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A comparative theoretical analysis is carried out for the spectra of plasmon-polaritons of mul-
tiple semiconductor layvers i quasi-periodic arrangements obeying the Fibonacci and Thue-
Morse sequences. respectively. We consider building blocks composed of two-dimensional
electron gas (2DEG) separated by semiconductor media of alternating thicknesses and di-
electric functions. The spectra of both bulk and surface plasmon-polaritons are conveniently
derived by using a transfer matrix treatment with a model frequency-dependent dielectric

function including the effect of retardation.

I. liitroductioii

As a result of recent advances in experimental tech-
niques there is a continuing interest to investigate the
properties of collective excitations, such as plasimon-
polaritons modes. in multilayered systems (for a re-
view see Ref. ).

tics of a new class of artificial layvered media, the so-

In particufar the physical proper-

called quasi-periodic superlattice. have also attracted
a lot of attention recently. The fabrication of such
structures was pioncered by Merlin et all2 who grew
a quasi-periodic Gads-\lAs superlattice from two dis-
tinet building blocks, each having one or more {ayers of
different materials with different thickness, arranged ac-
cording to a Fibonacel sequence. Theoretical plasmon-
polaritons spectra in these structures were recently suc-
cessfully reported by the authorst®41,

In this communication we compare our results for
the spectra of both bulk and snrface plasimon-polaritons
in Fibonacci superlattices to another type of quasi-
periodic structure which obeys the Thue-Morse se-

quence.  This structure has been reported by Hum-

licek et all?), who presented measureiments of the re-
flectanee spectra for the Thue-Morse GaAs-AlAs quasi-
periodic lavered films deposited on the (GaAs substrate.
They were concerned with the electron-hole excitations
in this structure. Later, Tao and Singhl™ presented a
comparative theoretical analysis of the reflectance and
transiission spectra of multiple lavers arranged in the
periodic aud the Thue-Morse quasi-periodic pattern,
with a good agreement between their theory and the
experiniental spectra obtained by Humlicek et al.

We consider the two building blocks « and 3 as
shown 1n Fig. [, to set up the quasi-periodic superlat-
tice. Each block consists of a two-dimensional electron
gas (2DEG) charge sheet and a layer of medium A or
B. which may have different thicknesses ¢ and b, and di-
electric function € 4(w) and e g{w). They may also have
a volume density of charge. The Fibonacci sequence is
here deseribed in terms of a series of generations that

obey the following recursion relations:

with Sy = Fand S = .
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Figure |1 1lc two building blocks a and 3 of the quasi-
periodic superlattice. Here A aiitt B are dielectric layers.
with thickness « aitl b, aitl the 2DEG layers have carrier
concentrations n, and n, per unit arca.

On the other hand, the Thue-Morse sequence 1 ar-

ranged according to the recursion relations:

S o= Sho H,{_ y for n>1
T _ T
'Sn. - /bn—l'sﬂ—l (Z)

with Sy = o and S7 = 3.

In order to find the bulk and surface plasmon-
polaritons spectra, we follow the general formalisim of
Ref. 7, where a convenient description of the spectra
1s carried out by using a transfer matrix treatment to
simplify the algebra, which can be otherwise quite in-
volved. We consider a semi-infinite superlattice struc-
ture where the cartesian axes are chosen in such a way
that the z-axis is normal to the plane of the layers.
The structure is terminated at the plane z = 0, with
the half-space z < 0 filled with a material that has a
frequency-independent dielectric function eg.

Let us assume that the clectromagnetic mode is p-
polarized in the absence of any external maguetic field.
The 2DEG chrarge sheet at each interface is considered

to be due to the presence of a current density

']jJ: - iw{t)o’j ]"’jﬂh (3)

where
2
n;c
- = .
0j=—5——.j=a or b (1)
)njw (@4

Here, n; is the carrier concentration per unit area, « is

the clectronic charge, and mj is the effective mass of

the charge carrier; ¢ is the vacuum permittivity.
For the periodic system o 3w 3., the bulk dispersion

relation is simply given byl:

cos(QL) = TI'('?[:Q::#) (5)

where Q) 1s the Bloch wavenumber, L = a + b is the
size of the periodic superlattice unit cell, and T3 is a
unimodular transfer matrix defined by:

— -l -1

Tufi:Nu Ml)Nl, M. (6)

Here, the matrices Ny and Mj (j = a.b) are defined

by:
M=l ! ™
R R el
- f] fj—l
=1 7 _ 8
/ (;'.fj —C‘;f]‘ ! ( )
where:
C; = E]‘/(Yj (())

ik > (G /c (10)
if ke < fGuw/c

In general, we assume for media A and B that ¢; may

e
A i[fj(w/c)Z—,’«:_;f]l/Q

be frequency dependent, having the form:

€ :(xj[l—{wf)j/w(w—i—il‘j)}} (12)
where wp; is the plasma frequency, T'; is a damping
factor, and C; istlie background dielectric function of
the 7 — th cell.

The implicit dispersion relation for tlie surface
modes can now be obtained through the application of
the usual electromagnetic boundary conditions at z =0

and at each of tlie interfaces between layers to yield(™:

Tiv—Toy + TixA = Ty A7t =0 (13)
with
¢ +¢
y=fato (14)
€ — €

Here "0 3 are $hy elements of the T, matrix
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For quasi-periodic systems, the general results (5)
and (13) for the bulk and surface plasmon-polaritons
modes still hold, provided a suitable transfer matrix is
considered. For the Fibonacci sequence, these transfer

matrices arel?:

P =1 -
Tsl( ‘o) N Mj.J = a(h)
— w1l -l
Ts,=N, MiN;, M, (15)

TSH;,:TSk"_I*‘s,._H. for k>1

On the other hand, for quasiperiodic Thue-Morse

superlattice we have:

- [
Ts,=N, My
— ——le o
Ty, =N, TsMua (16)

—a=le = =

=N, T.TsTsM,

and, i11 general

PR I e

Ts =N, ToTsTs. &:u;i;l'i’i:_;ﬁl\’_/}b
)
w=la & P Y
T’wn—-N TaTBT’i~ 1‘ 1YTC\’M{I
(18)

Here

- =l

T.=M;N; . (19)

where y = a for j = @, and v = 3 for j = b.

Now, we present some numerical examples to illus-
trate the bulk and surface plasmon-polariton spectra.
In what follows we assume physical parameters typical
of electron concentrations in GaAs-AlGaAs superlat-
ticeq, and we assume the medium outside the superlat-
tice to be vacuum. We take thicknesses corresponding
to « = 40 nm and b/a = 2. Also we considered the
ollowing physical parameters in the numerical calcula-
tions: €ocq = 12,9, €50 = 12.3. ng = np = 6 X 10 m—2,
and mj = 6.4 x 107%%kg (j = @, b). We allow w, to be
different from zero only in medium A, corresponding to
a volume charge density in the medium. The damping
factor is taken to be zero in both media.

Figure 2 shows the plasmon-polariton spectra for

the Fibonacci sequence 9y. The bulk bands are the

for nodd (n > 3)

for neven (n > 1)
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Reduced Frequency

Figure 20 Plasmon-polaritons Spectra, p-polarization, for
the Fibonacci sequence S; 'The physical parameters used
here are described in tlie main text.

shadowed areas bounded by @L = 0 and =, |, being the
size of the superlattice unit cell, while the surface modes
are represented by dashed lines. Here we plot the re-
duced frequenty w /€2 against a dimensionless wavevec-

tor k,a, where:

2 1/2
Q= (_’}6__> (20)

miep€ocad

The plasmon-polariton spectra for the quasi-
periodic Thue-Morse case are shown in Figures 3 and
4, representing n even (here equal to 2) and odd (here
equal to 3), respectively. Again, we have plotted the
reduced frequency w /2 against the dimensionless fac-
tor kya. We avoid to consider a larger number for n
to illustrate oiir theoretical computation, since there
is no important qualitative difference among the spec-
tra as a direct implication of the increase of n (the
main difference being the increase of the number of
bulk bands and surface modes in the spectra, which of
course means a more rich spectra, already discussed in
previous papers in this subject[s]). However, there are
important qualitative differences concerning the lowest

plasmon-polariton surface mode in the quasi-periodic
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Figure 3: Plasmon-Polaritons spectra, p-polarization, for
tlie Thue-Morse sequence S,, and tlie parameters given il
tlie text.
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Figure 4. Same¢ asin Fig. 3, but for the Thue-Morse se-
quence Ss.
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Thue-Morse sequence for n odd. In the Fibonacci case
and in the quasi-periodic Thue-Morse sequence for n
even this mode is quite close to the lowest bulk band,
while for n odd it is quite apart from the bulk band.
This is due to thefact that when n isodd thefirst and
last layers of S, are the building blocks a and 3, re-
spectively, although for n even the first and last layers
of S, are of the type a.

In summary, we have presented a concise theoret-
ical calculation for the plasmon-polariton spectra in
quasi-periodic superlattices following the Fibonacci and
Thue-Morse sequences. This work extends our previous

papers in this subject® 4.
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