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The successful growth of a thin film ferromagnetic material on top of a semiconductor
las opened a new aiid exciting field in solid state physics. Lithographic patterning of the
ferromagnetic film will allow one to construct nonhomogeneous rnagnetic fields on a length
scale of nanometers which may interact with a two-dimensional electron gas underneath the
film. The electrons moving from a zero magnetic field region towards a nonzero magnetic
field region will fedl this region asa barrier. New systems are proposed consisting of magnetic
tanneling barriers: 1) magnetic quantum wires, 2) double tunneling harriers, 3) magnetic
dots, 4) magnetic superlattices, etc. The forrn of the equivalent potential that corresponds
to a magnetic barrier depends on the wavevector of the incident electron. This renders
tie transmission through such structures an inherently two-dimensional process since the
tinneling probability depends not only on the electron’s energy but aso on the direction
of its wavevector. Pronounced resonances are obtained for the tunneling probability and
tlie conductance of a resonant tunneling device coiisisting of such magnetic barriers. Such
systems can be used as an electron wavevector filter. The energy spectrum (bound and
scattered states) for these systems is obtained and the nature of the states is discussed.

recently demonstrated experimentallyl?.
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This new

The behavior of electrons in macrescopically homo-
geneousinagrietic fields has been used extensively to ob-
tain experimental information on properties of charge
carriers{!! like e.g. their density and the Fermi sur-
face (through the Shuhnikov de Haas (SdH) effect), and
their mass (e.g. using cyclotron resonance). Scatte-
ring of electrcns on magnetic impurities form the other
limit in whici electrons feel locally (on an angstrom
scale) strong nagnetic fields (i.e. microscopically inho-
rnogeneous) which may act as scattering centersin e.g.
diluted seininiagnetic materials!?.

Between these limits lie inhomogeneous inagnetic
fields on th: nanometer scale. They have re-
cently been -ealized with the creation of magnetic
dots®l) integration of ferromagnetic materials with

semiconducto:s!*~% where patterning of such films was
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technology will add a new functional dimension to
the present semiconductor technology and will open
new avenues for new physics and possible applications
like, switches based on the Lorentz force and non-
volatile memories based on the Hall voltage gener-
ated by a local magnetic field. A different route to
create inhomogeneous magnetic fields is through the
integration of superconducting materials with semi-
conductors. This was realized experimentally using
type IT superconductors which was deposited on a Si-
MOSI® or a GaAs/AlGaAs-heterojunction!®1%, Mag-
netic flux lines penetrate the two-dimensional electron
gas (2DEG) acting as nanoscale scattering centers for
the electrons!!1=13] offering the possibility to study
weak localization!!?] and the dynamics of vortices!!4l.
Using lithographic techniques these superconducting

films can be patterned into any desired form. The ge-

}Permanent address: Serniconductor Physics Institute, Gostauto 11, 2600 Vilnius, Lithuania.
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ometry of tlie patterning determines the geometry of

the inhomogeneous magnetic field.

In general tlieshape anisotropy of tlie magnetic film
(or thestripes) will force the magnetization in the plane
of tlie film. Other ineclianisms can be active whicli
can lead to a magnetization vector perpendicular to the
film, whicli is the situation we are mostly iiiterested in.
Out-of -plane magnetization has been realized in ultra-
thin layers of Fe on Agl"® or Cul'®l, compounds such as
MnAlGal'™, Co/Nilts! multilayers, and ultrathin MnGa
films!®) and the metastable 7-MnAl phaseld whicli can
be grown epitaxially on GaAs/AlAs heterostructures
using MBE.

The creation of superlattices by an inhomogeneous
magnetic field was proposed theoretically in Refs. [19]
and [20]. Vil'ms and Entinf?!] presented a theoretical
analysis of tlie energy spectrum of 2D electronsnear do-
main walls aad in asystem of parallel magnetic strips.
Transport of a 2DEG in tlie presence of a perpendic-
ular magnetic field modulated weakly and periodically
along one direction was stuclied in Ref. [22] and re-
celitly tried unsuccesfully experimentally by Yagi and
Iyel?. The generalization to 2D magnetic field mod-
ulation is given in Ref. [24]. Recently Van Roy et
al?) studied the geometric factors controlling the mag-
nitude of the demagnetizing field of ferromagnetic thin
films with perpendicular magnetization. Different ge-
oinetries were studied and they found that a grating-
type structure rvith periodicity of a few 100nm to luym
would give tlie maximum magnetic field strength in the
underlying semiconductor heterostructure. Miiller!?S]
considered a different system in which a 2DEG strip
is placed in a perpendicular magnetic field which in-
creases linearly along one direction. He showed that
this system has a remarkable time-reversal symmetry.
The present authors!?”! studied different systems con-
sisting of magnetic barriers and considered also tun-
neling through double magnetic barriers!®s. A quasi-
analytic solution to a model barrier system was found

in Ref. [29].
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In tlie present paper we will consider different con-
figurations of nonuniform magnetic fields in which the
noiiuniformity is only along one direction and has a
typical length scale of tlie order of nanometers. The
electron spectrum of a 2DEG in simple magnetic struc-
tures like, magnetic step (Sect. 111), magnetic barrier
(Sect. 1V) and magnetic well (Sect. V) is considered
and discussed. The similarities and differences between
similar potential problems is pointed out. We consider
electron tunneling through structures of magnetic bar-
riers and in particular resonant tunneling. In contrast
with tunneling through electric barriers, the tunneling
probability depends not only on the electron's energy
but also on the direction of its wavevector. This ren-
der the tunneling an inherently two-dimensional pro-
cess. Furthermore we found that the magnetic barriers

possess wavevector filtering properties.

II. Nonhomogeneous magnetic field profiles

As shown in Fig. 1 a magnetic barrier can be cre-
ated by the deposition, on top of a heterostructure, of a
ferromagnetic stripe with magnetization (a) perpendic-
ular and (b) parallel to the 2DEG, (c) of a conducting
stripe with a current driven through it, and (d) of a
type | superconducting plate interrupted by a stripe.
In all cases the 2DEG is situated at a distance zy be-
| o the stripe whose thickness and height are d and h,
respectively.

For tlie case of magnetic stripes we consider the fol-

lowing Maxwell equations

divB = —4ndivM = 4rpy (7),
B = —grad®y (1)

which can be integrated and results into

By () = [ 2 @

|7 — 7|
For illustrative purposes we consider perpendicular
magnetization (Fig. 1(a)) in which the width of the
magnetic strip d is very small such that we can re-

place it by a dipole line with magnetic charge density:
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pa (7)) = =] jbé(x)gdz—é(z). Integrating (2) resultsin the

magnetic potential

2;‘4@2

D (7) = et (3)
which leads to the magnetic field distribution
22 —2?
B(z) = ?Mom‘ (4)
and the vecter potential
Alw) = 2Mo s (5)

If we have stripes of width d instead of wires we have
to integratc 1:q.(2) numerically in the region —d/2 <
z' < d/2. 1t ;urns out that in the lirnit z,h <€ d the
magnetic fielc distribution takes tlie simple form (his

the height of :he inagnetic strip)
B(z,20) = Bo (K(z + d/2, z0) — K(2 — d/2,20)) (6)

with By = Mh/d and K(z,2) = 22d/(2? + z?) which
is depicted in Fig. 2(a) for three values of zp. Sim-
ilarly for parallel magnetization we found K(z,z) =
—zd/(z* T 2% and which is depicted in Fig. 2(b) for

three values of’ zg.

stripe —p
Perpendicular

(a)“fffi

rnagnetization
2 /
/__T_/

2D system

Paraliel
(b) |e— -t < o
rnagnetlzatlon

(c) | ® ® ®| Current

(d) Superconductor
s s

Figure i: Sectional view of several systems for producing
non-lioniogeneoiis rnagnetic field profilesin the plane of tlie
2D electroii gas.
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Figure 22 Magnetic field under tlie stripe corresponding to
the four different configurations asgiven in Fig.1. The mag-
netic field is given at different distances from the magnetic
stripe: z = 0.1 (solid curve), zo = 0.3 (dashed curve), and
z = 0.5 (dotted curve).

For a wire with a current | going through it (Fig.
1(c)) the magnetic field is determined by the Maxwell

equation: rotB = 47rf/c which results in the angular
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magnetic field component By = 2/ /cr at a radial dis-
tance r from the wire. In the plane of the 2DEG a
distancc zg from the wire this leads to the magnetic

field profile

z
B(z) = B,(z,2) = By~

with Bg = 2I/c which is depicted in Fig. 2(c). The
vector potential is obtained by integrating tlie equation
B = rotA which gives

1 22+ a?
A(z) = Ay(x, 20) = §f;0 In <;§-ﬁ?§) , (8)

where R is some distance away from tlie wire where the
opposite current is flowing. For a strip of finite width
d such that zg,h <« d we can cast the result into the
form of Eq.(6) with K(z,2) = In[(z® + 22)/d?]. This
magnetic field profile is shown in Fig. 2(c).

For a superconducting stripe in a magnetic field
we have to solve the Maxwell equations in the super-
conductor: ] = —(ne?/me)A, and V2H = (1/L3)H,
where LZ = mc?/4mne? and we made use of rotH =
~(47ne?/mc?)A. Outside tlie superconductor we have
the equation: V2@, = Q with tlie boundary condition
on the superconductor B, = —d®,,/9n = 0. This 2D
potential problem can be solved by the conformal map-
ping ¢ tir = sin(mw) where me introduce the complex
potential W = &,, + i¥. The solution of the prob-
lem is W = iw and the magnetic potential is given
by ®m = ReW = —Im(arcsin(z +iz)) which results
into the magnetic field B = ByRe(1/y/1 — (z T iz)?)
as shown in Fig. 1(d).

Tlie magnetic field produced by the stripes, in units
of Bg, is shown in Fig. 2 for tliree differeiit depths:
zp = 0.1 (solid curve), zp = 0.3 (dashed curve) and
zp = 0.5 (dotted curve). The smaller zg, i.e., the closer
the 2DEG is to the stripes, tlie sharper tlie magnetic
barrier structure. With increasing zy the magnetic field
profile becomes gradually smoother. Concurrently with
the inagnetic field profile one expects a scalar (electric)
potential, which can be short circuited by putting a

non-magnetic metallic ilm(?3 between the 2DEG and
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the patterned layer and which therefore will be ne-
glected.

IfI. Motioii in nonhomogeneous inagnetic fields

We consider a 2DEG moving inthe (z, y) plane with
a magnetic field B along the z-direction. In the single-
particle approximation such a system is described by
the hamiltonian
L

H=—(p+A)’ (9)

We take the vector potential in the Landau gauge
A = (0,A,0) and the magnetic field is uniform along
the y-direction but modulated along the x-direction,

and thus

B, = B(e) = 1-A(2), (10)

where we have the magnetic field profiles of previous
section in mind.

Let us introduce the following characteristic pa-
rameters: i) the frequency u, = eB,/mc with B,
some typical magnetic field, and ii) the length £p =
JTic/eB,. For GaAs and an estimated By = .IT we
have £ = 813A, hw, = .1TmeV, and ¢pw. = 1.4m/scc.
From now on we will express all quantities in dimen-
sionless units: 1) the magnetic field B(z) — B,B(z),
2) the vector potential A(z) = B,lpA(z), 3) the time
t — t/w,, 4) the coordinate i — {gr, 5) the velocity
vV — (gw,v, and 6) the energy E — hw E.

In these dimensionless units the two-dimensional

(2D) Schrodinger equation becoines

{a%;' + (5% + z'A(a:)> + QE} Y(r,y) =0 (11)

Because of the special forin of the gauge the system is
translational invariant along the y-direction and as a
consequence we can choose the following form for the

wavefunction
U(z,y) = e ¥e(z) (12)

where —¢ = k, is the wavevector of the electron in the

y-direction which is a conserved quantity. This does
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not imply that v, iS conserved. Tlie wavefunction ¥ (z)
actually satisfies tliefollowing 1D Schrodinger equation
? 9 ,
(5 -t@-0 42} =0 1y
where the fuaction

1
V(e) = 5(A() - )’ (1)
can be interprcted as a g-dependent electrical potential.
Note that in the case of one-dimensional (1D) magnetic
field modula:ion studied in the present paper there is
an analogy between tlie magnetic fielcl and tlie potential

given by tlie following relation
1 dV(z)
B(z) = —=—t
() V2V (z) de

A jump in tlie magnetic field will result in a disconti-

(15)

nuity in the derivative of the poteiitial 1/(z).

IV. Magnetic step

First, let us consider tlie most simple shape for a
nonhomogencous magnetic field: tlie inagnetic step.
In this situation the magnetic field fills the half space
z > 0 which is described by B(z)} = 6(z) with the
corresponding vector potential A(z) = z0(z), wliere
f(x) = 1(z > 0),0(z < O is the step-function. There
are two different cases which we have to consider.

Casel(q > 0). The potential V(z) = 1(z0(x)—¢)*
has the forn- of an asymmetric quantum well which
deepens with increasing q. It is well-known[®” that
such a well can have a bound state if tlie well is suf-
ficiently deep. Thus, we have to consider separatelly:
a) E < ¢%/2 where bound eigenstates are expected to
appear in the region a ~ ¢, and b) E > ¢?/2 which
corresponds to scattered states, describing tlie elec-
tron reflectioa by the magnetic step. Slie appearence
of bound states makes this system essentially different
from the usual potential stcp problem where only scat-
tered states exist.

For Case 2 (¢ < O tlie equivalent poteiitial is
a constant V(z) = ¢2/2 for * < 0, and a barrier
V(z) = L(z6(z) T [¢])? in the region = > 0 which is
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unbounded for X — oo. In this case there are only scat-
tered states which corresponds to electron reflection by

the magnetic barrier.

For # > 0 the Schrodinger equation takes the form
d*  2? 1]
{dfﬂ—z+1?+§}w(z)——0~ (16)

with z = v/2(z — ¢) and p = E - 0.5. The solutions
of it are tlie Weber functions®! D,(z) which have the
following asymptotic behaviour: Dp(2)|;-400c — Q In
tlie region z > 0 the wavefunction becomes ¥(z) ~
De_os(vV2(z - ¢)), up to a normalization constant,
while for z < 0 tliere is no magnetic field and the wave-
function is proportional to (z) ~ exp(z\/q2 — 2E)
when & < ¢?/2. Matching the wavefunctions and its
first derivative at z = 0 we obtain tlie following equa-

tion

V2 —2E = —d—ln De_os5(V2(z ~ q)) . (1

Cl.'E z=0

whose solutions lead to the electron eigenvalues E =

E,(q) with tlie corresponding wavefunction ().

Once we know the eigenvalues and the correspond-
ing wavefunction we can obtain the other characteristics
of tlie bound states. The average electron velocity of

tlie hound state along the inagnetic step (y-direction)
— Ji i\ 2 d
—va(0) = | dayy,(2)(¢ - A(z)) = @En(q), (18)

wliere tlie minus sign results from the definition q =
—ky. Tlie mean electron position along the z-axis

Xn(q) has the simple form

oo
Xole) = [ doaviy(o)
-0

1
= ¢+ (1 + m) va(2){19)
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Figure 3: @) tlie energy spectrum for tlie bound states (solid
curves), and b) the corresponding average velocity along the
rnagnetic step vn{g) (solid curves) and tlie electron avcrage
position X,.(q) along the z-axis (dashed curve) for tlie mag-
netic step case.

The numerical results of tlie solution of Eq. (17) are
depictecl in Fig. 3(a) by the solid curves, for tlie low-
est three eigenvalues. Tliese curves start at a certain
g-value (denoted by tlie solid dot in Fig. 3), which is
a function of n. The corresponding results for the av-
erage electron velocity v,(q) (solid curves) and mean
electron position X,,(q) (dashed curves) are shown in
Fig. 3(b). Notice tliat the eigenvalues asymptotically,
ie. q — oo, reach the values (n T 1/2) for Landau
levels in a homogeneous magnetic field as it should be.
In this asymptotic limit tlie mean electron position ap-
proaclies X, (q) ~ q and the average electron velocity
tends to zero. In this limit tlie electron is situated far
from the magnetic step and is not influenced by the
r < 0 region. Witli decreasing ¢ tlie electron wave-
function starts to feel tlie magnetic step: 1) its energy
decreases, because part of the wavefunction will be sit-
uated in a region with zero magnetic field where the

electron will have a smaller kinetic energy, 2) its aver-
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age position is less than ¢, because the wavefunction
is sucked into the x < 0 region, and 3) its velocity in-
creases and the electron runs along the step. From Figs.
3(a) and 3(b) we notice tliat the width of the transition
region, i.e. tlie g-region where E,, < (n + 1/2), is nar-
rower witli increasing n. The above properties of these
bound states forces us to make the analogy with edge
states(®2. Nevertheless there are a number of differ-
ences: 1) tlie available g-space for edge states increases
with increasing Landau level number n which is op-
posite t0 the behavior of tlie present bound states, 2)
tlie direction of the velocity is opposite as compared to
those of the usual edge states: and 3) the magnitude of
tlie velocity satisfies |v,(q)| < ¢ which is different from
edge states which do not have an upper bound on their

velocity.

0.8

Woqlx)

-0.2 FORSUN NN S VRS M T DU !

Figure 4: The electron wavefunction for the lowest bound
state for different values o the electron momentum in the
y-direction (q) in tlie case d a magnetic step.

From Fig. 3 we notice that there exist critical val-
ues ¢y such that for ¢ < ¢, no bound states are found.
Tliese points are indicated by the dots on Fig. 3(a)
and are situated on the free electron spectrum curve
E = ¢?/2 (dashed curve in Fig. 3(a)). For the plot-
ted curves we found the critical values: ¢§ = 0.768,
g7 = 1.623. ¢% = 2.155 at which the eigenenergy curve
En(q) is tangent to the E = ¢2/2 curve. At these
points the electron velocity equals the free electron
value: —v,, = ¢, and X,,(¢) — —oo. The electron wave-
function ¥, 4(z) is shown in Fig. 4 for the n = 0 case

ancl clifferent values of the wavevector g. This figure
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nicely illustrates theincreasing leakage of the wavefunc-
tion into tlie z < 0 region with decreasing ¢-value and
the concomittant increasing asymmetry of tlie wave-

function.

Notice that in the present magnetic step case tlie
transmission Coefficient is always zero. Independent of
thestrengtli of the magnetic field and tlie magnitude of
tlie electron energy an electron, impeding on tlie mag-
netic barrier will always be reflected, which is a conse-
quence of the Loreiitz force acting on tlie electroii. In
this respect this system is different from the textbook
potential step problem in which the reflection coefficient
becomes different from zero when tlie electron energy

is larger than the potential barrier height.

V. Magneti: barrier

The magnetic step can be used as a building block,
from which more complicated structures can be build.
As a first example we consider tlie magnetic barrier
in which tlie magnetic field is different from zero
a strip of width d. In this case the magnetic field
has the following form in dimensionless units: B(z) =
8(d?/4 — x?), and we choose the vector potential as fol-
lows: A(z) = —d/2 (x < ~d/2),z (|z] < d/2),d/2 (x>
d/2). Tlie analogous potential V (z) of (14) depends on
tlie value of the wavevector g: wlien |¢| < d/2 the po-
tential consists of an asymmetric well of finite height,
and when |g| > d/2 it is a gradual step. The prob-
lem is symmetric under tlie substitution ¢ —~ —¢ (and
x — —z} and consequently we may liinit ourselves to
tlie case ¢ > (.

There are tlirec clifferent energy regions important
tous: 1) 0 < .7 < (d/2—¢)?/2 where bound eigenstates
can exist, 2) (d/2 — ¢)?/2 < E < (d/2 + ¢)?/2 whicli is
thereflection -egion, and 3) (d/2+¢)?/2 < E where the
electron is transmitted through tlie magnetic barrier.

First let us concentrate on the situation in which we
have bounded electron states. In this case the electron

wavefunction in the barrier regioii, i.e. [2] < d/2, isa
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linear combination of Weber functions
() = aDp_o5(V2(x—q))+bDg-05(V2(g—z)) (20)

which we must match (and its first derivative) to the
free electron wavefunctions at the points x = +d/2.
This matching results into the equation

F¥(—q+d/2) F~ (q+d/2)-G*(¢—d/2)G™ (—¢—d/2) = 0
(21)

where

F*(z) = (£ d/2)?/2 = EDp_o5(V22)+Dp_05(V22)
(22)

and

G*(2) = V(4 £ d/2)*/2 - EDg_05(V22)~Djp_05(V22).

(23)
Eq. (21) was solved numerically. The results for awide
magnetic barrier (d = 5) are shown in Fig. 5 by the
solid curves which end at the solid dots. The latter
are situated on the E = (¢ — d/2)?/2 curve (dashed
curve). Notice that the spectrum resembles the one of
the magnetic step case (see Fig. 3(a)) with the distinc-
tion that thelatter has an infinite number of branches
while the one for a magnetic barrier hasa finite number
of bound states for each ¢. For d = 5 there are only
three branches in tlie energy spectrum. The number
of energy branches decreases with decreasing barrier
width d. Irrespective of the value of d there is aways
at least one cliscrete energy value for ¢ = 0. This is
a consequence of the fact that for ¢ = 0 the potential
V(z) is one-dimensional and symmetric. Such a poten-
tial is known to have at least one discrete eigenvaluel3%
irrespective of tlie size of the potential well. The value
of the lowest branch in the spectrum is plotted in Fig. 6
for = 0 asfunction of the barrier width d. Notice that
wlien d < 1 (i.e. when the magnetic barrier widthisless
than the magnetic length {z) the eigenvalue approaches
Es(q = O = (d/2)*/2 which is shown by the long-
dashed curve in Fig. 6. Although the electron is bound
to tlie barrier, in the case of small d-values the electron

wavefunction is situated mainly outside the barrier and
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consequently its energy approaches the height of the po-
tential well V(d/2). The width in ¢-space (Aq) of the
lowest energy branch is also given in Fig. 6. It is seen
that this width decreases rapidly to zero when 4 <'1
and in thc opposite case {when d — =0) it asymptot-
ically reaches the line Aq/2 = d/2 — ¢ (short-dashed
line). Where ¢ = 0.768 is the value as obtained froin
tlie magnetic step spectrum. Another distinction as
compared to tlie magnetic barrier spectrum (sce Fig.
3(a)), isthat the energy eigenvalues are smaller in mag-

nitude than those in the magnetic step case.

E.{ql

AN 1/2

2.5

Figure 5. The energy spectrum for tlie bound states (solid
curves) in a magnetic barrier o width d = 5. Dashed curve
E = (d/2 — ¢)*/2 indicates tlie free electron spectruiii.

Tor tlie unbounded states we have calculated the
transmission coefficient which now depends not only on
the electron energy but also on tlie electroii wavevec-
tor g in the y-directioii. In tlie present case tunneling
is a two-dimensional process in which the total elec-
tron wavevector and tlie electron energy is conserved
but the direction of tlie wavevector is altered. A con-
tour plot of the transmission coefficient T'(¢, E) versus
initial electron velocity components (v, , vy) is shown in
Fig. 7 for a magnetic barrier of width ¢ = 5. The
guantum transition coefficient is zero above tlie line
vy = (v2 = d?)/2d which is the result one would ob-
tain from classical mechanics and which defines a semi-
infinite transmission window. Below this line we have
classically T = 1, but quantum mechanically T(g, E)
gradually increases with increasing electron cnergy. For

rather thick barriers (as in the case of d = 5) there is
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some additional structure at low energy which is en-
larged in the inset of I'ig. 7. There is an additional
peak around (v,. vy) = (0.3,—2.5) which is a conse-
quence Of tlic presence of a virtual energy level above

the quantum well V;(z).

()

o
0.4

0.2

Eo(q-“-C-), Aql

Figure 6: Tlie lowest eigenvalue of the bound state in a
magnetic barrier as function of the barrier width for ¢ = 0
and the width (Ag) O tlie lowest energy branch in g-space
(solid curves). The long-dashed curve indicates the height
of tlie potential Vy=o(z = d/2) = d/8 and the short-dashed
line Aq/2 = d/2 - ¢¢ indicates the asymptotic value d that
width defined from tlie magnetic step spectrum.

0 s i L H "

—2 -
>>\
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Figure 7: Contour plot o the transmission coefficient

through a magnetic barrier of width d = 5 in the incident
electron veloCity (v, vy)-space.

VI. Magnetic wire

The inverse situation of the previous problem is the
magnetic well case which we will discuss now. Because
of the essential 2D character of the electron motion
in a magnetic field we should rather speak of a mag-

netic wire. In dimensionless units the magnetic field
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0 (Jz| < d/2),1 (=] > d/2),
aiid the corresponding vector potential is: A(z) =
2 —d/2 (2> d/2),0 (Jz] < d/2),2 T d/2 (z < —d/2).

Thcvalue of the vector potential iSnow unbounded, i.e.

is given by: B(z) =

A(z)|p— 4100 — Fm: and as a consequence tlie poten-
tial satisfies: V()|e—+oo — oc which implies that the
electroii motion is confined in tlie z-direction and all

the states ar: bound at least in this direction.

!:cos(kd) De_os(V2q) — @ sin(kd) D _q 5(V2¢)

k

[oos(bd) /) + 2 sin(b)Di-05(/0)] Do) =0

V2

where k = 2F — ¢2 for 2E > ¢2 and k = i\/¢? - 2F
for 2 < ¢? in which case the trigonometric functions
should be replaced by their corresponding hyperbolic

functions.

The results of tlie numerical solution of this equa-
tion are presented in Figs. 8(a) for a wide well (i.e.
d = 5), and (h) for a narrow well (i.e. d = 1). In
the wide well case (Fig. 8(a)) there are clearly two dis-
tinct regions which are separated by the free electron
eiiergy E = ¢?/2 curve (dashed curve in Fig. 8(a)).
For £ <« ¢%/2 the energy spectrum consists of Laiidau
levels. Thc zlectron is mainly located in tlie barrier
where there exists a uniform magnetic fielcl. For small
g-values,i.e. E > ¢%/2, the spectrum consists of baiids
with free electron-like motion in the y-direction. This
is similar to the case of the well-known quantum wire
with electrical potential barriers. When we decrease
the width of tlie well the two regions are less clistiiict
as is apparent in Fig. 8(b) for the case of d = 1. For
d = 1tlie well is narrower than the width of tlie elec-
tron wavefunction and consequently there IS always an
appreciable overlap of the wavefunction with tlie mag-

netic barrier regioii. Notice that tlie energy levels have

291

The corresponding wavefunctions are constructed
by matching the quasi-free electron wavefunctionin tlie
region |z| < d/2 with tlie Weber functions: (z) =
Dg_os(£V2(z F d/2 — q)), which are valid in the re-
gions |z| > d/2. This matching of the wavefunction
and its first derivative lcads to the following algebraic

equation for tlie eigenvalues

D}a-o,s(—\/‘iQ)

almost no dispersion. The different behavior between
tlie two cases is also illustrated in Fig. 9 where the elec-
tron velocity is shown for the different states. Notice
that tlie velocity exliibits a niaximum near E = ¢?/2
and it diminishes fast for ¢ > +/2E which is the region
where the electron is mainly located inside the mag-
netic barrier. Notice that for wide wells, i.e. see the
d = 5 case, the velocity curve v,(¢q) can have several
local maxima’s which is a consequence of the repulsion
of tlie different energy levels asseen in Fig. 8(a). Inthe
case Of tlie usual quantum wiie constructed from walls
consisting of potential barriers the electroii velocity is
v, = hk, = —q and is independent of the energy level
index n» and is auniform increasing function of the elec-
tron wavevector. The behavior of »,(g) as depicted in
Figs. 9is also different from the one of edge states in
which v,(¢) is @ uniform increasing function of q.

The density of states (DOS) for the two cases is de-
picted in Fig. 10. Notice that like for the quantum
wire case tlie DOS exhibits singularities at the onset of
each energy level. But there is a difference, the width
in energy space of each level is finite and bounded by a

singularity in thc DOS. Suppose we have a systeni in
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Figure 8 The energy specruin of a magnetic well for two
clifferent values of the width: @) d = 5, and b) d = 1.
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Figure 9: The electron average velocity corresponding to
the energy spectrum of Fig. 6.
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Figure 10: The density of states of the electron statesin the
magnetic wells correspoiiding to Fig. 6.

which we are able to increase the Fermi energy gradu-
ally. Starting from zero we first populate the quantum
wire states, the electrons are mainly situated in the
well region. Further increasing the Fermi energy we
see that for d = 5 we first start to populate the next
energy level which consists initially of states located in-
side the well. For d = 1 on the other hand we start
to populate states which are situated in the magnetic
barrier region and which are nothing else then 2D Lan-
dau states. Thus by changing the Fermi level we are
able to have 1D states or 2D states at the Fermi level
which will have considerable influence on the electrical
properties of the system. The 1D states are quasi-free
while the 2D states are localized on Landau orbits and

can only move if scattering is involved.

VI1I. Resonant tunneling structures

In previous sections we have made a detailed study
of the nature of the electron statesin different magnetic
barrier structures. In this section we will consider dif-

ferent tunneling structures where we will focus on the

tunneling current going through it.
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For simplicity we now consider electron tunneling
through a magnetic barrier of constant height By and
width d = @4 — z_ surrounded by regions of zero mag-
netic field. 'The free electron wavefunction on the left
side of the barrier (z < z_) is ¢_(z) = Ae™®-(F=2-) 4
Be-k-(v—x-1 and on the right side of it (z > x4)
Gy(z) = F+(E=o4), where ky = VUE =V (£oo)] is
the X compoient of the electron wavevector on the cor-
responding side of tlie barrier. Under tlie barrier there
are two solutions for ¢(z) which can be written as a
linear combization of tlie Weber function D,(z) and
its derivative DII)(Z). Next we construct tlie transition

matrix

o= () ) @

where we  defined the
e{D,(v/20)D,(2) t D,(~+/29)D,(-2)) and v(z) =
A Dp(V20)Do(2) = Dp(=v2q)Dy(—2)},
E-1/2 and z = v/2(z — ¢), which satisfies the bound-

ary conditior s u(zp) = 1, ' (20) = 0,v(zo) = 0, and

functions  u(z) =

with p =

v'(:vo) = 1. Matching the wave function at the edges
of the barrie:, z+, by means of the above matrix we
obtain

k 1, -
A=Tq'+ iTz_zl +1 <‘,,‘"T211 - k+T121> ;o (26)

the electron transmission through the barrier ¢(F, ¢) is
given by
ky
E Q) = +—— 27
(B,0) = 357 (27)

where T~! stands for tlie inverse of the matrix T I
T(z4,x_). Yor complex structures involving several
barriersof constant height, thetotal T matrix is a prod-
uct of the T matrices that correspond to tlie separate
barriers and the one describing tlie free electron propa-
gation between tlie barriers. Asfor tlieelectron current
through such a structure! it can be calculated, in the
ballistic reginie, by introducing the conductance G as
theelectron flow averaged over half the Fermi surfacel®]
T/2
G =Gy / B t{EF, \/iE‘Fsin ®) cos ¢dd, (28)
-
where ¢ is the angle of incidence relative to tlie z direc-

tion. Further, Go = e?muvpf/h?, where E is the length
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of tlie structure in the y direction and vr the Fermi

velocity.

To reveal the main qualitative features of tunnel-
ing through these barriers we restrict ourselves to: )
u single barrier which was already discussed in Sect.
V, and 7#) complex structures composed of rectangular
magnetic barriers one example of which isshown in the
inset of Fig. 11.

s
5™ 04 X classical -
: /(I 1 t
=054 _
: 0 (b)
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0 0.5 i 1.5 2

Figure 11: Contour plot of the electron transrnission prob-
ability in the (v, v) plane for a more complex structure.
The magnetic field profile of the corresponding rnagnetic
barrier are shown in the inset o the figure.

The contour plot of tlietransmission through a com-
plex structure, shown in tlie inset of Fig. 11, is pre-
sented in the figure. Notice that the quantum and the
classical calculation give drastically different results.

This complex structure can be used as a building
block to make a double barrier-like structure which is
composed of two units identical to that of Fig. 11 with
a zero field region, of length L = 3, between them.
We sliow only the velocity contour plot in Fig. 12 and
the corresponding classical result. Again we see sharp
resonances, the wavevector filtering properties, and the
strong disimilarity between the quantum and classical

results.
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Having seen tlie transmission results, one may won-
der to what extent their structure isreflected in measur-
able quantitieswhich involvesome kind of averaging. In
Fig. 13 iveshow the conductance, as given by Eq. (28),
for the previous tunneling structure shown il tlie inset
of tlie figure, together with tlie corresponding classical
result(dotted curves). Despite the averaging of t(E, ¢)
over lidf the Fermi surface, we have again strong res-
onant structure. This structure will become sharper if
one can select the wavevectors that give the sharpest
resonance in the transmission. In principle this can be
achieved using quantum point contacts. Asfor the clas-
sical result, we see again that they are determined only

by thefirst barrier in each structure.

Although our consideration of electron tunneling
through the rectangular magnetic barrier structures
gives only a qualitative picture, nevertheless these res-
onant tunneling spikes should be present in the more
realistic cases with barriers of smooth shape, cf. Fig.2.
Indeed these spikes do not depend on Lhe actnal shape
of the magnetic barrier but only on the presence of bar-

riers in tlie potential V{z).

Figure 12: Contour plot of the electron transmission proba-
bility in the (v, v,) plane for tlie resonant tunneling struc-
ture composed Of the complex barrier structure of Fig. 11
in which tlic barricrs are separated by the distance L = 3.
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Figure 13: The conductance tlirough the barrier structure
shown in the inset for different values of the barrier para-
meters. Tlie dotted curves show the conductance calciilated
classically.

VIII. Conclusion

The spectra of electrons rnoving in 2D and inter-
acting with nonhomogeneous magnetic fields was cal-
culatcd. Different structures of nonhomogeneous mag-
netic fields in one clirection are considered. The simi-
larities and differences between similar structures built
from electrical potentials are pointed out. The motion
in the present case is essential 2D while in the electri-
cal potential problems often a separation of variables
is possible which reduces the problem to 1D. In the
present case the problem can be mathematically cast
into a 1D problem but the physics and the motion stays
essentially 2D. In the magnetic case the potential V(x)
appearing in the mathematical 1D problem depends on
the electron wavevector (q) which maltesit inherently
two dimensional cven in the case of one-dimensional
magnetic field modulations.

One of the interesting features of nonhomogeneous
magnetic field structures is that astep in the magnetic
field can bind electrons. The spectrum has bounded
and unbounded (scattered) states. The wavefunction
of tlie former are confined to the region with non-zero
magneticfield. The discrete and continuum part of the
spectrum overlap in an energy range. This is essen-

tially different from potential steps which act always
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repulsively. As a consequence magnetic barriers can ex-
hibit bound states and tunneling through them turns
out to be much richer: for example tunneling can oc-
cur through such bound states which may lead to quasi
resonances ir the traiismission coefficient. Tunneling is
essentially a 2D process where only transmission is pos-
sible in a semi-infinite window in velocity space. Such
a magnetic barrier structure can be used as a filter for
electron wavevectors. A combination of such magnetic
barriers will result in more coinplicated structures, like
for example resonant tunneling structures and super-

lattices.

We found that the quantum transmission through
magnetic-barrier structures: i) depends not only on the
energy but also on the direction of the wavector, ii) pos-
sesses wavevector filtering properties, iii) shows well-
pronounced 1esonances whereas the classical one does
not, aiid iv) is drastically different frorn the classical
transmission which is determined only by the sum of
the barriers and is independent of the distance L be-

tween them.

We havc shown that the pliysics of electron trans-
port in nonhomogeneouos magnetic fields is a rich
subject. Furthermore one can think about creating
magnetic dots, tlie theoretical analysis of which is in
progress. Other possible systems are magnetic SUper-
lattices. In thiscase we may distiiict: 1) weak magnetic
superlattices in which tliere is only a very weak modu-
lation of the nagnetic field. Tliis problem was studied
in Ref. [22] i1 which Weiss oscillations were predictecl
i1l the magneto-resistance which are a consequence of
a commensurability between the period of the super-
lattice and the diameter Of the cyclotron orbit, and 2)
strong magnetic superlattices in which we may have:
a) tlie situation of alternating magnetic wells and mag-
netic barriers such that tlie average magnetic field is
zero. Thissystem is now similar to the Kronig-Penney
model, and L) the case with only magnetic barriers.
Now the aveiage magnetic field is non zero and as a

consequence the electric potential V(z}, Eq.(14), is un-
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bounded and all the states will be localized in the direc-
tion of the superlattice. The study of these problems is

in progress.
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