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Various models are simulated which try to explain senescence for living beings. Severa1 
types of mutation are combined with Darwirnistic selection of the fittest and optimization 
constraints. The balance or mutation and selection leads to a lower survival rate for old 
than for young people, i.e. to senescence. A simple formula, neglecting interactions between 
different individual, describes well some of the aging results even when the growth of the 
population depends crucially on these interactions. 

I. Introduction 

When men get old, they usually run slower than as 
twenty year old, acquire a beer belly, are less sexy and 

physically less strong, become less creative in theoreti- 

cal physics, start to  discuss philosophy of physics, and 

show other signs of senescence. Even Pelé no longer 

wins soccer world championships (not to mention other 

experimental evidence from July 10, 1994). Of course, 

there are always exceptions, like this writer. More 

quantitatively, the probability to die within the next 

year drastically increases at old age. Can we under- 

stand these effects from a simple model, which finally 

might help increasing the quality of life for old people 

and the average life expectancy? 

Many theories of aging (ageing in British spelling) 

were suggested['I; a t  the beginning of Genesis, Adam 

blames Eve for the event leading to their expulsion from 

the garden of Eden, anil we will mention below more 

recent evidence in this direction. Insects may have their 

wings damaged in the course of time, and athletes break 

their bones or strain their ankles. Perhaps cells have 

a preprogrammed death[2] by allowing only a limited 

number of cell divisions. Chemicals like oxygen radi- 

c a l ~  have also been blamed[2]. None of these approaches 

seem to be suited for the methods of theoretical physics 

and computer simulations, and thus they are ignored 

here; that does not mean that these approaches are 

wrong. 

~ose [ l I ,  on the other hand, voiced the opinion that 

methods of mathematical physics more than traditional 

biochemical knowledge may contain clues for aging. He 

and othersL3] combine evolution theories (Darwinistic 

selection of the fittest) with population dynamics; the 

latter is known e.g. from prey-predator relations like 
the Lotka-Volterra equation, where big fish eat small 

fish. Basically, a random mutation diminishing our 

survival probability is more dangerous to the species 

as a whole if it affects young age than if it affects old 

age. For young people produce more offspring than 

old people and thus are more valuable for population 

growth. Thus bad mutations affecting the young are 

weeded out stronger by selection pressure[4] than bad 

mutations affecting only old age. Statistical Physicists 

know that mean field theories neglecting fluctuation ef- 

fects are unreliable. Thus Ref.[3] triggered some Monte 

Carlo simulations of these genetic population dynamics, 

which are summarized here. 

11. Model 

To see senescence we need at  least two age 

interval~[~I, and thus three points in time: Babies at 

time = 0, juveniles at  time - 1, and adults at  time = 
2. Thus time is measured in generations; its transla- 
tion into years depends on the species studied. Each 

individuum can give birth at  times 1 and 2, but not at 

time 0. The probability of one individuum to survive 

from t=O to t = l  is the juvenile survival rate J ,  whereas 

that from t = l  to t=2 is the adult survival rate A. If 

J = A, there would be no senescence: old people are 
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as healthy as young ones. Normally one has moder- 

ate senescence: O < A < J, whereas the limit A + O 

means catastrophic senescence, as observed in Pacific 

~a lmon[~] .  Sex is difficult for this writer and thus ig- 

nored here; the reason why people are interested in sex 

is another controversial field of re~earch[~]. 

The ~ u l e r - ~ o t k a l [ ~ ~ ~ ]  equation now relates these two 

survival rates J and A with the growth factor r ,  if the 

population increases as exp(rt), and with the number 

of offspring given by juveniles, ml ,  and adults, ma: 

ml ~ e ( t - l ) r  + r n z ~ ~ e ( t - ~ ) r  = etr (1) 

since the number of babies at time t (basically the LHS 

of this equation) is produced by the surviving juve- 

niles born one generation before and by the surviving 

adults born two generations earlier. Of course, the fac- 

tor exp(tr) cancels out. For a stationary state, r = 0, 
this means mi J + mzAJ = 1, i.e. a stable population 

needs on average one child per parent. In this way the 

fitness, as expressed through r, is determined by the 

two survival rates A and J,  for given fertilities m. 

Mutations now can change these survival rates. A 

deleterious mutation reduces them by some factor, and 

a helpful mutation increases them.. We cal1 this factor 

exp(6) and thus allow E to be both positive and negative, 

but always small. Therefore it does not matter much 

whether we have two mutations of strength E or one 

with strength 26, and thus we take into account the pos- 
sible difference in the effect of mutations on A and J by 

a ratio v: Mutations affect old age (A)v times stronger 

or more often than young age ( J ) .  ~ x ~ e r t s [ ~ ]  cal1 a mu- 

tation affecting both young and old age "pleiotropic"; 

thus v measures this pleiotropy. In this way, if u mu- 

tations per generation affect the juvenile survival, then 

J is changed by a factor exp(u6) and A by a factor 
exp(uv6). 

Mutations can be somatic or hereditary. Somatic 

mutations, like skin cancer acquired by having too much 

sunshine on the beach, happen during the lifetime of an 

individuum and are not transmitted to the offspring. 

(Also the errors of the Kowald-Kirkwood simulation~[~I 

behave like somatic mutations.) Hereditary mutations 

are given on to the offspring, like hemophilia. For 

hereditary mutations we have to distinguish between 

"old" and "new": old ones are transmitted unchanged 

from one generation to the other and determine the 

characteristics of that family through time-independent 

values of J and A; new ones happen first to  the indi- 

viduum we investigate, and are then transmitted to the 

offspring . Thus the new hereditary mutations accumu- 

late in the family line and make J and A depending on 

time. If a11 new hereditary mutations are negative (= 
deleterious), their bad effects accumulate so much that 

after a sufficiently long time J and A are no longer large 

enough to sustain the population. This vanishing of 

the species was called "mutational r n e l t d ~ w n " [ ~ ~ ~ ]  and 

means that the model is unrealistic as far as a descrip- 

tion of stable or growing species is concerned. Monte 

Carlo simulations have been made for hereditary muta- 

tions alone, for somatic mutations alone, and for both 

together. 

If boys chase girls a11 the time instead of studying, 

they may reduce their own survivability on the job mar- 

ket. Ref. [7] found that males not allowed to mate 

live significantly longer than mating males. Other re- 

cent research['] confirmed this anti-feministic chercher 

lu fernme result not at a11 or only under certain condi- 

tions. A simple way to include this antagonistic bal- 

ance between producing many offspring in the youth 

and surviving healthily in old age is the assumption of 

Partridge and ~ a r t o n [ ~ l  

where x = 4 was taken in ref.[3]. Combining Eqs. (1,2) 
we get a quadratic equation[3] for the conditions of max- 

imal growth, with the solution 

for ml = m2 = 1. 

Thus after exactly u bad somatic mutations with 

E < O the survival rates are reduced to 

The same is true for "old" hereditary mutations (in the 

above sense) since they are the same for a11 generations. 

Fluctuations can be introduced by a ~ o i s s o n [ ~ ]  distribu- 

tion of the number of mutations. Then a mathematical 

exercise shows that the fluctuations cancel out: Eq.(4a) 

remains valid with u now meaning the average number 

of mutati~ns[ '~].  More interesting is therefore an ex- 

ponential distribution of events, where the probability 
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for exactly U mutations varies as (u/(l  + u))-' where 

again u is now the average value. ~hen["]  

J = Jo / ( l  - EU), A = AO/(l  - EUV) (4b) 

(Of course, positive mutations are allowed only as long 

as they do not increase the survival probabilities be- 

yond unity.) 

Similarly, the birth rate has been assumed to be ex- 

actly r n ~  and mz, or to fluctuate with an exponential 

distribution. Thus one child per generation means in 

the case of fluctuations: no child in half of the cases, 

one in one quarter of the cases, two in an eighth of the 

cases, etc. In addition, one may put the living beings 

onto a square lattice and allow childbirth only if there is 

an empty neighbor site[lO]. It is numerically much eas- 

ier to take into account limitations of food and space 

by reducing the juvenile survival probability by a factor 

1 - N/L, where N is the total number (e.g. of babies) 

and L, some limiting parameter, so that N cannot in- 

crease beyond L. This reduction in juvenile survival 

corresponds to the fact that budget cuts at universi- 

ties first affect the employment of junior staff, not the 

tenured faculty; however, years later an age gap will 

develop in the tenured faculty. 

111. Computational techniques 

The juvenile and adult survival rates are floating 

point numbers, stored as usual. If instead the total 

number of mutations in the family history is stored, 

that number can be quite large. Thus traditional pro- 

gramming methods have to be employed, no storage 

in bits is possible. Vectorization also has not been at- 

tempted. The discrete nature of generations, t = 0,1, 

and 2 only, avoids the difficulties of differential equa- 

tions. Thus one has discrete iterations, calculating from 

one time step to the next how many babies become ju- 

veniles, how many juveniles become adults, and how 

many children are born, a11 that with or without fluc- 

tuations, and with the effect of the mutations. Dar- 

winistic selection then simply means that in the total 

population, the fraction of fitter individuals increases 

with time due to the above iteration. 

So one time step for Partridge-Barton-type models 

may look like that: first, for each baby (age=O) we 

get the number u of mutations from the assumed ex- 

ponential distribution; these mutations reduce J by a 

factor exp(-EU), and only if some random number is 

smaller than the reduced J does this individuum reach 

age 1. Then the same procedure is repeated for the 

juveniles (age=l) and their probability A to reach old 

age (=2); only now the average number of mutations 

is v times larger. Thereafter, the surviving juveniles 

and adults each produce a randomly determined num- 

ber of children (such that this number again follows an 

exponential distribution). Now the number of adults 

is compared with the number of juveniles a t  the previ- 

ous time step to give the average A, and the number of 

present juveniles divided by the number of babies after 

the previous iteration is the average J,  and both aver- 

ages are printed out. Finally, A and J are set back to 

their optimal values like A = 0.505, J = 0.935, and a 

new iteration may start. 

If heredity is taken into account either by new hered- 

itary mutations or by starting from A and J values 

which are different for different individual, then these 

genes (as represented by the values of A and J and/or 

by the numbers of mutations) have to be transmitted 

properly to the offspring, which is the most difficult 

part of the program. Without heredity only one value 

of J and A, not a whole array, has to be stored. 

The problem seems ideally suited for parallel com- 

puters, where many processors with distributed mem- 

ory work simultaneously on one problem. Each proces- 

sor gets initially an equal share of the whole population 

to work with. After each iteration we sum up the re- 

sulting numbers of babies, juveniles, and adults from 

the different processors, calculate the survival rates by 

comparing the number of adults with the number of 

juveniles at the previous time step, and the number of 

juveniles with the number of babies a t  the previous time 

step. (This summation over a11 processors is needed if 

we want the ratio of the averages and are not satisfied 

with the average of the ratios; the latter one also would 

give difficulties if the population has died out on one 

processor but not yet on all.) 

In this way, up to 280 million initial babies with 

a distribution of different survival probabilities could 

be observed over severa1 hundred generations. Fig. 1 

shows the survival rates in a simulation on 140 proces- 

sors of an Intel Paragon, which took six minutes only on 

these i860 chips. We distributed initially the J values 
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homogeneously between O and 1, calculated the initial 

A values through Eq.(2) with x = 4, then took into ac- 

count fluctuations in the somatic mutations at u -, 30, 

v = 2, E = 0.01 and also fluctuations in the number of 

births about the averages ml  = n2 = 1. We see that the 

two survival rates move rapidly from an initial equality 

to  stationary values J > A (i.e. with senescence), be- 

fore the population dies out due to  the high mutation 

rate u. Numbers of this order of magnitude correspond 

e.g. to  the number of cod fish around Newfoundland 

before these stocks nearly vanished. Modern comput- 

ers thus give us the technology to simulate about the 

same number of organisms as in nature, in contrast to  

simulations of a glass of cachaça. What we need here 

are better models, not necessarily better computers. 

Figure I: Variation with time of the juvenile (upper data) 
and adult (lower data) survival rates. The very high rate 
ia = 30 of deleterious mutations leads to a decay of the 
initial population of 280 million down to zero; nevertheless 
during this time the average survival rates relax towards 
some equilibrium value before finally fluctuations take over. 
With u = 25 the population decay is much slower; with 
u = 23 the population reaches a minimum and increases af- 
terwards. These simulations are made in a Partridge-Barton 
type model with hereditary survival rates and somatic dele- 
terious mutations. 

IV. Results 

~ a s j y ~ t a [ l ]  studied a particularly simple model to 

show how the balance of new hereditary mutations with 

the pressure from selection of the fittest leads to senes- 

cence. Starting from identical juvenile and adult sur- 

viva1 probabilities J = A = 1, taking into account only 

new hereditary mutations, ignoring fluctuations in the 

births and mutations (mi = mz = I),  selecting ran- 

domly half of the mutations to be positive and the other 

half as negative, and avoiding both Eq.(2) and any in- 

put value for the mutation ratio v ,  he found that the 

reduction of A due 10 mutations is about twice as large 

as that for J. If the mutation strength is taken such 

after some initial time the popuiation neither grows nor 

decays, then J and A approach values near 0.7 and 0.5, 

respectively. (Since no ratio v was predetermined, each 

new mutation selected randomly with equal probability 

whether it affects young or old age.) 

Figure 2: Growth and decay from a single individuum in 
Dasgupta's model[ll]. Part a shows the numbers of ba- 
bies, juveniles and adults (from top), part b the decrease 
with time of the survival rates J (diamonds, squares) and 
A (+, x). Here all mutations are inheritable, and there are 
no fluctuations in the number of mutations and births, nor 
is eq(2) needed. 

Fig. 2 shows results from Dasgupta's model with 

only negative mutations: a single individuum with 

J = A = 1 and its children and grand children first 
create a new species with millions of animals (Fig.2a), 

but then the mutations reduce the two survival proba- 

bilities unsymmetrically (Fig.2b) until the whole species 

dies out ("mutational meltd~wn"[~]) .  We thus see that 
without assuming any asymmetry like Eq.(2) between 

juvenile and adult survival rates, senescence in the sense 
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of J > A and pleiotropy v > 1 is found, merely through 
the fact that juveniles can give birth also later in life 
and adults no longer have this chance. Selection pres- 
sure against bad mutations acts less on adults. Lhe 
continued occurrence of new mutations prevents selec- 
tion to yield the ideal choices J = A = 1. 

~ 6 t z e l [ ' ~ I  generalized Dasgupta's model to more 
than just two age intervals J and A. He found in 
one case that the populations in the higher age groups 
then die out after some time, reducing the model to its 
original two-age version. In another "diffusion" model 
of Dasgupta, he simulated four ages and found a11 of 
them being stable, with the survival rate decreasing 
first slowly and then rapidly with increasing age, like 
the "Gompertz" curves of real life. 

Many aging intervals were also simulated by 
penna[181 in a particularly efficient bit-string algorithm; 
again the survival rate decreases with age as it should. 

Heumann[17] found in some region of the parameter 
space of Dasupta's model["] that a species has a better 
chance to survive catastrophic weather etc. if in case of 
trouble the babies can move into a "dauer" state[15] in- 
stead of becoming normal juveniles. In this state, sim- 
ilar to hibernation, they don't have offspring, don't eat 
and drink much, and thus behave very decently. You 
may not cal1 it life, but when conditions improve these 
dauer individuals return to adult life and contribute to 
the survival and recovery of the species. Unfortunately, 
homo sapiens has not developed this ability to survive 
its own wars. 

Some work was also, done on more complicated 
models based on the Partridge-Barton Eq. (2). For 
r n ~  = ma = 1, Stauffer and ~an[lO] took into account 
fluctuations in the somatic mutations ( E  = 0.01) and 
the births (ml = m2 = l ) ,  started with J = 0.935 and 
A = 0.505 (the values which optimize growth under the 
constraint (2)) for a11 individual, and found the Monte 
Carlo results to agree with the simple prediction (4b). 
Changing the birth rates changed the growth factor r 
but not the survival rates J and A. Even for simula- 
tions on a square lattice, A and J remained the same. 
This has to be expected since survival and mutations 
in this model are not collective phenomena: once the 
individuum is born it ages a11 by itself. In short, this 
"lone ranger" model is more appropriate for Clint East- 
wood in Unforgiven than for ant colonies; we have not 
yet found complexity in it. (Partridge and ~ a r t o n [ ~ ]  
claimed that A jumps to  zero a t  some finite mutation 
rate for v -i m, thus explaining the catastrophic senes- 

cence of Pacific salmon; but that effect was an artifact 
of their complicated mathematics.) 

More interesting is the case of heredity[lO], already 
used for Fig. 1, when initially the J values are dis- 
tributed homogeneously between O and 1, with A cou- 
pled through (2) and x = 4. (The mutations are still so- 
matic.) Then automatically selection drives the popula- 
tion towards the optimal values J = 0.935, A = 0.505, 
and the creationist model above (how does the com- 
puter know that 0.935, 0.505 is optimal?) is replaced 
by an evolutionary model: Selforganization towards the 
optimum as the outcome, not the aim, of a random 
process. Less philosophically, one sees that the system 
moves to a fixed point for J and A, independent of their 
initial distribution. The final values are very close to 
Eq.(4b), as Fig. 3 shows for one million initial babies. 

Figure 3: Variation of growth rate r ,  juvenile survival rate 
J and adult survival raee A (from top in part a) with muta- 
tion rate u, for v = 16 i10; in the same model as  for Fig.1. 
Part b gives only A for lower values of the ratio v. The 
curves denote approximation (4b). 
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Figure 4: The Partridge-Barton model is now enlarged by 
hereditary mutations. We show the juvenile (part a) and 
adult (part b) survival rate as  a function of somatic mu- 
tation rate for a balance of positive and negative heredi- 
tary mutations of strength tu and -0.1, respectively. The 
data sets end where the population decays to zero. From 
~ollmar['l]. The curves give approximation (4b). 

is to survive. ~ollmar[ll]  thus studied a balance of pos- 
itive mutations, distributed randomly in the interval 

O < 6 E U ,  and negative mutations with O > E > EL. 
Half of these new hereditary mutations are good, the 
others are bad for survival. The other aspects are taken 
over from refs. [10,12]: somatic mutations, fluctuations, 
and (2). Now the deviations from Eq.(4b) are much 

stronger, Fig. 4, and the effects of the hereditary mu- 

tations on A and J often have different signs. 

Married rnen[14] are anxious, a t  least since Lorena 
Bobbitt, about Pacific salmon and death after sex. Al- 

ready the Euler-Lotka equation, coupled with assump- 
tion (2), gives this effect: The adult survival rate A goes 
to zero if the exponent x goes to unity (Fig. 5). A math- 
ematical exercise shows that for birth rates m equal to 
one, this Partridge-Barton model with Eqs.(l,2) and 

without fluctuations gives A o: x - 1 apart from a loga- 

rithmic factor; for m > 1 it predicts A o: ml(x-l). The 

fluctuation effects taken into account by ~ a n [ ' ~ ]  then 

smooth out this sharp phase transition a t  x = 1; but 

still a survival rate of only five percent, as seen in Fig. 
5, is very close to zero: catastrophic sene~cence[~]. 

In this case of heredity[lO], Ray looked a t  the time 
dependence of the approach towards the stationary 
state[12]. With both a mean field theory and Monte 

Carlo simulations, he showed the approach to be pro- 

portional to the reciproca1 number of generations, i.e. 
to l l t .  (The dominating effect during this relaxation is 
the narrowing in the distribution of survival rates, i.e. 

in the approach to the above-mentioned fixed point.) It  
is not ciear a t  present if this lack of an exponential re- 

laxation means self-organized criticality (i.e. adaption 
to the edge of chaos[13]). Ray's time-dependent theory 

thus can predict how our survival rates change after the 

escape of dinosaurs from Jurassic Park. 

Inheritable mutations cannot be a11 bad if a species 

Figure 5: Catastrophic senescence for x near 1; reprinted 
from ~ a n [ ' ~ ]  without permission. These simulations use the 
model of Fig.1 and decrease the exponent x of Eq.(2) below 
the Partridge-Barton value of 4. 

V. Discussion 

The first publication of Monte Carlo results for bi- 
ological aging, as reviewed here, came out[12] only in 

1994. Thus the whole field is still in its infancy. Compu- 
tational techniques have been developed but a t  present 

computer power seems less than a problem than the 

choice of a correct model. If after years of discus- 

sion, experimental biology has not yet 'determined[718] 
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whether or not sex is dangerous to your health, simu- 
lations of complex aging models necessarily are much 
more speculative than in traditional physics. (Real life 
seems to be more complicated than a two-dimensional 
Ising model.) 

Presently, techniques have been developed which 
made possible the simulation of systems as large as typi- 

cal biological systems, a satisfactory solution compared 

with the frustrations of Statistical physics. Even the 
primitive models used here, with and without the an- 
tagonism of Eq.(2) between youth and old age, resulted 
in the expected senescence: Selforganization to an adult 
survival rate below the juvenile survival rate, due to 
mutations. No explanation yet has been given by these 
simulations why some species have catastrophic senes- 
cence ( A  -+ 0) like Pacific s a l m ~ n [ ~ I ,  whereas others, 
e.g. trees, can give offspring for numerous generations. 

Even speculations like those presented here are not 

without dangers. Decades ago, eugenicists advocated 
forced sterilizations of humans with genes judged infe- 
rior. Typically, "inferior" were people outside the sci- 
entist's group; normally the scientist was a white male 
with European heritage. After Hitler came to power 
in Germany, such policies were implemented. Muller- 

~ i l l [ l ~ ]  has warned that such applications of genetic 
knowledge, not accidental creation of monsters out of 
flowers with genetically changed colors, are the real 
danger of genetics. Genetic computer simulations, with 
their easy and versatility, could in the future be misused 
to justify other forms of discriminations. 
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