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7:he successful growt,li of a tliin f i h  ferromagnetic material on top of a semiconductor 
1-as opened a new aiid exciting field in solid state physics. Lithographic patterning of the 
fi:rroiilagnetic film will a.1101~ one to construct nonhomogeneous rnagnetic fields on a length 
s:ale of nanoiixters wliich inay iiiteract witli a two-dimensional electron gas underneath the 
fil111. The electrons moving from a zero magnetic field region towards a nonzero magnetic 
field region will feel tliis region as a barrier. New systems are proposed consisting of magnetic 
tlnneling barriers: 1) magnetic quantum wires, 2) double tunneling harriers, 3) magnetic 
dots, 4) inagnetic superlatlices, etc. The forrn of the equivalent potential that corresponds 
to a magnetic barrier depends on the wavevector of the incident electron. This renders 
t ie transrnission though such structures an iiilierently two-d imens iona l  process since the 
t.mneling probability depends not only on the electron's energy but also on the direction 
ol its wavevector. Pronounced resonances are obtained for the tunneling probability and 
tlie conductance of a resonant tunneling device coiisisting of such magnetic barriers. Such 
s::stems can be used as ali electron wavevector filter. The energy spectrum (bound and 
scattered states) for these systems is obtained and the nature of the states is discussed. 

The 1)eha.rior of electrons in 17~.cicroscopicul/y 11on1o- 

geneous inagrietic fields has been used extensively to  ob- 

tain experimcmtal information on properties of charge 

carriers['I Iikc: e.g. their densit,y and the Ferrni sur- 

face (through the Shuhnikov de Ha.as (SdH) effect), and 

their inass (e.g. using cyclotron resonance). Scatte- 

ring of electmns on magnetic impurities form t1he other 

limit in wliic i electrons feel locally (011 an angstrom 

scale) strong nagnetic fields (i.e. microscoyically inho- 

rnogeneous) vhich may act as ~catt~ering centers in e.g. 

diluted seininiagnetic materiais["]. 

Between these limits lie inhon~ogeneous inagnetic 

fields on tli: nanonzeter  scale. They have re- 

cently been :ealized with tlie creation of magnetic 

dots13] ], integration of ferromagnetic materials with 

sen~iconducto:s[~-~] where patterning of such films was 
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recently demonstrated experimentally[q. This new 

teclinology will add a new functional dimension to 

the present semiconductor technology and will open 

new avenues for new physics and possible applications 

like, switches based on the Lorentz force and non- 

volatile memories based on the Hall voltage gener- 

ated by a local magnetic field. A different route to 

create inhomogeneous magnetic fields is through the 

integration of superconducting materials with serni- 

conductors. This was realized experimentally using 

type II superconductors which was deposited on a Si- 

 MOS^'] or a ~a~s/~l~a~s-heterojunction[~~~~]. Mag- 

netic flux lines penetrate the two-dimensional electron 

gas (2DEG) acting as nanoscale scattering centers for 

the e l e c t r ~ n s [ l ~ - ~ ~ ] ,  offering the possibility to study 

weak lo~alization['~l and the dynamics of vortices[141. 

Using lithographic techniques these superconducting 

films can be patterned into any desired form. The ge- 

t~ernmnent  2rddress: Serniconductor Physics Inst.itute, Gostauto 11, 2600 Vilnius, Lithuania. 
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ometry of tlie patterning determines the geometry of 

t,lie inl-ion~ogeneous magnetic field. 

In general tlie shapc anisotropy of tlie iiiagiletic film 

(or the  stripes) will force the magnetization i11 the plane 

of tlie film. Other ineclianisms can be aclive whicli 

can lead to  a magnetization vector perpendicular to  the 

filni, whicli is the  situation we are mostly iiiterested in. 

Out-of-plane magnetization has been realized in ultra- 

thin layers of Fe on ~ ~ [ ~ ~ 1  01: Ch[lG], co inpo~nds  such as 

M I I A I G ~ [ ~ ~ ] ,  CO/N~["] nlultilayers, ancl ultrathin MnGa 

filrns[" and the n~et~astable r-MnAl phase['] whicli can 

be grown epitaxially 011 Gaiis/AlAs heterostructures 

using MBE. 

~ h e  creation of ~uper la t t~ ices  by ai1 inhomogeneous 

magnetic field wa.s proposed theoretically in Refs. [I91 

and [20]. Vil'rns and É ~ l t i n [ ~ ' ]  presented a tlieoretical 

analysis of tlie energy spect,ruiii of 2D electrons near do- 

rnain walls aad  iii a. systein of parallel magnetic strips. 

Transport of a 2DEG in tlie preseiice of a perpendic- 

ular magnetic field modulated wealtly and periodically 

along one direction wa.s stuclied i11 Ref. [L21 a.nd re- 

ceiitly tried unsuccesfully experimentally by Yagi and 

~ y e [ ~ ~ ] .  The  generaliza.tion to  2D magnetic field mod- 

ulation is given in Ref. [24]. R,ecently Van Itoy e-i 

d2'1 studied the  geometric factors controlling the inag- 

iiitude of the demagnetiziiig field of ferroma.giietic thin 

íiliizs with perpendicular magnetization. Different ge- 

oinetries were studied and they found tha.t a grating- 

type structure rvith per i~dic i t~y of a. feiv 100nm t o  lp in  

would give tlie maximum magnetic field strength in the  

underlying serniconduct,or heterostructure. ~ i ~ l l e r [ ~ ~ ]  

considered a different system in wliich a. 2DEG st,rip 

is placed in a perpenclicular inagnct~ic field wl-iich in- 

cremes linearly a.long one direct,ion. He slio~vccl tha t  

tliis system lias a rernarl<able t,iine-reversal synirnetry. 

The  preseiit autl~ors[ '~] studied different systems con- 

sisting of magnetic barriers a.iic1 considerecl also tun- 

neling through double imigiietic barrier~[~']. A quasi- 

ailalytic solution to  a model barrier system was fouild 

iil Ref. [29]. 

In tlie present paper we will consider different con- 

figurations of nonuniform magnetic fields in which the 

noiiuniformity is only along one direction and has a 

typical lengtli scale of tlie order of nanometers. The  

electron spectrum of a 2DEG in simple magnetic struc- 

tures like, magnetic s tep  (Sect. 111), magnetic barrier 

(Sect. IV) and magnetic well (Sect. V) is considered 

a.nd discussed. The  similarities and differences between 

similar potential problerns is pointed out.  M'e consider 

electron tunneling through structures of magnetic bar- 

riers and in particular resonant tunneling. In contrast 

with tunneling through electric barriers, the tunneling 

probability depends not only on the  electron's energy 

but a.lso on the direction of its wavevector. This ren- 

d e r ~  t l ~ e  tunneling an inhercntly two-dimensional pro- 

cess. Furlhermore we found that  the magnetic barriers 

possess wavevector filtering properties. 

11. N o n h o m o g e n e o u s  m a g n e t i c  field profiles 

As shown in Fig. 1 a magnetic barrier can be cre- 

ated by the  depo~i t~ion,  on top of a heterostructure, of a 

ferroniagnetic stripe with magnetization (a) perpendic- 

ular and (b) parallel t o  the 2DEG, (c) of a conducting 

stripe with a current driven through i t ,  and (d) of a 

type I superconductiilg plate interrupted by a stripe. 

111 a11 cases t,l.ie 2DEG is situated a t  a distance zo be- 

l o ~  the  stripe whose thickness and height are d and h,  

respectively. 

For tlie case of magnetic stripes we consider the fol- 

lo~ving Maxwell equations 

mliich cai1 be integrated and resuIts into 

For illustrative purposes we consider perpendicular 

magnetiza.tion (Fig. 1(a)) in which the width of the 

ina.gnetic strip d is very small such that  we can re- 

place it by a dipole line with magnetic charge density: 
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Pilf(1;3 = - i ~ o b ( ~ ) $ 6 ( z ) .  Integrating (2) results in Lhe 

ma,gnetic potential 

which leads to  t,he magnetic field distribution 

and the vectcr potential 

If we l iaw stiipes of ~vidtl i  d iiistead of wires we have 

to integratc I:q.(2) nuinerically in t*lie region -d/2 5 
x' 5 d/2. I t  ;urns out t,lla.t in t,he lirnit - 0 ,  lz < d the 

magnetic fieli distril~ution talces tlie simple forni ( h  is 

the height of ,he inagnetic strip) 

wifli Bo = M h / d  ancl K(x, z) = 22d/(2" z2) wliich 

is depicted iii Fig. 2(a) for t h e e  values of zo. Sim- 

ilarly for pardlel magnetization we found I í ( z ,  z )  = 

-zd/(x2 + z2;, and wliich is depict,ed in Fig. 2(b) for 

tliree values of zo . 

stripe , 
\ / Perpendicular 

1 rnagnetization 

rnagnetization 

t-' 
2D sy:,tern 

(c) ccurrent 

(d) Superconductor 

Figure i :  Sectional view of severa1 systerns for prodiiciiig 
non-lioniogeneoiis rnagnetic field profiles in t,lie plane of tlie 
2D electroii gas. 

Figure 2: Magnetic field under tlie stripe corresponding to 
t.he four different configurations as given in Fig.1. The mag- 
netic field is given at different distances from the magnetic 
stripe: to = 0.1 (solid curve), zo = 0.3 (dashed curve), and 
zo = 0.5 (dotted curve). 

For a wire with a current I going through it (Fig. 

l(c)) the magnetic field is determined by the  Maxwell 
+ 

equation: mtl? = 4nj/c  which results in the  angular 
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magnetic field componeiil R, = ~I/cJ-  a t  a radial dis- 

tance r from the wire. In the plaiie of thc 211EG a 

distancc zo froin the wirc this leacls t,o t<he iixignetic 

field profile 

witli LIo = 2I /c  which is clepictecl in Fig. 2 ( c ) .  The 

vector poteiitia,l is obta.iiied by i~it~egrating tlie ecluation 
4 -. 

B = rotA which gives 

where R is some distance a.rvay from tlie wire wliere the 

opposite current is fiowing. For a stzip of finitc width 

d such t,liat zo, h < d we can casl thc result into the 

form of Eq.(G) with K ( z !  z )  = 1n[(z2 + zL)/d2]. This 

magnetic field profile is sliown in Fig. 2(c). 

For a superconducting stripe ii-i a magiietic field 

we liave to  solve tlie Maxwell equations in the super- -. .+ + 
conductor: j = -(ne2/mc)A! aiid V 2 H  = ( I / L Q ) H ,  ... 
wliere Li  = mc2/4nne%nd we inade use of ~ o t N  = 

-(47íne2/mc2)A. Outside tlie superconductor we have 

t,lie equation: V2<D;v = O, wit,li tlie bouiidary coiidition 

o11 the superconductor B ,  = -a@,,4/an = O .  This 2D 

poteiitial probleni cai1 be solved by t,he conforma1 inap- 

piiig x + ir = sin(nw) where me iiitroduce the coil-lplex 

potential W = a,,, + 29. Tlie solution of the prob- 

lem is W = iw and the  ma.gnetic potential is given 

by = R e W  = -Im(arcsin(x + iz))  which results 

into tl-ic magnetic fiel(] B = B ~ R ~ ( I /  J- + izl2) 

as shown i11 Fig. l(d).  

Tlie ma.giietic field produced by tlie,stripes, iil units 

of Ro,  is shown in Fig. 2 for tliree differeiit deptlis: 

zo = 0.1 (solid curve), ro = 0.3 (dashed curve) and 

zo = 0.5 (dotted curve). The  smaller 20: i.e., t>lie closer 

the 2DEG is to the stripes, tlie sha,rper tlie magnetic 

barrier structure. With increasiiig zo t,lie magnctic field 

profile becomes gradually sinootlier. Concurrently with 

Olie inagnetic field proiile one cxpect8s a. sca1a.r (electric) 

poteiitial, which cai1 be sliort circiiited by putting a 

iioil-inagiietic metallic filii1[23] betnmii  the  2DEG and 

the patterned layer and which therefore will be ne- 

glected. 

111. Motioii iii noiiliomogeneous inagnetic fields 

1% corisider a 2DEG moving in the  (z, y) plane with 

a magrietic field B along the z-direction. In the  single- 

particle a.pproxirnation such a system is described by 

tlie ha.iniltonian 

Vi'e take the vector potential in the Landau gauge 

A = (O,A,O) and the magnetic field is uniform along 

the y-direction but modulateci along the  x-direction, 

and thus 

wliere we have the magnetic field profiles of previous 

section iii mind. 

Let us introduce the  following characteristic pa- 

rarneters: i) tlie frequency u ,  = eB,/mc with B, 

some t,ypical magnetic field, and ii) tlie length 1~ = 

d w ,  For GaAs and ai1 estimated Bo = .lT we 

liave tn = 813X, iiw, = .í'imeV, and .!BwC = 1.4rnlsec. 

Froin now on we will express a11 quantities in dinien- 

sionless units: 1) the magnetic field B ( x )  -+ B,B(x), 

2) thc vector potential A(z)  - BOlBA(x),  3) the  time 

t -+ t l w , ,  4) the coordinate i -+ lBr ,  5) the  velociiy 

v -, l B ~ e ~ ,  and 6) the  energy E -, hw,E. 

In tliese dimensionless units the  two-dimensional 

(2D) Sclirodinger equation becoines 

Because of tlie special forin of the  gauge the system is 

traiislatioiial invariant along the y-direction and as a 

consequence we ca.n choose the following form for the  

wavefunction 

where - q  = ky is t he  wavevector of the electron in the  

y-clirect,ion which is a conserved quantity. This does 
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not  iniply tlist 73, is conserved. Tlie wavef~mction $(z) 

act,ually satiz.fies tlie following 1D Scliroclinger ccluat,ioii 

c.an be interprcted as a cl-clepenclent ~1ect~rica.l potciitial. 

Not,c that  iii Lhe case of oiie-clii~~eiisiorial (1  D) ma.gnet,ic 

field motlula,ion studied i11 the present. paper there is 

an  analogy Iwtween tlie magnetic fielcl a.nd tlie potent,ial 

giveii by tlie folloming relatioii 

A jump in tlie nmgiietic field will result. iri a clisconti- 

nuity in the ilerivative of t,lie poteiitial V(3:). 

IV. Magnelic step 

First, let us consider tlie most sin-iple slia,pe for a. 

noiihomogenc:ous magnetic fielcl: tlie inagnetic slep. 

In this situation the magrietic felcl fills t>he half space 

z > O whicli is described by B ( x )  = O(z) with the 

correspondin,; vector 13otentia.l A(x)  = xQ(s ) ,  wliere 

0(z) = l ( z  2: O), 0(z < O) is the st&-funct,ion. Tliere 

a.re two cliffe~cnt cases wliich we lime to  consider. 

C a s e  1 ( g  > O ) .  The  potential V(x) = ~ ( 2 0 ( ~ ) - ~ ) ~  

lias the forn- of an  asymiiiet,ric qua.iitum well which 

deepens with iiicreasing q. I t  is well-kii~wi-i[~*] tha t  

sucli a. well can have a bouncl s ta te  if tlie mel1 is suf- 

ficiently deep. Thus,  we liave to consider sepa.ratelly: 

a )  E < y2/2 where bouiid eigenst,at,es a.re expected to  

appear in thl: region a: q, a.nd b )  E > q2/2 which 

corresponds to scattered st,ates, describing tlie elec- 

tron reflectiol by the magnetic step.  Slie appearence 

of bound stat es makes this syst.ein essentia.lly different 

from the usual potential stcp problem where only scat- 

tered states exist. 

For Case 2 (q < O) tlie equivalent poteiitial is 

a constant L'(x) = q2/2 for z < 0,  anel a ba.rrier 

V(z) = $(x6(x) + 1 q ( ) 2  in the region z > O wliich is 

unbouiided for x - m. In this case there are only scat- 

tere(1 stat,es wliich corresponds t1o electron reflection by 

Ille niagnet,ic ha.rrier. 

For z > O t,he Schrodinger eyuation takes the form 

witli z = d ( x  - q )  and p = E - 0.5. The solutions 

of it are tlie SVeber f ~ n c t ~ i o i i s ~ ~ ~ ]  Dp(z) which have the 

following asymptotic beliaviour: Dp(z)I,,+, -+ O. In 

tlie region z > O t,lie wavefunct,ion becomes $(x) - 
~ ~ - ~ . ~ ( 2 / 2 ( ~  - q)), up to a normaiization constant, 

wliile for z < O tliere is no magnetic field and the wave- 

funct,ioii is proportional to $(z) - e x p ( z J m ~ )  

wlieii E < q 2 / 2 .  Mat,ching the wavefunctions and its 

first derivative at  z = O we obtain tlie following equa- 

wliosr solutions lead to  the  electron eigenvalues E = 

&(q) witli tlie corresponding wavefunction I&*(.). 

Once we know the  eigenvalues and the  correspond- 

ing wavefunctioii we can obtain the other characteristics 

of tlie I~ound states. The average electron velocity of 

tlie hound sta.te along the  inagnetic step (y-direction) 

wliere tlie minus sign results from the definition q = 

-ky.  Tlie mean electron position along the z-axis 

X,2(q) has the simple form 
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Figure 3: a) tlie energy spectriim for tlie bound states (solid 
curves), and b) the corresponding average velocity dong the 
rnagnetic step un(q) (solid curves) ancl tlie electron avcrage 
position X,(q) along the .c-axis (dashed curve) for tlie niag- 
netic step case. 

The  nuinerical results of tlie solut,ion of E q  (17) are 

depictecl in Fig. 3(a) by t,lie solicl curves, for tlie l o w  

est tliree eigenvalues. Tliese curves start  a t  a certain 

q-value (denoted by tlie solid dot in Fig. 3), which is 

a function of n. The  corresponding results for the av- 

erage electron velocity v,,(q) (solid curves) and mean 

electron position X , (q )  (claslied curves) are sho~vn in 

Fig. 3(b). Notice tliat t,he eigenvalues asymptotically, 

i.e. q - ce, reach thc values (7% + 112) for J a l d a u  

levels iii a. liomogeiieous magnetic fielcl as it should be. 

In tliis asymptotic limit tlie meaii electron positioii ap- 

proaclies X,,(q) g anel the a.vera.ge electroii velocity 

tends to zero. Iii this limit tlie elect,ron is situat,ed far 

from the iimgnetic st,ep a.nd is iiot inflrrenced hy the 

z < O region. Witli decreasing q tlie electron wave- 

fuilction starts  to feel tlie magnetic step: 1) its energy 

decreases, because part  of the wavefunction will be sit- 

uated in a region with zero magnetic field where the 

electron will liave a smaller líinetic energy, 2) it,s aver- 

a.ge position is less tlian q, because the wavefunction 

js sucked into t.he x < O region, and 3) i t s  velocity in- 

creases and the electron runs along the step. From Figs. 

3(a) and 3(b) we notice tliat the  width of the transition 

region, i.e. tlie q-region where E,, < ( n  + 1/2), is nar- 

rower witli increasing n .  The  a.bove properties of these 

bound states forces us t,o make the analogy with edge 

~ t a t e s [ ~ ~ ] .  DTevertheless there are a number of differ- 

ences: 1) tlie available q-space for edge states increases 

witli increasing Landau leve1 number n which is op- 

posiite to the belmvior of tlie present bound states, 2) 

tlie direction of the velocity is opposite as compared to  

tliose of the usual edge states: and 3) the magnitude of 

tlie velocity satisfies Iv,i(q)l 5 q which is different 

edge st)a.tes which do not have an  upper bound on 

velocity. 

from 

their 

Figure 4: The electron wavefunction for the lowest bound 
state for different values of the electron momentum in the 
y-direction ( q )  in tlie case of a magnetic step. 

From Fig. 3 we notice tha t  there exist critical val- 

ues q), sucli tha t  for q < q i  no bound states are found. 

Tliese poiizts are indicated by the dots on Fig. 3(a) 

and are situated on the free electron spectrum curve 

E = q2/2 (dashed curve in Fig. 3(a)). For the plot- 

ted curves we found t,lie critica1 values: qg = 0.768, 

qT = 1.623. q; = 2.155 at which the eigenenergy curve 

E,(q) is tangent to  the E = q2/2  curve. At these 

points the electron velocity ecpals the free electron 

value: -v,, = q, and X,,(q) + -co. The  electron wave- 

function $,,q(x) is shown in Fig. 4 for the n = O case 

ancl clifferent values of the wavevector q. This figure 
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nicely illustrates the increasing leakage of t,he wavefunc- 

tion into tlie x < O region witli decrea.sing q-mlue a.nd 

the concomit tant  increasing asymmetry of tlie wave- 

f~~i ic t ion .  

Not,ice t h t t  in the  present nmgnetic step case tlie 

tra.nsmission coefficient is a.lways zero. Independent of 

the strengtli of the magnetic field anrl tlie magnitude of 

tlie electron fiiergy an  electron, inipecling oii tlie mag- 

net,ic barrier xill always be refie~t~ecl, whicli is a conse- 

quence of the Loreiitz force acting on tlie electroii. 111 

this respect this system is different fro111 the  textbooli 

potential step problem i11 whicli the reflection coefficient 

becomes different from zero wlieii tlie elect,ron energy 

is larger than the  potential barrier heiglit. 

The n1agnet.i~ step can be used as a building block, 

from which more complicated st,ruct,ures ca.n be builcl. 

As a first exiinple we consider tlie rna.gnet,ic Imrrier 

in wliich tlie niagnetic field is different from zero in 

a strip of widtli d. Iii t h b  case the niagnetic field 

has the folloming form iii dimensionless uiiit-s: R(x) = 

B(d2/4 - x2) ,  and we choose tlie vector poteiltial as fol- 

l o m :  A(x) = -d/2 (x  < -d/2), .z (1x1 5 d/2),d/2 (z > 
cl/2). Tlie andogous potential V(.T) of (1.4) depends oii 

tlie value of the wavevector q: wlien Iql < d/2 the  po- 

tential consisi ,~ of an asyminetric well of fiiiite height, 

and when 14.1 > d/2 it is a gradual step. The prob- 

lem is symmetric under tlie substitut,ion q - -q (a.nd 

x -+ -2) and consequently we rnay liinit ourselves to 

tlie case q 2 (1. 

There are tlirec clifferent eiiergy regions iniportant 

to us: 1) O 5 .J 5 ( ~ l / 2 - ~ ) ' / 2  wliere bound eigenstates 

cai1 exist, 2) (d/2 - q)2/2 < E 5 (d/2 + q)2/2 whicli is 

the reflection .egion, and 3) ( d / 2 + q ) ' / 2  < E where tl-ie 

electron is transmitted througli tlie magnetic barrier. 

First let ut: concentrate on the situation i11 which we 

1ia1.e bounded electron st,a.tes. In t,his ca.se the  electron 

wavef~~iiction in the barrier regioii, i.e. 1x1 < d/2, is a 

linear combination of n é b e r  functions 

which we must n ~ a t c h  (and its first derivative) to  the 

free electron wavefunctions a t  the  points x = fd /2 .  

This mat,ching results into the equation 

c'(.) = J(q .t d/2)2/2 - E D E - ~ . ~ ( ~ ~ z ) - D É - ~ , ~ ( ~ ~ z ) .  

(23) 

Eq. (21) was solved numerically. The  results for a wide 

nia,giietic barrier (d = 5) are shown in Fig. 5 by the  

solid curves which end a t  the solid dots. The latter 

are situated on t,he E = (q - d/2)2/2 curve (dashed 

curve). Notice tha t  the  spectrum resembles the  one of 

the nmgiietic step case (see Fig. 3(a)) with the  distinc- 

tion t1ia.t the latter has ai1 infinite number of branches 

while the oiie for a niagnetic barrier has a finite number 

of bound states for each q .  For d = 5 there are only 

tliree brmclies in tlie energy spectrum. The nuniber 

of energy branches decreases with decreasing barrier 

width d. Irrespective of the  value of d there is always 

ai! lenst o n e  cliscrete energy value for q = O. This is 

a conseqiience of the fact tha t  for q = O the potential 

V(z) is one-dimensional aiid symmetric. Such a poten- 

tia1 is knowii to  liave a t  least one discrete e i g e n ~ a l u e [ ~ ~ ]  

irrespective of tlie size of the potential well. The value 

of the lowest bra.nc1i in the spectrum is plotted in Fig. 6 

for q = O as function of the barrier width d. Notice tha t  

wlien S < 1 (i.e. when the magnetic barrier width is less 

than the  magnetic length l B )  the eigenvalue approaches 

Eo(q = O) z (d/2)"2 which is shown by the long- 

daslied curve iii Fig. 6. Although the electron is bound 

t,o tlie barrier, in the case of small d-values the  electron 

wavef~~nction is situa.ted mainly outside the barrier and 
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consequently its energy a.pproa,ches t,he Iieight. of t,he po- 

tential well V(d/2). The ~ i c l t ~ l i  iii q-spa.ce ( 4 q )  of the 

lowest ciiergy b rmch  is a.lso g iwn i11 Fig. 6. I t  is seen 

Ihat tliis width decreascs rapitlly to zero wlien d < I 

ancl in thc opposite case (wlieii (1 - \m) it. asymplotS- 

ica.lly reaclies the liiie Ay /2  = d/2 - q$ (short-daslied 

line). Wliere q: = 0.768 is the value as obtained froin 

tlie ma.gnctic step spectriini. AnotJier djst,inction as 

comparcd to tlie magnetic banier spectrum (sce Fig. 

3(n ) ) ,  is tliat the energy eigenvalues are smaller iii mag- 

nitude tliaii t,liose in tlic magiietic step case. 

Figure 5: The energy spectrlini for tlie bountl states (solid 
curves) in a magnetic barrier of widt~li n' = 5. Dashecl curve 
E = ( t1 /2  - 51)'/2 indicst,es tlie free elect,ron spectruiii. 

For tlie unbouncIed st,atcs we Iiave calculated the 

transmission coefficient wliicli now clepciicls not only on 

the electron energy but alço o11 tlie electroii wavevec- 

tor q in the y-directioii. In tlie present case tuimeliiig 

is a two-dimensional process in tvliich tlie tot.al elec- 

tron wavevector and tlie elect,ron energy is conserved 

but the direction of tlie wa.vevector is a.lt,erecI. A con- 

tour plot of t,he transinissioii coeficient T(q,  E) versus 

initial electron velocity compoilents (u , .  5 , )  is showii iii 

Fig. 7 for a magnetic barrier of n7idtli c/ = 5. The  

yuantum transition coefEcient is zcro above tlie liile 

vy = (v~: - d2)/2d wliich is the result. one woiilcl ob- 

tain from classical mcclianics and wliich defitics a semi- 

irifinite transmission winclow. Below this line we ha.ve 

classically T = 1, biit yuantuin mecha.nica.lly T(q> E) 

gradually increases with increasing electron cnergy. For 

rather thick barriers (as in the case of d = 5) tliere is 

some additional structure a t  low energy which is en- 

larged i11 the inset of Fig. 7. There is an  additional 

peak arouiid (v,. i i y )  = (0.3, -2.5) which is a conse- 

yuence of tlic presence of a virtual energy leve1 above 

the quant um well V q ( z ) .  

I I 1 

o 1 2 3 4 

d 

Figure 6: Tlie lowest eigenvalue of the bound state in a 
~nagnetic barrier as function of the barrier width for q = O 
and the widtli (Aq) of tlie lowest energy branch in q-space 
(solid curves). Tlie long-dashed curve indicates the height 
of tlie pot,ential Vq=o(x = d / 2 )  = d2/8 and the short-dashed 
line Aq/2 = d / 2  - q: indicates the asymptotic value of that 
rvitltli defined from tlie magnetic step spectrum. 

Figure 7: Contour plot of the transmission coefficient 
through a magnetic barrier of width d = 5 in the incident 
elect.ron velocity (v,, uy)-space. 

VI. Magnetic wire 

The  inverse situation of the previous prohlem is the 

magnetic rvell case which we will discuss now. Because 

of the essential 2D character of the  electron motion 

in a magnetic field we should rather speak of a mag- 

netic wire. In dimensionless units the magnetic field 
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is given by: B(z )  = 0 (1x1 5 c1/2):1 (1x1 > d/2), Tlic corresponding wavefunctions are constructed 

aiid the corresponding vector poteiitial is: A(%)  = by matchiiig t,he quasi-free electron wavefunction in tlie 

.2: - d/2 (x :. d/2) ,0  (1x1 < d/2),.7: + d/2 ( z  < -d/2). regi011 1x1 < d/2 with tlie Weber functions: +(x) = 
Thc  value of the vector poknt ia l  is nom iiiil~ounded, i.e. Drs.-o.s(&JS(z d/2 - q)), which are valid in the re- 

A(x)(,,*, -. f m: ancl as a coilsequeiice tlie pot,eii- giions 1x1 > 4 2 .  This matching of the wavefunction 

tia.1 satisfies: V(x)l,,-~-, - cc which implies tliat t,lie a.nd its first derivative leads to the following algebraic 

electroii iiiotion is confiiied i11 tlie 2-direct,ion aiid ,111 equatioii for tlie eigeiivalues 

ihe staies ar: bound a t  least in this direction. 

where X: = V ' 2 ~  - r!2 for 2 E  > q 2  ancl k = 4- 
for 2 E  < q2 in which case t,he trigonometric f~inctions 

shoidd be replaced by their corresponding hyperbolic 

fuiictioiis. 

TIie results of tlie niinierical solution of this equa- 

tioii are presented in Figs. 8(a.) for a wide well (i.e. 

d = 5), and (h) for a narrom well (i.e. d = 1). 111 

the wide well case (Fig. 8(a)) tlicre are clearly t,wo dis- 

tinct regions which are separat,cd by tlic free electron 

eiiergy E = q2/2 curve (dashed curve in Fig. a(&)). 

For L? < q2/2 the energy spectruin coiisists of Laiidau 

levels. Thc  dectron is niainly located iii tlie barrier 

wliere there cxists a. uiiiforni 1iia.giiet~ic fielcl. For siliali 

q-values, i.e. E > q2/2, t.he spect,ruiii coiisists of baiids 

wit,Ii free electron-like motioii in the y-dircction. This 

is similar to  the case of the well-kiio~~~n qua.ntum wire 

1vit.h electricid potential ba.rrieis. Wlien we decrease 

the widt,h of tlie well the t,wo regions are less clistiiict 

as is appa.rent in Fig. 8(b) for t,he case of d = 1. For 

d = 1 tlie well is narrower tliaii llie widt,h of tlie elec- 

tron wavefuii~tion and consequent,ly t,l~ere is a.lnra.ys ai1 

appreciable overlap of the wavefunction mit,Ii tlie n1a.g- 

netic barrier regioii. Notice t,liat tlie energy levels 1ia.ve 

aliilost 110 dispersioii. The  different behavior between 

tlie two cases is also illust,rated in Fig. 9 where the  elec- 

tron velocity is shown for the different states. Notice 

that  tlie velocit,y exliibits a niaximum near E = q2/2 

a.nd it diiniiiishes fast for y > which is the region 

where the electron is rnaiiily located inside the mag- 

netic barrier. Notice that  for wide wells, i.e. see the 

d = 5 case, the velocity curve v,(q) can have severa1 

1oca.l niaxinia's which is a consequence of the repulsion 

of tlie different energy levels as seen in Fig. 8(a). In the 

ca.se of tlie usual quaiituiii wiie constructed from walls 

coiisist~ing of potential barriers the electroii velocity is 

v,, = fiky = - q  and is independent of the energy level 

index n and is a uniform increasing function of the elec- 

troil mavevect,or. The  behavior of v,,(q) as depicted in 

Figs. 9 is also different from the one of edge states in 

whicli v,,(q) is a uniform increasing function of q .  

The density of states (DOS) for the  two cases is de- 

pict-ed in Fig. 10. Notice that  like for the quantum 

wire ca.se tlie DOS exhibits singularities at  the  onset of 

each energy level. But there is a difference, the  width 

iil energy space of each level is finite and bounded by a 

singularity in thc DOS. Suppose we have a systeni in 
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Figure 8: Tlie energy specruin of a magnetic well for two 
clifferent values of the widtli: a) (1 = 5, and b) d = I .  

Figure 9: The  electron average velocity corresponding to 
the energy spectrum of Fjg. 6. 

Figure 10: The density of states of the electron states in the 
magnetic wells correspoiiding to Fig. 6. 

which we are able to increase the Fermi energy gradu- 

ally. Starting from zero we first populate the  quantum 

wire states, the electrons are mainly situated in the 

wcll region. Further increasing the Fermi energy we 

see that  for d = 5 we first start  t o  populate the  next 

energy level which consists initially of states located in- 

side the well. For d = 1 on the other hand we start  

to populat,e states which are situated in the  magnetic 

barrier region and which are nothing else then 2D Lan- 

dau states. Thus  by changing the  Fermi level we are 

able to  have 1D states or 2D states a t  the Fermi level 

which will have considerable influence on the  electrical 

properties of the  system. T h e  1D states are quasi-free 

while the 2D states are localized on Landau orbits and 

can only move if scattering is involved. 

VII. Resonant tunneling structures 

In previous sections we have made a detailed study 

of the nature of the electron states in different magnetic 

ba.rrier structures. In this sec1,ion we will consider dif- 

ferent tunneling structures where we will focus on the 

tunneling current going through i t .  
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For simplicity we now consider electron tuiineling 

t,hrough a. n-a.gnetic barrier of constant height Bo and 

widtli d = 2.1 - z-  surrouiided by regions of zero 1na.g- 

netic field. 'rlie free electxon wavefunction on t,he left 

side of t,lie barrier ( z  < z - )  is ~ - ( z )  = ilei"-("-"-) $ 

B ~ - L ( x - z -  I and on t,lie right side of it ( z  > n:+) 

= eik+(x-a+)  , wliere k* = &[E - V(+m)] is 

tfhe x conlpolent of the elect.roii wavevect,or on the cor- 

responding side of tlie lnrrier. Under tlie barrier t,l-iere 

'11 as a are two solu tions for G(z) whicli cai1 be writtc; 

linear coinbilation of tlie Weber funct,ion Dl,(z) and 

it,s derivative D;, (z) .  Next we constriict tlie transition 

where we defined the functions U(z) = 

c{D; (&) D,, (t-) + D; (-A) D,, (-z)) aiid u(x) = 

c{D,(fi)D,(z) - D,(-&)o,,(-z)}. wit,li p = 

E - 112 and z = fi(z - q ) ,  which satisfies the bound- 

ary conditior s u(xo) = 1, u1(xO) = O ,  v(x0) = O ,  and 

vl(ro) = 1. Matching the wave function a t  t,he edges 

of the barrie., x*, by means of the above inat>rix we 

obtain 

the electron transmission tlirough the barrier t ( E ,  q )  is 

given by 
k+ 

t ( E :  8) = 14i 1 

I I (27) 

where T-' st,ands for tlie iiiverse of the matrix T r 

T(x+ ,  L ) .  ]por complex structures iiivolving severa1 

barriers of coiistant height: the total T matrix is a procl- 

uct of the T matrices tliat correspond to  tlie sepa.rate 

barriers and the one describing tlie free electron propa- 

gation between tlie barriers. As for tlie electron current 

througli sucli a structure! it can be ca.lculatec1, in the  

ballistic reginie, by introducing the conductance G' as 

the electron f l l~w weraged over half the Fermi s u r f ~ e [ ~ ~ ]  

where C$ is the aiigle of incidente rehtive to  tlie x direc- 

tion. Fiirther: Go = e2mvF&/h2, wliere E is the 1engt.h 

of tlie structure in the y direction and VF the Fermi 

velocity. 

To reveal the main qualitative features of tunnel- 

ing tlirough these barriers we restrict ourselves to: i) 

(1 sinyle barrier which was already discussed in Sect. 

V,  a.nd i i )  complex stnictures composed of rectangular 

magnetic barriers one example of which is shown in the 

inset of Fig. 11. 

Figure 11: Contour plot of the electron transrnission prob- 
ability in the (v,, v,) plane for a more complex structure. 
The magnetic field profile of the corresponding rnagnetic 
barrier are shown in the inset of the figure. 

The  contour plot of tlie transmission through a com- 

plex structure, shown in tlie inset of Fig. 11, is pre- 

sentetl in the figure. Notice tha t  the quantum and the 

classical calculation give drastically different results. 

This complex structure can be used as a building 

bloclt t o  malte a double barrier-like structure which is 

composed of two units identical t o  tha t  of Fig. 11 with 

a zero field region, of length L = 3,  between them. 

We sliow oiily the  velocity contour plot in Fig. 12 and 

the corresponding classical result. Again we see sharp 

resonances, the wavevector filtering properties, and the 

stroiig disinilarity between the quantum and classical 

results. 
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Having seen tlie tra.nsmission results, one nlay won- 

der to  wlmt cxtent, t,heir structure is ieliect,ecl iii nieasiir- 

able quantities wliicli involve some kind of avemging. 111 

Fig. 13 ive shoiv Ihc conduct~aiice, as given 11y Eq. (25), 

for the previous tunncling st,ructure sho~vn i11 tlie inset 

of tlie figure, t,oget,licr witli tlie corrcspoiicling cla.ssical 

result(dottec1 curves). Despite tlie averagirig of t ( F ,  q )  

over lialf tlie &rmi surface, we Iia.ve a.ga.in strong res- 

oilant structure. This struct.ure will l~econie shaiper if 

one cai1 select the wavevect~ors t;hat. give the sharpest 

rcsonance in the transmission. I11 pririciple t,liis cai1 lx 

achieved using quantum point cont.acts. As for t,he clas- 

sical result, we see again t-1ia.t they a.re determincd only 

by the first barrier in each structure. 

Altliougli our considera.t,ion of electron tuiirieling 

tlirough the rectangular magiletic barrier structures 

gives oiily a qualitative picture, nevcrtlleless these res- 

onaiit tunneling spikes should be present in t,hc iuore 

realistic cases with barriers o i  smootli shape, cf. Fig.2. 

Indeed these spikes do not depentl on Lhe actnal sha.pe 

of tlie magnetic barrier hut  only on the presence of bar- 

riers i11 tlie potent,ial V ( z ) .  

Figure 12: Contoiir plot of the electroii transmission proba- 
bilitg iii the (v,, v,) plane for tlie resoiiaiit. tunneling striic- 
tiire composed of the cornplex barrier structnre of Fig. 1 I 
in wliicli tlic barricrs arc separated bg t,lie clist,ancc. L = 3. 

o 1 2 3 4 

Fermi Energy (hw,) 

Figure 13: Tlie conductaiice tlirough the barrier structure 
shorvn iii the inset for different values of the barrier para- 
ineters. Tlie dot,ted ciirves show the conductance calciilated 
classically. 

The  spectra of elect,roils rnoving in 2D and inter- 

acting with nonhomogeneous magnetic fields was cal- 

culatcd. Different structures of nonhomogeneous mag- 

netic fields in one clirection are considered. The  simi- 

larities and differences between similar structures buiit 

frorri electrical potentials are pointed out.  The  motion 

in the present case is essential 2D while in the electri- 

cal potentia.1 problems often a separation of variables 

is possible which reduces the problem t o  1D. In the 

present case the problem can be mathematically cast 

int,o a 1D problem but  the physics and the motion stays 

essent,ially 2D. In the magnetic case the potential V ( x )  

appearing in the mathematical 1D problem depends on 

the electron wa.vevector (q)  which maltes i t  inherently 

two dimensional even in tlie case of one-dimensional 

ma,gnetic fielcl modulations. 

One of the inteiesting features of nonhomogeneous 

inagiletic field struct,ures is t ha t  a step in the  magnetic 

field can bind electrons. The  spectrum has bounded 

and unbounded (scattered) states. The  wavefunction 

of tlie former are confined to  t,he region with non-zero 

magnetic field. The  discrete and continuum part of the 

spectrum over1a.p in an  energy range. This is essen- 

tially different from potential steps which act always 
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repulsively. i l s  a consequence magnetic barriers can ex- 

hibit bound states and tuniieling through them turns 

out to be miicli richer: for example tunneling cai1 oc- 

cur tlirougli :,ucli bound states wliich nlay lead t,o quasi 

resonances ii- the traiismission coeficient. Tunneling is 

essentially a 1!D process where only transmission is pos- 

sible in a senli-infinite window iii velocity space. Such 

a magnetic barrier structure can be usecl as a filter for 

electron wavc:vectors. A combinat,ion of such ma,giletic 

barriers will i.esult in more coinplicated structures, like 

for exaniple resona,nt tunneling structures a.nd super- 

lattices. 

FVe found that  the quantum transmission tlirougli 

magnetic-barrier structures: i) depends not. only oil the 

energy but  aljo on tlie direction of the wavector, ii) pos- 

sesses wavevcctor filtering properties, iii) shows well- 

pronounced iesonances whereas the classical one does 

not, aiid iv) is drastically clifferent frorn the c1a.ssica.i 

transmission wliicli is deterininecl only by the sum of 

the barriers m d  is independent of the distance L be- 

tween them. 

We havc :;hown that  tlie pliysics of electron trans- 

port in nonliomogeneouos rnagnetic fields is a rich 

siibject. Fu1,thermore one cai1 thinli a.bout creating 

niagnetic dots, tlie theoret,ica.l a.na1ysis of wliicli is iii 

progress. Otller possible systenis are magnetic super- 

1at)tices. In this ca.se we may distiiict: 1) weali ma.gnetic 

~uperlat~tices iii which tliere is only a very 1vea.k n-iodu- 

lation of the nagnetic field. Tliis problein was studied 

in Ref. [22] i.1 wliich TVeiss oscillations were predictecl 

i11 the inagneto-resistance whicli are a. consequence of 

a coinmensurability between the periocl of t,he super- 

lat,tice and tEe diameter of tlie cyclotron orbit,, ancl 2) 

strong inagnt,tic superlattices in wl-iicli we inay have: 

a) tlie situation of alternating ma.gnetic wells and mag- 

netic barriers such that  tlie average magnetic field is 

zero. This  system is now similar to  tlie Kronig-Penney 

model, and h)  tlie case witli only magnet,ic barriers. 

IVow the aveiage magnetic field is non zero a.nd as a 

consequence the electric potential V ( x ) !  Eq.(14), is un- 

bounded and a11 the states will be localized in the direc- 

tion of the superlattice. The study of these problems is 

in progress. 
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