinear susceptibily in tlie
PS-type mesostructure doesn’t depend on the nature of
tlie nonlinearity - anharmonic. dipole, quadrupole, etc.

As a result we may be sure that. for example, for
PS tlie third order nonlinear susceptibilty turns to be
anisotropic value and the susceptibilty tensor compo-

nents ratio for 50% porosity will be equal to 40!

V. Sunmary

Tlie results obtained are essential for understand-
ing not only tlie porous silicon optical properties, but
its internal structure as well. First of all it relates to
the porosity, i.e., the void fraction in crystalline silicon.
Tlie effective dielectric permittivity is closely connected
with tlie concentration ¢ (formulae (8). (15). (18)). But
for tlic most interesting region of high porosity (small c)
this dependence is not so vivid, and so the distinction of
tlie effective, dielectric permittivity c.qr from unity will
be universal for any dielectric constant ¢ of the bulk ma-
terial: €. — 1 ~ C. Therefore, foi a highly porous sam-
ple, an experimental accuracy of determination of e.g
may prove to be insuflicient for correct determination
of the porosity. In such asituation. a proper method of
tlie optical anisotropy determination may be very use-

ful. As it follows from eq. (11}, the dependence of an
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anisotropy 3 on ¢, for the material with large bulk di-
electric permittivity € for Si (¢ ~ 15), takes the form
3~ ce. In other words, the derivative %?— ~Cc>>1,
This fact may give tlie "anisotropy measurement” tech-
nique an important advantage for exact determination
of the porosity by tlie optical niethods. Tlie considera-
tion of the nonlinear susceptibility of composite mate-
rials in the three-dimensional case is given in Ref. 6.
The appcarance of tlie nonlinear susceptibility
anisotropy Iii a highly porous sample with elongated
oriented inclusions of the bulk material gives additional

opportunities for their practical applications.
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