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Recent experiments have shown that a quantized Hall plateau can occur in double layer
systems when the total Landau lcvel filling factor is v = 1/2, though there is no plateau at
v =1/20r v =1/4 in anormal single layer system. For the single layer system, considerable
insight has been provided by a theory based on tlie fermion Chern-Simons picture, where
tlie electrons are transformed into fermions that carry two flux quanta of a Cliern-Simons
gauge field. A similar picture can he used to cliaracterize ground states which have been

proposed for the two layer system.

I. Introduction

During tlie course of tlie past few years, as exper-
iments have continued to reveal the structure of elec-
tronic states in a. partially filled Landau level, a variety
of theoretical approaches have been developed to under-
stand these systems. One of tlie most useful of these
approaches employs a singular gauge transformation to
convert the elecirons to a system of particles interact-
ing with a Chern-Simons gauge field!='1 In this de-
scription, a flux tube containing an integer number ¢ of
guanta of tlie Chern-Simons magnetic field is attached
to each particle. If & is an even integer 5= then the
transformed particles obey Fermu statistics. The moti-
vation for employing thissingular gauge transformation
is that for various rational values of the Landau-level
filling factor v, with an appropriate choice of ¢, if one
treats the transformed system in a simple Hartree ap-
proximation, the resulting ground state is nondegener-
ate, and therefore lias a reasonable chance of being a
good first approximation to tlie true ground state of
the system. Moreover, one may hope to calculate cor-
rections to the ground state and study the dynamic
response O tlie system by using standard techniques
of diagrammatic perturbation theory, beginning with

[9,10,12)

tbe Hartree ground state . As an important
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example, if v = p/(2p T 1), where p is a positive or
negative integer, and if we choose ¢~> = 2, then the
mean-field ground state of the transformed system is
a collection of fermions in an effective magnetic field
whose strength is such that exactly [p] Landau levels
are filled hy ferinions. The ground state is, therefore,
stabilized by an energy gap separating it from the ex-
cited states. This provides a natural explanation for
the most prominent fractional quantized Hall states,
wliich are observed at these filling fractions. At the
mean-field level, the fermion Chern-Simons description
is essentially equivalent to Jain’s composite fermion de-

scription Of these quantized Hall states 1.
In a recent paper (HLR), P.A. Lee, N. Read, and

tlie present author employed the fermion Chern-Simons
method to analyze the properties of a single layer
system, at v = 1/2 and at various other even frac-
tioiis, where the quantized Hall effect has not been ob-
served (19, At v = 1/2, if one cliooses é = 2, the aver-
age Cliern-Simons field just cancels the external mag-
netic field, so that the Hartree ground state is just a
filled Fermi seaof particles, in zero magnetic field, with
Fermi wavevector kr = (47n,)!/2. (Here n, is the real
density of the electroiis. We assume tliat tlie electron
spins are fully aligned by the Zeeman field.) Although
there iS no energy gap in this case, the density of states

for low energy particle-hole excitations is small, so that
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there is reason to hope that the mean-field ground state
may be stable with respect to the particle-particle inter-
actions, similar to tlie case of an ordinary Fermi liquid.
The detailed analysis of HLR gives rise to predictions
for various properties of the v = 1/2 system, which
seem to be in excellent qualitative agreement with ex-
periments and with exact calculations of finite systems.
The most striking of these predictions is an explana-

tion for the surface acoustic wave anomalies observed

(13.14] - 7 summary of the most

by Willett aiid coworkers
important results of the fermion Chern-Simons theory
in the single layer system will be given in Section II
below.

As 1s now well known, a quantized Hall plateau at
total filling v = 1/2 has recently becn observed in cer-
tain double layer systems 113 groups at Princeton and
Bell Laboratories %16 A platcau at. filling fraction
v = 5/2 mas observed earlier in single layer systems by
Willett et al. 7

these states have been advanced. there remains a con-

Although various explanations foi

siderable amount of debate about the precise form of
the ground state in various cases. | am iiot able to set-
tle these questions, but | will try to outline in Section Il
below how the various postulated quantized Hall states
may be at least formulated in terms of the fernion
Chern-Simons picture as states with various forms of
BCS pairing among the particles near tlie Fermi sur-
face. This suggests a simple phase diagram foi how tlie

various states may be connected.

II. The Single Layer System

We summarize here some of the key results of the
analysis of HLR [19 for a fully polarized single-layer
system at » = 1/2.

The Chern-Simons theory begins with an exact uni-
tary transformation. We define a transformed wave-
function

EEE [

~J

vty = v I | 2=

i<y

where ¥, is the electron wavefunction, z; = =x; + iy
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1s the electron position in complex notation, and ¢ is
an integer. If ¢ is cveii, tlie transformation preserves
the fermi statistics: the transformed wavefunction must
change sign when two particles are interchanged. (If ¢
is chosen to be odd, then fermions are converted to
bosons, and wice verse.) We shall choose ¢ = 2.

Under tlie unitary transforination (2.1), the electron

Hamiltonian is transformed to the form

Z I5i + eA(rs) = @(r)|?

Hy = -
¢ 2m

z<]
where v is the Coulomb interaction, A is the external
vector potential, and @(7) is a Chern-Simons vector po-
tential, given by

1")"‘(‘)2

(F—7
FoF V]) (2.3)
The mean field approximation for the ground state of
the Hamiltonian (2.2) is then ohtained hy ignoring the
Coulomb interaction, and by replacing the true Chern-
Simons magnatic field b(7) = V xa(7) by its mean value,
(by = 2mon.,.

The density and current response functions have
been ohtained using the Random Phase Approxima-
tion (RPA) or time-dependent Hartree approximation.
Here the transformed fermions are treated asfree parti-
cles which respond to the self-consistent Chern-Simons
electric and magnetic fields (¢{7,t))and (6(7, 1)}, as well
as to tlie external electromagnetic field and the self-
consistent Coulomb potential of the particles [#10:12].

The equations for (b) and (€) are

216(p) , (2.4)
—276% x (), (2.5)

where (p) and (j) are the particle density and cur-
rent, respectively, and ¢ = 2. The system is found
to be “compressible” at long wavelengths, which means
more precisely that the static density response function

Xpp(¢) is determined hy the diverging Coulomb inter-
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action for ¢ — 0:

ome?

q

Xop(0)™H ~v(g) = (2.6)

Tlie frequency-dependent density response function
Xos(¢.w) has, in addition to tlie polc at the cyclotron
frequency that exhausts the f-sum rule for ¢ — 0, a
diffusive pole at a low frequency w = —iv, which we

write i1 the form

Yq¢ — qzv(q)gnr:ﬂ(q) : (27)

where 0,.,(¢) is the wavevector-dependent longitudinal

concluctivity (we assume {|| ). According to the RPA,

for a system without impurities, o4, (q) is given by 19
2

(¢) = — —
Orz\q) = —_—
w\) = b

(2.8)

More generally, if impurity scattering is taken into
account, we expect that. (2.8) applies for ¢ > ¢~1, where
¢ is tlie transport mean-free path at » = 1/2. Foi
q — 0, the conductivity goes to a finite value which
may be obtained by replacing ¢ on the right hand side
of (2.8) by (2¢71). The value of 7 is expected to be much
smaller than the transport mean free path in zero mag-
netic field. This is because the dominant mechanism
for scattering of carriers at v = 1/2 comes from static
fluctuations of the Chern-Simons magnetic field due to
inhomogeneities in the electron density induced by ran-
dom variations in tlie clensity of charged impurities in
the doping layer, a mechanism wiliicli does not occur for
electrons in zero magnetic field 181, A crude estimate
of 4, at v .= 1/2, was obtained by assuming that the
charged impurities are uncorrelated within the doping
layer, and are eyual in number to the electrons in the
conducting layer. If scattering istreated in tlie Born ap-
proximation, one finds a value of ¢ which is just equal
to tlie setback distance d; of the doping layer in this
rmoclel (19, Experiments suggest tliat our crude esti-
mate for £ is about a factor of three smaller than the
actual values in the highest mobility samples 119,

An imrportant effect arising from dynamic fluctu-

ations of tlie Chern-Simons vector potential is a large
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renormalization of tlie effective mass of the transformed
fermions. If the bare mass is small, so that the cyclotron
energy Is large compared to the scale of the electron-
electron interactions, then the effective mass becomes
independent of the bare mass, and is determined by the
electron-electron interaction. Using a self-consistent
analysis based on the leading diagrams in perturba-
tion theory, HLR propose that there is a logarithmic
divergence of the effective mass at the Fermi energy for
Coulomb interactions, and a stronger power-law diver-
gence for short range interactions, but that the most
essential features of Fermi liquid theory are preserved
in either case. Note that expressions (2.6)-(2.8) for the
density response function and tlie conductivity areinde-
pendent of the electron mass, and we believe that they
are not affected by tlie divergent mass renormalization.
(Tlie results for the mean-free path in the presence of
lmpurities are also independent of the electron mass.)
One place where the effective mass enters directly
is in the expression of HLR for the energy gaps Ef,")
for the principal quantized Hall states at v = p/(2p +
1). For an interaction that beliaves like ¢?/¢r at large
distarices, HLR predict the following asymptotic form

for the energy gap at large p:

4 ¢?
() o 22 _'I_+_
Eq rti" D(lnDTC)’

where D = |2p T 1| is the denominator of the fraction

(2.9)

and C is a constant which depends on the short dis-
tance behavior of tlie poteiitial. (Thisformulais based
on a self-consistent analysis of the leading correction
to the quasiparticle self energy arising from interac-
tions with fluctuations in the transverse gauge field; it
is possible that it inay be modified by other singular
contributions.) A good fit to numerical estimates (2%
of the energy gaps at v = 1/3, 2/5, and 3/7, for a
pure Coulomb interaction, may be ohtained by choos-
ing C ~ 2.5 in that case. The effects of finite layer
thickness and inter-Landau-level mixing, which occur
in any real sample, would tend to increase the value of
C still further. An energy gap of the form (2.9), with

a relatively large value of C', also gives a good fit to
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the data of Du et al. 1, provided that one accepts the
proposal of those authors that the effects of impurity
scattering may be taken into account by subtracting a
constant T', independent of v, from the theoretical en-
ergy gap.

The linear wavevector dependence of o,,(q), pre-
dicted by (2.8) for v = 1/2, is just what iS needed to
explain the anomalous surface acoustic wave propaga-
tion, seen at short wavelengths by Willett ¢t ol (!4,
The absolute values of ¢,,(q) extracted by Willett et
al. froin their data are larger than the theoretical val-
ues obtaincd from (2.8). however, by a factor of ~ 2.
The theory of HLR also predicts that the width of the
anomaly should depend linearly on ¢ as the magnetic
field is varied away from the field corresponding to
v = 1/2. This is in good agreement with tlic exper-
imental observations.

Quasiparticle states for tlie transformed fermions
which lie close to the Fermi energy should not have
a significant overlap with the wavefunction of a single
electron added to the ground state ol av = 1/2 system.
A recent analysis by He, Platzinan and Halperin 22
building on the results of HLR, suggests that the spec-
tral density A(w) for the electron Green’s function van-
ishes as ¢~wd/l=1 for lw] — 0, wliere wq IS a constant.
Following this analysis, they predict a pscudogap in
A(w), which is in reasonable agreement with recent tun-
neling experiments (23],

The general methods of HLR can be applied to var-
ious other even-denominator fractions, including v =
1/4,3/4,3/2, 3/8, etc. Chklovskii and Lee have shown,
however, that amore sophisticated analysis iSnecessary
to understand the value of tlie electrical conductivity
g at thehigher order even fractions, because the Born
approximation for scattering becomes quite poor in this

situation (241,

III. Double Layer Systems

As a model to describe a double layer system, ive

shall introduce an “isospin” index r = +1, which dis-
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tinguishes between the two layers, in addition to the po-
sition 7 in the z-y plane. The Coulomb interaction be-
tween two electrons then has different forms V++(7—7")
and Vi _(7—7"), depending on whether the two elec-
trons are in the same or in different layers (251, In the
simplest case where ench separate layer is considered to

be of zero thickness, me may write

e?fer, (3.1)
efe(r? +dH)Y? (3.2)

Vig(r) =

Vis(r) =

where d is the separation between the layers. In ad-
dition. we introcluce a term to represent tunneling be-

tween the layers, which we write as
Hy = —tl, (3.3)

where ¢ is the tunneling matrix element, and I, isthex
component of the total isospin operator I. We assume
that the actual spins of tlie electrons are completely
polarized in the direction of tlie magnetic field, and we
consider only the case where there is a mirror symmetry
between the two layers. In our discussions we coiisider
that the system employed in [!%], consisting of asingle
wide quantum well in which the self-consistent Coulomb
potential creates a barrier in the middle of the well,
with maxima in the electron density at the two edges,
is equivalent to a double layer system with a relatively
large value of the tunneling matrix element t.

We shall limit our discussions here to the case where
the total filling factor v is equal to 1/2; i.e. there is a
total of one clectron per flux quantum in the two layers
combined. Then, if the systemis confined to the lowest
Landau level, there are essentially two dimensionless
parameters in our model d = d/fy, and £ = ¢/(e?/ely).

Let us first consider the case where d = 0, so that
V++=V,_. If { isalso equal to zero, then the Hamil-
tonian H, possessesfull ST/(2) symmetry in the isospin
I In fact, Hy is equivalent to the Harniltonian for a
single layer system with two spin states and no Zeeman
term to split the degeneracy. The simplest assurnption

(though not universally believed 1) is that the ground
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state of the single layer system would be completely po-
larized at v = 1/2, even in the absence of Zeeman inter-
actions. If this isthe case, then for the two layer system
with d = 0. tlie effect of H;, for any positive value of
t, is siinply to align the isospin polarization in the z-
direction. Specifically, this means tliat. every electron
is restricted to the isospin state I, = 1/2, i.e., the low-
est subbanc, which is the even combination of states in
tlie two laysrs. Since the Hamiltonian is equivalent to
that of a fully polarized single layer system, we expect,
as discussed in Section II above, that the ground state
can be described by gauge transformed fermions with
a single Fermi surface, having kp = (47n,)Y/2 = 471,

and no quantized Hall eifect.

Let us now consider the case where dis nonzero and
¢ is infinite. Every electron must have 1, = 1/2, aiid
hence all electrons have the same interaction, V(r) =
LVig(r) + V+=()]. If (7 is very large, then Vi_ ~
0, and V(r) ~ 1V, (r). Therefore. for large r. tlie
ground state is tlie same as for d = 0. and we expect
to find a Farmi surface with no quantized Hall effect.
(The only change from d = 0 ii, tliat the energy scale is

reducecl by a factor of 2.)

According to the numerical calculatious of Gre-
iter, Wen and Wilczek 7 for a two layer system
with t = oo, there should exist an intermediate range
czmin < d < czmax, where a quantized |-lal effect. does
occur at v = 1/2. Their calculations suggest tliat tlie
quantized }all state has a very high overlap witli the
so-called Pfaffian state, originally described by Moore
and Read U], and further analyzed by Greiter et al. [7],
From tlie point of view of tlie ground state symmetry,
thisstate can also be understood in terms of tlie fermion
Chern-Simons picture as a state where the fermions
near to the Fermi surface are paired in a BCS-like state,
with orbitel angular momentum |, = ~1, and isospin
I, = 1. (In terms of untransformed electrons, the state
may be crudely described as made up of pairs with an-
gular momentum £, = 1, which are then “condensed”

into a Laughlin state of degrcc m = 8.) Moore and
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Read have suggested that the charged excitations of
tlie Pfaffian state have a different kind of statistics from
what might be expected in a simple pairing state, and
perhaps there are other subtle differences as well. We
shall not distinguish here, however, between the Pfaf-
fian state and the Chern-Simons BCSstate with pairing
€ =—landl, =1.

Let us next consider tlie casef =0, c];é 0. Now, I,
is a good quantum number of the system, and if there
is equal population of the two layers, tlie ground state
must have |, = 0. (For d # 0, the Hamiltonian does not
commute with I;. The ground state has (I,) = 0, for
t = 0, but is not generally an eigenstate of 1,.) In tlie
limit d — oo, for ¢ = 0, the system becomes two uncou-
pled layers, with v = 1/4 in eacli layer. Experiments
on single layer systems show that there should be no
quantized Hall effect in this case ['4. According to the
theory of HLR, there should be aseparate Fermi surface
of transformed fermions in each layer (seeing separate
Chern-Simons fields, with ¢ = 4, in each layer), and a

Fermi wavevector kp = (2mn,)"/2 = (263)~1/2.

Numerical calculations for systems witli f = 0 again

<d<

indicate that for an intermediate range d~éﬂn
j/

‘max?

there should exist a quantized Hall plateau at
v = 1/2 [28-39]  The ground state in this case has
been found to have a high degree of overlap with the
so-called 331 state, first proposed in 1983 as a possible
generalization of Laughlin’s wavefunctions to an even
denominator fraction 3!, The 331 state has been char-
acterized by various authors as a system of two types
of fermion with a 2X 2 matrix of Chern-Simons interac-
tions 2. However, the state may also be characterized
iii tlie spirit of Greiter et ol [/} as a system of fermions
coupled to a single Chern-Simons field (with coupling
strength ¢ = 2), whose ground state has BCS pairing
withi, = —land I, =0.

What happens for intermediate values of f, when
ci;é O? A simple schematic phase diagram, compatible

with our previous discussion, is presented in Fig. 1.
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Figure 1: Possible schematic pliase diagram for the ground
state Of & two lager system at total filling » = 1/2. Vari-
ables d aiid ¥ are respectively tlie separation between lay-
ers. in units o the magnetic length fo, and tlie tunneling
strength between layers, in units of ¢*/cfo. Phase A has
two essentially independent layers of filling factor » = 1/4,
with a separate Iermi surface in each layer, and no quan-
tized Hall effect. Phases B and B’ behave like asingle layer
at v = 1/2, with electrons in tlie subband which is an even
combination Of states in tlie two layers. These phases have
a single Fermi surface for tlie gauge transformed ferniions,
and no quantized Hal effect. Phase C' is a quantized Hall
state which evolves continuously as a function o 7 from a
state with tlie symmetry of the "331 state” at { = 0. to @
state with the syrnmetrg of the “Pfaffian” state at { = .

The phase labeled A consists of two essentially in-
dependent layers with ¥ = 1/4 and a separate Iermi
surface for transformed fermions in cach layer. Phases
R and B’ have alarge value of (1,). and contain a sin-
gle Fermi surface for transformed fermions with isospin
I, = 1/2, the even combination of states in the two
layers.

The phase labeled C, which occurs for intermediate
values of the parameter d, is a quantized Hall state.
Within tlie fermion Chern-Simons picture, we charac-
terize tlie entire phase as astate with a BCS gap at tlie
Fermi surface due to pairing iii astate of isospin 1 aiid

I, = —1. Specifically, we expect pairing of the form
CprCriopt & Q(7:)(A7 - ikll).frr'ei(k‘fkl).;: . (34)

where ¢z isthe annihilation operator for a transformed
fermion with wavevector & aiid isospin 7, the wavevec-
tors k and k' are close to the Fermi surface at diamet-
rically opposite points, and () is an order paramter
whose pair correlation function (@ (#F)Q(F")) falls off
at large separations as a power of |7'— 7’| (i.e., the sys-
tem has “quasi-long-range order” in the ground statc).
Tlie matrix f;,+ is symmetric in the isospin indices, and

we hypothesize that it varies continuously asa function
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of tlie tunneling strength ¢ between the two limits:

f',-," g 67‘,-—7” y for t~—" 0 . (35)
fTT’ -1, for {—oc ) (36)
corresponding to pairs with 7, = 0 and I, = 1, re-

spectively. We also expect that the expectation value
(I;) for tlie total isospin of the electron system should
increase continuously from (1) = 0 at ¢ = 0 to
(I.) = N/2 (full polarization) at { = oc.

Numerical calculations by He et al. 12%3% suggest
tliat for tlie values of ¢ and d which correspond to the
Princeton and Bell Laboratories experiments, there is
a high degree of overlap between the ground state at
v = 1/2 and the 331 state, which has I, = Q Thus,
it appears tliat there is only a small amount of (I,)
polarization, even for the Princeton experiment where
{ is relatively large.

The calculations of e et al. 3% support the con-
jecture that a quantized Hall state should exist for an
intermediate range of separations d, for any value of the
parameter . The conjecture tliat the 331 state can be
continuously connected with the quantized Hall state at
{ = oo is also compatible with the observation by Gre-
iter et al. 1] that. tlie Pfaffian state isrealized by taking
tlie fully antisymmetric part of the spatial portion of
the 331 wavefunction.

We do not address here the nature of the phase tran-
sitions between the various regions of Fig. 1. Of course,
we cannot exclude at this stage the possibility tliat the
actual phase diagram is more complicated, with various
other intermediate phases occurring. Moreover, if our
starting assumption, that the ground statefor £ = d=0
has complete spontaneous aligninent of the isospin vec-
tor f is not correct, then there must be a more com-
plicated phase structure than we have indicated near
the lower left corner of Fig. 1. Among the theoretical
possibilities for the ground state at f = d = 0 are the
following: (1) there inight be an isospin singlet ground
state with some type of energy gap, which would thus

exhibit a quantized Hall effect; (2) there might be an
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isospin singlet ground state with no energy gap, de-
scribed within tlie fermion Chern-Simons picture as
having a single Chern-Simons field, with C; = 2, and
a Termi surface, with kp = (2xn,)Y/?, for each isospin
state; or (3) the 331 state might exist as astable ground
state all the way down to tlie point { = d=0 Since
the 331 state is not an eigenstate of [2, it cannot be the
true ground state for afinite system at f=d= 0; how-
ever, it could be the ground state of an infinite system

if there is a spontaneously broken isospin symmetry.

We note tliat BCS pairing, in tlie fermion Chern-
Simons picture with ¢ = 2, has also been used to dis-
cuss tlie spin-singlet “hollow-core” ground state of Hal-

(331, originally proposed as an expla-

dane and Rezayi
nation for ;he quantized Hall state of a single layer at
v = 5/2. (This is a state where tlic lowest Landau
level is completely full and there is a one-half clectron

per flux quantum in tlie secoiid Landau levcl.) In this

case the BCS pairing lias £, = — 2 for tlie transformed
fermions, corresponding to pairs with £, = 0 for the

origiiial electrons [%:7],

Very recent numerical calculations by R. Morf [34]
suggest tlict the correct ground state for t = d = 0
is an isospin singlet ground state with no energy gap,
as in possibility (2) mentioned above. If this is correct,
then thc lovrer left corner of Fig. 1 shoulcl contain anew
phase D, having asingle Chern-Simons field witli 6= 2,
and two fermi surfaces, witli radii kp4 arid kp—, corre-
sponding tc fermions witli I, = 1/2 and I, = ~1/2, re-
spectively. § “EPsincreased, the ratio kp_ /kpy should
decrcase continuously in phase D from tlie value unity,
at £ = 0, uiitil the boundary with phase B is encoun-
tered, where kp_ = 0. The sum k%_ + k%, must be a

constant, 4mn..

Recent experimental results reported by Y.W. Suen
et al. 9] siggest that in actual double layer systems,
contrary to the model calculations of Ref. 27, tlie quan-
tized Hall state may be absent regardless of the value
of d, when i is sufficiently large. If this is correct, then

the QI-IE st tte C should not extend all the way to tlie
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right-hand boundary of Fig. 1. Phases B and B’ may
then be united into a single phase, connected in the

right-hand portion of tlie figure.

V. Conclusion

Although many details remain to be understood, it
scems clear that the transformation to fermions with a
Chern-Simons fidd is a powerful tool for understanding
the behavior of electronsat v =.1/2, in hoth single and

double layer systems.
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