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In tliis talk we review tlie magneto-optical properties associated witli excitons in coupled
double quantum well structures. lii particular, we study tlie bindiiig energies of both the
light-hole and the heavy-hole excitons in asymmetric double-quantum-well in the presence
of a magnetic field applied parallel to tlie growtli clirection. Exciton wave functions are
expressed as combinations of Gaussian basis orbitals, witli variationally determined expan-
sion parameters. By varying tlic inter-well potential barrier width and height (hence the
inter-well coupling), we obtain exciton binding energies ranging in character from those for a
strongly coupled double-well to tliose for asystem of two isolatecl siiigle wells. The behavior
of tlie exciton binding energies as functions of the inter-well coupling, well sizes and the
magnetic field is consistently described witli our formalism. The application of the magnetic
Acld leads to stronger confinement of tlie excitonic wave functions and hence enhances tlie
2xciton binding energies. And finally, the calculated rcsults are compared with tlie available

experimental data.

I. Introduction

Double juantum well structures have attracted
a good deal of atteiition, both experimentally and
theoretically.l'=7 A douhle quantum wel (DQW) is
a semiconductor structure in which two siigle quan-
tum wells are separated by only a thin potential barrier
across which electrons and holes from one well can tun-
nelinto tlieother. Asin siiigle quantum wells, tlie elec-
trons ancl hcles confined in a DQW can form excitons
due to their mutual Coulomb attraction. The electro-
optical propt rties of such excitons promise applications
in high speed spatial-light modulators and switches.[®]
One advantage tliat a DQW structure offers over the
siiigle quantum wells is the enhanced excitonic electro-
optic response.[]

A magnesic field applied parallel to the growtli di-
rection has en additioiial confining effect on clectrons
and holes in tlie quantum wells, aiid is expected to
modify exciton binding energies in tlie DQW .[1%:12] To-
gether with the effects of the confinemeut and iiiter-
well coupling (through tunneling across tlie potential
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basrier) provided by a DQW, we have an interesting
physical system in wliich these competing factors influ-
ence those exciton cliaracteristics determining the exci-
tonic electro-optical propertiesof the DQW. Although
tlie properties-of excitons in DQWs have been studied
by several groups,'®=15] a systematic investigation of
the effects of a magnetic field on them has begun only
recently.l!S! M addition, there have been some appar-
ently conflicting results as to how inter-well coupling
would qualitatively affect exciton binding energiesin a
DQW in tlie weak ancl strong inter-well coupling limits.
A yualitative and a quantitative study is desired to gain
knowledge of these aspects and to clear up ambiguities
about the role played by inter-well coupling in affecting
exciton binding energies in a double quantum well.

In tliis paper wereview aformalism to calculate ex-
citon binding energies and oscillator strengthsin DQW
structures in the presence of a magnetic field directed
along tlie growtli axis.['®=21 The formalism is applied
to a GaAs-Al,Ga,_,As DQW for various physical pa-
rameters. In Sec. II, we describe this formalism, in
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which we solve for electron and hole wave functions for
the double well potential profile; take mixing of electron
and hole wave functions of neighboring subbands into
account; express the exciton internal-state wave func-
tion in terms Of Gaussian orbitals and determine expan-
sion parameters and excitoii binding energies variation-
ally. In Sec. III, we show that our formalism correctly
describes exciton binding energies for all inter-well cou-
pling strengths, and discuss exciton binding energies as
a function of the quantum confinement, tlie magnetic
field and the inter-well coupling. In Sec. IV, we provide
a summary of our results, and discuss possible further
extensions.

II. Formalism

We consider a DQW consisting of two identi-
cal GaAs layers sandwiched between two semi-infinite
Al,Ga;_,As slabs, with a tliin layer of Al,Gai_,As
between them. A uniform magnetic field B iS applied
perpendicular to the layers (in tlie growth direction).

The Hamiltonian of the electron-hole system is{2%]

H = &#, [-mv + %A} _H, [ihv + EA}

62

+ I/e(ze)“{‘l/;z(zh)‘ (1)

Kolre — 13}
where V,(z) and V5 (z) are respectively the potential
profiles for the electrons and holes, A = (B X r)/2 is
the vector potential of the magnetic field B, &y is the di-
electric constant of the layers (assumed to be uniform
here), r, and r; are the electron and hole positions.
The electron Hamiltonian 7, is adequately described
by an effective mass approximation, using parabolic
bands. The hole Hamiltonian Hj, is the 4 x 4 Kohn-
Luttinger Hamiltonian.[** To gain physical insight with
a tractable inodel, we assume parabolic hole bands in
the X — y plane aiid in the z-direction and retain only
diagonal terms in Hy, thereby ignoring coupling be-
tween the heavy and tlie light hole bands. Following a
standard procedure to separate the constant center-of-
mass motion Of an electron-hole pair in the x — y plane,
we define the reduced mass of an electron-hole pair p4
mZ !+ (71 £ vo)m; !, where myg is the free
electron mass, m, is the effective electron mass and 4

with py 1=

and 72 are the Kohn-Luttinger band parameters, the
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(+) sign corresponds to the heavy-hole exciton, (-) sign
to the light-hole exciton. We then scale all lengths in
the exciton Bohr radius ax = koh?/puse?, and energies
in the exciton Rydberg R+ = €2/2xga+, to obtain the
dimensionless form of the Hamiltonian

g 9 H?
3 3 " pQBJ

H = H;(ze)+H'h(zh)—[
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wherep = \/(xe — xn)? + (ye — yx)? is thein-plane dis-
tance between a pair of electron and hole. z = 2, —

(2)

zn Lz is the z-component of the angular momentum,
and v is the first Landau level expressed in R*,y =
eliB/2pscRy. The Hamiltonian H above is grouped
into three terms, nainely the electron part H., the hole
part [} aiid the exciton part H2,H = H,t H,+ HE

ex ex?

where
)=t v, (34)
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and my_y is the heavy (light) hole mass defined as

myt = (71 F 272)mg

Wave function ¥(r.,rs) of the electron-hole system
is solved from the Schrédinger equation H¥(xr.,rp) =
EV(r,,ry) where E is the total energy. We write
¥(xe,rp) in the following form to express the explicit

dependence on z., zy and on the relative distance r =
[22,23]

(re,rp) Z AuF¥(

k=1

re — I

z)Fy(m)é(x),  (4)

where ¢(r) is the wave function describing the internal

state of an exciton: F¥(z,) is the k'" electron subband
wave function, and F}(z) the {** hole subband wave
function, Ay; are the expansion coefficients to be deter-
mined; both F¥(z.) and F}(z;) are normalized. Eq. (4)
is a good approximation to the exciton wave function as
long as the difference between the subband levels that
are included in the summation and those that are not
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is larger than tlie exciton binding energies. Tlie two
wave functions in the z-direction are determined by tlie

following tvo equations,
1 kg,  rkmky, =
‘HeFe (55)"EeFe (“/'8)7 (")a)

H/'LFIIL(ZIL) = E;zF/IL(Zh)e (5b)

in which £ and E}, are the electron and holc subband
energies.

We first solve for subband envelope functions F.{z.)
and Fj(z,).1% Next we express tlie exciton internal-
state wave function ¢(r) in terms of Gaussian orbitals
ancl use a variational calculation to determine the ex-

pansion patameters and the exciton binding energies.

o(p.pi2) = ) eiRilp.#)&(2), (6a)
i=1
where ¢;( = 1,n) are the expansion coefficients,

Ri(p,¢) anl £(z) are respectivcly the basis functions
in the x — 3 plane and in the z-direction,

cimcp
Rilp,¢) = ~—==p"™ exp[—(a; +8)p?). (m = 0,£1,42,...),
er:
(60)
and
&i(2) = exp[—(a} + 8)2°], (6e)

where 3 and § are tlie variational parameters, «; and

o!(i = 1.n) are sets of constants.?*2%) For excitons in
the double quantum well, 3 and § are varied to adjust
these Gaussian basis functions to minimize the total
energy E.

For DQWs consisting of narrow wells with strong
interwell couplings (for center barriers of small widths
or low heights), effects of the coupling between neigh-
boring subbands on exciton binding energies are shown
to be small, tlierefore it is sufficient to assume exciton
to be associated with a single electron subband and
a single hole subband.l'7l In general, however, single-
subband description of excitons in a double quantum
well 1s inadequate ancl can lead to qualitatively mis-
leading results. When tmo single quantum mells are
separated by a potential barrier, the wave functions in
these wells ¢re scrambled to form a “bonding” (even-
parity) ancl an “anti-bonding” (odcl-parity) combina-
tion (total) wave function. If the barrier is thin end
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tlie wells are narrow, the single-well wave functions are
strongly modified hy the presence of the neighboring
well because of the tunneling of electron (hole) across
tlie potential barrier. As a result, the bonding and
anti- bonding total wave functions have significantly
diffcrent subband levels. In other words, subband lev-
els in such a thin-barrier, narrow-well DQW are non-
degenerate. When tlie harrier is thicker or wells are
wider, the single-well wave functions are essentially con-
fined t0 one single-well and are therefore diminishingly
affected by tlie presence of its neighboring well. Bond-
ing and anti-bonding combinations would yield similar
subband levels, with one slightly lower and one slightly
higher than the isolated single-well subband levels. All
subband levels are almost doubly-degenerate. A consis-
tent description of excitons in DQW structures should
therefore include pairs of subband levels to properly ac-
count for contributions to exciton bincling energiesfrom
both the even-parity and the odd-parity suhhand wave
functions.

In what follows, we calculate the properties of the
ls exciton associatecl with tlie first two electron and
hole subbands (Ax = 0.k, > 2). In a system with
a thin barrier and narrow wells, the separations be-
tween tlie adjacent subband levels are large compared
with the expected exciton binding energies and there
is little iriter-subband coupling, ie., A;; =~ 1 and
Aw — 0((k+1) > 2). As L, — oo, these subband
levels become degenerate and coupling between them
becomes important, i.e.. all Ag’s would play compa-
rable roles. In the absence of the Coulomb interac-
tion ancl without mixing of the even-parity and odd-
parity subbands, the total energy E is just the sum
of first electron and hole subband energies BV, E,(Zl)
and the Landau level energy y¥. The Coulomb inter-
action between the electron and hole lowers the total
energy and leads to the formation of excitons. The
binding energy of the lowest lying exciton E'g is defined
inEp=EM+ED 4+ E.

The total variational wave function corresponding
to the Is state is U(r,,ry) = Zk‘,;i Apieinf!(ze, zn, p) in
which ¥ (2., 741 p) = FE(2)Fl(en) Ri(p)és(p) (e — =)
is tlie non-orthogonal basis wave function set. We de-
termine the expansion coefficientsfrom the Schrodinger

equation,
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> Hy (KK ) Apine; = ES . Ui (kLK) Apire;,
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where Uy; (kl,k'l") and Hy;(KI,k'l’) are the overlap ma-
trix and the Hamiltonian matrix defined below,

]';k/ll ]‘k/ll
(M
|
Uy (ki B = / dzc/ d/h/ pdont (2., z1, p) e, 2, p), (8a)
Hi (kL ET) = 27 / / Ad%/ Apdpm Yze, 2, p)HnJ (46,511 £, (8b)

By parities Of tlie wave functions, we have U¥ (kI k'I') = 0 and HY (kL K'I') = 0if k+ &' +1+1 is an odd integer.

The total energy E is an eigenvalue determined by the following eigensystem equation,

Hi]’(ll,ll) Hi]’(ll,QQ) 0 0 Allcj
H,;j(] 1, 22) H;;j('ZQ, 22) 0 0 AQZCJ‘ =0 (9)
0 0 Hij(12,12) Hij(].2,21) Algcj - )

where I;; (kI k'l") = Hy; (kL K1) —=AU;; (k1 E'l") are real
NXn symmetric matrices. Notice that tlie expansion co-
efficieiitsfor the subband wave functions and tliose for
the Gaussian orbitals are determined at the same time
by Eq. (9), which is actually a superposition of two
independent cigensystems. The eigensystem is solved
by ageneralized Rayleigh quotient itcration method.[2]
By choosing tlie appropriate eigenvalue A and minimiz-
ing it as a function of tlie variational parameters, we
obtain tlie total energy E of tlie exciton ground state-
and the exciton binding energy £p. The wave function
¥ is simultaneously determined by the corresponding
eigen-vector Age; for the given F, subject to the nor-
malization conditioii < ¥|¥ >= 1.

II1. Results and discussion

We have calculated the binding energies of tlie
heavy-hole exciton and the light-hole exciton as func-
tions of tlie magnetic field, the well width L, and
tlie center barrier thickness L; of a symmetric GaAs-
Al Gay_,As double quantum well. The values of phys-
ical paraineters pertaining to GaAs used in our cal-
culations are; m, = 0.067 mo,kg = 12.5, vy = 7.36,
v, = 2.57. 127 The values for the heavy-hole (J, = £3)
exciton are in+ = 0.45 my, ;. = 0.04my,a+ = 165

A, Ry =349 meV; tliose for the light-hole (J, = +3)
exciton are m_ = 0.08 mg,u_ = 0.05 mg,a- = 131
A, R_ = 439 meV. We use an empirical formula
AE, = 1.332 1 0.2222 (eV) to determine the band gap
discontinuity,?®] with 60% of AE, contributing to the
conduction hand discontinuity AE, and 40% to the va-
lente band discontinuity AFE,. Mole fraction z = 0.3 is
used for all Al coiicentrations. Differences between ma-
terial parameters of GaAs and those of Al,Ga;_.As are
not included in tlie calculations. Potential for electroiis,
Ve = V¢ = 257meV; for holes V}* = V) = 171 meV.
For computational simplicity, we have used o} = «; and
have chosen «s from tlie results of Huzinagal®! on en-
ergy levels of a hydrogen atom using the Gaussian basis
orbitals. It was also sufficient to set 6 = 0 and use only
oiie variational parameter 3.

In Fig. 2, we compare binding energies of the heavy-
hole exciton in a DQW with L, = 100A (= 0.6ay)
with tliose iii a single well of width L, and thosein a
DQW with L; = 0 (which makes the DQW equivalent
to a single well of width 27.,,). The binding energies
in the single wells are calculated both with and with-
out mixing of subband wave functions. The increase
in excitoii binding energies in single quantum wells is
negligible when subband mixing isincluded, for all well
sizes shown 1in the figure. In the case of the DQW with
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Ly = 100 X, however, binding cnergies obtained with
mixing of two electron and two hole subbands are sig-
nificantly higher than tliose obtained using only one
electron and one hole subband (therefore ignoriiig sub-
band inixiiig) at all well widths, except for very nar-
row wells (L, < 254). Such athick barrier effectively
prevents the electron and hole tunneling from one well
to the other, so the correct wave function should be a
single-well wave function. A single-subband wave func-
tion, with c. definite parity in tliis symmetric DQW, on
the other hand, unrealistically forces the electron and
hole to be present in both wells, therefore reducing the
probability of finding an electron in tlie vicinity of ahole
and vice versa, which leads to the underestimation of
exciton binding energiesin a double quantum well. Tlie
result of Kamizato and Matsuura (KM hereafter)?®] us-
ing the single-subband treatment therefore gives amis-
leading imp ression that wells separated by such a thick
barrier are still strongly coupled. Our results correctly
show that with such a thick barrier, the two quantum
wells are effectively decoupled for L, > 40 A, which
is physically consistent with what one finds in experi-
ments.

In Fig. 3, we compare binding energies of the heavy-
hole exciton in a DQW calculated by us, with those
obtained by KM with and without subband mixing,
and those by Dignam and Sipe (DS hereafter)!] with
subband mixing, asa function of tlie barrier thickness
Ly. It is evident that the two-subband treatment by
DS seriously underestimates the binding energy in the
strong inter-well coupling limit (L < 0.2a4) and can
not recover the fact that at L, = 0, tlie DQW is simply
a single well of width 2L,. On the otlier hand, the
two-subband DS result in tlie weak inter-well coupling
limit approaches that obtained by KM without sub-

band mixing, which can not recover the single-well re-
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sult at large barrier thicknesses eitlier. It appears that
although th: DS two-subband treatment works in tlie
intermediate inter-well coupling strengths, it overesti-
mates the strength of the inter-well coupling in both
tlie strong and weak inter-well coupling limits. Our re-
sult agrees with that of KM including subband mixing
at both strcng and weak inter-well coupling limits. It
is also evident that our formalism gives higher binding
energies for all inter-well coupling strengths. Further-

more, OUr formalism correctly describes the behavior of

157

exciton binding energies when the additional confining
effect of the magnetic field is also included.

In Fig. 4(a), we show variation of the binding en-
ergy Ep of the heavy-hole exciton as a function of well
widths L, for several different combinations of the bar-
rier thickness L; and the magneticfield B. The results
of Ep for Ly = 0 have been cornpared with those of
Greene and Bajaj for exciton binding energies in single
quantum wellsin a magnetic field,[10] based on the ex-
pansion of the exciton wave function into Gaussian ba-
sis orbitals. Tliose for zero magnetic field (B= O) and
Ly < a4 have been compared with the results obtained
by KM for exciton binding energiesin a symmetric dou-
ble quantum well, with material parameters roughly
corresponding to those of heavy-hole excitons in GaAs-
Al,Ga;_.As quantum wells (251 The agreement in both
cases is excellent, as expected.

Again for L, = O as well width L, decreases, elec-
tron and hole wave functions first become compressed
in tlie narrowing wells and exciton binding energy Es
climbs up due to the decreasing average distance be-
tween the electron and the hole, which is mainly de-
termiiied by tlie well size L, in a given magneticfield,
until £g reaches a maximum. As L, further decreases,
subband energies are pushed up and leakage of the wave
functions into the barrier regions becomes significant,
Ep begins to fall off rather rapidly as the exciton as-
sumes more of a 3D-like nature.[24]

For Ly # 0, the binding energy is lower for small
L, and higher for large L, in comparison to that in
the DQW with L, = 0. For narrow wells, the electron
and hole wave functions spread throughout the DQW
structure, and the presence of the barrier merely in-
creases the average distance between the electron and
hole, leading to alower binding energy. Asthe wellsbe-
come wider, however, the wave functions become more
and more confined in one single well due to the pres-
ente of the barrier, the average distance between the
electron and hole decreases, leading to a higher binding
energy. At some well width L, the Eg curvesin the
DQW with Ly # 0 will cross over with that in the DQW
with L, = 0. Since a magnetic field provides an extra
confinement of the wave function in the quantum well,
such a crossover will occur at a smaller Lg at higher
field strengths. Also notice that a shoulder developsin
the binding energy curves. As L; increases, this shoul-
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Figure 1: Schematic band cliagram of a symmetric GaAs-Al; Gai—zAs double quantum well and the applied magnetic field

B in tlie growth direction.
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Figure 2. Comparison of binding energies of tlie heavy-hole
exciton calculated, witli and without subband mixiiig, as
function of well width L,. Short-dashed line (- - -) is for
a DQW witli L, = co (corresponding to an isolated single
quantum well); long-dashed line (- -) for Ly = 0; solid line
(9 for Ly = 100A (with rnixing of two electron and two
hole subbands); dotted line (- - - - - ) for Ly = 1004 (only
onc electron and one hole subband used in tlie calculation).
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Figure 3: Coniparison of binding energies of tlie heavy-hole
exciton calculated, with and without subband mixing, as
function of barrier tliickness L,. The well width is fixed
at L, = 0.6a4. Solid line (=) is our result witli subband
mixing included; dotted line (...... } by DS with subband
mixing; short-dashed line (- - -) is by KM without subband
mixing; long-dashed line (- -) by KM with subband mixing.
Material parameters are asin KM.
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Figure 4. (a) Binding energy d tlie lieavy-liole exciton as
a function of tlie wdl width L., (b) binding energy o tlie
liglit-liole exc: ton as a function of tlie well width L,, with
magnetic fielc B and barrier thickness L, as the two other
parameters. Material parameters are noted in text. Solid
lines (—) are for L, = 0 (corresponding to tliat in a single
quantum wdl o width 2L.); dotted lines (....) for L, =
25A.
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der becomes more evident and appears at smaller well
widths L,. At the limit L, — oo, it merges with the
maximum that is caused by the leakage of the lowest
subband wave functions into the barrier regions. This
shoulder is attributed to mixing of wave functions of
the odd-parity second subbands with those of the even-
parity first subbands. For small Ly, E(D) and E® are
significantly different, and wave functions of the second
subbands are more spread out due to their higher ener-
gies. Binding energy associated with second subbands
would rcacli the maximum at large well width L,. As
Ly increases, tlie second subband comes down and even-
tually becomes degenerate with the first subband, the
maximum in Eg caused by it coincides with that of the
first subband.

In Fig. 4(b), we show values of the binding energy
Ep of the light-hole exciton as afunction of L,, . Qual-
itatively F'p behaves similar to tliat of the heavy-hole
exciton. However, it is larger and reaches inaximum
for larger L, as compared to that for the heavy-hole
exciton.12%] Also, the values of light-hole exciton bind-
ing energy are higher than those obtained by Greene
and Bajaj who used 85%-15% conduction-valence band
offsets in their calculations,'% as light-holes are now
more severely confined in the quantum wells by higher
potential barriers. Binding energies of the heavy-hole
exciton associated with the lowest subband are not as
sensitive to the change of band offsets used in calcu-
lations, since the heavier longitudinal mass results in
stronger confinement of the heavy hole wave function
in tlie quantum wells. However, for excitons associated
with higher subbands, higher valence band offsets are
expectcd to affect binding energies more significantly
for both the light-hole and the heavy-hole excitons.

In all instances, the presence of a magnetic field in
tlie growth direction leads to higher exciton binding
energies. In Fig. 5(a), we show the binding energies
of tlie heavy-hole exciton, as functions of the magnetic
field with several quantum well sizes and barrier widths
(L,,,Ls). Similar results for the liglit-hole exciton are
shown in Fig. 5(b). Asthe magneticfield increases, the
in-plane radius (~< p >= /< ¥[p?[¥ >) of the exci-
ton is reduced, leading to stronger Coulomb attraction
between the electron and the hole, and consequently
higher binding energies. Our results on heavy-hole ex-
citon fit ratlier well with those measured by Perry et
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Figure 5: (a) Binding energy of the lieavy-liole exciton Ep
as a function of tlie apphied inagiietic field, (b) binding en-
ergy of tlielight-hole exciton Epr asafunction of the applied
niagnetic field B. The two parameters are Ll,and L,. Solid
line (=) isfor L,=10 A, L, =10 A ; long-dashed line
(--)for Ly =50 A, L., =10 A; short-dashed line (- - -)
for L,=10 A, L. =100 A; dotted line (....) for L, =5
A, L; =100 A.
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Figure G (a) Binding energy of the lieavy-hole exciton as a
function of tlie barrier thickness Ly, (b) binding energy of
tlie ight-hole exciton as a fiinction of tlie barrier thickness
Ll The other two parameters are the magnetic field B and
the well widtli L, Solid lines (=) are for L, = 100 A;
dotted lines (....) for L, =10 A.
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al.,l*2l when appropriate material parameters are used
in the calcul ations. Asfor the light-hole exciton, com-
parison with their datais more difficult, because of the
ambiguity in identifying the correct exciton branches
froin their experimental results.

In Fig. 6(a), we show binding cnergies of the heavy-
hole exciton as functions of barrier thickness L, for
several clifferent values of (L,,,v). Similar results for
the light-hol: exciton are displayed ill Fig. 6(b). At
Ly = 0, reswts for single quantum wells of width 2L,
are recoverec, as we have noted earlier. The average
distance betvreen the electron and hole forming the ex-
citon increas:s as L; increases from 0, and as a result
the binding cnergy Ep first decreases. For small bar-
rier thicknesses, a significant portion of wave functions
is present in tlie barrier regions. However, this leakage
decreases sharply as well size increases.(24] Therefore
for wider wells the rate at which the binding energy
decreases as .%; increases is higher, asit is easier t0 sep-
aratc the wave function il the two neighboring wells
when the center barrier size Lj increases. By the same
argument, thz drop in Fg as L; increases is also steeper
for the heavy-hole exciton, since heavy-hole tunneling
is more sensisive to changes in tlie barrier thickness.

As L fursher increases, coupling between the wells
diminishes, and tlie binding energies will eventually
increase and approach the isolated single well values
Ep(Ly). The Ep curves will bottom out at some bar-
rier thickness L; and then rise up. Again for wider
wells, this minimum in Ep Will occur at smaller bar-
rier thickness L. For the same reason, binding energy
Ep of thc heavy-hole exciton will reach the minimum
at smaller barrier thickness L; than that of the light-
hole exciton. Notice also that as the magnetic field
increases, the exciton wave function spread is reduced,
and as a result, the inter-well coupling decreases faster
as the barrier thickness increases. The minimum of the
binding energy occurs at smaller valucs of ;.

It is worth pointing out that so far ouly our ap-
proach has produced consistent results for all barrier
sizes. Although we have calculated only binding ener-
gies of excitons associated with the first electron and
hole subbands, our formalism can be applied to exci-
tons associated with otlier subbands.
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IV. Summary and conclusions

In summary, we have reviewed a formalism to calcu-
lateexciton binding energiesin symmetric double quan-
tum wells in the presence of a magnetic field applied
parallel to the growth axis. The extra quantum con-
finement provided by the magnetic field increases the
exciton binding energies. Effects of inter-well (inter-
subband) coupling on the light-hole and heavy-hole ex-
citon binding energies in the double quantum wells are
consistently included in our calculations for the first
time. Effects of quantum confinement provided by the
magnetic field and the potential wells, and those of tun-
neling across the center potential barrier on the exciton
binding energies are discussed. In the limit of thick po-
tential barriers, the even-parity and odd parity subband
wave functions have degenerate energy levels; mixing
of electron and hole subband wave functions strongly
modifies tlie excitonic wave function and consequently
lets one recover results for excitons in decoupled single
quantum wells. We have shown that ignoring such sub-
band mixing is a good approxiination only for narrow-
wells and thin-barrier double quantum well structures,
and that a single-subband approach can lead to quali-
tatively misleading conclusions when applied to DQWs
with wide-wells or thiclr barrier.

We have used the first two single electron and hole
subbands in calculations of the exciton binding ener-
gies, and our results cover most cases one would eu-
counter in experiments. While we have not included
clifferences in the effective masses and dielectric con-
stants across the GaAs-Al.Ga;_zAs interfaces in our
calculations, they have been shown by various authors
to lead to only small increases in the exciton binding
energies and therefore would not alter the conclusions
presented here.
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