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'The presence of large electric fields can cause a substantial electron heating in small semi-
conductor devices. This effect can also occur with tlie application of a laser pulse, when
1he electrons become optically excited. In order to return to the equilibrium, these hot
clectrons must lose the excess energy to their surroundings (the cold lattice). In this work
we have developed atheoretical study for tlie energy loss rate of one-climensionally confined
liot electrons to LO-phonons, in polar semiconductor quantum wires. Calculations are done
for a model in which we assume tlie validity of the electron temperature model, descrihing
tlie hot electron gas by a Fermi distribution function at atemperature T > T7,. We consider
only the intrasubband relaxation within tlie lowest one dimensional subband, neglecting hy
now the effects of higher subbands. All tlie relevant physics is taken into account, including
several mechanisms sucli as degeneracy, dynamic and static screeiiing quantum confinement
end hot phonon bottleneck effect,. The effects of phonon confinement are also included, using
two macroscopic models, the mechanical and tlie electrostatic models, which differ through
the way boundary conditions are applied. The values for the energy loss calculated for the
Fulk phonon modes range between tlie results obtained for both confined models. We find
tliat tlie guided (mechanical) inodes produce more than an order magnitude slower energy
rzlaxation than tlie slab (electrostatic) or tlie bulk modes. Our results show also that in the
experimentally interesting electron temperature range of 50-200 K, the hot phonon effect is
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the single most important physical mechanism in our calculation.

I. Introducsion

The investigation of tlie loss of tlie energy of tlie
hot electrons in polar semiconductors has attracted a
large amount of experimental and theoretical efforts,
mainly in twe and three dimensional systems!’+?], More
receritly, one dimensional hot electron relaxation lias
been studied theoretically®=71, stimulated by the fact
that samples of one dimensional GaAs quantum-well-
wires {(QWW) with only the lowest subband occupied

have been successfully grown!Sl.

The actual situation for energy relaxation even for
a single electron is somewhat complex. This is due to
the fact that the longitudinal optical (LO) phonon, by

itself, does not take energy out of the combined elec-

tron plus lattice system. The energy transfer from the
source (electrical or optical field) to the surrounding
environment occurs in four steps: (i) the electrons gain
energy from thesource, (ii) they lose energy by emitting
acoustic and LO phonons, (iii) the LO-phonon decays
into acoustic phonon via anharmonic processes, and fi-
nally, (iv) the lattice thermalizes with tlie surround-
ing heat bath, producing a net energy dissipation from
tlie coupled electron-phonon system. The most efficient
energy-relaxation processfor the hot-electron gas, ex-
cept at very low temperatures (T<30-40K), is to
emit LO phonons,

since tlie polar electron - LO-phonon Frohlich coupling
is significantly stroiiger than the electron - acoustic-
phonon deformation potential. At low electron tem-
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peratures, very few hot electrons have enough energy
to emit LO-phonons, which m bulk (Galds have an en-
ergy of 420K.

In the study of electron energy loss due to LO-
phonon emission, there are two important time scales
that should be considered: the electron equilibration
time 7., and the electron-phonon scattering time 7;.
The first one corresponds to the scattering of the clec-
trons with other electrons and with (immobile) impu-
rities, which does not change the energy of the electron
gas as a whole, although it may change the distribu-
tion of the energy and momentum of the electrons and
take the electron gas towards an equilibrium spherical
distribution. On the other hand, the inelastic electron-
plionon scattering time, 7, represents the processes
through which the clectron gas actually loses cnergy
to lattice excitations. YWhen 7o << 71 we can assume
the electron gas to be in internal equilibrium during
the entire energy-loss process. In the experimeunts we
are interested in, the equilibrium of the clectrons takes
place on a 100-femtoseconds time scale while the typical
values for energy loss to the lattice are of the order of
picoseconds. This indicates that the adiabatic approx-
imation of considering the electron gas to be in inter-
nal equilibrium during the entire epergy-loss process at
an clectron temperature which is higher than the lat-
tice temperature is adequate for our study. There is a
third time scale relevant to this problem the so called
hot-phonon lifetime 7,5, which corresponds to the time
scale in which the emitted L.LO-phonons decay into ther-
mal acoustic phonons. 7, therefore controls the pos-
sibility of the emitted LO-phonons to be reabsorbed
by the electrons before the LO-phonons can decay into
acoustic phonons. The importance of the hot phonon
effect depends on the relative magnitudes of 7, and the
energy relaxation time 7 for a single electron. When
T < Tpp the process of phonon reabsorption cannot be
neglected and brings about a significant reduction in
the power loss. Tor bulk Gads. 7, is experimentally
knownl to be several picoscconds, and 7 is usually less
than 1 ps, what indicates that this phonon bottleneck

process must be included in any hot electron energy
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relaxation calculation.

II. Theory

We calculate the energy loss per particle via intra-
subband relaxation for a system of electrons confined
by infinite square well potentials in a GaAs QWW of
finite rectangular cross section of dimensions L, and
L. The electron-temperature rnodel and the standard
finite-temperature random phase approximation (RPA)
were assuined to describe electronic response. The real
lattice temperature is taken to be zero, but because
the LO-phonons in GaAs correspond to a rather high
temperature of 420K, our results should be valid for
lattice temperatures up to 10-15K. We have taken into
account iii our work all the relevant physics, including
scveral mechanisms such as degeneracy, dynamic and
stalle screening, quantum confinement and hot phonon
bottleneck effect. We have also mcluded the effects of
phonon confinement®#], with the help of two prevailing
macroscopic models: the electrostatic or slab modelf!?]
and the mechanical or guided modell™]. We will re-
strict this study to n-doped QWW, with the electroris
near the bottom of tlie conduction band, and with only
tlie lowest electron subband occupied. This is justi-
fied for wire widths of less than 2004, in the range of
the electronic densities of 10* — 10° em~!. The elec-
tronic conduction band is assumed to be isotropic and
parabolic, defined by a band effective mass m. This
approximation is valid for most III-V semiconductor
materials, provided that the elcctron energy is not too
high (< 200 meV in the case of GaAs). Also, we will
consider only tlie situation in which there are few holes
in the valence band. This assumption iS reasonable for
experiments involving heating of doped semiconductors
via electric field, but it is not nccessarily valid when the
electrons are excited in an undoped semiconductor by
a laser pulse. The holes in the valence band could be
treated in a way similar to that developed for electrons
mn tliis paper.

The electron gas is assumed to have attained quasi-
cquilibrium with itself at an electron temperature T

which is higher than the surrounding lattice tempera-
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ture 7. We consider electron temperatures low enough
as compared with the dispersionless LO-phouon eiiergy
(kpT < hw.o) so that only the one-phonon emission
process is siznificant. At equilibrium, the single elec-
tron will be at the bottom of tlie conduction band
(k = O). where the energy is minimum. In an empty
band of a polar material, for tlic temperature range
30K < T < 500K, the oiily available mechanism by
which tlic clectron can lose energy is the LO-phonon
emission. TIliis emission continues until it is forbidden
by energy ccnservation. i.c., until the electron has de-
cayed to a level wliicli is | es#liaii 7w from the bot-
tom of the conduction band (I < hwrg). For even
lower temperatures, acoustic phonons may play an im-
portant quantitative role, but the electronic coupling
to acoustic phonons (via the deformation potential of'
the piezoelectric coupling) is substantially weaker than
tlie polar Frchlich coupling what makes the energy loss
rates much lower[?].

The energy relaxation rate is calculated using
Fermi’s “golcen rule”!!?. For the LO-phonon emission,
tlie relevant interaction is the long-range Frohlich inter-
action. The bulk LO-phonon emission relaxation times
for a single electron have been caleulated for 3DU2 and
2013 systems, aiid the results are of the order of one
tenth of a picosecond. In a quasi 2D heterostructure or
quantum well, the finite electronic wavefunction width
in the third dimension reduces tlie scattering rate from
the strictly 2D result, making the relaxation time for a

rea layer somewhat larger (10-40%).

I1.1. Classical system

Let us first examine tlic simplest model, which con-
sists of a system of non-interacting liot. electrons at an
electron temperature 7', in contact with a lattice at
temperature 77 and obeying a non-degenerate classi-
cal statistics ‘i.e., Maxwell-Boltzimann statistics). This
model is app-opriate for a low density electron gas at
high temperalures (kT >> E). We will consider here
only the case where 7' >> T}, so that the MB factor at
the lattice temperature can be neglected as compared

with tlie elecironic factor. Tliis model will be referred
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to as the classical model, although it uses the quantum
interaction matrix element, as will be seen |ater.

For clectrons obeying a classical M B distrihution at
a temperature 3 = (kpT)~! the total power loss per
electron due to 1O phonon emission, (E> hwro), can
be written as

P = 3, , —Bhwro /-00 dre=7
mn — —Wro¢t e
™ J

0

[2(z + hwro)] TP [MP () + MP(22)] (1)

where M (x) is tlie Frohlich matrix element for the spe-
cific one-dimensional electron-phonon-interaction, ob-
tained from a quantum hamiltonian, the energies are
given in units of Rydberg and we have defined x =
(F = hwro) and z+ O (2 F hwpo)V/? + 212 Since
we are using classical statistics we are not considering
the Pauli exclusion principle which requires that the
transition is possible only when the final state is un-
occupled. We are taking into account only single LO-
plionon emission processes, which is justified because
tlic adimensional Frohlich coupling constant defined as
o= e2(2M3wro/m)” 2 (ezt —e7 1) is much smaller than
uiiity iii the materials of our interest (a ~ 0.07 for
GaAs)H,

For one-dimensional systems, the integral of Eq.(1)
lias to be performed numerically. However, for 2D aiid
3D systems the corresponding results can be obtained
analytically and are of the general exponential form
P = (hwpo/7)c™Phro where the relaxation time r
is (rawrp)~! in the 2D case and (2awro)™?! in 3D.
For GaAs, one finds r = 0.08ps (2D) and 0.13ps (3D).

Although this simple inodel for energy relaxation
is strictly valid only for a low density electron gas at
liigli temperatures, it provides a qualitatively correct
description for hot electron energy relaxation in two

and tliree dimensional systems{%.

11.2. Quantumn treatment

For tlic purpose of tlie energy relaxation problem,
the total Hamiltonian for the system can be written
as 1 = Hy 4+ H,_pp,, where the “unperturbed” part is
Hy = H +1,_,tH,. The electron-phonon term,
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which is responsible for the dissipation of eiiergy from
tlic electronic system, is considered to be a small per-

turbation to Hp and can be expressed as

Ho_ph = Z(qu‘an + M;‘pqag) : (2)
Q

where M, is tlic electron-phonon interaction matrix el-
ement, calculated for tlie one-dimensional system con-
sidered; @ = (g,q1) is the three-dimensional phonon
wave-vector, With q and gy respectively parallel aiid
perpendicular to the QWW axis; ag and ag are the
creation and annihilation operators for an LO-phonon
with wave-vector Q and p, is the Fourier transform of
tlie electron density operator.

For an infinite well potential, the 1D electroii wave

function for the (r, ) state has tlic well known form

ry T2
[k, 7, s >= 2V 12 cos < "/> cos <5L7r ) exp(ikz)
‘Y ?

3)
where V is the 3D volume of the system, aid —L, £
2y <L, and —L, <2z < L,.

For tlie QWW system, the matrix element for the

electron-phonon interaction can be written as

V? =2 BN v (hwro)??F(q, Ly, L 4
e (Qm/ wLo 1Ly L) (4)
where « is the Trohlich coupling coustant and
F(q,Ly,L,) is the electronic form factor associated
with the subband quantization in the z direction. This
factor includes the specific gecometry and houndary con-
clitioiis of the system and will be discussed later.

Tlie expression for the power loss per carrier for a
system Of hot electrons and bare phonons, for Tp, << T,
can be written as

P = —%wLO[H,T(wLo) - 17.7‘(LOL,o)] Z Rq (5)
q

where nt is the Bose factor aiid

2 .,
R, = ———ﬂ{(/“ Im X(Q,WLO)~
h

This equation for the total power 10Ss contains tlic indi-

rect effects of electron-electron interaction through tlie
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retarded polarizability function, which, within the RPA
is given by x(¢,w) = x(¢,w)/¢(¢,w). The electronic
dielectric function is e(q,w) = 1 = ¢(q)x%(q,w), ¢(q)
being the 1D Coulomb interaction in the lowest sub-
band representation which includes the form factor for
the system. Tlie finite temperature bare polarizability
x°(¢,i.T, ;1) can be obtained('®! using the identity

(g T ) = /°” dﬂ’, Xgwi T=0p)
04@TWWW@%WW%ﬂ%)

Tlie chemical potential u(7) is calculated numericallyt®
from tlie total electron clensity of the systern and the
free-electron polarizability at zero temperature is given
by the bare bubble diagram!®. Im x°(¢,w; T = 0) is
nonzero orily inside the single-particle excitation region.
Tlius only bare LO-phonons of large wave-vectors can
be emitted. At finite temperatures, in principle, all
values of ¢ should contribute to the power lossin Eq.(5).
At low ternperatures, however, the main contribution
is still expected to come from values inside the zero-
temperature single-particle excitation region.

The dielectric constant e{¢,w) that screens the po-
larizability can be considered in two different extreines.
Tlie unscreened case [¢(q,w) = 1] is expected to be
vaid at low electron densities, where screening does
not play an important role. On the other extreme the
static-screening approximation [ = ¢{g,0)] should be
adequate to describe high electron densities, because
then the LO-phonon energy fwro is small compared
to the typical energy scales associated with the elec-
trons, namely the plasma energy fiw,. A more realistic
approximation would be to consider the full dynainic
dielectric function, that is, to calculate ¢{¢,w = wro).
This should better represent the intermediate density
region. Our numerical calculations explicitly test the
quantitative validity of these approximations by using
the full frequency clependent dielectric function in the

theory.

I11. Hot phonon effect

Tlie actual situation for energy relaxation is some-

what more complex than is shown in Eq.(5), even for a
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single electron, because tlie emission of an LO-phonon
doe, not take energy out Of the combined electron
plus lattice system. Tlie emitted LO-phonon must de-
cay into acoustic phonon (via the anharmonic phonon-
plionon inte -action term), which then thermalizes with
tlie surroun ling heat bath fairly quickly. The decay
of LO-phonons into acoustic phonons involves a finite
LO-phonon lifetime, 7,;,. The significance of tlie liot
phonon effect depends on the relative magnitudes o
r,,,and tlie clectronic relaxation time I, becoming very
important fer r < 7.

This effect has been studied in great detail for bare
LO-phonons!!™ and can be included, quite accurately,
via a kinetic approximation. We assume that the relax-
ation of the 1.O-phonon can be completely described by
the phonon lifetime 7,5,. In this situation, the average
LO-phonon occupation numbers are not given by a Bose
factor at tbe lattice temperature, since the emitted LO-
phonons are no lenger at equilibrium with the lattice.

The dissipated power can be written as

h
P - :N—eron;r(wLo) Z

q

i,

— 7
I+ 7'1)11}1)-([ ( )

which, of course, iSidentical to Eq.(5) when tlie phonon
relaxation time is zero: i.e. when tlie emitted LO-
phonons decay instantaneously. When 7, is large,
therc could b= a substantial hot (i.e. nonequilibrium)
phonon bottlcneck effect., causing a strong reduction in

the cooling rate.

IV. Phonon inodels

We have studied several different models of the
electron-phonon interaction. The finite Cross section
of tlie QWW ucts to reduce tlie Conlomb interaction,
and may also modify the LO-phonon spectrum through
phonon confinzment effects, consequently affecting the
clectron-phonon interaction.

The simp est approximation, which is widely
used419 " consists of considering bulk 3D-phonons,
that is, to assume that the LO-phonons of the mi-

crostructure are the bulk ones, therefore ignoring any

modification of tlie phonon spectrum introduced by the
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filiite width of the QWW. We shall refer to this model
as tlie bulk model. A more realistic approach is to
take into account the effects of the confining geome-
try on the LO-phonon spectrum. This can be done
using two different rnacroscopic approaches to phonon
confinement, tlie electrostatic or slab model and the
mechanical or guided rnodel, which differ essentially
in the way the macroscopic boundary conditions are
applied. In the electrostatic or slab modell?®*®! one
applies boundary conditions on the electro-static po-
tential. Then for the LO-phonons, we have traveling
waves in tlie direction of the wire (), and standing
waves in the transverse directions (y, z). This approxi-
mation is valid when tlie component of the polarization
along tlie xz-axis is much larger than its components
in the confined diiections [k, >> x/L,,n/L.]. In the
mechanical or guided modell!X:29 the boundary con-
ditions are applied to the atomic displacements at the
interfaces. Then, tlie phonon wavevector directed along
the quantum-wire axis is small relative to the sum of
tlie two quantized phonon wavevectors in the other two
directions [(k,)? >> (x/L,)? + (x/L,)?].

For all these one-dimensional models, as we dis-
cussed before, the electron-phonon matrix element is
given by Eq. (4) and contains the quantum form factor
corresponding to the system considered.

IV.1. Bulk model

In the bulk model the electrons are confined in the
quantum wire and tlie phonons are three-dimensional
bulk phonons. Theform factoi for thissystem, for elec-
trons in tlie lowest subband and assuming an infinite

well potential can be written asl?!)

Finle, Ly, L) = /dU,G(ULy/Q)IQH(%’?; L,)(n*+¢?)~M?

(8)
with
G(&) =& sin()[1 ~ (¢/m~ (9)
and, using ¢ = L,(n? + ¢*)/?
2 ¢ 3274(1 — e~¢)
Hanld)=ctaim ~ pe vy (0
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1V.2. Confined models

The symmetry or tlie parity of the wave functions
of tlie slab and mechanical models has to be opposite
since in the slab model the electric potential has nodes
at tlie interfaces, whereas in tlie mechanically confined
model it is tlie electric field which is made to vanish
at tlie interfaces. Tlien, mathematically, the difference
between tliese two sets of modes is represented only by
tlie interchange of tlie sine and cosine functions in tlie
vibrational amplitudes of tlie modes(?%:22,

For the confined modes labeled by m and n, in both

models, tlie form factor F,,{g) can be written aslh?]

327 mr\? nr\
an(’]) = }—_7—P772171 [‘12 + <_L—_> + <'[T_> }
Ly L. Y R
(11)

where P, are the overlap integrals between tlie elec-

—1/2

tronic ground state wave function aiid the confined

modes, given by

Pon= [ K / dzcost (1) cos® (22) 6 (0)6n (2

-1 -1 12)

with tlie functions ¢,(¢) defined as ¢, (t) = sin[(nt T

&) /2], for tlie slab modes, ancl cos{(nt + &,)7 /2] for
the guided modes.

Since the only non-vanishing integrals of tlie type

of EQ. (12) are those involving exclusively products of

cosines, Pnp Can be expressed as

Prn = Wﬂr@ﬁ(%‘x(‘-ﬂ?n‘"}sm (ﬁ) sin (_727_)
2 2

(13)
In order for B, to be nonzero for the slab modes,
we must have both m ancl n odd integers, due to
the functional dependence of the phonon wave func-
tion. The total matrix element i1s obtained perform-
ing tlie sum over these odd labels. The lowcst or-
der is P;; = (8/3w)%. Since it can be shown that
|Pis| = 0.2 X Py; and |P;| < 0.04 X Py for i, > 1,
the dominant contribution to this sum is made by tlie
mode with m = n = |. Thus, we can to a good approx-
imation consider only the lowest order overlap integral
Pray for the slab models. On the other hand, for the
guided modes m ancl n must have even values and tlie
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only non-vanishing term is P,,, = 0.25. Thus, in each
case, we can consider only one value for 7,,,, which cor-
responds to the lowest possible m and n for the model.

V. Results

In tlie rest of tlie paper, we present our numeri-
cal results for tlie intrasubband energy loss rates in
GaAs QWW. We have used the following parameters:
m = 0.067 m,, « = 0.07, o = 36.8meV. We con-
sider wires with lateral dimensions between 20 to 1000
A, clcctronic densities of 103 — 107 em=! and electron
temperatures between 50 and 300K (7y = O through-
out). We have considered both classica and quan-
tum cases for tlie three phonon confinement models
described before. In the quantum systems, several dif-
ferent approaches to electronic screening were used: no
screening [¢(¢, w) = 1], static screening [e(¢,w = 0)]} and
full dynamic screening, with €(¢,w = wre). In the dy-
namically screened case we have also considered the hot
phonon effect, with valuesfor 7,, from0to 100 ps. Note
that in the classical, unscreened and static screened
cases we have not considered the liot phonon effect.
The single subband approximation, used tliroughout
this paper, is valid for tlie electron densities and the
wire cross-sections chosen in our calculations.

In Fig. 1 we compare tlie results for all three mod-
els, for a given density, wire dimension, and dynamic
screening (mp,, = 0 and 7 ps). Although, the experimen-
tal value for tlie hot phonon life-time in GaAs quantum
wires is not yet known, 7 psis the experimental 3D bulk
valuell. In the scale of this figure, for each model, it
is not possible to distinguish between the curves for
the classical result, the unscreened or the dynamically
screened system without hot phonon effect. For tlie
smaller wire sizes and lower densities, all the results
for tlie differeiit approximations coincide with the cor-
responding classical results. The effects of the density
and of the inclusion of the hot phonons are more pro-
nounced for the slab modes and the values for the me-
chanically guided modes are much smaller. The results
corresponding to the bulk model lie in between the two
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Figure 1: Power l0ss per carrier as afunction of inverse elec-
tron temperature, for a quantum wire o lateral diinension
Ly =1L, =190A4 and ¥ =10°cm™". We have represented
the dynamically screened resultsfor tlie bulk pliciions(dash-
dotted curves), slab modes (solid curves) and guided modes
(broken curves). In all the three models, tlie thick curves
correspond to the case without liot phonons {r,» = 0) aid
tlie tliin curvzs to rpn = 7ps.

confined models, but the behavior is qualitatively sim-
ilar to that of the slab model.

For all the models, with or without phonon con-
finement, quantum statistics lowers tlie energy loss,
even without the inclusion of screeningl®%l. This is
more noticezble for high densities and or smaller wire
cross section due to restrictions in the phase space for
the electron scattering. As expected, screening usually
further lowers the energy loss rate. For the dynam-
ically screenod systems and low clensities, the results
are slightly liigher than those for the unscreened case
(the so-called anti-screeniiig effect). However, for high
densities, dynamically screened results are almost the
same as tlie statically screened case. Tlie inclusion of
plionon confinement does not change the overall behav-
ior of the power loss curves, hut only produces a rigid
downward shift reducing the cooling rate. When we
consider slab phonons, the 10ss is enhanced, while in
the case of guidecl phonons, it is diminished. For all
the studied cases, the energy loss is larger for smaller
systems, although tlie activation energy for the curves
is approximalely the same. The results for log P vs
1/T are all approximately linear and parallel to each
other, as can be seen in Fig. 1. This arises from the
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Figure 2: Electron relaxation time r as a function d the
electron density for L, =L, = 1004, as obtained from the
power loss for tlie bulk model. Each curve corresponds to a
different approximation, as described in the text: classica
without screening (thin solid curve), quantum without any
screening (thick solid cnrve), with static screening (thick
dashed curve). with dynamic screening and no hot phonons
(tliin dashed curve), and including hot phonons, rpr =1 ps
(dotted curve) and r» = 7 ps (dash-dotted curve).

fact tliat the Bose factor represents the dominant tem-
perature dependence in Eq.(7). Then, we can write
P~ (hwro/7)exp(—hwro/ksT), what allows us to de-
fine tlie electronic relaxation time r.

Tlie results for the electronic relaxation times 7 can
be calculated from the low temperature region. Fig.
2 represents 7 vs density, for hulk phonons interact-
ing with confined electrons and the different approx-
imations considered, and L, = L, = 100A. For all
approximations, when no hot phonons are considered,
the unscreened case constitutes a good approximation
for clensities up to 4 X 105cm~!. However, for larger
densities, the static screening isa better approximation
than the unscreened case. The effect of the inclusion of
hot phonons is very strong even for small densities and
mide quantum wires. Fig. 3a shows the dependence
of tlie electronic relaxation time on the lateral wire di-
mension, for tlie bulk phonon model and a density of
10°cm~!. For the larger wires the screening effects on
the electronic relaxation time become more noticeable.
Also, the "hot phonon" effect depends strongly on the
electronic density, even for lower densities. Thisfact be-
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Figiire 3: (a) Electron relaxation time 7 for tlie bulk model,
asafiinction of tlielateral dimension of tliemireL, = L, for
to different densities, N = 10* arid 10% em™!. In the scale
of the figure, the results witliout considering liot plionons
cannot be distinguished, for these densities (solid ciirve).
Tlie values for tlie dynamically screened results (rpn = 7
ps) are shown in tlie dotted curve (\V = 10°cm™!) and tlie
dashed one (10*cm™'). (b)r as a function of tlie plionon
lifetinte =, for different densities and lateral, dimensions:
L, = L. =504 (tliick curves) and 200A (tliin curves).

comes more evident in Fig. 3b, where we show tlie cor-
relation between the "liot phonons™ in the bulk model
and the dimensions of the wirefor a number of different
densities.

Qualitatively similar resultsl®! are obtained for the
elcctron relaxation times in the two models that include
phonon confinement effects. Fig. 4a shows, for the
three models, tlie calculated 7 vs electron density, for
p=0and 7psund L, =L, = 100A4. The slab and
the guided model results were shifted so that all three
models coincide in the low density region. The actual
results for tlie two confined modes are shown in Fig.

411 The values for the guided modes are more than
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Figiire 4. (a) Electron relaxation time r as a fiinction
of tlie electron density for Z, = L, = 1004, and the
tliree plionon approximations: bulk phonons (dash-dotted
curves), slab modes (solid), and guided modes {dashed).
Tlie tliick (lower) ciirves correspond to (7m» = 0) and the
thin ones to 7 = 7 ps. The curves for the two confined
models were made to coincide with the bulk results, for the
low densities. The actual values of the two confined modes
are sliown in (b), where tlie upper curves correspond to tlie
guided modes and the lower ones to the slab modes.
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%

Figure 5. Electron relaxatiori time i- as a function o tlie
phonon lifetirie 7, for mire width L, = L, = 1004 and
N =10* em™, for tlie guided modes (broken curve), tlie
slab modes (s»lid curve) and tlie bulk plionons {(dot-dashed
curve).

100

Toh (PS)

an order of magnitude larger than the slab or the bulk
results, indicating a much slower relaxation.
In Fig. 5 we show tlie actual results for 7,5, for

tlie three mcdels, for a density of 10%cm™!

and L, =
L, = 100A. The overall dependence 0N 7y for the three
cases is tlie seme, although the guiclec! mode results are

slower, especially for low values of 7,.

V1. Conclusion

In summary, we have calculated tlie liot electron en-
ergy relaxaticn raie iii GaAs quantum wires for intra-
subband relaxation via bulk and confiiied LO-phonon
mode emissioii in the electric quantum limit. Our cal-
culation includes electron and phonon confinement ef-
fects, quantum degeneracy, dynamic screening and hot
phonon bottleneck effect. We compare the results for
bulk phonons interacting with confiiied electrons with
the two standard phonon confinement models, iiamely
the slab and tlie guided mode models, and find, consis-
tent with the quantum well situation, that the guided
(meclianical) modes produce more than an order of
magnitude slower energy relaxation then the slab (elec-
trostatic) modss for intrasubband relaxation processes.
The results foi tlie slab modes are close to our calcu-
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lated bulk results. Hot phonon bottlenecli is found to
be tlie single most important physical rnechanism in our
calculations provided 7,5, > 1 ps. Our calculated relax-
ation rates are comparable to those found in quantum
wells,

For all the one-dimensional systems considered,
when the dimensions are small (50A/50A), it consti-
tutes a good approximation to neglect screening for
electron densities below 105 cm~!. For higher densi-
ties, screening effects are important with static screen-
ing becoming a good approximation at very high den-
sities. For larger systems (1000A/1000A), the screen-
ing effects cannot be distinguished except in the case
where hot phonon effects are included. Another im-
portant result is that the hot phonon effect depends
on the electronic density. For 75 = 0, the low den-
sity electron system can be regarded as unscreened and
nou-degenerate, which makes the power loss per carrier
practically independent of density. With the inclusion
of the hot phonon effect (7,5 = 7 ps), when the density
varies from 10° to 10%ecm™1, the value of r increases hy
afactor of two.

At tlie present time, there is no available experi-
mental information on hot electron energy relaxation
in semiconductor quantum wires. Our hope is that our
extensive numerical investigation of the cooling rate will

stimulate experimental activity in the subject.
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