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Glancing at dynamics from the 60's to  the 90's, we present a view on how the theory of 
chaotic dynamical systems carne to  be. 

For, in respect to the latter branch of the sup- 
position, i t  should be considered that the most 
trifling variation in the facts of the two cases, 
might give rise to the most important mis- 
calculations, by diverting thoroughly the two 
courses of events; very much as in arithmetic, 
an error which, in its own individuality, may 
be inappreciable, produces, a t  length, by din t 
of multiplication at all points, a result enor- 
mously a t  variance with truth. 

This extraordinary sentence by Edgar Allan Poe 

in The Mistery of Marie Rogêt, embodies in a beau- 

tiful way the idea of sensitivity, and thus chaotic be- 

havionr of a system, with respect to initial conditions. 

In the early 1960's, about a century and half after that,  

Lorenz in his remarkable work on the dynamical mod- 

elling of weather prediction, stressed the same idea, im- 

plying that some degree of uncertainty of such a pre- 

diction is unavoidable, no matter how accurate the ini- 

tia1 data are. Incidentally, a curious discussion about 

priority: who first thought of sensitivity, i.e. chaotic 

systems? Americans, Russians (a great school in the 

area), the British (Maxwell) or the French (Poincarg)? 

Perhaps Poe's book is the answer.. . and, in present 

times, Lorenz's work.. . 
The work of Lorenz, published in 1963, dealt with 

vector fields in three-dimensional space, i.e. dynamical 

.systems given by assigning a vector to each point in the 

space. Each of the vector fields was deterministic (no 

random fluctuations in the coefficients of their equa- 

tions) and, in fact, was algebraically very simple: the 

equations for the vector field at each point in space were 

just quadratic (second degree) in terms of the (usual) 

coordinates of the point. Yet, and that was a big nov- 

elty, the behaviour of most of the trajectories was, in 

the long run in the future, somewhat unpredictable: 

they got apart a certain constant amount even when 

starting at very nearby points (sensitivity property with 

respect to initial conditions), and they were accumulat- 

ing everywhere in a complicated object, later called a 

strange attractor. Even more, this behaviour was still 

present when the coefficients of the equations of the 

vector field were slightly changed. Amazingly, the work 

became known to many of us only in the early 70's. 

Actually, the topics on which most dynamicists fo- 

cused in the 60's, although very important, were quite 

different from that in Lorenz's work. Indeed, two fun- 

damental theories were constructed and took quite a 

full shape in that decade: the hyperbolic theory for 

general systems and the KAM (Kolmogorov, Arnold, 

Moser) theory for conservative systems. 

Many of us were proud of the achievements in this 

area at the end of the 60's, thinking that we had been 

able to  describe "very many" systems, or, a t  least, that 

we had set very solid foundations t o  that end. That 

is, that we had understood or even classified a great 

portion of the universe of dynamical systems. And 

a11 this, just to  be rather shocked at the turn of the 

decade, when we learned about Lorenz's work. Then, 

in a crescendo of bewilderment in the 70's, we real- 

ized that we were unable t o  answer a question posed 

by the astronomer Hénon, concerning the possibility of 

having a somewhat persistent strange attractor (again, 

exhibiting the sensitivity property) even for a two- 

dimensional quadratic diffeomorphism and, finally, we 

learned by 1978 of the work of the physicists Feigen- 
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baum and Coullet-Tresser on period-doubling bifurca- 

tions and, again, a strange attractor, now for a simple 

one-dimensional quadratic map. An interesting fact is 

that a11 these works on non-linear (actually quadratic) 

dynamics were based on computational experiments 

and no or not complete mathematical proofs were pre- 

sented, although a program of a proof was in the (inde- 

pendent) papers by Feigenbaum and by Coullet-Tresser. 

It is also to  be noted that the work of Ruelle-Takens 

challenging the previous ideas of Landau and others on 

models for the highly nonlinear phenomenon of turbu- 

lence of fluids, also played a role to  create the "atmo- 

sphere" of the decade: they pledged for strange attrac- 

tors instead of the previous non-sensitivity attractors as 

models. Again curiously, none of these colleagues, ex- 

cept for Takens, worked in dynamics at the time of their 

fundamental and indeed revolutionary contributions. 

After this decade (of bewildermcnt), mathemati- 

cians started providing answers and perhaps now we 

can even suggest a scenario for the world of dynamical 

systems. Let us gla&e a little more closely at this great 

evolution of dynamics from the 60's to  the 90's. The 

focus will be on general or dissipative systems. 

Usually, a (discrete) dynamical system is given as 

a transformation (process) T on a space of events M. 

This space of events, or phase space, can be the real 

line, plane or the three- or higher- dimensional Eu- 

clidean space or more elaborate mathematical objects 

(manifolds) or even infinite-dimensional spaces or mani- 

folds. One applies the transformation to  an initial point 

(event) and then to the resulting point and so on, get- 

ting an ordered set of points, called the orbit or trajec- 

tory of that initial point under T .  The main objective 

of dynamics is to  describe the w-limit set of the system, 

i.e. the closure of the set of points where the orbits (or 

most of them) accumulate in the future when the num- 

ber of iterates grows to infinity. Most here means total 

Lebesgue measure (assuming M is finite-dimensional). 

A fundamental concept in this sense is that of an at- 

tractor, which is a set of points, made of orbits, where 

a11 or most orbits starting at nearby points accumulate. 

A key topic in dynamics is to describe attractors, since 

most orbits tend, in the future, towards attractors. 

If a transformation T is sensitive with respect to  

initial points near one of its attractors, then we say that 

T is chaotic near this attractor. 

On the other hand, the system is hyperbolic near an 

attractor if distances between points increase and de- 

crease exponentially in complementary directions when 

we apply the system. An important theory of the 60's, 

called hyperbolic theory, states that an  attractor per- 

sists with the same dynamics (continuous correspon- 

dente between the sets of orbits) when the system is  

slightly perturbed, if and only if it  i s  hyperbolic. In gen- 

eral, a system is called hyperbolic if its w-limit set is 

hyperbolic. Let us be more precise. A C k  differentiable 

transformation T on M ,  k > 1, is called Ck-stable if 

any C k  nearby transformation L on M has the same 

dynamics as T :  there is a homeomorphism h on M such 

that hT(x) = Lh(x) for a11 x E M .  In particular, the 

continuous transformation h with a continuous inverse 

sends trajectories of T onto trajectories of L. On the 

other hand, T restricted to  an invariant compact set A, 

i.e. made of T-trajectories, is hyperbolic if the tangent- 

bundle of M restricted to  A splits into two subbundles 

ES and Eu, invariant by the derivative dT, and d T  on 

ES is a contraction and d T  on Eu is an expansion. 

The time one map of gradient flows with nonde- 

generate critica1 values (nondegenerate gradients) and 

the map on the two-torus induced by the linear isomor- 
2 1 

phism or in general ( :) with integer en- 

tries and determinant one, are important examples of 

hyperbolic diffeomorphisms. In the first case, the at- 

tractors are made of points (local minima) and in the 

second, the whole torus. When the whole manifold is 

hyperbolic for a certain diffeomorphism like above, the 

map is called an Anosov diffeomorphism. A remark- 

able fact, on the other hand, is that a Cantor set may 

also be a compact hyperbolic invariant set for a dif- 

feomorphism, like in the famous Smale's horseshoe (see 

[I], [2]). They behave like saddles not as attractors. 

In these invariant Cantor sets, the periodic orbits are 

dense. Notice that we can construct hyperbolic diffeo- 

morphisms having saddle-type (non-attracting) invari- 

ant sets which are Cantor sets. 

After results of Anosov, Smale and myself, the 
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latter two authors conjectured by 1967, that diffeo- 

morphisms on attractors are Ck stable if and only if 

these attractors are hyperbolic (known as The Stabil- 

ity Conjecture). Main contributions, showing one side 

of the conjecture, were given by Robbin and Robin- 

son a few years later. About twenty years afterwards, 

Mané in a remarkable paper completed the conjecture 

in the C1 case. This result, together with a substantial 

work on the classification of hyperbolic diffeomorphisms 

(and flows), gives much strength to this theory. It ex- 

plains, perhaps, why we thought we had "understood 

very many sistems" and felt very proud about it ... 
A11 these notions apply as well to flows or vector 

fields (non-discrete case). Of course, to define hyper- 

bolicity, we have to consider, a t  non-singular points, 

three subbundles of the tangent-bundle to the mani- 

fold, one of them being one-dimensional and along the 

flow. Again, the nondegenerate gradient flows or the 

three-dimensional flow obtained by the suspension of 

an Anosov diffeomorphism (see [I]) constitute impor- 

tant classes of hyperbolic flows. And a flow is Ck dy-  

namically stable if any Ck nearby flow is dynamically 

equivalent to it: there is a homeomorphism of the am- 

bient manifold sending trajectories of the initial flow 

onto trajectories of the perturbed one. 

Although persistent under small perturbations, the 

Lorenz attractor is not hyperbolic: the dynamics on it 

may change through small perturbations of the flow. 

Amazingly, the following challenge on this topic per- 

sists: we do not know yet if the original Lorenz's flow, 

given by quadratic equations in three variables 

others, have formally exhibited plenty of flows, even al- 

gebraic ones with cubic (but not quadratic) equations 

with the above properties: they are called Lorenz-like 

flows. Notice that the attractor contains a singularity 

and infinitely many periodic orbits accumulating on it 

and this is why the flow is not hyperbolic. The eigenval- 

ues (Lyapunov exponents) a t  this singularity are, say, 

X1 < O, A2 > 0, X3 < O such that X1 + X2 < O and 

X2 + X3 > O. Thus, along the attractor we have some 

positive expansion and normal to it, a strong contrac- 

tion. The Lorenz-like attractors are fully persistent: 

any small perturbation of the initial flow yields a flow 

with an attractor with the same properties as above, 

including strangeness, i.e. sensitivity with respect to 

inicial conditions. 

Of course, the search for nonhyperbolic strange 

attractors is now intense. Very recently, Rovella, in 

his Ph.D. thesis at IMPA (Bull. Braz. Math. Soc., 

1993), exhibited a much more subtle strange attractor 

for three-dimensional flow like in Lorenz's case. Again, 

the attractor contains a singularity with two negative 

and one positive Lyapunov exponents, but the sum of 

two of them is negative in a11 cases: there is some con- 

traction along the attractor and a strong one normal to 

it. Sensitivity is as before, but persistence of the attrac- 

tor only occurs for a positive Lebesgue measure set in a 

two-dimensional parameter space. There are, however, 

small perturbations that destroy the strange attractor, 

producing in turn a periodic one. 

Actually, the result of Rovella was much based on 

a great achievement in dynamics in the late 80's: a 

remarkable, although still partial, answer to Hénon's 

question about a possible strange attractor for the 

quadratic diffeomorphism in the plane 

has indeed, as his experimental computation showed, 

the sensitivity property with respect to initial condi- 

tions near the attractor. Notice that in Lorenz's case 

an attractor must exist since we can verify that there is 

a ball centered a t  the origin which is positively invari- 

ant by the flow. Despite this challenge, Guckenheimer 

and Williams, Robinson and Rychlik (see [2]), among 

for values of a and b near 1.4 and 0.3, respectively. The 

answer is yes and this 'important development went as 

follows. Before going into that,  let us clarify that the 

word "partial" above is due to  the fact that Hénon has 

asked for a "global" strange attractor and the answer we 

know so far corresponds to a strange attractor whose 

basin of attraction is not so big. 
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The main result is due to Benedicks-Carleson (An- 

nals of Math., 1991), who proved that, for fixed very 

small b ,  there is a positive Lebesgue measure set of val- 

ues of a near 2, for which cp,,a has a (nonhyperbolic) 

strange attractor. Immediately after that, again in a 

very remarkable paper, Mora and Viana (Acta Math., 

1993) substantially extended the result to cover the 

much more general situation of bifurcating (unfolding) 

a homoclinic tangency through a one-parameter family 

of dissipative (determinant o f  the Jacobian with norm 

less than one) surface diffeomorphisms. The notion of 

a homoclinic orbit was introduced by Poincaré (see [I], 

[2]): it corresponds to orbits of intersection o f  the (in- 

variant) stable and unstable manifolds associated to a 

saddle periodic point; the orbits at which they are tan- 

gent are called homoclinic tangencies. 

Remarkably, when we unfold a homoclinic tan- 

gency through a one-parameter family of surface dif- 

feomorphisms which are dissipative, we obtain as the 

parameter varies (like a in the quadratic family above), 

not only Hénon-like strange attractors, but also cas- 

cades of period doubling bifurcations of sinks (periodic 

attractors) à la Feigenbaum and infinitely many coex- 

isting sinks. A11 these famous bifurcating phenomena 

are much discussed in [2]. 

We can now start to "see" a bit better the large 

(much larger than we thought in the 60's) world of 

nonhyperbolic dynamics: maybe homoclinic tangen- 

cies, strange attractors and cascades of period doubling 

bifurcations are to be seen densely in this part of the 

world of dynamical systems complementary to the hy- 

perbolic part (this is a conjecture, see [2], that can also 

be formulated in higher dimension). Moreover, and this 

is a fact corresponding to very recent results of Ures and 

Catsigeras, arbitrarily near, in the sense, one of the 

above list of complicate bifurcata'ng phenomena, we can 

obtain the other one. The exception here is to know 

how to approximate a diffeomorphism with infinitely 

many sinks by one displaying a homoclinic tangency: 

this is a fascinating open problem, which, I conjecture, 

should have a positive answer. 

I wish to point out that the unfolding of homoclinic 

tangencies does provide examples on how one can pass 

directly from a simple nonchaotic system to the chaotic 

region, without going through cascades of period dou- 

bling bifurcations: the cascades are "seen" in the pa- 

rameter line only afterwards, i.e. the homoclinic tan- 

gency is a first bifurcating point in the parameter line 

(see [2]). These examples may be constructed to be 

robust in the sense that nearby parametrized families 

exhibit the same phenomenon of passing from simple 

to chaotic systems. 

At this point, let us enrich our discussion with a 

main ingredient in bifurcations of dynamical systems, 

at least in the important case of the unfolding of a ho- 

moclinic tangency through one-parameter families. We 

restrict our discussion here to surface diffeomorphisms. 

Notice that a homoclinic tangency is associated with 

a saddle fixed or periodic point of a diffeomorphism. 

Now, this saddle may or not be part of a larger in- 

variant set, say a horseshoe, i.e. a Cantor set. The 

Hausdorff dimension of such a Cantor set is a number 

strictly between zero and one: the Cantor set is called 

a fractal and its dimension a fractal dimension. 

Results of Newhouse and myself (Astérisque, 

1976), Takens and myself (Annals of Math., 1987) 

showed that if this fractal dimension is smaller than 

one, then a homoclinic tangency, associated to the frac- 

tal, that generically unfolds yields many nonchaotic hy- 

perbolic diffeomorphisms. That is, the initial diffeomor- 

phism is a point of total Lebesgue density in the pa- 

rameter line for nonchaotic hyperbolic diffeomorphisms. 

Very recently, Yoccoz, a 1994 Fields Medal winner, and 

myself (Acta Math., 1994) proved a converse to that 

statement: if the dimension is bigger than one, we have 

chaotic systems in abundance, i.e. the initial dzffeomor- 

phism is not a density point for nonchaotic hyperbolic- 

ity. 

These results convey a fundamental difference in 

the measure of the bifurcating set in the parameter line, 

depending on how large or how small is the fractal di- 

mension of the hyperbolic set associated to the homo- 

clinic bifurcation: small (smaller than one) dimension 

implies '(few" dynamic bifurcations and large (larger 

than one) dimension is likely to imply "much" dynamic 

bifurcation. 
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Let us now turn briefly to  conservative systems, 

or more properly to area-preserving surface diffeomor- 

phisms. The classical KAM theorem states that gen- 

erally there are many (their union is a set of positive 

Lebesgue measure) invariant curves near elliptic peri- 

odic points. Generally here means that the argument of 

the corresponding linear rotation given by the deriva- 

tive of the map at the elliptic point satisfies certain 

generic diophantine inequalities. Often, we refer to  such 

a region bounded by an invariant curve as an elliptic is- 

land. 

After the initial work of Poincaré, Birkhoff and, 

somewhat later, Siegel, the KAM theorem was sketched 

in the analytical case by Kolmogorov in the late 50's 

and proved in the early 60's by Arnold in that case and 

by Moser in the smooth (i.e. C") or highly differen- 

tiable case. From that,  the KAM theory grew to higher 

and even infinite dimension, to  constitute an important 

part of dynamics. 

Recently, another beautiful theory by Aubry and 

Mather is being developed to detect periodic orbits, in- 

variant curves and Cantor sets, as well as orbits accu- 

mulating positively in one of these sets and negatzvely in 

a consecutive one (consecutive along a radial line). This 

theory is much based on the notion of rotation number 

and rotation set (see [I]), again originally introduced 

by Poincaré for circle homeomorphisms. 

I always thought that some of the techniques con- 

cerning homoclinic bifurcations and the like, discussed 

above for dissipative diffeomorphisms, should be appli- 

cable here. For that,  there should be a little dictionary 

where (periodic) sinks should translate into elliptic (pe- 

riodic) points or elliptic islands, saddles into saddles 

and the same for homoclinic tangencies. Indeed, very 

recently, Duarte obtained the following two results in 

the context of area-preserving diffeomorphisms. 

The first one states that if we generically unfold 

a homoclinic tangency associated to a saddle point 

p, through one-parameter maps, we obtain residually 

(Baire second category, see [I]) in intervals in the pa- 

rameter line, infinitely many independent elliptic is- 

lands; in particular, the elliptic islands accumulate at 

p. 

His second and notable result concerns the famous 

standard family of area preserving maps on the torus 

fk(x, y) = (y + 2x + 14 cos 2ax, x)/mod2a 

where the parameter k is a real number. It is probably 

famous among physicists, or mathematical physicists, 

because it is expressed by very simple equations and yet 

we know very little about its robustness, meaning posi- 

tive Lebesgue measure both in parameter and ambient 

space, concerning the existence of points in the torus for 

which the map exhibits positive Lyapunov exponent. In 

fact, it is conjectured that there is a set of positive mea- 

sure I ( ,  in the parameter line, such that for each k E h', 

the map fk has positive Lyapunov exponents at points 

of a positive Lebesgue measure set. Some mathemati- 

cians even conjecture that the complement of the set 

with this property has zero measure. Actually, we do 

not know even how to prove that there is just one value 

of k for which the above is true. About the mathe- 

matical physicists' opinion on the standard map, Sinai, 

for instance, tells me that "if the conjecture is true then 

this means Arnold's diffusion is present in a meaningful 

way (positive Lebesgue measure)" and, which is amaz- 

ing to me, "that may help to  explain phase-transitions"! 

The following result of Duarte shows how deli- 

cate the conjecture is, since, roughly speaking, ellip- 

tic islands "imply" zero Lyapunov exponents. Duarte 

proved that: there exist k, > O and a residual subset 

I<* of [fk,  oo) such that for each k E I<*, the elliptic. 

islands accumulate in large, in the sense of Hausdorfl 

metric, subse-ls of the torus and as k runs to infinity, 

the elliptic islands tend to fill in the whole torus, i.e. 

they tend to be dense in the torus. 
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