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Due to the lack of a general continuum theory the main theoretical approach to investigate 
granular flow has been computer simulation. As an alternative to molecular dyna.mics and 
in analogy with hydrodynamics recent lattice gas models have been used to model flow in 
granular media. We present the details and the discussion of one such automaton. 

Hydrodynamic lattice gas (HDLG) cellular au- 

tomata (CA) have been introduced to simulate the 

behavior of a viscous fluid, especially in two dimen- 

sions. The basic idea behind the HDLG is the following: 

The continuum equation of hydrodynamics, the Navier- 

Stokes (NS) equation expresses basically the conserva- 

tion of momentum. Microscopic dynamics with the ap- 

propriate conservation laws should lead to  the NS equa- 

tion, irrespective of whether it is the real molecular dy- 

namics or some properly defined cellular automaton. 

The solution was found on the triangular lattice by us- 

ing particles on the bonds with unit velocity[l]. 

The complex physics of granular media has at- 

tracted recently much attentionL21. These systems con- 

sist of many particles each of them having a large num- 

ber of degrees of freedom (they have temperature, there 

is friction bet,ween the grains). Therefore, granular sys- 

tems show very complex behavior, including clogging, 

segregation, avalanches, kinematic waves, piling due to 

vibrations, difference between angle of repose and max- 

imal angle of stability, etc.L2]. An apparent feature is 

that granular systems can behave both as fluids (they 

flow) and as solids (they build piles). 

Since the fundamental hydrodynamic equations of 

granuIar media are not known, the basic theoretical *.,i \ 
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, , , . , . , . approaches are either molecular dynamics[3] or sim- . , , , 

Q Q plified models concentrating on some features of the 
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. , . ~ ~ s t e m d ~ ~ ~ ] .  It is tempting to try to  extend the method 

of HDLG to granular flow for severa1 reasons16>']. Cel- 

lular automata are flexible enough to incorporate the 

important characteristics of granular media and at the 

same time they are much more 'computer friendly' than 
In Q Q In molecular dynamics. 
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J '*, In this contribution we give a short account of our 

Figure 1: Collision rules of the FHP-I1 model. The empty simulations of granular media based on hydrodynamic- 

arrows indicate the state after collision. Note that there are type cellular automata[7]. ~ h ~ ~ ~ ~ h ~ ~ t  the paper we 
collisions with rest particles involved (circles), where energy 
is not conserved but on the average these cancel oiit (first deal with two dimensional systems and we do not 
row middle and last collisions). If there are two final states 
one of them is chosen with probability 1/2. consider effects due to difference in the particles. 
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Figure 2: Table of collisions in the GMLG. The inelastic (elastic) output is chosen with probability k ( l  - k). The last two 
lines are examples showing how general collisions can be treated using the table. 
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Let us start with a short summary of the HDLG al- 

gorithm. Identical particles move on the edges of a tri- 

angular lattice with appropriately chosen collision rules. 

These rules assure the momentum and energy conser- 

vation and also sufficient mixing in the phase space. 

In Fig. 1 the rules of the so called FHP-I1 model are 

shown[l]. 

For granular media three main differences have to 

be taken into account: 

i) Gravity 

ii) Dissipation 

iii) Static friction 

iv) Dilatancy 

The first problem has been already discussed in the 

context of fluids[']. The particles change their travelling 

directions downward with probabilities proportional to  

the gravity parameter. 

Dissipation is naturally introduced in the FHP-I1 

rules: A11 we have to  do is to  choose higher probabil- 

ity for the collisions with energy loss than with energy 

gain. However, if these rules are applied an unphysical 

effect occurs in a closed system under gravity: After 

some time a11 particles will be a t  rest but - since parti- 

cles can only sit on the nodes - the volume of the system 

will increase when approaching this assymptote! This 

is just the opposite to  what happens in a real granu- 

lar system. The flow is related to  dilatancy: Due to 

shear induced tensile stress the system expands when 

it starts to flow. (The physical reason for this effect is 

the simple fact that no flow can take place in a closely 

packed system). 

In order to  take into account this dilatancy effect 

we introduced rest particles on the bonds. As a result 

the number of particles at rest per node increased to 7 

instead of 1. The particles can move only if they have 

space - just in reality, causing the desired dilatancy. 

The table of collision rules is shown in Fig. 2. The 

inelasticity of the collisions is described by a parameter 

k, the probability that in a collision the inelastic output 

has to  be chosen (and with probability 1 - k the elas- 

tic one). Finally, static friction is taken into account 

in the following way. If two particles are a t  rest next 

to each other then gravity alone is not enough to let a 

particle to  rol1 down: A collision with a moving particle 

is needed (Fig. 3). This rule violates conservation of 

momentum but this is legitimate since static friction is 

related to gravity and to the container in a dry granular 

medium. We do not consider here cohesion (wet sand). 

Figure 3: Rules corresponding to the static friction. The 
different final states are taken with the indicated probabii- 
ties a parameter. 

These rules define the model we cal1 granular 

medium lattice gas (GMLG) automaton. We have fi- 

nally three parameters characterizing gravity, dissipa- 

tion and static friction and the model is expected to  

describe both static limit and rapid flow phase of gran- 

ular media. I t  should be noted that - as usual for HDLG 

models - the rules are not unique. 

Of course, the number of states and therefore the 

possible collisions have increased as compared to the 

simple hydrodynamic case. However, multispin coding 

and parallelization still work and make the algorithm 

very efficient. For example, using a RISC-6000 it  takes 

about 5 minutes to  empty the 'hour glass' with 20 000 

particles shown in Fig. 4. Note that on the worksta- 

tion only the advantages of multi-spin coding could be 

utilized. 
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Figure 4: Simulation of granular material flowing out of a 
cont ainer. 

Such a simplified model has its liinitations as well. 

There are only two values the velocity of a particle can 

take: O or 1. Therefore an isolated particle in gravi- 

tational field and in vacuum will behave unphysically 

because it is not accelerated without limits. This is 

usually not a serious problem because under flow con- 

ditions the particles are hindered in their motion by 

dissipative collisions with the wall and with each other. 

However, GMLG cannot be expected to describe the so 

called plug flow where in a vertical tube a part of the 

medium is accelerated by gravity in the middle of the 

tube. 

As an illustration Fig. 4 shows a snapshot of a gran- 

ular material flowing out of a conic container with a hole 

in the middle of the bottom ('hour glass'). It is clearly 

seen that the angle of repose (lower container) is differ- 

ent from the angle of stability (upper container). The 

angle of stability can be influenced by the parameters 

of the model while the angle of repose is given by the 

lattice symmetry. Many other geometries and physical 

situations have been sirnulated by the G M L G [ ~ ~  and we 

consider the model as a promising alternative to molec- 

ular dynamics simulations. 
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