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We present a model for the effective mass and barrier potential, to describe the motion
of an electron across a nonabrupt double barrier of GaAs/Al,Gaj_,As/GaAs. With an
interface model, we calculate the transmission coefficient and binding energy of electrons
oii a nonabrupt double barrier using tlie multistep potential approximation method. The
results obtained show a significant change on the resonant tunneling and energy levels, when
compared with those of an abrupt barrier. Numerical results are obtained for different values
of the interfacial width and compositional variation of the aluminium.

I. Introduction

The improvement of crystal growth techniques
makes possible to produce high-quality layered semi-
conductor structures such as quantum wells, allowing
the observation of man-made quantum size effects in
optical devicest2, A particular structure that presents
important aplications in several arcas is a double barrier
heterostructuret®4. In this system, the leakage of the
electron wavefunction is relevant, allowing the presence
of resonant tunneling ol clectrons through quantum-
well statest™). In order to obtain the physical properties
of such systems, one has to solve the Schrodinger equa-
tion involving potentials with no-simple profile. Iix-
act analytical solutions of the Schrodinger equation are
available only for simple potential structures like the
square well. Considering arbitrary potential profile, the
Schrodinger equation has been solved numerically, by
different methods, such as multistep potential approx-
1mation (MPA)[G] and equivalent approacht™®. 1n the
MPA method, the variations of potential cnergy and
electron effective mass are approximated by multistep
functions, such that continuous variations of potential
barriers and effective mass can be analyzed. In this
method, the boundary condition has the form that the

envelope function, and its derivative divided by effec-

tive mass, are continuous at the interfaces. The MPA
method has been used to calculate tlie transmission
probability through potential barrierst”) and eigenstates
in a quantum welll1].

In most problems involving heterojunctions it is as-

11,12]

sumed that the interface is abruptl . However, ex-

perimental results have sliown the absence of atomically
smooth semiconductor heterointerfaces!3'4). Particu-
larly for the case of GaAs/Al,Gai_,As, the transition
region of tlie interface can occiir from one to two unit
cells®. It has been observed that the interfacial width
and compositional variation changes considerably the
heterostructure propertiest'®. Using a nonabrupt po-
tential profile to describe one heterojunction. theoret-
ical calculations have been carried out to analyze tlie

transmission coefficient for clectrons and holesl?:18],

In this paper, we study the effects of interfacial
width and compositional variation on tlic transmission
cocfficient and binding energy of electrons in a double
barrier with interfaces of GaAs/Al,Gaj_»As. In Sec-
tion IT we present a model to describe tlie effective mass,
generalized kinetic energy operator and barrier poten-
tial. With this model, we calculate tlie transmission
coefficient and the binding energy using the MPA ap-
proach. In Section III we compare the results obtained

as a function of an interfacial width and compositional
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variation cf the aluminium.

I1. Mode. description

The system to be studied is a double barrier of
GaAs/Al, Gaj_, As with nonabrupt interfaces. Under
the effective mass approximation, the envelope func-
tion of the electron is given by one-dimensional time-
independent Schrodinger cquation.  We assume that
the aluminium molar fraction 2 changes linearly at the

transition regions, Figure 1., and it can be written as

2z —z1)/2a, 2 <z << 2y,

) ez —2)/2¢, 23 <2<z,
x(z) = 2(z —z5)/2, 25 <z <z, (1)

w(zs —2)/2a, 27 <2< 23,

where 20 s the barrier width; 2a¢ and 2c¢ are the thick-
ness of the transition regions, d is the distance be-
1= —d/2 —2b—a, z9 = z; + 2¢,

= —d/2— ¢, 24 = —d/2 + ¢, 25 = ~z4, 25 = —2z3,

™

tween the barriers,

z7 = —~zy.2¢ = —z; and x 1s the aluminium molar frac-
tion.

Considering that Al,Ga;_,As conduction band
threshold energy dependence on y is valid for Angstrom
dimensions!'¥ the potential that determines the elec-

tron motion in space, shown in F igure 1, s given by
V(z) = Claax(z) + ex(2)?) (2)

with C being the band offset, and ¢, ¢; constants asso-
ciated with -he compositional dependence of the energy
gap differencze between Al,Gaj_,As and GaAs(tl,
The electron motion across the barrier is described
by a Hamiltonian with a kinctic energy operator, hav-
ing a position dependent effective mass proposed by von

Ross(24],

. 1 4. NP
T == -/I(m“ pmE pm™ + m¥ pmP pm®) | (3)

<]~,'7'J'+1>_N [ (1 + s;)em 1 =ki)e,

(1 - Sj)(;_i(k]'f'l"‘kj)m]
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with « ¥ v+ 4 = —1, p as the momentum opera-
tor, and m as the effective mass. The effectivc mass
in the Al,Gaj_,As is proportional to the aluminium
concentrationt!®). Considering that this is also true at
tlie transition regions, we assume that the effective mass
changes continuously according to

) =t pas) (4

my

where p11, 9 are parameters obtained experimentally!*9),
and my is the free electron mass.

In the MPA method we split the potential barrier
up into segments. In each one, the potential energy
can be regarded as a constant. In tlie limit, asthe
division becomes finer, a continuous variation will be
recoveredf,

In our problem we assume that, at the intervals
z1 < z < zg, the potential is divicled in N barriers
of width /. At the i** region, the exact solution of
the Schrédinger equation for an electron with energy E

moving through tlie barrier is given hy

7.;']' — Ajéikj+la: + Bje—ikj_'_lfv , (5)
where
2m 4
kit = ¢‘TLJ2‘“(E—VJ'+1) (6)

Using generalized boundary conditions!?l], the de-
termination of coefficients Ay and By 1s reduccd to

matrix equations given by

(2)-0 (%) o

where

(1 - Sj)c_i(k1+1+k])n:j
(1+ Sj)f,”’:(kwx—kj)wj )
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Figure 1 Alumininm molar fraction(£(z)), potential barrier V(=) and effective mass m(z),

witli

k; M =4

§; = - ity (9)
kg \ my

Since in our system tlie effective mass and potential

are the same in tlie regions z < z; and z > zg, and

using tlie same procedure of Y. Ando and T. Itohlf],

the transmission coefficient can be written as

1

A

Pl (10)

with
vy My, T
S P b S TT M7 (1
ME M.;??} 1 (1)

M? = [

To obtain eigenvalues of an electron on adouble bar-

i=1

ricr we first consider tlie limit |z1\: zs = o¢. Using this
fact, the wavefunction, Iiq. (5), in the regions z < 2y
and z > zg decay exponentially and as a consequence
By = Ay = 0, in Eq.(7).
obtained by taking the matrix element .\452, Eq. (11),
as equal to zero.

With this, eigenvalues are

To compare dl results we assume for the kinetic op-
erator, Eq. (3), « = v = 0 and 8 = —1. Using this,
boundary conditions have the form that tlie envelope

as a function of tlie position.

function of the electron, and its derivative divided by
effective mass, are continuous at the interfaces.

IT1. Results and discussion

In order to obtain numerical results, we use the ex-
perimental parameters given in Ref. 19 and consider a
conduction band offset of 60%.

To analyse the effects of transition regions we ini-
tially consider changes on the external side of the dou-
ble barrier. In Figure 2 we show the transmission coeffi-
cient Of electrons, with energies higher than the poten-
tial barrier, on an abrupt and nonabrupt double barrier
with d = 1004, 20 = 100A, aluminium molar concen-
tration z = 0.45 and a symmetric transition region of
widths 2¢ = 2.0LP and 2a = 2.0,4.0,6.0LP, where
LP is the lattice parameter of GaAs. When the alu-
minium concentration decreases, the difference on effec-
tive mass is less significant. Consequently, we observe
that the difference between results obtained for abrupt
and nonabrupt barriers becomes smaller. In Figure 3,
we show tlie effects on the transmission coefficient of
electrons due to changes on internal transition regions.
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Again, me 10te considerable change ou the transmission
cocfficient. As observed for a single barrierl!?, transi-
tion regiors on double barrier produce a significative

effect aii tlie peak-to-valley ratio.

Considering electrons with energies lower than bar-
riers, in Figure 4a we plot the transmission coefficient
on a nonabrupt double barrier with d = 104, 26 =
2004, aluiinium molar concentration @ = 0.45 aiid
a symmetric transition region of widths 2« = 2.0LP
and internal transition regions of 2¢ = 2.0,4.0,6.0LP.
As can be seen, transition regions shift tlie peaks of
resonant tunneling to higher values of energy. This ef-
fect is more significant for peaks of lower energy. This
fact is also observed in Figure 4b, where we compare
transmission coefficient on a double barrier with abrupt
and nonabrupt interfaces witli d = 50?1, 28 = 1004,
aluminium molar concentration # = 0.45 and sym-
metric transition regions of widths 2¢ = 2.0LP and
2¢ = 6.0LP. Again, the effect of the transition region is
more significative for lower peak of resonant tunneling.
We observed that for energies lower than the barrier po-
tential, the transition regious external to double barrier

do not have a significant effect on resonant tunneling.

MRS R R e S =

o
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Figure 2: Transmission coefficient as a function o inci-
dent electron energy, on a double barrier with d = 100A4,
2b = 1004, alumininm molar concentration = = 0.45 and
symmetric trensition regions of widths 2¢ = 2.0L P, consid-
ering abrupt barriers (— ) and 2¢ = 2.0L P (a):2¢ =4.0LP
(b). 2n =6.01.P (C).
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Figure 3: Transrnission coefficient as a function o inci-
dent electron energy, on a double barrier with d = 100A,
2b = 100A. duminium molar concentration =z = 0.45 and
syminetric transition regions d widths 2« = 2.0L P, counsid-
ering abrupt barriers (—) and 2¢ = 2.0LP (a),2¢c = 4.0LP
(b), 2¢ = 6.0LP (c).
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Figure 4: 'Transrnission coefficient as a fnnction o inci-
dent electron energy, on a double barrier with aluminiiim
molar concentration X = 0.45; considering: (@) nonabrupt
barriers with synimetric transition regions with d = 1004,
2b = 2004, 2¢ = 2.0LP, 2¢ = 2.0LP (—) 2¢ = 4.0LP (- -
-) and 2¢ = 6.0LP (....); (b) abrupt (—-) and nonabrupt
barrier (- - - ) with d = 504, 2b = 1004, 2¢ = 2.0LP and
2c=6.0LP.
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Figure 5: Matrix element M}, as a function o electron
energy for an aluminium molar concentration = = 0.43.
nonabrupt barriers with symmetric transition regions with
d = 200A, 2¢ = 20LP (.}, 2¢ = 4.0LP (--). and
2e=6.0LP (---).

Since the eigenvalues of an electron in a double bar-
rier are obtained by searching foi zeros of M., in Fig.
5 we plot it as a function of electron encrgy constder-
ing d = 2004, aluminium niolar concentration r = 0.15
and symmetric transition regions of widths 2¢ = 2.0,4.0
and 6.0LP. The resonances correspond to cigenvalues
energies. These results are consistent with those ob-
tained in the resonant tunneling, since the transition
regions shift the eigenvalues to higher energies.

In conclusion. the effect of a transition region on
tlie transmission coefficient and eigenvalues energies of
an clectron in a double barrier heterostructure issignif-
icant. Since in these systems we consider an effective
mass which changes continuously through the transition
regions, we cxpect that our model represents a more re-

alistic picture of nonabrupt double barrier systems.
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