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Often, the dynamics of large systems in Nature is governed by extrema1 events rather than 
typical events. This type of dynamics causes the system to self-organize into a critical, 
complex state. The approach to the complex attractor can be related to the behavior in the 
complex state itself. This behavior may be characterized as a fractal in c1 spatial plus one 
temporal dimension. The temporal l/f-like signal, and the spatial fractal structure appear 
along different cuts in this fractal. 

I. Introduction 

Many large dynamical systems in Nature are com- 

plex. This means that they have information on a 

wide range of length and time scales. Fractal spatial 

s t ru~tures [~]  and a temporal signal with a l/f type 

n ~ i s e [ ~ ]  are signatures of complexity. 

Complex systems evolve in an intermittent way 

rather than in a smooth, gradual manner. Fluctua- 

tions in economics, as for instance the variations in cot- 

ton prices[3], appear to follow Levy distributions, with 

power-law tails describing intermittent large events. 

The distribution of earthquake magnitudes obeys the 

Gutenberg-Richter lawL4], which is essentially a power- 

law with respect to  the energy release. Biological evolu- 

tion takes place in terms of punctuations[5], where many 

species become extinct and new species emerge, inter- 

rupting quiet periods of apparent equilibrium, known 

as stasis. Power-law distributions are quite different 

from Gaussian distributions, which have exponential 

tails and a vanishing probability for large fluctuations. 

Both Gaussian and Levy distributions appear as 

limiting distributions when many independent random 

variables are added together. Roughly, if the distri- 

bution of individual events falls off sufficiently rapidly, 

with a non-diverging second moment, the limiting dis- 

tribution is Gaussian. The largest fluctuations come 

about because many individual events happen to pull 

in the same direction. If the individual events have a 

diverging second moment, or, perhaps, even a diverg- 

ing average size, the limiting distribution could be a 

Levy distribution. This may happen when the proba- 

bility distribution for individual events has a powerlaw 

distribution, ?(E) = E-O, with a < 3. 

How can single identifiable events possibly have a 

statistical explanation? As a result of this almost uni- 

versal reaction to find reasons for large, specific events, 

economists tend to look for specific mechanisms for 

large fluctuations; geophysicists look for specific con- 

figurations of fault zones etc. leading to catastrophic 

earthquakes. Biologists look for externa1 sources, such 

In contrast to the Gaussian case, the tails of a Levy 

distribution are formed by individual events rather than 

the sum of many events. Thus, when studying large, 

catastrophic events in a large system (which could for 

example be an economy with many interacting agents) 

one can identify the individual event, and therefore the 

particular source and mechanism for this event. As 

pointed out by Mandelbrot, this might cause an ob- 
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server to discard the event as "atypical" when studying 

the statistics of fluctuations, and thus throw the baby 

out with the bath water. The remaining events trivially 

follow Gaussian statistics. 
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as a meteor hitting the earth, in order to  explain large 

extinction events; scientists across the board are re- 

luctant t o  view large events as statistical phenomena. 

Even physicists may view the large scale structure of the 

universe as the consequence of some particular dynam- 

ics, rather than as one accidental outcome of random 

dynamics. 

11. Self-organized criticality 

There is another explanation. It has been argued 

that large dynamical systems tend to self organize into a 

critical state with events of a11 size#]. In principie, each 

,large event has a specific source that can be blamed. 

For example a particular grain of sand can land on a 

specific spot on a sand-pile, causing a large avalanche 

or sandslide, or a particular tree in a forest fire can 

be the first to  catch fire, or a particular fault segment 

can be the first to  rupture during an earthquake that 

might some day destroy California, or a particular car 

can be the first to  slow down on a highway and cause 

a humongous traffic jam. The important point, how- 

ever, is that even if this particular initiating event were 

prevented, large events would eventually start for some 

other "reason" at some other place in the system. No 

local attempt to control large fluctuations can be suc- 

cessful. Of course, from a selfish viewpoint one might 

be able to  shift the disaster to  neighbors! 

What is the origin of the process of self-organization 

t o  the complex state? Self-organized critica1 systems 

appear to  have one feature in common: the dynamics 

is governed by sites with extremal values of the ~ i ~ n a l [ ~ I ,  

such as a force acting on the crust of the earth, or 

the slope of a sand-pile, or the oldest tree in the for- 

est, rather than by some average property of the field. 

Nothing happens before some threshold is reached; the 

system is frozen. But when the least stable part reaches 

its threshhold, this may trigger a burst of activity in 

the system. Thus, one might argue that complexity is 

due to the fact that the dynamics of Nature is driven 

by atypical, extremal features[". Biological evolution 

is driven by exceptional mutations leading to a species 

with superior ability to proliferate; similarly, a new in- 

vention at the leading edge of technology may lead to a 

breakthrough causing ripples throughout the economy. 

I t  has been speculated that the introduction of program 

trading might have caused the "crash" of stock prices 

in October 1987. 

For some models, the randomness of the driving 

mechanism may hide the fact that the dynamics is 

driven by extremal events. For a forest-fire m ~ d e l [ ~ I  

of self-organized criticality, it can be proven that the 

dynamics is entirely driven by burning the largest 

forests, or the oldest trees, despite the fact that both 

tree growth and fires occur randomly. The growth 

of diffusion-limited aggregation clusters (DLA) takes 

place on a fractal structure with extremal values of the 

growth potential field[lO]. For the early models of SOC 

there is, still, little understanding of the process of self- 

organization. Even though, there are many analytical 

results for sand pile models["I, there are none which 

elucidate the approach to the critica1 attractor, and 

which describe the avalanches in the critica1 state. The 

same goes for the earthquake mode~s[ '~],  where there 

are no analytical results whatsoever, and a11 insight 

stems from numerical simulations. One exception is the 

Drossel-Schwabl version of a forest fire model of SOC 

which has been solved exactly in one dimension[13]. It 

is not yet clear, though, how this solution fits into the 

general scheme of self-organized criticality. 

Recently there has been a breakthrough in our un- 

derstanding of how extremal dynamics leads to  complex 

beha~ior['~-'". This is due to  the invention of some 

particularly simple models representing phenomena as 

diverse as surface growth['g], traffic jam~[~OI, and pos- 

sibly biological e v o l u t i ~ n [ ~ ~ ] .  One outstanding virtue 

of these models is that they can be attacked by ana- 

lytical methods rather than relying on computer sim- 

ulations alone. We have found that the complex state 

can be viewed as a fractal in d spatial plus one tempo- 

ral dimension. The approach to the critica1 attractor 

is governed by a "gap-equation" for the divergence of 

avalanches. The exponent for the resulting algebraic 

approach to the complex state can be derived from the 

geometrical properties of the space-time fractal. So can 
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the power spectrum of the local signal. For some mod- 

els, the critica1 behavior can be mapped to known mod- 

els. In addition, new ways of measuring well known 

exponents, such as B and x for surface growth models 

have been derived by relating these exponents to the 

space time fractal. In the following we shall describe 

our results, for one particular model, namely, the Bak- 

Sneppen (BS) toy model of evolution, but many of the 

results can be straightforwardly generalized to a large 

class of models, including the Sneppen model[lg] of in- 

terface depinning and invasion percolation[22]. 

111. Complexity in the BS model 

111.1 The stationary complex state 

The BS model was proposed as a coarse grained de- 

scription of e v o l u t i ~ n [ ~ ~ I .  For a discussion of its possible 

relevance to biological evolution, see Refs. [21] and [23] 

and N. Jan's article in this volume. Related ideas can 

be found in Kauffman's b o ~ k [ ~ ~ I .  The BS model is, per- 

haps, the simplest model with extremal dynamics that 

exhibits self-organized criticality. 

The model is defined as follows: random num- 

bers, f;, are assigned independently to sites on a d- 

dimensional lattice. They are chosen from a uniform 

distribution between zero and one, P( f ) .  At each step, 

the site with the lowest random number, f,i, is cho- 

sen. Then that site and its 2d nearest neighbors are 

assigned new random numbers which are also drawn 

from P .  The dynamics is extremal because the global 

minimum is selected at each time step. After many up- 

dates have occurred, the system reaches a statistically 

stationary state in which the density of random num- 

bers in the system vanishes for f below f, and is uni- 

form above f,. The activity pattern in the BS model, 

shown in Fig. 1, is a fractal in both space and time. 

This fractal exhibits spatio-temporal complexity. The 

activity a t  any particular site is recurrent in time; it is 

a "fractal renewal process"[25]. 

R 

Figure 1: Fractal cluster of activity in the d = 1 BS evolu- 
tion model. The  horizontal axis is a row of lattice sites and 
the vertical axis is sequential time. Note the appearance of 
holes of a11 sizes between subsequent returns of activity to  
a given site. 

time 

Figure 2: Accumulated number of active events a t  a sin- 
gle site. The  curve exibits punctuated equilibrium behav- 
ior, with large periods of stasis interrupted by intermittent 
bursts. 

The fractal has a dimension D which has been mea- 

sured to be D = 2.32 [14] for the one dirnensional BS 

model. Fig. 2 shows the integrated activity along the 

time axis. It represents the accumulated number of 

changes of a single site vs time. It exhibits punctuated 

equilibrium[5] behavior, with large periods of relatively 
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small activity interrupted by intermittent bursts. The 

bursts are due to  many changes taking place in a small 

time interval. Fig. 3 shows a snapshot of f  vs. species 

space X during a burst. 

Figure 3: Snapsliot of f vs X during an avalanche. Most of 
f, are above the critica1 value. Tlie active sites witli f < f, 
are clustered around X = 800. 

The scaling behavior of recurrent activity in time 

can be described by the fractal dimension, d, of the re- 

turn points on the one-dimensional time axis. This is 

related to  the exponent rfirSt for the first return time, i. 

e. the size distribution of holes between active points, - 
by the relation d = rfi,,t - 1 [ lG] .  The power spectrum, 

S( f ) ,  of the local activity is the Fourier transform of the 

autocorrelation function of the activity. This is another 

power law, S ( f )  - f-' [16]. A signal with non-trivial 

power law correlations is often called "one over f  noise" 

even if the exponent is not one. The exponent d, and 

consequently the power spectrum, can be related to the 

fractal dimension D of the cluster. The total size of the 

cluster, S ,  scales with the spatial extent, R, as S - RD. 

We consider the cluster to be a composition of Rd one- 

dimensional fractals in time. Consequently 

Fig. 4 shows the value of fmin vs time in the station- 

ary SOC state. By definition, fmi,  is always less than 

f,. We define " fo  - avalanches" , representing bursts 

of activity in the following way. fo  - avalanches start 

whenever fmin exceeds a parameter f o ;  they are defined 

for any O < fo  < f,. For a number of time steps the 

value of fmin will be less than f o .  The avalanche ends, 

after a total of S time steps, when fmin again exceeds 

f o .  As fo  approaches the critica1 value, f ,  the size dis- 

tribution of avalanches approaches a power law 

The exponent r has been measured to  be T N 1.1 for 

d = 1; r FX 1.27 for d = 2. Fig. 5 shows N ( S )  in one di- 

mension. Tliese value for r and D are identical to  tliose 

for directed percolation within numerical a ~ c u r a c ~ [ ~ ~ ] .  

Below criticality the avalanches have a cutoff, 

s - - R ~ R ~ ~  ( 1 )  with a N 0.34 in one dimension. The average duration 

of avalanches below criticality scales as 

and the power spectrum becomes S ( f )  f - ( l - d l D )  - 
f -0.57 in one dimension. 
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Figure 5: Distribution of avalanches for the BS branching 
process at the critica1 point, f, = 0.667. 

Note that while the exponents, y = (2 - r ) /u ,  r ,  
etc. describe properties of the system off criticality, 

the exponents r and D describe properties of the sta- 

tionary state at criticality. The fo- avalanches can be 

studied directly through an equivalent BS branching 

p r o ~ e s s [ ~ ~ ] .  An initial site, say z = O ,  is chosen and 

updated according to the rule for the BS model, that is 

the site and its two neighbors are assigned new random 

numbers. Then the next site with the smallest ram- 

lom number is found and updated, and so on. AI1 sites 

with f; < fo are called "active". The values of f; on 

the passive vacuum sites are irrelevant and not stored. 

The process continues until a11 f's exceed fo .  A single 

fo avalanche is identical to a single BS branching pro- 

cess a t  fo. Thus, the properties of the fo-avalanches 

for the BS model approaching its critica1 attractor are 

mapped to the properties of the BS branching process 

off criticality. This speeds up the numerical simulations 

while completely eliminating finite-size effects. Fig. 6 

shows < S > vs (f, - f o ) ,  with fc = 0.667. The slope of 

the curve yields an exponent y N 2.7. Superficially, one 

might suspect that since the exponents T and D are 

given by directed percolation, the exponent y should 

also be identical to the exponent y for directed perco- 

lation, or whatever the appropriate model at criticality 

turns out to  be. In the following we shall see that this 

is not so. 

-3.5 -2.5 -1 .5  - I  

log (0.667-f) 

Figure 6: Average size of avalanches vs f, - f. The slope 
yields y = 2.70. 

111.2. T h e  self-organization process  

In contrast to earlier models of SOC, the process of 

self- organization to the critica1 point in the BS model is 

completely u n d e r s t o ~ d [ ~ ~ I .  The critica1 stationary state 

is approached algebraically, through transient states. 

Let us consider the situation where the distribution 

of f initially is uniform in the interval (0,l) in a d- 

dimensional system of linear size L. The first value of f 
to  be chosen for updating is O(L-d). Eventually, after 

s time steps, a gap G(s) opens up in the distribution 

of f's. We define the current gap G(s) as the maxi- 

mum of a11 the f,i,(s') for a11 O 5 s' < S. By definition 

G(s)-avalanches (as defined above) separate instances 

when the gap G(s) jumps to its next higher value. The 
average size of the jump in the gap is (1 - G ( s ) ) / L ~ .  

Consequently, the growth of the gap versus time s is 

described by the following equation: 

As the gap increases, so does the average avalanche 

size, which eventually diverges as G(s) -+ fc  whereupon 

the model is critical and the process achieves station- 

arity. In the limit L -+ a, the density of sites with 

f < fc  vanishes, and the distribution of f is uniform 

above fc .  The gap equation (5) defines the mechanism 

of approach to the self-organized critical attractor. In 

order to  solve it we need to determine precisely how the 

average avalanche size < S >c(,) diverges as the crit- 

ical state is approached. Inserting Eqn. (4) into Eqn. 

(5) and integrating, we find 
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which shows that the critica1 point (Af = O) is ap- 

proached algebraically with an exponent 0.58 in one 

dimension. 

Consider the stationary SOC state, and let P ( f )  be 

the probability to have a f-avalanche separating consec- 

utive points in time where the minimum random num- 

ber chosen is greater than f .  An avalanche of spatial 

extent r leaves on average < rd > sites with new un- 

correlated random numbers between f and 1. If f is 

increased by a small amount df, the differential in the 

probability that an f +df-avalanche will not end at the 

same time as the f-avalanche is determined by the prob- 

ability that any of the new random numbers generated 

by the avalanche fall within df of f .  This probability is 

< rd > df/(l - f ) .  We thus obtain the rigorous result: 

Since close to f,, P ( f )  A f r ,  where Af = f, - f ,  
the fundamental relation 

holds for Af -+ O .  Surprisingly, the quantity y ap- 

pears as a constant rather than a critica1 exponent. 

It is the number of random numbers between f and 

f, left behind by a f-avalanche that has died. Thus 

< rd >- A f - Y l  where.yl = 1. Using r sllD, where 

s is the time extent of the avalanche, gives 

As a result, o = 1 + d/D - T and y = (2 - T)/U = e;. Also, the spatial correlation length exponent 
1 -  1 

'1 = Dõ - D+d-DT ' 
Inserting the Padé approximate values T = 1.108 

and D = 2.327 for d = 1 directed percolation[26], and 

the Monte Carlo values T = 1.270 and D = 2.951 for 

d = 2 RFT [27], we find u = 0.32, y = 2.77, and 

v i  = 1.34for d = 1. For d =  2, CJ = 0.41, y = 1.79, 

and v l  = 0.83. These values agree with the measured 

values. 

The "gamma" equation, (8), gives a convenient way 

to determine the critica1 point accurately. If (1 - f)/ < 
rd > is plotted vs. f ,  the slope is equal to l / y  and the 

intersection with the f-axis is f,. We find y = 2.7 and 

fc = 0.66695 Jt 00005 (Fig. 7). Thus, contrary to early 

speculations it is highly unlikely that the critica1 f, is 

exactly 2/3. 

0.02 I 

Figure 7: Plot of (1 - f)/ < rd > ( f )  vs f .  The slope gives 
the inverse value of the exponent y. The intersection with 
the f axis gives f,. 

In conclusion, we have a rather complete descrip- 

tion of the self-organization process, and the resulting 

critica1 properties in the stationary attractor of the BS 
model. In particular, the model exhibits punctuated 

equilibrium behavior with a power law distribution of 

intervals between active events, and a l /  f power spec- 

trum, 
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