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We describe first principles methods to simulate the dynamics of molecular and condensed 
matter systems within the Car-Parrinello scheme. Three approaches are presented: the 
Density Functional Theory (DFT) approach, the Hartree-Fock (HF) approach, and the 
Valence-Bond (VB) approach. The algorithms for each approach are described, as well as 
some applications. 

I. In t roduc t ion  

Q u a n t u m  Molecular  Dynamics  (QMD) means 

the study of the dynamics of atoms in molecules 

and solids from first principles, within the Born- 

Oppenheimer (BO) approximation. The knowledge of 

the microscopic forces on each atom can yield accurate 

descriptions of the electronic structure, optical proper- 

ties, molecular and crystal geometries, reaction paths, 

cluster formation, etc.[l,2]. 

Two approaches have appeared in the literature to  

perform QMD calculations. One is the "classical" po- 

tential surface (PS) approach where the forces on the 

atoms are obtained from the gradients of the PS of the 
solid or molecule, and the PS is obtained from fixed- 

geometry calculations. The other, and more recent, 

approach is the Car-Parrinello (CP) method[l], where 

both the electronic and the configurational degrees of 

freedom are treated in a common footing, allowing a 

unified molecular dynamics (MD, also called simulated 

dynamics, SD) formulation. This permits to  deal with 

the entire nuclei-electron problem within a single first- 

principles calculation. This article is a review of the 

techniques that use the CP  approach to the QMD of 

molecules and solids. 

Devised to  be used in condensed matter calculations 

within the density functional theory (DFT), the CP ap- 

proach bases its computational efficiency on the use of 

plane-wave basis sets and fast Fourier transform tech- 

niques. Also, the plane-wave basis set permits the use of 

the Hellmann-Feynman theorem to compute the forces 

on the nuclei directly from the electrostatic potential, 

and the computation of the nuclear motion becomes a 

straightforward task. However, the description of finite 

systems as molecules or clusters requires huge plane- 

wave basis sets. In this case, localized basis sets are 

more appropriate. 

The use of localized basis sets such as Gaussian- 

type-orbitals (GTO), although more adequate for finite- 

size systems, poses the additional problem of calcu- 

lating the corrections (Pulay corrections) to  the forces 

obtained from the Hellmann-Feynman theorem (He-Fe 

forces). The corrections are necessary because localized 

basis sets are parametrically dependent on the position 

of the nuclei, and He-Fe theorem does not apply. An 

alternative procedure is t o  devise a localized basis set 

that is not centered a t  the nuclei, such as the floating- 

GTO set. However, the calculation of matrix elements 

is more difficult in this case, and a new set of parame- 

ters have to  be optimized (that is, the position of the 

GTO's) . 

The CP approach was originaIIy designed for DFT 
calculations of condensed matter problems such as 

structural properties of solids, glasses and liquids. The 

extension of the CP approach to Hartree-Fock calcula- 

tions of molecular physics problems has been proven 

to be feasible and worth (The use of the 

DFT is not appropriate in cases where excited states 

are relevant). Hartke and   ar ter[^"] used the CP- 

MD to study the formation of Na4 clusters with spin 

eigenstate-dependent HF. Our group has developed CP  
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algorithms for electronic structure and geometry opti- 

mization within the HF f~ rma l i sm[~ l~ ] .  We also have 

developed GTO basis sets that nearly satisfy the He-Fe 

theoremE6]. These basis sets, which have standard sizes, 

are adequate for CP  calculations of finite systems such 

as molecules and clusters. 

In order to extend the CP methodology to QMD 

problems of real interest, it becomes necessary to resort 

to  correlation methods, since the HF wavefunctions do 

not describe molecular dissotiation properly. Hartke 

and Carter reported[5b] a generalized VB (GVB) MD 

study of Na4 clusters. The approach of Ref.[5b], how- 

ever, is restricted to a single covalent structure. Our 

group has developed a VB-MD approach to deal with 

an arbitrary number of ionic and covalent structures. 

Some results with this new method are presented at 

the end of this review. 

11. Sketch of the CP procedure 

Consider a system of m electrons and M nuclei. The 

BO total energy functional can be written as 

where the electronic wavefunction depends on the 

electron coordinates 75 and on a set of parameters {Z). 

The energy functional also depends parametrically on 

a set of nuclear coordinates {R}. 
Suppose now that we identify the parameters {a} 

and (2) with a set .of generalized coordinates of a fic- 

ticious classical system, 

We will also suppose that the potential energy of this 

ficticious system is the total energy functional E = 
E[{qL)] . Including dissipative forces in the ficticious 

system, and ascribing a mass mk to each degree of free- 

dom, the dynamics of the system will be defined by the 

Lagrangean 

where the exponential factor accounts for the dissipa- 

tive forces. If we impose additional constraints to the 

dynamics of the qk (for instance, orthonormality con- 

straints on the wavefunction), the equations of motion 

(EM) derived from (3) are 

where gk is the t - th  component of the constraint force. 

If the yk for the electronic degrees of freedom are 

not nu11 (that is, the dynamics is dissipative), we have 

This is exactly the secular equation corresponding to 

the minimization of E[{qk}], whatever approximation 

is used for E (Hartree-Fock, DFT, etc.). Therefore, the 

integration of the EM permits us obtain the eigenvalues 

and eigenfunctions of the electronic system. 

Concerning the configurational degrees of freedom, 

Eq.(4) allows us either to obtain the real dynamics the 

nuclei (if 7 = O) or the equillibrium geometry (if y # 0). 

In either case we must calculate 

d E  --  
d R  

= He - Fe force + Pulay correction. ( 5 )  

The last term in (5) is very costly and should be made 

negligible by a proper choice of basis functions, as dis- 

cussed in the previous section. 

111. Molecillar dynamics in the DFT approach 

Density Functional Theory (DFT) is based on a 

theoremL7] that states that the ground state energy of 

a many-electron system is a functional of the electron 

density. It is also shown[" that it is possible to  map the 

many-electron problem into a system of non-interacting 

electrons with the same electron density and subjected 

to the effective potential 

where V(3 is an externa1 potential and E,, is the 

exchange-correlation part of the total energy functional. 

As E,, is not known, it is usually approximated by the 

exchange-correlation energy of the homogeneous elec- 

tron gas, 

E&] = / ~ ( r ? r ~ ~ ( ~ ) d ~ ~  (7) 

This is the so-called local density approximation (LDA) 

to the DFT. If we write the electron density in terms 

of the electron orbitals of the non-interacting system, 
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the minimization of the energy functional leads to the The original Car-Parrinello proced~re[~I  combines 

Kohn-Sham equations DFT with MD. The DFT total energy 

is taken as the ficticious potential energy in (3). The 

nuclear coordinates and the parameters of the orbitals 

play the role of the generalized coordinates q,. The 

Lagrangean (3), together with the orthonormality con- 

straints 

(4iM.f) = Sij ) (11) 

lead to  the equations of motion 

While the dynamics associated with (12a) is ficti- 

cious, the nuclei dynamics described by (12b) can be 

the real dynamics of the system if y = O and MI corre- 

spond to the masses of the nuclei. On the other hand, if 

we keep the dissipative forces in both (12a) and (12b), 

time evolution (t -t co) makes the left side of (12a) and 

(12b) vanish. Eq. (12a) then becomes the Kohn-Sham 

equation (8) after diagonalization of the Lagrange mul- 

tiplier matrix Xi j ,  and (12b) becomes the condition of 
-, 

optimal geometry, VR, E = 0. 

In the actual calculations, the orbitals $i are ex- 

panded ín a plane-wave basis set. With that, equations 

(12a) become a set of equations for the expansion coeffi- 

cients ci,i. These equations are numerically integrated 

simultaneously with eqs.(l2b), mantaining the orbitals 

as (approximate) solutions of the Kohn-Sham equa- 

tions and generating trajectories for the nuclear motion. 

Self-consistency and nuclear relaxation are simultane- 

ously achieved in the CP  approach. Further, as we 

need to solve (12a) just for the occupied orbitals, the 

CP  approach demands less computational time than 

the traditional SCF approach. 

The CP procedure described above has been applied 

to a number of problems concerning structural proper- 

ties and dynamics of clusters, liquids, amorphous semi- 

conductors and s~r faces[~] .  

IV. Molecular  dynamics  in the Hartree-Fock ap- 

proach  

The application of the CP-MD to Hartree-Fock 

(HF) calculations was made simultaneously by our 

gro~p[314] and by Hartke and carterr51. Our main goal 

was to develop a methodology to apply the CP ap- 

proach to the problems where the HF method is more 

appropriate than DFT. Hartke and Carter aimed at 

qualitatively correct quantum mechanical MD descrip- 

tion of molecular systems, in particular Na4 cluster for- 

mation. We initially centered our efforts in building an 

efficient, stable, and accurate algorithm for simultane- 

ous optimization of the geometry and the wavefunction 

of molecular systems, successfully tested on diatomics 

such as LiH, Li2, BH, FH. In the following, we describe 

our HF-MD procedure. 

In the HF approach, each electron of a N-electron 

system move as an independent particle in an effective 

potential generated by the nuclei and the other elec- 
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trons. This model gives rise to a set of one-electron 

equations (the HF equations) obeyed by the orbitals. 

The HF equations result from the minimization of the 

total energy functional with respect to the variation of 

a wavefunction that consists of the anti-symmetrized 

product of one-electron orbitals. 

The (BOI non-relativistic) total energy of a molec- 

ular system of N = 2m (closed-shell) electrons and Q 

nuclei is written as 

where we used standard notat i~n[ '~I .  

In the following, we will make explicit the expan- 

sion of the HF orbitals in a set of basis functions, and 

obtain the equations of motion (EM) for the expansion 

coefficients. Notice that this approach is different from 

the one used in the previous section, where we obtained 

the EM for the whole wavefunction (see eq. (12a)). The 

orbitals are expanded 

Here, $,(ai, r',) is a GTO with exponent cri, c symme- 

try ( s ,  p, d, ...), and centered at the nucleus A. The set 

of exponents {ai) is determined by some prescription[4] 

and they are not taken as variational parameters. The 

total energy becomes a functional of the expansion co- 

efficients faAoi and of the nuclear coordinates {R} ,  that 

is, 

E = E[faAait (R}] . (I5) 

Equation (3) for the present HF approach becomes 

The equations of motion (EM) are obtained from the 

Lagrangean (16) subjected to the orthonormality con- 

straints 

($a l $ b )  = Sob . (17) 

The EM for the expansion coefficients are 

The last term in (18) is the reaction force due to the 

constraints (17). If we use the fact that is linear in 

f ,  the reaction force becomes 

where the overlap matrix is defined by 

The force related to the linear coefficient faAai be- 

comes, after some manipulations, 

where the Fock matrix is given by 

where F is the usual Fock ~ ~ e r a t o r [ ~ ] .  For t -i a, 

the two first terms in (18) vanish. In such conditions, 

(18-21) lead, after diagonalization of €,a, to 

This is nothing but the secular equation for the Fock 

matrix (or Roothaan-HF equations[lO]) obeyed by the 

coefficients faAoi after convergence. The EM for the 

nuclei are 

We have m = N/2 equations like (18) and Q equa- 

tions like (24). These two sets of EM shall be integrated 

simultaneously until a given convergence criterium is 

reached. At this point, the nuclei will be at their equi- 

librium position and the orbitals will satisfy the HFR 

equations. 

As in the DFT case, the actual dynamics of the nu- 

clei can be obtained if we neglect the dissipative term 

in (24) and MA are the actual nuclear masses. Such 

a simulation has been made by Hartke an   ar ter['^]. 
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That calculation, however, neglects sizeable corrections 

to He-Fe forces and can onIy be considered qualitative. 

V. Solution of the equations of motion 

To solve the EM (18) and (24) we follow the pro- 

cedure detailed in [4] and sketched below. First, we 

rewrite the EM as 

where f k  is the sum of a11 forces over q h  other than 

the dissipative one. For example, the force fk  over a 

coefficient faAoi q k  is 

The EM (25) can be integrated with any algorithm 

suitable for Newtonian equations["]. In Refs. [3,4] we 

used the simplest one, namely the Verlet algorithm. 

The masses m k  are ficticious, and are chosen to corre- 

spond approximately to the critica1 damping condition 

of a damped harmonic oscilator, 

The EM (25) gives, for each time step At, new values 

for q k .  With these values, we update the Fock operator 

F and build a new set of forces f k .  We found that we 

can save computational time if we keep the F frozen 

during a number of time steps (multistep algorithm)L3]. 

The solution presented above is refered to as "sim- 

ulated annealing", SA. Another approach is the "sim- 

ulated quenching" algorithm SQ, where we neglect the 

first term in (25) and solve 

In both approaches, the initial conditions are qi ,  = O 

and q k  obtained from the "bare" hamiltonian (that is, 

neglecting the electronic repulsion). 

As we solve the EM just for the occupied orbitals, 

the CP approach described above should save a consid- 

erable amount of computational time as compared to 

the SCF procedure. However, as our basis sets are not 

orthogonal, we might have to handle with the problem 

of approximate linear dependence (ALD), that is, dif- 

ferent sets of { q k )  might lead to similar $(q. To solve 

this problem, we orthogonalize the original basis set 

($,(ag, TA)) canonically. This implies on loosing part 

of the computational gain of the CP procedure, since 

the orthogonalization is a costly procedure. On the 

other hand, the method shows great stability and con- 

verges in a smaller number of iterations as compared to 

the SCF procedure, specially for "pathological" systems 

such as the HF molecule (see Table I). The net result 

is a method more economical than the SCF m e t h ~ d [ ~ I .  

Table I - Comparison of the number of iterations of 
HF-MD (SA dynamics) and HF-SCF for systems that 
present unstability. 

System Method Iterations Energy(a.u.) 

FH HF-MD 14 -100.024899 

FH HF-SCF 25 -100.024897 

For the simultaneous optimization of wavefunction 

and geometry (of diatomic molecules), we have found 

that it is more appropriate to use the SA dynamics for 
the forrner and the SQ dynamics for the latter. This 

assures a f a k  and stable convergence. An additional 

recipe is used to estimate the (ficticious) nuclei masses. 

We use 

for the first iteration. For the subsequent iterations, a 

simple numeric derivative A/AR gives enough precision 

for our purposes. 

After each step in the solution of the EM for the nu- 

dei, we let the wave-function adapt itself to the geom- 

etry in order to have a reliable evaluation of the He-Fe 

forces. Then, the nuclear coordinates are extrapolated 

along the direction given by the He-Fe forces. To obtain 

the equilibrium geometry in the fastest way, we let the 
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Table I1 - Geometry optimization by HF-MD. A11 quantities are in a.u. Re,, and R, are, respectively, the experi- 
mental and the optimized nuclear distances. E(Re,) and E(Rop) are the corresponding energies. Nst is the number 
of steps in the solution of the EM for the nuclei. 

LiH 3.015 -7.98418005 3.026 -7.98418415 1 

energy converge to  an accuracy of 10-%.u. This as- 

sures an accuracy of 10-4 a.u. for the He-Fe forces and 

a very fast convergence to  the minimum. Table I1 shows 

results for small diatomic molecules starting from the 

experimental equilibrium distance. The accuracy and 

the number of iterations are about the same as those ob- 

tained with the standard GAUSSIAN program[l 2] with 

the same basis set. 

Although the method has only been applied so far 

to  diatomic molecules, the extension to  polyatomic 

molecules is straightforward. In this case, the geom- 

etry optimization can be obtained with a direction-set 

method such as the conjugate gradient methodL1 '1. The 

line minimization along a given direction is performed 

exactly as in the case of the diatomic molecule. 

VI. Molecular dynamics in the Valence Bond ap- 
proach 

In order to have a good description of atomic and 

molecular interactions for a large range of distances we 

must go beyond the Hartree-Fock approximation, since 

it fails to describe molecular dissociation properly. It 

is necessary, therefore, to  include electron correlation 

from start (not as a perturbation). 

One of the methods that include electron correlation 

(from start) is the Valence Bond (VB) approach. The 

VB approach can be seen as a configuration interaction 

(CI) method with chemical insight. Starting from local- 

ized atomic orbitals, we form the many-body wavefunc- 

tion as a linear combination of covalent and ionic struc- 

tures representing the possible ways that bonds can oc- 

cur in a molecule. Each structure is an antisymmetrized 

many-electron function times a spin eigenfunction. 

In order to two valence electrons be paired, mak- 

ing a chemical bond, the atomic orbitals occupied by 

these electrons must overlap, that is, they must be non- 

orthogonal. This is the major drawback of the VB 

method, and this is the reason why the VB method 

has been seldom used up to recent years, if compared 

to molecular-orbital (MO) methods. 

For a two-electron system (the H2 molecule, for in- 

stance), the covalent VB wavefunction is 

where d A  and $B are localized non-orthogonal atomic 

orbitals, centered at nuclei A and B. It gives a cor- 

rect description of the dissociation of H2 in two H 

atoms. If, for a many-electron system, each valence 

electron singlet pair (a  chemical bond) is allowed to 

occupy a function like (30), and the orbitals are opti- 

mized self-consistently, the resulting anti-symmetrized 

wavefunction is referred to  as Generalized Valence Bond 

(GVB)~ '~ ] .  Therefore, in the GVB method the electrons 

are correlated by pairs and we can say that the method 

is "VB by pairs". 

In most cases other approximations are made. It is 

computationally useful to  require that a11 orbitals other 

than the two occupied by the singlet pairs are orthogo- 

nal. This orthogonality condition is a restriction on the 

wavefunction. Also, it is common to couple as many 

orbital pairs as possible for a given spin eigenstate, a 

procedure referred to as perfect-pairing (PP),  giving 

rise to the GVB-PP method. 

The GVB-PP method is useful in many cases but it 

is inappropriate for systems such as benzene, in which 

we have two bonding schemes of comparable impor- 
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tance, as well as for describing the dissociation of sys- 

tems, such as 02, that lead to triplet or higher spin 

states for the fragments. 

The GVB-PP approach was recently applied by 

Hartke and carterL5" to describe the formation of the 

Na4 cluster within the MD scheme. In that calcula- 

tion, four valence electrons were coupled in two singlet 

pairs. To our knowledge, this is the only application of 

a correlation method (beyond HF) within the CP-MD 
approach. 

Our group has developed a CP-MD method within 

the valence bond formalism not restricted to the GVB- 

P P  approximation. In this method one can include, 

in principle, as many structures as desired, and handle 

any kind of molecular system[14]. To do this we started 

from the VB approach by ~ c ~ e e n ~ [ l ~ ] ,  who developed 

algorithms for the calculation of matrix elements be- 

tween nonorthogonal atomic orbitals. In the following , 
we will describe our VB-MD approach. 

We consider the many-electron wavefunction \Ir as a 

linear combination of structures, 

where each structure is of the form 

where Â is the antisyrnmetrizing operator, SIKi are local- 

ized nonorthogonal atomic orbitals, and O is the total 

spin eigenfunction. We adopt as a reference struc- 

ture and assume that the atomic orbitals that appear 

in the other structures have t o  appear in the refer- 

ente structure. Expanding these atomic orbitals in a 

nonorthogonal basis set {4p), 

the total energy becomes the functional 

with which we build the Lagrangean 

The EM for the two sets of parameters {cpi) and and 
1 dE 

{C%) are m, (CK + ~ C K )  = O  (38) 

Let us now obtain the expressions for the forces and 

the ficticious masses. The total energy can be written 
1 dE 

mpi ( ~ p i  + s f k p i )  + ã ~ ; ;  = 0 (37) as 



J .  R. Mohallem, R. O. Vianna and H. Chacham 

so that the forces associates to the C, are 

To calculate the forces associated to  the cpi, we 

write the general expression 

so that we only need the derivatives of Q related to  the 

c,i. We have 

For an arbitrary structure where the orbital $i appears, 

we have 

In view of (33), we have 

That is, the effect of the operator d/dcpi is to gener- 

ate a new structure where the orbital T,bi is replaced 

by the basis function 4,. We can write 

and the forces related to the coefficients cpi are 

The ficticious masses related to the coefficients are 

taken as approximately proportional to  the second 

derivative of the total energy. We use 

Now, identifying the set of parameters C, and cpi 

with a set of generalized coordinates qk, with forces 

f k  = -dE/aqk, we solve the EM with the same SQ 

algorithm described in the previous section, that is, we 

iterate the equations 

where a is a constant, until the forces vanish within 

a given convergence criterion. To speed up the con- 

vergence, we also use the numerical extrapolation tech- 

nique DIIS - direct inversion of iterative s ~ b s ~ a c e [ ~ ~ ] .  

We have performed tests for the above algorithm on 

the H20 and CH4 molecules. convergence on the the 

total energy at the level of 10-6 a.u. was obtained with 

68 iterations for H20, and 48 iterations for CHq. Simul- 

taneous optimization of the wavefunction and geometry 

of some systems of interest is in progress. 

VII. Concluding r emarks  

The CP-MD approach opened the possibility of sim- 

ulating the dynamical behavior of molecular and con- 

densed matter systems from first principles. We have 

shown that the CP-MD method, although primarily de- 

signed for DFT calculations, can be extended to quan- 

tum chemistry calculations either at the HF level or at 

a C1 level (VB approach). The HF-MD and the VB- 

MD methods described here can be applied to  a wide 

range of quantum chemistry problem, such as  geometry 

optimization of complex molecules or the dynamics of 

chemical reaction and cluster formation. The VB-MD 

method can also be applied to  condensed matter prob- 

lems where electron correlation is important, such as 

deep levels in semiconductors and insulators. 
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