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The configurational properties of a-Si, a-Ge and a-Sil-,C, have been studied by Monte 
Carlo simulation methods. A special attention is given to the selection of the interatomic 
potential. The calculated networks for the a-Si and a-Ge systems are found to be nearly 
the same with only a small scaling factor of difference for the bond distances and nearly the 
same bond angles. In the case of a-Sil-,C, we find that a11 C sites a.re 4-fold coordinated, 
whereas the coordination of Si varies between 3 and 6. The increase of x in a-Sil-,C, 
increases the amount of 5-fold Si sites and decreases the amount of 4-fold Si sites indicanting 
an increase of the disorder. With the geometrical structures generated by the Monte Carlo 
simulation a quantum mechanical investigation is made of the electronic structure of a-Si. 
Using the INDO method for a cluster "supermolecule" composed of 35 Si atoms saturated 
with hydrogen atoms the density of states of a-Si is simulated. Configuration interaction 
calculation is also performed to disciiss the optical absorption spectrum of a-Si. 

I. Introduction 

Amorphous semiconductors represent an important 

area in condensed matter physics. This subject has 

been extensively studied both theoretically and ex- 

perimentally not only because of its technological im- 

portance but also because of its interesting physical 

properties[l]. 

A necessary requisite to any microscopic study of 

disordered semiconductors is the knowledge of their 

atomic structure. Experimentally, disorder means that 

one can measure only average properties and an ac- 

curate determination of the individual atomic coordi- 

nates is impossible. Yet a quantitative characterization 

of the atomistic disorder, i.e, an accurate microscopic 

model of the disordered network, is a prerequisite for 

any quantitative theoretical approach to the properties 

of these systems. Reliable models of disordered struc- 

tures can be generated from an accurate description of 

the interatomic potential energy surface, using statisti- 

cal simulation methods based on Molecular-Dynamics 

(MD)[~] or Monte Carlo (MC) t e ~ h n i ~ u e s [ ~ ] .  

Here, we present results of simulations of the fol- 

lowing systems: amorphous Si (a-Si), amorphous Ge 

(a-Ge) and amorphous SiC (a-Sil-,C, with x up to 

0.1). We use a MC algorithm and the interatomic po- 

tential developed by ~ e r s o 6 ~ 1 .  

Once an amorphous structure has been obtained by 

simulation it is possible to  study the electronic struc- 

ture using conventional non-relativistic quantum me- 

chanical methods. In particular, our interest in the op- 

tical spectra of amorphous materials demands a careful 

analysis of the electronic excited states. Besides the 

transition energies it is important to obtain the rela- 

tive intensities of the corresponding electronic absorp- 

tion. For that matter we use the self-consistent-field 

approach within the intermediate neglect of differen- 

tia1 overlap approximation followed by configuration in- 

teraction, the so-called SCF-INDO-C1 methodL5], and 

adopt a "supermolecule" approach. Further details are 

given in the next section. 

11. Method 

To study the configurational structure we have used 

the continuous- space MC method. A reliable descrip- 

tion of the atomic interaction is provided by using an 

empiric interatomic potential. Details on the functional 
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form and parameter values of the potential are post- 

poned to subsection 11.2. 

The MC simulations are made with cubic boxes of 

216 atoms. The problem of surface effects can be over- 

come by implementing periodic boundary conditions 

using the minimum image c~nvention[~].  

In order to  generate the atomic arrangement in a- 

Si, the ideal configuration of the diamond structure 

was melted using a constant temperature and pressure 

(NPT) MC procedure. This simulation was performed 

at 3000 K since the experimental melting point for Si is 

1683 K but the calculated melting point for Si modelled 

by the Tersoff potential is 2547 KL7]. 

After the system was thermalized at 3000 K,  which 

required about 10000 MC steps, the temperature was 

decreased to 2500 K and the system was thermalized 

again. This process is repeated down to 300 K and only 

then the a-Si coordinates are generated. In the cases of 

a-Ge and a-Sil-,C, we used similar rrocedures. 

Having the structure generated by the MC simula- 

tion it is possible to  perform an analysis of the electronic 

structure. 

11.1 Electronic structure calculations 

To make the electronic structure calculations we 

adopt the INDO method. A Hartree-Fock (HF) self- 

consistent field calculation is first performed on the 

ground state. The HF orbital energies are used to  cal- 

culate the density-of-states (DOS). In this one-particle 

picture the discrete set of energy levels are used to sim- 

ulate the DOS of the bulk by convoluting Gaussian- 

type functions around each discrete energy leve1 with 

a given widthi"]. In a11 calculations performed here we 

used a Gaussian width of 0.5 eV. 

It is not possible to include a11 the 216 atoms in these 

analysis because of computational limitation. Then, we 

consider a representative portion including 35 atoms as 

a "supermolecule" . These atoms are selected by choos- 

ing randomly an atom in the 216-atom cell and looking 

for its 34 nearest neighbors. Now we have again to 

deal with feigned surface effects. Then we saturated 

the dangling bonds of the supermolecule with hydro- 

gen a t ~ m s [ ~ ] .  This procedure must not be confused 

with real hydrogenation, which is common in amor- 

phous semiconductors. 

The HF states are used next to  generate the excited 

states by configuration interaction (CI). Using single- 

electron promotion with reference to the HF wavefunc- 

tion around 400 excited states are generated and al- 

lowed to interact by diagonalizing the Hamiltonian ma- 

trix in this basis. This immediately gives the corre- 

sponding excitation energies. In addition, as a11 C1 

states come from diagonalization of the same C1 ma- 

trix the corresponding eigenstates of the C1 hamiltonian 

form an orthonormal set and this allows the determina- 

tion of the transition moments. Thus the corresponding 

intensities are calculated from the oscillator strength. 

In a11 cases here the oscillator strength has been ob- 

tained using the length form. The optical spectrum 

is finally obtained by convoluting Lorentzians around 

the transition energies using the oscillator strength for 

the intensity[lO]. This procedure is very convenient for 

large systems where a state-to-state analysis is neither 

possible nor desirable. 

11.2 The interatomic potential 

To model the interaction between the atoms we have 

used the Tersoff potential (TP). In this scheme the en- 

ergy is a sum of pairlike interactions, but the coefficient 

of the attractive term depends on the local environ- 

ment, giving a many-body potential. The functional 

form of the energy E is given by 

Here E is the total interatomic energy of the system. 

The indices i and j run over the atoms of the system, 

and rij is the distance from atom i to atom j. 

The function f~ represents a repulsive energy due 

to atomic wave function overlapping, and f A  represents 

an attractive pair potential to  give interatomic binding. 

These functions are chosen to be exponentials, as in a 

Morse potential 

with 

Aij = , B~~ = ( B ~ B ~ ) ~ / ~  

A i j  = (Ai + xj)/2 , Pij = (/li + pj)/2 (3) 
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The function fc is a cutoff function, that limits the range of the potential and it  has the form 

and a continuous value and derivative for a11 r;j, and 

goes from 1 to O in a small range between Rij and Sij. 

Rij and Sij are chosen to include only first neighbor 

interaction for most structures of interest. 

The bond order function, bij ,  has the form 

where Qi jk ,  is the bond angle between bonds ij and ik. 

The parameters in the potential were determined 

by fitting to a data base consisting of ab ~ n i t i o  results. 

This data base included the cohesive energy, bulk mod- 

ulus and bond length in the diamond structure and the 

cohesive energies in the dimer and in the bulk politypes 

FCC, BCC, P-tin, simple cubic and simple hexagonal. 

For Si and Ge we use the parameters given in reference 

[4] and for C that given in reference [ l i ] .  

The present approacli has the a.dvantage of statisti- 

cal precision and allows the use of large cells to model 

the disordered material. In contrast, ab initio MD are 

restricted to  short simulation times, small cells (about 

60 atoms), fixed volumes and the use of only the r-point 

for the integration in the Brillouin-Zone. 

111. Results and discussion 

111.1 a-Si and a-Ge: atomic arrangement 

The configurational structure of a-Si as obtained 

with the MC method in which the atoms interact via 

I 

the T P  has already been published[12]. Here we first 

briefly revisite this problem as an initial test for the 

MC computational code that we developed. Our results 

are indeed in agreement with the Tersoff r e ~ u l t s [ ~ ~ ] .  In 

this subsection we shall also present our results for the 

configurational structure of a-Ge. 

Figure 1: Radial distribution functions for a-Si (solid lines) 
and a-Ge (dashed lines). 
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In the Fig. 1 we show the radial distribution func- 

tions (RDF) for these systems. A very pronounced peak 

at 2.41 A for a-Si and 2.52 A for a-Ge indicates that 

the systems have a short range order as expected for 

covalent disordered systems. 

In the Fig. 2 we show the angular distribution func- 

tions for a-Si and a-Ge. The distributions are centered 

around the angle of 109.5 degrees (vertical line in the 

plot). This is the angle of the bonds in crystalline Si 

and Ge. 
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50.0 I . , '  I 111.2 a-Sil-,C,: a tomic  arrangement 

40.0 
The atomic arrangements of stoichiometric SiC, 

i.e, a-Sil-,C, with x = 0.5 have been studied both 
e .- 2 30.0 e ~ ~ e r i m e n t a l l ~ [ ~ ~ ]  and t h e o r e t i ~ a l l ~ [ ~ ~ I .  However the 
2 understanding of the atomic arrangements of a-Si in 
& .- 
e 

20.0 which a small amount of C atoms is included is still 
5 missing. In this subsection we present our results ob- 

10.0 tained with the MC simulations for a-Sil-,C, with 

varying x up to 0.1. 

0.0 In the Fig. 3 we show the RDF for the systems that 
50.0 70.0 90.0 110.0 130.0 150.0 170.0 

angle (deg) we have studied compared with the RDF of a-Si. 

Figure 2: Angular distribution functions for a-Si (solid lines) 
Analysis of the RDF of Fig. 3 in terms of partia1 

and a-Ge (dashed lines). correlation functions, shows that the first and second 

peaks a t  1.62 A and 1.95 A are due to C-C correlation. 

We note that when the concentration of C is 2% or 5% 
In the Table I we compare our results with that ob- 

the peak at 1.62 A is missing. The third peak at 2.4 A 
tained within the Car-Parrinello scheme (Cp)[l3] and 

is due to Si-Si correlation and the fourth peak a t  3.05 
experimentally[14~15~16]. In the case of a-Ge there is 

A is due to Si-C correlation. 
not, to our knowledge, ab-initio MD results in the lit- 

erature. We compare the mean first-neighbor distance, 

Ri,  the standard deviation of bond lengths, UR, the 

average coordination, Nc ,  the mean bond angle, 8, and 

the standard deviation of bond angles, as. 

Table I: Mean first-neighbor distance, R i ,  standard de- 
viation of bond lengths, u ~ ,  , average coordination, N c ,  
mean bond angle, g, and standard deviation of bond 
angles, for amorphous Si and amorphous Ge. Our 
results are compared with both cp[l3] and experimen- 
tal r e s ~ l t s [ ~ ~ ~ ~ ~ ~ ~ ~ I .  

R1 Nc  6' uo 
(A) ( 1 3 ~ )  (deg) (dei31 

a-Si Our 2.41 8.1 4.10 108.6 12.1 
CP 2.38 9.0 3.96 108.1 13.4 
Exp. 2.36 7.4 4.05 108.4 9.9 

a-Ge Our 2.52 4.9 4.15 108.3 15.8 
, Exp. 2.463 7.4 3.68 

The results presented in Table I and Figs. 1 and 

2 show that the geometrical pattern of a-Ge and a-Si 

Figure 3: Radial distribution functions for a-Si (solid lines). 
a-Sio.98 Co.02 (dotted lines), a-Sio.95 Co.05 (dashed lines) and 
a-Sio.9 (30.1 (long dashed lines). 

In a11 simulations made here we obtain that the C 

atoms are always tetracoordinated. However our re- 

sults for the coordination of the Si atoms range between 

3 and 6. In the Table I1 we compare the amounts of 

tri, tetra, penta and hexacoordinated Si sites for each 

C content studied here. 

We note that the increase of C concentration in a- 

Sii-,C, increases the amount of 5-fold sites and de- 

networks are nearly equal with only a small scaling dif- creases the amount of 4-fold sites. This is indicative of 

ference in bond lengths. an increase in the disorder of the system. 
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Table 11: Percentage of Si sites in a-Sil-,C, calculated 
with coordination three, four, five and six. 

x 3-fold 4-fold 5-fold 6-fold 

111.3 a-Si: electronic structure 

In this subsection we present the results for the elec- 

tronic structure calculations of a-Si. In the Fig. 4 we 

compare our calculated DOS for a-Si and crystalline Si 

(c-Si). We see that the peaks in the DOS are broadened 

when changing from the crystalline to  the amorphous 

systern. In the case of a-Si we see a small peak in the 

DOS near the energy of O eV. This peak is related to 

a very localized state and this state is due to  an over- 

coordinated (5-fold) site. The large gaps in the Fig. 4 

are due to  the frozen orbital approximation using the 

HF scheme. The inclusion of relaxation is made in the 

C1 method and improves the results. In the Table I11 

we show the difference in energy between the lowest 

unoccupied molecular orbital (LUMO) and the highest 

occupied molecular orbital (HOMO) obtained at the 

HF calculation. We also show the calculated optical 

gap, obtained here from the calculated first excitation 

energy in the C1 model, for the case of a-Si and c-Si. As 

the HOMO-LUMO energy difference corresponds to a 

frozen orbital picture it  gives values for the energy gap 

that are too large in a cluster model. Only for the infi- 

nite system the relaxation energy can be neglected. A 

simple way to include the relaxation of the unoccupied 

orbitals is to perform a C1 calculation with single exci- 

tation. As Table I11 shows the relaxation is large for c-Si 

and very large for a-Si. The final theoretical estimate 

of the corresponding optical energy gap is improved by 

the inclusion of the relaxation energy although it is still 

somewhat too large. We note that, experimentally, in 

the case of a-Si there is the formation of a pseudogap 

a t  the Fermi Energy. The value of the energy gap value 

of c-Si is 1.2 eV. For a11 the difficulties involved in the 

calculation of total energy the essential aim in obtain- 

ing energy gap is to analyze the general trend. This 

feature is nicely reproduced in our model (Table 111). 

- Amorphous 
- Crystalline 

0.0 L 
-15.0 -10.0 -5.0 0.0 5.0 10.0 

Eigenvalues (e\') 

Figure 4: Calculated density-of-states of amorphous (solid 
line) and crystalline Si (dotted line). 

Table 111: Calculated HOMO-LUMO energy difference 
and optical gap (in eV) for amorphous and crystalline 
Si. 

HOMO-LUMO Optical Gap 

c-Si 5.80 3.45 
a-Si 5.06 1.54 

The Fig. 5 shows the calculated optical absorption 

spectrum for a-Si and c-Si using the SCF-INDO-C1 pro- 

cedure described in the section 11. In the low-energy side 

one notes an almost rigid shift of 1.0 eV for the intense 

transitions. However for the case of the amorphous sys- 

tem the natural disorder gives absorption intensity to 

formally dipole forbidden transitions. 
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P 2 0.4 - 

P 

0.0 0 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
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Figure 5: Calculated optical absorption of amorphous (solid 
line) and crystailine Si (dotted line). 
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IV. Final r emarks  a n d  conclusions 

We have simulated the configurational structures of 

a-Si and a-Ge. We find that the difference between 

these two calculated structures is only a small scaling 

factor for the bond lenghts but with essentially the same 

network pattern as given by the angular distribution 

functions. 

We have also studied the case of a-Sil-,C,, x = 
0.02, 0.05 or 0.10. We find that the C atoms are always 

tetracoordinated, but the Si atoms can have coordina- 

tion 3, 4, 5 or 6. The amount of Si atoms that are tri 

and pentacoordinated increases when the concentration 

of C increases in the samples. This indicates an increase 

in the disorder of the system. 

These calculated geometric structures are used to 

obtain the electronic properties of a-Si, particularly the 

density-of-states and the optical absorption spectrum. 

Further studies of the electronic structure of a-Ge and 

a-Sii-,C, are being made in our group. 
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