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In this work a short overview of the development of spin glass theories, mainly long and 
short range Ising models, are presented. 

I. Prologue 

It has been a long and hard way to unravel the fasci- 

nating subtleties involved in the physics of spin glasses 

since the pioneering experimental work of Cannella and 

~ ~ d o s h [ l ]  in the dilute metallic alloy CuMn with 0.9% 
Mn. ~ o w a d ' a ~ s  these systems comprise a large vari- 

ety of distinct materials emboding the two basic in- 

gredients: frozen disorder and antagonistic interactions 

(frustration). For a review see for instance Rammal 

and ~oule t ie [~] ,  Binder and ~ o u n & ~ ] ,  Chowdury and 

~ooke r j ee [~ I ,  Mèzard et a1 [51, ~ r a ~ [ ' I  and Fisher and 

~ e r t z [ ~ ] .  

The most successful and popular theoretical model 

to describe the physical properties of spin glasses is 

the one introduced by Edwards and ~nderson['l whose 

mean field version was proposed by Sherrington and 

Kirkpatrick (sK)['~. Even today some aspects of the 

SI< model remains elusive such as the structure of the 

free energy barriers[lO], the ordering field of the con- 

densed phase[11~12] and its dynamical properties[13]. 

In this work a short account of the theoretical de- 

velopment in spin glasses mainly the Ising model, is 

presented. There is no intention of completeness in this 

work nor to give any details of the model calculations or 

a complete list of references but only of providing use- 

ful informations concerning some results up to now. In 

section I1 the mean field SK model and the picture aris- 

ing from its solution are discussed. In Section I11 the 

counterpart of some special short range models where 

exact solutions were obtained are considered as well as 

some scaling and renormalization group theories. Some 

concluding remarks are presented. 

11. Mean field theory: the unfolding of complex- 
ity 

The much referenced mean field theory of ferro- 

magnetism due to Weiss may be obtained through 

an exactly solvable model, where a11 spins inter- 

act among themselves with vanishing size dependent 

i n t e r a ~ t i o n [ ~ ~ ~ ~ ~ I .  Its solution reveals that the mathe- 

matical mechanism responsible for the phase transition 

occurring in the model is the same as in the more palat- 

able two-dimensional Ising model, i.e., asymptotic de- 

generacy of the largest eigenvalue of the transfer matrix 

associated with the partition function of the system. It 

is then possible to formulate the mean field theory of 

ferromagnetism within an aesthetically atractive way as 

the solution of a long-range ferromagnetic model. 

In this same spirit, a long-range model intended 

to represent the mean field theory of spin glasses was 
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introduced by Sherrington and ~ i r k ~ a t r i c k [ ~ ]  on the 

footsteps of the wide general Edwards and Anderson 

model[']. It is defined by the Hamiltonian 

where ui = f 1, i = 1,2,  . . . N is a set of Ising vari- 

ables under an externa1 magnetic field H. The set of 

exchange interactions coupling constants { J i j )  are in- 

dependent random variables chosen from the gaussian 

distribution 

and the sum is taken over a11 pairs (i, j) of spins. The 

scaling of the variance as J 2/N is necessary in order to 

have a finite free energy per particle as N -, co. For 

a system with frozen-in (quenched) disorder t>he free 

energy is giver by 

for a given set of { J i j ) .  For a very large system it is 

expected that f { J i j )  and others densities of extensive 

quantities are sample independent, i.e., they are self- 

averaging. Thus, instead of calculating f for a given 

set (sample) as in Eq. (3), one may obtain an average 

free energy where the random variables are eliminated 

by carrying out the averaging of Eq. (3) over its distri- 

bution, namely 

where < . . . > J  means this average procedure. 

It is reasonable to expect the model (1) to have 

many ground-states, with a complex phase space, in 

addition to the presence of many metastable states. 

For such a disordered model it seems almost miracu- 

lous that below its critica1 temperature Tc = J / K  the 

complex structure and organization of the phase space 

could have its details worked out. 

Historically, two complementary approaches were 

undertaken in order to calculate the free energy of 

the model. The first was to work out directly Eq.(4) 

through the replica m e t h ~ d [ ~ * ~ I ,  and the second to ob- 

tain F { J i j }  in Eq.(3) in terrns of the local mean mag- 

netizations of the spins [(16), hereafter TAP]. 

In the TAP approach F { J i j )  is given by 

where mi =< <ri > is the mean spin on the i - th  site, given by 

mi = tgh 

There are many degenerate solutions to Eq. (6) for f larger than a given critica1 free energy density fc 

with the same free energy density yielding the ground [Refs. 17, 18, 19, 51. One has then the picture that 

states of the system in addition to a huge number of below the critical temperature the phase space of the 

metastable states. While the degeneracy of the for- SK model has many distinct thermodynamic phases (or 

mer solutions do not contribute to the entropy den- pure states) separated by infinite free energy barriers. 

sity, the latter behaves like exp[Nw(f)] where w(f) > O Unlike a ferromagnet whose twofold degenerate ground 
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states are related by time reversal symmetry, there is 

no obvious symmetry among the pure states of the SK 

model. Each state may be characterized by the set of 

local average spin < ai >,= mil  denoting a possible 

equilibrium thermodynamic state. Numerical solution 

of the TAP equations[20] suggests that below the crit- 

ical temperature, as the temperature decreases there 

occurs a continuous bifurcation (or better, a multifur- 

cation) cascade in the number of solutions, a picture 

suggested earlier for the condensed phase reflecting the 

critica1 character of the spin glass phase[21,22~3~5]. 

The distinct thermodynamic states in which the 

phase space may be decomposed will have a free en- 

ergy density f, given by [22,3] 

where the sum is over a11 microscopic states associated 

with state t and Ze is the partition function of this 

state. The Boltzmann-Gibbs partition function involv- 

ing a11 states is 

and a given thermodynamic state t has a statistical 

weight 
I 

Although the free energy density is self-averaging 

as N -t co, different states may have distinct weights 

due to  fluctuations in f which are O( l /N)  yielding dis- 

tinct values to (8). The Boltzmann-Gibbs average of 

an observable A may thus be written 

where < A >$) is the thermal average of A in state 

t .  There are quantities like energy and magnetization 

which are independent of the state (reproducible) and 

self-averaging while others like the susceptibility is not. 

Up to  now there is no known analytical way of com- 

puting the thermal average of an observable in a pure 

state. This demands the knowledge of how to project 

out this state through an ordering field[ll] although, it 

may be shown that certain quantities are both sam- 

ple independent (self-averaging) and state independent 

(reproducible)[3~5]. 

Another approach which has been successful in 

working out the properties of (1) has been the so 

called replica meth~d["~] .  One uses the identity 

l n  Z= lim(Zn - l ) / n  in Eq. (4), interchanges the lim- 
n-O 

its N -> co and n 0, considers n an integer to  work 

out < Zn > J  and at the end of the calculation takes 

the limit n -> O. This procedure yields the following 

expression for the averaged free energy density f 

p2 J 2  
pf = --- lim max 

4 n-O 

where the parameters q,p, a,  P = 1,2,  ... n are to  be de- with 

termined variationally from the conditions d f /dqap = 71, = P J ~  E ~ a p u a u p + H C u a  , (13) 
0, which give (4 LY 

where the traces in Eq. (11) and Eq. (12) are taken 

Tr{uaupezp(P?-tn)) over n replicas at a single site. In their original solu- 
q ,p  =< õ,up >= 

Tr ezp(P%) (I2) tion Sherrington and ~ i r k ~ a t r i c k L ~ 1  eonsidered only the 
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solution with a11 q,p = q ,  i.e., a single, order parameter 

invariant under permutation of replica labels. This so- 

lution, however, gives a negative entropy at low temper- 

atures a wrong result for an Ising mo de^[^]. The study 

of the fluctuations of Eq. (11) around tlie replica sym- 

metric solution q,p = 1 [23, 241 revealed that this is an 

unstable solution below the critical temperature, this 

instability persisting even in the presence of a magnetic 

field or when the interactions have a ferromagnetic com- 

ponent. Tlius the correct solution for T < Te must have 

broken replica permutation symmetry. It took sorne in- 

genuity to find out how to break the symmetry among 

the q,p. By generalizing ~ l a n d i n [ ~ ~ ]  work, ~ a r i s i [ ~ ~ t ~ ~ ]  

was able to exhibit the correct ansatz to solve the 

model. It amounted to introduce an infinite number 

of order parameters q,p which in the limit n -+ O re- 

duces to an order parameter function q(x), x~[O, l ] ,  with 

the solution being marginally stable throught the con- 

densed phase[17~2"29]. This marginal character seems 

to reflect the critica1 aspect of the condensed phase 

and the continuous multifurcation as the temperature is 

lowered (see Binder and ~ o u n ~ [ ~ ]  for other possible ex- 

planations of these zero modes). Within Parisi's ansatz 

the free energy density takes the following functional 

form 

where 

with the boundary condition 

During some time the physical interpretation of 

q,p and the broken replica symmetry solution leading 

to an order parameter function remained misterious. 

~aris i[~O] showed these to have a clear physical inter- 

pretation in terms of the overlaps of the local magneti- 

zations and of the probability distribution P(q) of these 

overlaps between states: 

where now a , P  label the possible pure states with 

weight P, and PP. It can be shown that P(q) is not a 

self-averaging quantity but its average over all realiza- 

tions of {Jij), P(4) ,  is related to q(x) by P(q)  = dxldq. 

So the inverse function x = x(q) gives the cumula- 

tive probability for having an overlap p. Moreover, 

by considering any three pure states cr i ,  a 2 ,  a3 and 

the probability P(q1, q2, q3) for them to have overlaps 

41 = qa2a3, 42 = qcisai t q3 = galaz it can be sh0wn[311 

that the space of the pure states of the SI< model is or- 

ganized in an ultrametric fashion: give any three states, 

at least two pairs will have the same overlap which will 

be less than or equal to the third pair (for instance, 

41 = q 2  < ~ 3 ) .  

It is rather dificult to work directy with Eqs. (14)- 

(17). For T 5 Te one may resort to series expan- 

sion of the functional Eq. (11) in terms of the order 

parameters[26-2"l. However, by introducing a Lagrange 

multiplier function P (x ,  y), related to the local interna1 

field acting on the spins, a new free energy functional 

may be introduced allowing solution of tlie SI< model 

for a11 values of T and H [32-361. It is worth point- 

ing out that in his work ~e rnesvá r ik~~]  argues that the 

TAP equations and Parisi's theory may not be equiv- 

alent. Although it seems that the solution of the SI< 

model has been fairly worked out some points as the 

free energy barriers[lO] and the ordering field[ll] may 

deserve further investigation as well as its dynamical 

properties[13~371. 

111. Fin i t e  dimensional  systems:  compet ing  un-  

finished theories  and b iza r r e  la t t ices  

Up to now there is no generally accepted theory 

to describe the properties of finite dimensional spin 

glasses. 

For a uniform system like a ferromagnet, its phe- 

nomenology is relatively easy to guess and a detailed 
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calculation of the critica1 properties may be accom- 

plished through Wilson's renormalization group frame- 

work. Well above T, in the paramagnetic phase the long 

distant spins are decorrelated while below T, there oc- 

curs long-range correlation among them, typical fluctu- 

ations involving clusters (droplets) of correIated spins. 

However, even for a ferromagnet model the concept of 

a cluster is somewhat vague[3a]. 

In the spin glass case, despite the heroic effort 

of many people, i t  seems that much remain to be 

done. A sound theory a la Wilson's renormalization 

gro~p[39j does not exist. The main existing theories 

are the Sherrington-Kirkpatrick model and its com- 

plex many states ultrametric space with an Almeida- 

Thouless transition line in a field for one hand and 

the domain wall (droplets) phenomenological approach 

on the other side, which in its present form does not 

yield the same rich structure of the SY model, mainly 

the many states and transition in a field picture[6~40]. 

On the experimental side there is room to fit the find- 

ings favouring one or the other f r a m e w ~ r k [ ~ ' - ~ ~ I  the 

same being true in Monte Carlo simulation in small 

Nevertheless, even the very existence of 

a phase transition at finite temperature in the 3D Ising 

short-range case is far from being s e t t ~ e d [ ~ ~ ] .  

However it is worth to mention that certain effort 

has been devoted to investigate exactly solvable SG 

models with short range interactions in bizarre lattices 

in attempt to  understand some aspects of the problem 

not present in the infinite-range models like the corre- 

lation length, the sensibility of the boundary conditions 

and finite size effects. One of them, the Bethe lattice, 

has a finite number of nearest neighbours and so might 

be expected to  be closer in nature to real spin glasses 

than the SK model. However due to its thin and local 

treelike structure the Bethe lattice contains itself some 

pathologies: there are no loops and therefore just one 

path linking any pair of sites, a characteristic of linear 

systems, and a finite surface to  bulk sites ratio in the 

thermodynamic limit. These leads to very subtle and 

sensitive properties accordingly to the chosen bound- 

ary conditions. For a full discussion of these points see 

Chayes et a1[491 and Carlson et a1[50-521. 

Many earlier works were done on random systems on 

the Bethe lattice by many authors, specially in Japan, 

that derived recursions relations t o  find the distribu- 

tion function of the effective field in the f J Ising SG 

(for a review of these works see ~ a t s u r a [ ~ ~ ] . )  However 

the first mean field study of spin glasses on the Bethe 

lattice as an alternative approach to the SK model was 

carried out by TAP['~] where the lowest order l / z  ex- 

pansion was taken on the Bethe cluster. After that 

Bowman and ~ e v i n [ ~ ~ ]  discussed the entropy and ob- 

tain the solution in the absence of a magnetic field 

while ~ h o u l e s s [ ~ ~ ]  exarnined this model for small mag- 

netic field in the neighborhood of the critica1 point. By 

analizing the correlation between two replicas he found 

that a replica-symmetry-breaking transition occuring 

on the same critical curve in the HT plane as obtained 

by de Almeida and ~ h o u l e s s [ ~ ~ ]  for the infinite-range 

model. ~ h o u l e s s [ ~ ~ ]  notice that on either side of the 

critica1 curve the correlation functions fall off exponen- 

tially with distance but with one correlation length di- 

verging on the curve. He also notice that the thermo- 

dynamic averages (interna1 energy, magnetization and 

the nonlinear su~cept ibi l i t~)  are smooth on the transi- 

tion curve except in zero field, a distinct behavior of 

the cusps found in the infinite-range model. A for- 

mal replica method was considered by ~ o t t i s h a w [ ~ ~ ]  to 

study this model showing to be necessary to break the 

replica symmetry on the Bethe lattice just below T, to 

have a stable solution. This suggests the existence of 

many coexisting thermodynamics states as occuring in 

the SK model. However this conclusion was in contrast 

with the Thouless c o n c l ~ s i o n [ ~ ~ ]  who found a replica 

symmetric stable solution for zero field. The contro- 

versy was later elucidated by Lai and ~ o l d s c h m i d t [ ~ ~ l  

pointing out the role of the boundary conditions in the 

Monte Carlo simulation of this model. They found that 

the Mottishaw's solution holds for the case of closed 

boundary conditions while the Thouless solution is valid 

for the open uncorrelated case. This latter case has been 

extensively studied by [50-521 for the case of the f J bi- 

moda1 distribution. Very recently ~oldschmidt [~"  us- 

ing the cavity method (see Mèzard et a1[5~591 obtained 

equations for the two real replicas that includes an ex- 
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tra parameter m which describes the exponential distri- 

butions of free energies of the distinct thermodyriamic 

states. These equations are more general than those of 

Thouless which are recovered in m -+ O limit. 

Another Iine of approach to study SG short range 

models was developed after the study of the spin-glass 

behaviour in three dimension carried on by South- 

ern and ~ o u n ~ [ ~ O ]  who succeed to show by using the 

very simple scheme known as Migdal-Kadanoff (MIO 

aproximation[61~621 that there was no transition for d=2 

while it occurs for d=3. Recently this approach has its 

interest renewed to study chaos exponents in S G [ ~ ~ ) ~ ~ ~ .  

In this case chaos means that the effective couplirig be- 

tween two given spins at a distance L undergoes multi- 

ple and chaotic sign changes with the temperature. It  

is found by Ney-Nifle and ~ i l h o r s t [ ~ ~ ~ " l  that tlie scal- 

ing theory for symmetric SG is characterized by four 

independent exponents, the thermal ones (y and y,) at 

T = O and the corresponding chaos exponents ( i  and 

i , )  at the criticality. The i, (> y,) exponent appears 

in the scaling laws that describe the chaotic tempera- 

ture dependence of the renormalized couplings around 

the critica1 region. The condition i, > y, is found to 

be fulfilled in an interval of dimensions ( d ,  = 2.46 , 
d+ = 3.4) in the MK approximation therefore includ- 

ing d=3. These results are based on the calculation of 

the so called autocorrelation function which measures 

the sensitivity of the relative deviations from the mean 

of the renormalized couplings to small changes in the 

initial coupling distributions. Although these calcula- 

tions were carried on within the Gaussian projection 

approximation, that is, after each RG step the distri- 

bution of the renormalized couplings is replaced by a 

Gaussian of the same mean and width, the results were 

confirmed by numerical estimates obtained by main- 

taining numerically the renormalized dis tr ibut ion~[~~I.  

Following another line Coutinho e2 studied 

within the MK scheme the structure of local EA order 

parameter of the SG Ising model instead of Iooking to 

the distributions of the renormalized couplings. They 

found an exact recursion relation for the local magneti- 

zation of the model defined on the diamond hierarchical 

lattice. These lattices (hereafter DHL)  are just the Iat- 

tices where the MK aproximation is exact for the pure 

Ising model. They found that around the critica1 tem- 

perature a measure constructed with the normalized 

local EA order parameter for a n-leve1 D H L  is a frac- 

tal measure. The f(a) function that characterizes how 

the singularities of the measure are distributed was nu- 

merically obtained and compared with one for the pure 

case[G61. 

The f(a) function for the SG is non-trivial around 

the critical point while the one for the pure case is 

non trivial only a t  the c r i t i c a ~ i t ~ [ ~ ~ ] .  Furthermore the 

former extends over a range of values of the a expo- 

nent much larger than the one for the  latter. This fact 

suggests that the structure of the local order parame- 

ter inside the condensed phase is much more complex 

and requires an infinite set of exponents to be prop- 

erly described. On the other hand dynamical simula- 

tions for 36 Ising SG in simple cubic lattices carried on 

by Bernardi and ~ a m ~ b e l l [ ~ ~ l  shows that the dynamic 

exponent in the power-law relaxation of the autocor- 

relation function at the ordering temperature is very 

sensitive with the distribution chosen supporting that 

the standard universality rules do not seem to hold for 

these systems. 

The present status of the studies in spin glasses, 

reflects how hard the problem is and the far reaching 

consequences of its eventual comprehension. 
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