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We study the effect. of an on-site electron-phonon interaction on the electric transport of
inesoscopic heterostructures, described by atight-binding Hamiltonian with alocal electron-
phonon interaction. The electronic problem is solved iteratively and the phonon population
is found self-consistently. The conductance as a function of the applied bias is calculated
using anew formalism suitable to treat many body effects. Double barrier heterostructures
are studied. The results compare well with experiments and generalize previous calculations.
We also consider a flat potential profile (e.g. alayer of GaAs between a SiGe alloy). The
conductance shows an step-wise behavior which isrelated to the opening of phonon channels
when tlie bias isincreased. We propose as well a device which could generate coherent sound.

|. Introduction

Shestudy of electronic transport in mesoscopic het-
erostructures has created new ideas ill tlie general field
of transport in solicls which was mainly developed to
understand the dynamic of carriers in inacroscopic sys-
tems. Assoon as thesize of the system approaches the
wavelength of the electron, transport depends upon the
interference of propagating electronic waves.

The phonon assisted resonant tunneling il a double
barrier heterostructure (DBH), first observed by Gold-
man, Tsui and Cunnigham!?! and studied by several

3.4] wag an important contribution to the un-

authors!
derstanding of this problem. The oscillatory behaviour
of tlie coiiductance in semiconducting point contacts
and satellite peaks in double barrier devices are conse-
quences of the electron-phonon interaction.

The theoretical treatment of these systems israther

involved because they are many body systeins referring
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to a far from equilibrium situation, where standard }in-

ear response tlieory does not apply.

Several rnicroscopic models have appeared in the lit-
erature to study transport in nanodevices in the pres-
enteof electron-phonon interaction. They were treated
as a scattering problem which required atwo particles
Green functionl®] as a first order tunneling strength
calculation®! or using the very powerful Keldysh for-

malism as a nonequilibrium probleml®l.

We develop in this paper a formalism capable to
treat the many body problem which results from asitu-
ation in which electronic carriers interact with phonons
as they go through a inesoscopic heterostructure. The
problem is treated here within the context of the gen-
eralized Landauer-Biittiker formalism!™3] eextended to
Incorporate the effect of many body interactions. How-
ever it is based in a full microscopic model for the elec-

trons, phonons and their interaction, different from the
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trons, phoncns and their interaction, differeiit from the
phenomenological approach followed by Biittiker to in-
troduce diss pation(.

In particilar we are interested in the case when tlie
distance between the resonant. peaks Acp approaches
theenergy of the longitudinal optical (LO) phonon 7.
This situaticn can be easily tailored by controlling the
width of the well and the height and width of the bar-
riers. When Aep coincides with %wq it is possible to
create a situation in which the electrons are injected
at the second peak to invert the population. Tliese
electrons decay to the lower resonant level emitting co-
herent LO plonons . Thiseffect, aiialogousto the laser
effect but with sound instead of light could be caled
SASER and it will be discussed later.

Tliis paper is organized in tlie following way. In
section two we present the model Hamiltonian and also
tlie many body operators adequate to treat it. Section
three is devoied to develop the method used to solve
the eigenvalue problem introduced in the precedent sec-
tion and to describe the calculation of the characteristic
curve of the system . The fourth section discusses tlie
reliability of t1e production of coherent ultrasound. Fi-
nally in section five are discussed the results for several

different phys:.ca situations.

II. The model

The systern is represented by a nearest neiglibors
one-dimensional tight- binding Hamiltonian. We ne-
glect the interaction between the electrons and the
acoustic phonons because in polar semiconductors like
Gads it is nuch weaker than the electron optical
phonon interaction which is considered in the Frohlich
approximation.
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In this Hamiltonian ¢/ represent the creation op-
erator of an electron in a state localized at site i with
spin o. The spin index was suppressed to simplify the
notation because we do not treat here the magnetic
problem. The summation over i includes implicitly a
summation over o. The operator bj creates a phonon
in tlie well with linear momentum q .The potential pro-
file is included by considering a site dependence of the
diagonal matrix elements ¢; .

We suppose that at +occ and —oo the system is con-
nected with a thermal bath of particles which playsthe
role of fixing the left and the right Fermi levels er, and
€p, .

We are assuming as well that the electron-phonon
interaction is restricted to the well whose length L is
typically of the order of 10z to 50a where ais thelattice
parameter. In reciprocal space this admits a localiza-
tion for g, of the order of 1/L. Besides, as the coupling
g, is stronger for low g, and for the sake of simplicity
we approximate g, = gb,0.

The state of the system is expanded in a basis of
states |in > which represent an electron localized at
site | together with the existence of n phononsin tlie

well.

[ >= allin>. (2)

in

We assume the basis to be orthonormal such that

af =< inlp > 3)

If we define the operators

OF = ¢;b", (4)
we obtain
al = L < 0|07y > (5)
T \/m ) !

where |0 > is the vacuum state.
The equation of inotion for these operators can be

easily ohtained and it writes
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_, dO}
dt

Il

(€ + nhwo)OF + (O, + O 1)

+ gOrM(bT +0)+ ngz cfcjcib”_l. (6)
J

The last term in tl-is equation represents an
electron-electron interaction mediated by phonons .
Thisis the Migdal term that gives rise to superconduc-
tivity . Consistently with neglecting the direct electron-
electron interaction we do not consider the one medi-

ated by the phonon field.

We calculate the matrix elements of equation (6)
between < 0] and [¢ > and looking for stationary solu-
tions of the problem we obtain the following eigenvalue

equations to be solved

(i + nhwo)ay + t(a’y + aiy)
+ g(n+Tat Vg™ (7)

fiw af =

III. The calculation

Asillustrated in Fig. 1, i = 0 is the first site of the
DBH left barrier.
can consider g = Q Therefore the system (7) decouple

For i < 0 me have ¢; = 0 and we

into a set of independent equations that can be solved

analytically. The solution is

a? — Ineiknfl?i + R”‘C—ik"m” i< O, (8)

where k,, is defined by the dispersion relation

Hw = nhiwny + 2t cos kna, (9)

wheret < 0.
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Figure 1: It isshown the potential profilefor an applied bias
V = 0.02¢. The position is measured in units o the lattice
parameter. For this Situation five channels are possible.

For areal L, the first termin equation (8) represents
an incident wave and the second a reflected one.
1t is convenient to define the energy measured from

the bottom of the conduction band e r Aw — 2t
¢ = nhwo * 2t(cos kya — 1). (10)

The seconcl term in equation (10) is the kinetic en-
ergy of the electron. For n greater than some ny this
kinetic energy turnsout to be negative (ng is zero if the
Fermi energy ¢ is less than the LO phonon energy Awg
asit is usual). That means that we have k, = ix, and

the solutions take the form

af = Ine™" "% 4 Rye™™, i<0. (1)

In this case the amplitudes I™ have to be zero for
these modes in order to assure a regular behavior for
z — -—oo. They are vanishing modes at left.

On the other hand for i > & we have aflat potential
profile, i.e. ¢; = — V where V is the applied bias, and
as g = 0 in tl-iisregion as well, the system of equations
is decoupled.

Without lose of generality we can assume that there
are no incoming waves from the right. The solution can

be written then as

al = Tpeka®s, i>N (12)
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where &/, fulfill tlie dispersion relation

fw = =V + nhwy + 2t cos k), a. (13)

We have not solutions with negative kinetic energy
at the right part of the system.

The problem reduces now to make compatible the
left with the right solutions what can be easily achieved
by numerically iterating equation (7). The process is
very fast and yields the exact solution of this model.

From eq1ation (7) we can get tlie coefficieiits at site

i — 1 as explicit functions of the two following sites.

L= (hw - ¢ — nhwg)/t]al

(o/0(Vr ¥ T at 4+ va aP™!) — a2 (14)

We calculate from expression (12) tlie coefficients at
two consecurive siteswith i > N as astarting point. By
choosing Ty, = 0 for some channel and zero for the oth-
ers and itereting (14) me get the expansion coefficients
al at two successive Sites with i < 0 from which tlie
incident and reflected waves amplitudes can he caleu-
lated. This correspond to arbitraries values for I, and
R, and in general |, will not be zero for tlie channels
below the ccnduction band. Therefore these solutions
have no phy:sical meaning. However, as the relation be-
tween input (left) and output (riglit) is linear, we can
calculate tlie response Ty,(1y , Rn(ry for an arbitrary in-
put I, .

Let us define matrices M and Mp such that

Tn(l) = Z fme.n.In(Z) (15)

m

Rn(l) = Z IMR'IY).’D I'n,(l) (16)

m
or, shortly T = MpI, R=MRpI
As we start from tlie right we have to express | and

R as functions of T by inverting the former relations

1 = M;!T = GT (17)
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RO = MpM7IT = GRT (18)

For tlie sake of simplicity we start with T,y = 6n
and then from the amplitudes calculated iteratively we
get Gy = 1V and Gr = RO After that it is straight-

) ; — -1 _ -1
forward to obtain Mp = GrI and Mp = GRGI :

As it. was discussed above, the situation for ¢p <

hwq corresponcls to |,, = Iyé,o that yields the result
Tn = {(G7Nnolo (19)
Ry, = (GrG7Mnolo (20)

and gives tlie response to an incoming electron with
energy 0 < e <ep.

Our purpose is to calculate the characteristic curve
of thisdevice. Thiscan be achieved calculating directly
the current J.

In tlie region outside tlie well in which g = 0 thesys-
tem decouples into independent channels and the cur-
rent is easily calculated . From the Hamiltonian (1) we
obtain tlie continuity equation

dQ;
—th— + (Jivr/2 = Jiz1/2) =0 (21)

where Q; = ec}¢; is the charge operator at site i and
Jiy1/2, tlie current operator at the bond linking sites i

ani+1,isdefined as

Tiy1s2 = (et/hi)(cf ciy1 — cfiyci) (22)

froin which we get the average current at this place

Givryz =< Ol igryal >= (2et/B) Y Im(aly,af)
n
(23)
For : > N, a? has the simple analytical expression
(12) and we get

ji+1/2 = (2€t/ﬁ) Z lTﬂlz sin k;xaw (24)
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and each term (i.c. the current in each channel) is site
independent as expected. In the same way for i <0 me

get

diprjz = 2et/h) Y (I]* = [Rul*)sinkna,  (25)

n<ng
[t can be seen that the current is conserved in our

mode].

For the case ¢y < hwp this expression reduces to

Jivrj2 = (2et/B)(|Lo)* — |Rol*) sinkoa,  (26)

because ny =0

In order to get tlie total current we have to sum over
all thestates below tlie Fermi energy. This sum istrans-
formecl in an integral over energies and taking into ac-
count that for tlie zero channel at left, p(e) = sin™! koa

we get tlie simple expression

€F
Jr = (4et/h) / (1o} — | o] de, (27)
Jo
where we have assumed one incoming electron per state

ko and spin.

V. Ccherent sound

Tlie formalism developed here by contrast with tlie
one described by Kef. [4} is not limited to treat the
situation in which Aep > Awy. This Limitation arise
tliere from the reduction of tlie well to asingle point via
a renorinalization. Besides, our formalism permits to
treat tlie phonon system coupled with electrons travers-
ing the well.

The device proposed liere consist in a double bar-
rier system witli a wide well in between in such a way
that the energy difference Aep between the first and
the second peak localized within it, coincides with tlie
phonon energy. Tlieeiiergy Aep depends upon tlie ap-
plied potential because the well becomes approximately
triangular with an inclination determined by tlie bias.
If the barriers are wide or high tlie width of the reso-
nant peaks diminishes and its spontaneous half-life in-

creases. Tlie width of the well and the barriers can be

Brazilian Journal of Physics, vol. 24, no. 1, March, 1994

easily contiolled in samples grown by molecular beam
epitaxy. For Gads—GaAlAs samples, tlie height of the
barriers can be also controlled through the aluminum

concentration.

If the liaf-life of tlie electrons traversing the well
with energy corresponding to the first excited peak is
long enough, the population in the well isinverted (as
it. occurs in diode laser). When an electron relaxes by
emitting a LO phonon, this elastic excitation is con-
fined to the wellll®11) The presence of this vibration
at a frequency that coincides with Aep will stimulate
the emission of new phonons in phase with the first
one. It can be seen in our Haniiltonian that the proba-
bility of stimulated einission is equal to the probability
of absorption. As the population is inverted the pro-
cess continues, producing a great number of coherent
phonons, until tlie lieat produced by the decay of LO
phonons (and by electrons also) put the system out of
tlie resonance condition. Tlie system can be pumped
continuously by injecting electron but probably it will

be necessary to work in a pulsed regime.

Several shortcomings have to be overcomein order
to produce tliis device in a laboratory. Probably afine
sintony will be required in order to achieve the reso-
nant condition. This can be done through the applica-
tion of a magnetic field. Tlie continuum due to the free
electron motion in the direction parallel to the inter-
face could broaden too much the peaks. This problem
could be bypassed by reducing lateral dimensions. Be-
sides, tlie beam of LO-phonons lias a group velocity
near zero and they decay by emmiting a pair of acous-
tic phonon with same energy and opposite wave vectors.
Tlie time scale of this decay is a few picoseconds then
tlie beam of LO-phonons is confined close to the well.
The secondary beam of acoustic phonons has the half of
enenrgy of the primary LO beam and it can propagate
outside tlie device. The beam of acoustic phonons may
be no longer coherent. Several other effect could create

other difficulties to fabricate the device.
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If the colerent ultrasound could be produced, it will
have a wide range of applications. As this high fre-
guency sound can propagate through GaAs it will be
possible to separate a reference beam and make it to
interfere wit1 one that passes through a sample. Tlie
registered interference pattern could be used to produce
an hologram that reveal the distribution of impurities
and defects.

We don’t know if very high frequency ultrasound
coiild by used to study biological tissues but. if it were
possible, the coherence of tlie beam will strongly im-
prove the resslution of ecographies and will permit also

tlie production of medical holograms.

V. Results

Here we present the characteristic curves foi dou-
ble barrier heterostructures aiid for systems with a flat
profile.

For GaAs the hopping constant can be taken
t = 5.2¢V determined from the effective mass m™ =
0.06719. The L 0 phonon frequency of bulk GuAs is
hwy = 36 meV, an the strength of the electron-phonon
interaction is approximately ¢ = 20 meV. Tlie other
parameters will depend on sample preparation. Tlie
height of the barriers varies typically between 40meV <
eo < 400mel” depending on aluminum concentration.
The widths <f the barriers and the well have a wide
range of variation. Tlie Fermi level dcpends dl the
doping (n*) in bulk GaAs , and it can be also variate
easily . A high Fermi level broaden the peaks.

We have .aken a typical symmetric sample com-
posed of a well of 25 layers of GaAs between barriers
of 9 layers of Al,Ga,_.As. Tlie height of tlie barriers
was taken eg == 100meV and the Fermi level at left was
set to ¢ = HmeV .

We can okserve that tlie energy difference between
the main peal: and itssatellite A¢; isnot equal to the
L 0 phonon energy /wa. Tliisis due to the fact that tlie
potential drop inside the well is less than the applied
voltagel®). As our model assumes a linear variation of

the potential due to the applied bias (neglecting the
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band bending and tlie asymmetric profile due to non-
linear effects), tlie potential drop at the middle of the
well is half of tlie applied bias. Therefore we expect a

satellite peak for V.=V, + 25w,

Tlie results are shown in Fig. 2. The applied volt-
age IS measured in units of t. The energy difference

Aep = 43meV is very close to tlie experimental result.

We have also calculated the current for a system
with aflat profile. Tliissituation can be achieved exper-
imentally growing layers of GaAs merged in a matrix of
a SiGe tailored in such a way that the conduction band
offset between them be negligible. The GaAs—SiGe in-
terfaces act as contacts, then the potential drop occurs
through the GaAs. When the applied voltage increase,
new channels are open and the current jumps. In Fig.
3 we can observe these steps. In a real device these
discontinuities in the current will be recluced to only
discontinuities in tlie derivaritive of the current due to

the motion parallel to the interface.
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Figure 2: Tlie characteristic curve for a DBH shows the well
known satellite peak.
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Figure 3: Characteristic curve for aflat profile (see text).

The study of the resonant situation described in the
last section requires the inclusion of the half-times of
phonons and electrons. LO-phonons can decay in two
acoustic phonons and electrons can also relax emit-
ting acoustic phonons. These effects can be mncluded
through an imaginary part in the system energy hw —
fhw t in. This calciilation is undercourse and it will be
published elsewhere.
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